1 /*
   2  * Copyright (c) 1996, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.beans;
  27 
  28 import com.sun.beans.TypeResolver;
  29 import com.sun.beans.WeakCache;
  30 import com.sun.beans.finder.ClassFinder;
  31 import com.sun.beans.finder.MethodFinder;
  32 
  33 import java.awt.Component;
  34 
  35 import java.lang.ref.Reference;
  36 import java.lang.ref.SoftReference;
  37 import java.lang.reflect.Method;
  38 import java.lang.reflect.Modifier;
  39 import java.lang.reflect.Type;
  40 
  41 import java.util.Map;
  42 import java.util.ArrayList;
  43 import java.util.HashMap;
  44 import java.util.Iterator;
  45 import java.util.EventListener;
  46 import java.util.EventObject;
  47 import java.util.List;
  48 import java.util.TreeMap;
  49 
  50 import sun.misc.JavaBeansIntrospectorAccess;
  51 import sun.misc.SharedSecrets;
  52 import sun.reflect.misc.ReflectUtil;
  53 
  54 /**
  55  * The Introspector class provides a standard way for tools to learn about
  56  * the properties, events, and methods supported by a target Java Bean.
  57  * <p>
  58  * For each of those three kinds of information, the Introspector will
  59  * separately analyze the bean's class and superclasses looking for
  60  * either explicit or implicit information and use that information to
  61  * build a BeanInfo object that comprehensively describes the target bean.
  62  * <p>
  63  * For each class "Foo", explicit information may be available if there exists
  64  * a corresponding "FooBeanInfo" class that provides a non-null value when
  65  * queried for the information.   We first look for the BeanInfo class by
  66  * taking the full package-qualified name of the target bean class and
  67  * appending "BeanInfo" to form a new class name.  If this fails, then
  68  * we take the final classname component of this name, and look for that
  69  * class in each of the packages specified in the BeanInfo package search
  70  * path.
  71  * <p>
  72  * Thus for a class such as "sun.xyz.OurButton" we would first look for a
  73  * BeanInfo class called "sun.xyz.OurButtonBeanInfo" and if that failed we'd
  74  * look in each package in the BeanInfo search path for an OurButtonBeanInfo
  75  * class.  With the default search path, this would mean looking for
  76  * "sun.beans.infos.OurButtonBeanInfo".
  77  * <p>
  78  * If a class provides explicit BeanInfo about itself then we add that to
  79  * the BeanInfo information we obtained from analyzing any derived classes,
  80  * but we regard the explicit information as being definitive for the current
  81  * class and its base classes, and do not proceed any further up the superclass
  82  * chain.
  83  * <p>
  84  * If we don't find explicit BeanInfo on a class, we use low-level
  85  * reflection to study the methods of the class and apply standard design
  86  * patterns to identify property accessors, event sources, or public
  87  * methods.  We then proceed to analyze the class's superclass and add
  88  * in the information from it (and possibly on up the superclass chain).
  89  * <p>
  90  * For more information about introspection and design patterns, please
  91  * consult the
  92  *  <a href="http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html">JavaBeans&trade; specification</a>.
  93  */
  94 
  95 public class Introspector {
  96 
  97     // Flags that can be used to control getBeanInfo:
  98     /**
  99      * Flag to indicate to use of all beaninfo.
 100      */
 101     public final static int USE_ALL_BEANINFO           = 1;
 102     /**
 103      * Flag to indicate to ignore immediate beaninfo.
 104      */
 105     public final static int IGNORE_IMMEDIATE_BEANINFO  = 2;
 106     /**
 107      * Flag to indicate to ignore all beaninfo.
 108      */
 109     public final static int IGNORE_ALL_BEANINFO        = 3;
 110 
 111     // Static Caches to speed up introspection.
 112     private static final WeakCache<Class<?>, Method[]> declaredMethodCache = new WeakCache<>();
 113 
 114     private Class<?> beanClass;
 115     private BeanInfo explicitBeanInfo;
 116     private BeanInfo superBeanInfo;
 117     private BeanInfo additionalBeanInfo[];
 118 
 119     private boolean propertyChangeSource = false;
 120     private static Class<EventListener> eventListenerType = EventListener.class;
 121 
 122     // These should be removed.
 123     private String defaultEventName;
 124     private String defaultPropertyName;
 125     private int defaultEventIndex = -1;
 126     private int defaultPropertyIndex = -1;
 127 
 128     // Methods maps from Method names to MethodDescriptors
 129     private Map<String, MethodDescriptor> methods;
 130 
 131     // properties maps from String names to PropertyDescriptors
 132     private Map<String, PropertyDescriptor> properties;
 133 
 134     // events maps from String names to EventSetDescriptors
 135     private Map<String, EventSetDescriptor> events;
 136 
 137     private final static EventSetDescriptor[] EMPTY_EVENTSETDESCRIPTORS = new EventSetDescriptor[0];
 138 
 139     static final String ADD_PREFIX = "add";
 140     static final String REMOVE_PREFIX = "remove";
 141     static final String GET_PREFIX = "get";
 142     static final String SET_PREFIX = "set";
 143     static final String IS_PREFIX = "is";
 144 
 145     // register with SharedSecrets for JMX usage
 146     static {
 147         SharedSecrets.setJavaBeansIntrospectorAccess((clazz, property) -> {
 148             BeanInfo bi = Introspector.getBeanInfo(clazz);
 149             PropertyDescriptor[] pds = bi.getPropertyDescriptors();
 150             for (PropertyDescriptor pd: pds) {
 151                 if (pd.getName().equals(property)) {
 152                     return pd.getReadMethod();
 153                 }
 154             }
 155             return null;
 156         });
 157     }
 158 
 159     //======================================================================
 160     //                          Public methods
 161     //======================================================================
 162 
 163     /**
 164      * Introspect on a Java Bean and learn about all its properties, exposed
 165      * methods, and events.
 166      * <p>
 167      * If the BeanInfo class for a Java Bean has been previously Introspected
 168      * then the BeanInfo class is retrieved from the BeanInfo cache.
 169      *
 170      * @param beanClass  The bean class to be analyzed.
 171      * @return  A BeanInfo object describing the target bean.
 172      * @exception IntrospectionException if an exception occurs during
 173      *              introspection.
 174      * @see #flushCaches
 175      * @see #flushFromCaches
 176      */
 177     public static BeanInfo getBeanInfo(Class<?> beanClass)
 178         throws IntrospectionException
 179     {
 180         if (!ReflectUtil.isPackageAccessible(beanClass)) {
 181             return (new Introspector(beanClass, null, USE_ALL_BEANINFO)).getBeanInfo();
 182         }
 183         ThreadGroupContext context = ThreadGroupContext.getContext();
 184         BeanInfo beanInfo;
 185         synchronized (declaredMethodCache) {
 186             beanInfo = context.getBeanInfo(beanClass);
 187         }
 188         if (beanInfo == null) {
 189             beanInfo = new Introspector(beanClass, null, USE_ALL_BEANINFO).getBeanInfo();
 190             synchronized (declaredMethodCache) {
 191                 context.putBeanInfo(beanClass, beanInfo);
 192             }
 193         }
 194         return beanInfo;
 195     }
 196 
 197     /**
 198      * Introspect on a Java bean and learn about all its properties, exposed
 199      * methods, and events, subject to some control flags.
 200      * <p>
 201      * If the BeanInfo class for a Java Bean has been previously Introspected
 202      * based on the same arguments then the BeanInfo class is retrieved
 203      * from the BeanInfo cache.
 204      *
 205      * @param beanClass  The bean class to be analyzed.
 206      * @param flags  Flags to control the introspection.
 207      *     If flags == USE_ALL_BEANINFO then we use all of the BeanInfo
 208      *          classes we can discover.
 209      *     If flags == IGNORE_IMMEDIATE_BEANINFO then we ignore any
 210      *           BeanInfo associated with the specified beanClass.
 211      *     If flags == IGNORE_ALL_BEANINFO then we ignore all BeanInfo
 212      *           associated with the specified beanClass or any of its
 213      *           parent classes.
 214      * @return  A BeanInfo object describing the target bean.
 215      * @exception IntrospectionException if an exception occurs during
 216      *              introspection.
 217      */
 218     public static BeanInfo getBeanInfo(Class<?> beanClass, int flags)
 219                                                 throws IntrospectionException {
 220         return getBeanInfo(beanClass, null, flags);
 221     }
 222 
 223     /**
 224      * Introspect on a Java bean and learn all about its properties, exposed
 225      * methods, below a given "stop" point.
 226      * <p>
 227      * If the BeanInfo class for a Java Bean has been previously Introspected
 228      * based on the same arguments, then the BeanInfo class is retrieved
 229      * from the BeanInfo cache.
 230      * @return the BeanInfo for the bean
 231      * @param beanClass The bean class to be analyzed.
 232      * @param stopClass The baseclass at which to stop the analysis.  Any
 233      *    methods/properties/events in the stopClass or in its baseclasses
 234      *    will be ignored in the analysis.
 235      * @exception IntrospectionException if an exception occurs during
 236      *              introspection.
 237      */
 238     public static BeanInfo getBeanInfo(Class<?> beanClass, Class<?> stopClass)
 239                                                 throws IntrospectionException {
 240         return getBeanInfo(beanClass, stopClass, USE_ALL_BEANINFO);
 241     }
 242 
 243     /**
 244      * Introspect on a Java Bean and learn about all its properties,
 245      * exposed methods and events, below a given {@code stopClass} point
 246      * subject to some control {@code flags}.
 247      * <dl>
 248      *  <dt>USE_ALL_BEANINFO</dt>
 249      *  <dd>Any BeanInfo that can be discovered will be used.</dd>
 250      *  <dt>IGNORE_IMMEDIATE_BEANINFO</dt>
 251      *  <dd>Any BeanInfo associated with the specified {@code beanClass} will be ignored.</dd>
 252      *  <dt>IGNORE_ALL_BEANINFO</dt>
 253      *  <dd>Any BeanInfo associated with the specified {@code beanClass}
 254      *      or any of its parent classes will be ignored.</dd>
 255      * </dl>
 256      * Any methods/properties/events in the {@code stopClass}
 257      * or in its parent classes will be ignored in the analysis.
 258      * <p>
 259      * If the BeanInfo class for a Java Bean has been
 260      * previously introspected based on the same arguments then
 261      * the BeanInfo class is retrieved from the BeanInfo cache.
 262      *
 263      * @param beanClass  the bean class to be analyzed
 264      * @param stopClass  the parent class at which to stop the analysis
 265      * @param flags      flags to control the introspection
 266      * @return a BeanInfo object describing the target bean
 267      * @exception IntrospectionException if an exception occurs during introspection
 268      *
 269      * @since 1.7
 270      */
 271     public static BeanInfo getBeanInfo(Class<?> beanClass, Class<?> stopClass,
 272                                         int flags) throws IntrospectionException {
 273         BeanInfo bi;
 274         if (stopClass == null && flags == USE_ALL_BEANINFO) {
 275             // Same parameters to take advantage of caching.
 276             bi = getBeanInfo(beanClass);
 277         } else {
 278             bi = (new Introspector(beanClass, stopClass, flags)).getBeanInfo();
 279         }
 280         return bi;
 281 
 282         // Old behaviour: Make an independent copy of the BeanInfo.
 283         //return new GenericBeanInfo(bi);
 284     }
 285 
 286 
 287     /**
 288      * Utility method to take a string and convert it to normal Java variable
 289      * name capitalization.  This normally means converting the first
 290      * character from upper case to lower case, but in the (unusual) special
 291      * case when there is more than one character and both the first and
 292      * second characters are upper case, we leave it alone.
 293      * <p>
 294      * Thus "FooBah" becomes "fooBah" and "X" becomes "x", but "URL" stays
 295      * as "URL".
 296      *
 297      * @param  name The string to be decapitalized.
 298      * @return  The decapitalized version of the string.
 299      */
 300     public static String decapitalize(String name) {
 301         if (name == null || name.length() == 0) {
 302             return name;
 303         }
 304         if (name.length() > 1 && Character.isUpperCase(name.charAt(1)) &&
 305                         Character.isUpperCase(name.charAt(0))){
 306             return name;
 307         }
 308         char chars[] = name.toCharArray();
 309         chars[0] = Character.toLowerCase(chars[0]);
 310         return new String(chars);
 311     }
 312 
 313     /**
 314      * Gets the list of package names that will be used for
 315      *          finding BeanInfo classes.
 316      *
 317      * @return  The array of package names that will be searched in
 318      *          order to find BeanInfo classes. The default value
 319      *          for this array is implementation-dependent; e.g.
 320      *          Sun implementation initially sets to {"sun.beans.infos"}.
 321      */
 322 
 323     public static String[] getBeanInfoSearchPath() {
 324         return ThreadGroupContext.getContext().getBeanInfoFinder().getPackages();
 325     }
 326 
 327     /**
 328      * Change the list of package names that will be used for
 329      *          finding BeanInfo classes.  The behaviour of
 330      *          this method is undefined if parameter path
 331      *          is null.
 332      *
 333      * <p>First, if there is a security manager, its <code>checkPropertiesAccess</code>
 334      * method is called. This could result in a SecurityException.
 335      *
 336      * @param path  Array of package names.
 337      * @exception  SecurityException  if a security manager exists and its
 338      *             <code>checkPropertiesAccess</code> method doesn't allow setting
 339      *              of system properties.
 340      * @see SecurityManager#checkPropertiesAccess
 341      */
 342 
 343     public static void setBeanInfoSearchPath(String[] path) {
 344         SecurityManager sm = System.getSecurityManager();
 345         if (sm != null) {
 346             sm.checkPropertiesAccess();
 347         }
 348         ThreadGroupContext.getContext().getBeanInfoFinder().setPackages(path);
 349     }
 350 
 351 
 352     /**
 353      * Flush all of the Introspector's internal caches.  This method is
 354      * not normally required.  It is normally only needed by advanced
 355      * tools that update existing "Class" objects in-place and need
 356      * to make the Introspector re-analyze existing Class objects.
 357      */
 358 
 359     public static void flushCaches() {
 360         synchronized (declaredMethodCache) {
 361             ThreadGroupContext.getContext().clearBeanInfoCache();
 362             declaredMethodCache.clear();
 363         }
 364     }
 365 
 366     /**
 367      * Flush the Introspector's internal cached information for a given class.
 368      * This method is not normally required.  It is normally only needed
 369      * by advanced tools that update existing "Class" objects in-place
 370      * and need to make the Introspector re-analyze an existing Class object.
 371      *
 372      * Note that only the direct state associated with the target Class
 373      * object is flushed.  We do not flush state for other Class objects
 374      * with the same name, nor do we flush state for any related Class
 375      * objects (such as subclasses), even though their state may include
 376      * information indirectly obtained from the target Class object.
 377      *
 378      * @param clz  Class object to be flushed.
 379      * @throws NullPointerException If the Class object is null.
 380      */
 381     public static void flushFromCaches(Class<?> clz) {
 382         if (clz == null) {
 383             throw new NullPointerException();
 384         }
 385         synchronized (declaredMethodCache) {
 386             ThreadGroupContext.getContext().removeBeanInfo(clz);
 387             declaredMethodCache.put(clz, null);
 388         }
 389     }
 390 
 391     //======================================================================
 392     //                  Private implementation methods
 393     //======================================================================
 394 
 395     private Introspector(Class<?> beanClass, Class<?> stopClass, int flags)
 396                                             throws IntrospectionException {
 397         this.beanClass = beanClass;
 398 
 399         // Check stopClass is a superClass of startClass.
 400         if (stopClass != null) {
 401             boolean isSuper = false;
 402             for (Class<?> c = beanClass.getSuperclass(); c != null; c = c.getSuperclass()) {
 403                 if (c == stopClass) {
 404                     isSuper = true;
 405                 }
 406             }
 407             if (!isSuper) {
 408                 throw new IntrospectionException(stopClass.getName() + " not superclass of " +
 409                                         beanClass.getName());
 410             }
 411         }
 412 
 413         if (flags == USE_ALL_BEANINFO) {
 414             explicitBeanInfo = findExplicitBeanInfo(beanClass);
 415         }
 416 
 417         Class<?> superClass = beanClass.getSuperclass();
 418         if (superClass != stopClass) {
 419             int newFlags = flags;
 420             if (newFlags == IGNORE_IMMEDIATE_BEANINFO) {
 421                 newFlags = USE_ALL_BEANINFO;
 422             }
 423             superBeanInfo = getBeanInfo(superClass, stopClass, newFlags);
 424         }
 425         if (explicitBeanInfo != null) {
 426             additionalBeanInfo = explicitBeanInfo.getAdditionalBeanInfo();
 427         }
 428         if (additionalBeanInfo == null) {
 429             additionalBeanInfo = new BeanInfo[0];
 430         }
 431     }
 432 
 433     /**
 434      * Constructs a GenericBeanInfo class from the state of the Introspector
 435      */
 436     private BeanInfo getBeanInfo() throws IntrospectionException {
 437 
 438         // the evaluation order here is import, as we evaluate the
 439         // event sets and locate PropertyChangeListeners before we
 440         // look for properties.
 441         BeanDescriptor bd = getTargetBeanDescriptor();
 442         MethodDescriptor mds[] = getTargetMethodInfo();
 443         EventSetDescriptor esds[] = getTargetEventInfo();
 444         PropertyDescriptor pds[] = getTargetPropertyInfo();
 445 
 446         int defaultEvent = getTargetDefaultEventIndex();
 447         int defaultProperty = getTargetDefaultPropertyIndex();
 448 
 449         return new GenericBeanInfo(bd, esds, defaultEvent, pds,
 450                         defaultProperty, mds, explicitBeanInfo);
 451 
 452     }
 453 
 454     /**
 455      * Looks for an explicit BeanInfo class that corresponds to the Class.
 456      * First it looks in the existing package that the Class is defined in,
 457      * then it checks to see if the class is its own BeanInfo. Finally,
 458      * the BeanInfo search path is prepended to the class and searched.
 459      *
 460      * @param beanClass  the class type of the bean
 461      * @return Instance of an explicit BeanInfo class or null if one isn't found.
 462      */
 463     private static BeanInfo findExplicitBeanInfo(Class<?> beanClass) {
 464         return ThreadGroupContext.getContext().getBeanInfoFinder().find(beanClass);
 465     }
 466 
 467     /**
 468      * @return An array of PropertyDescriptors describing the editable
 469      * properties supported by the target bean.
 470      */
 471 
 472     private PropertyDescriptor[] getTargetPropertyInfo() {
 473 
 474         // Check if the bean has its own BeanInfo that will provide
 475         // explicit information.
 476         PropertyDescriptor[] explicitProperties = null;
 477         if (explicitBeanInfo != null) {
 478             explicitProperties = getPropertyDescriptors(this.explicitBeanInfo);
 479         }
 480 
 481         if (explicitProperties == null && superBeanInfo != null) {
 482             // We have no explicit BeanInfo properties.  Check with our parent.
 483             addPropertyDescriptors(getPropertyDescriptors(this.superBeanInfo));
 484         }
 485 
 486         for (int i = 0; i < additionalBeanInfo.length; i++) {
 487             addPropertyDescriptors(additionalBeanInfo[i].getPropertyDescriptors());
 488         }
 489 
 490         if (explicitProperties != null) {
 491             // Add the explicit BeanInfo data to our results.
 492             addPropertyDescriptors(explicitProperties);
 493 
 494         } else {
 495 
 496             // Apply some reflection to the current class.
 497 
 498             // First get an array of all the public methods at this level
 499             Method methodList[] = getPublicDeclaredMethods(beanClass);
 500 
 501             // Now analyze each method.
 502             for (int i = 0; i < methodList.length; i++) {
 503                 Method method = methodList[i];
 504                 if (method == null) {
 505                     continue;
 506                 }
 507                 // skip static methods.
 508                 int mods = method.getModifiers();
 509                 if (Modifier.isStatic(mods)) {
 510                     continue;
 511                 }
 512                 String name = method.getName();
 513                 Class<?>[] argTypes = method.getParameterTypes();
 514                 Class<?> resultType = method.getReturnType();
 515                 int argCount = argTypes.length;
 516                 PropertyDescriptor pd = null;
 517 
 518                 if (name.length() <= 3 && !name.startsWith(IS_PREFIX)) {
 519                     // Optimization. Don't bother with invalid propertyNames.
 520                     continue;
 521                 }
 522 
 523                 try {
 524 
 525                     if (argCount == 0) {
 526                         if (name.startsWith(GET_PREFIX)) {
 527                             // Simple getter
 528                             pd = new PropertyDescriptor(this.beanClass, name.substring(3), method, null);
 529                         } else if (resultType == boolean.class && name.startsWith(IS_PREFIX)) {
 530                             // Boolean getter
 531                             pd = new PropertyDescriptor(this.beanClass, name.substring(2), method, null);
 532                         }
 533                     } else if (argCount == 1) {
 534                         if (int.class.equals(argTypes[0]) && name.startsWith(GET_PREFIX)) {
 535                             pd = new IndexedPropertyDescriptor(this.beanClass, name.substring(3), null, null, method, null);
 536                         } else if (void.class.equals(resultType) && name.startsWith(SET_PREFIX)) {
 537                             // Simple setter
 538                             pd = new PropertyDescriptor(this.beanClass, name.substring(3), null, method);
 539                             if (throwsException(method, PropertyVetoException.class)) {
 540                                 pd.setConstrained(true);
 541                             }
 542                         }
 543                     } else if (argCount == 2) {
 544                             if (void.class.equals(resultType) && int.class.equals(argTypes[0]) && name.startsWith(SET_PREFIX)) {
 545                             pd = new IndexedPropertyDescriptor(this.beanClass, name.substring(3), null, null, null, method);
 546                             if (throwsException(method, PropertyVetoException.class)) {
 547                                 pd.setConstrained(true);
 548                             }
 549                         }
 550                     }
 551                 } catch (IntrospectionException ex) {
 552                     // This happens if a PropertyDescriptor or IndexedPropertyDescriptor
 553                     // constructor fins that the method violates details of the deisgn
 554                     // pattern, e.g. by having an empty name, or a getter returning
 555                     // void , or whatever.
 556                     pd = null;
 557                 }
 558 
 559                 if (pd != null) {
 560                     // If this class or one of its base classes is a PropertyChange
 561                     // source, then we assume that any properties we discover are "bound".
 562                     if (propertyChangeSource) {
 563                         pd.setBound(true);
 564                     }
 565                     addPropertyDescriptor(pd);
 566                 }
 567             }
 568         }
 569         processPropertyDescriptors();
 570 
 571         // Allocate and populate the result array.
 572         PropertyDescriptor result[] =
 573                 properties.values().toArray(new PropertyDescriptor[properties.size()]);
 574 
 575         // Set the default index.
 576         if (defaultPropertyName != null) {
 577             for (int i = 0; i < result.length; i++) {
 578                 if (defaultPropertyName.equals(result[i].getName())) {
 579                     defaultPropertyIndex = i;
 580                 }
 581             }
 582         }
 583 
 584         return result;
 585     }
 586 
 587     private HashMap<String, List<PropertyDescriptor>> pdStore = new HashMap<>();
 588 
 589     /**
 590      * Adds the property descriptor to the list store.
 591      */
 592     private void addPropertyDescriptor(PropertyDescriptor pd) {
 593         String propName = pd.getName();
 594         List<PropertyDescriptor> list = pdStore.get(propName);
 595         if (list == null) {
 596             list = new ArrayList<>();
 597             pdStore.put(propName, list);
 598         }
 599         if (this.beanClass != pd.getClass0()) {
 600             // replace existing property descriptor
 601             // only if we have types to resolve
 602             // in the context of this.beanClass
 603             Method read = pd.getReadMethod();
 604             Method write = pd.getWriteMethod();
 605             boolean cls = true;
 606             if (read != null) cls = cls && read.getGenericReturnType() instanceof Class;
 607             if (write != null) cls = cls && write.getGenericParameterTypes()[0] instanceof Class;
 608             if (pd instanceof IndexedPropertyDescriptor) {
 609                 IndexedPropertyDescriptor ipd = (IndexedPropertyDescriptor) pd;
 610                 Method readI = ipd.getIndexedReadMethod();
 611                 Method writeI = ipd.getIndexedWriteMethod();
 612                 if (readI != null) cls = cls && readI.getGenericReturnType() instanceof Class;
 613                 if (writeI != null) cls = cls && writeI.getGenericParameterTypes()[1] instanceof Class;
 614                 if (!cls) {
 615                     pd = new IndexedPropertyDescriptor(ipd);
 616                     pd.updateGenericsFor(this.beanClass);
 617                 }
 618             }
 619             else if (!cls) {
 620                 pd = new PropertyDescriptor(pd);
 621                 pd.updateGenericsFor(this.beanClass);
 622             }
 623         }
 624         list.add(pd);
 625     }
 626 
 627     private void addPropertyDescriptors(PropertyDescriptor[] descriptors) {
 628         if (descriptors != null) {
 629             for (PropertyDescriptor descriptor : descriptors) {
 630                 addPropertyDescriptor(descriptor);
 631             }
 632         }
 633     }
 634 
 635     private PropertyDescriptor[] getPropertyDescriptors(BeanInfo info) {
 636         PropertyDescriptor[] descriptors = info.getPropertyDescriptors();
 637         int index = info.getDefaultPropertyIndex();
 638         if ((0 <= index) && (index < descriptors.length)) {
 639             this.defaultPropertyName = descriptors[index].getName();
 640         }
 641         return descriptors;
 642     }
 643 
 644     /**
 645      * Populates the property descriptor table by merging the
 646      * lists of Property descriptors.
 647      */
 648     private void processPropertyDescriptors() {
 649         if (properties == null) {
 650             properties = new TreeMap<>();
 651         }
 652 
 653         List<PropertyDescriptor> list;
 654 
 655         PropertyDescriptor pd, gpd, spd;
 656         IndexedPropertyDescriptor ipd, igpd, ispd;
 657 
 658         Iterator<List<PropertyDescriptor>> it = pdStore.values().iterator();
 659         while (it.hasNext()) {
 660             pd = null; gpd = null; spd = null;
 661             ipd = null; igpd = null; ispd = null;
 662 
 663             list = it.next();
 664 
 665             // First pass. Find the latest getter method. Merge properties
 666             // of previous getter methods.
 667             for (int i = 0; i < list.size(); i++) {
 668                 pd = list.get(i);
 669                 if (pd instanceof IndexedPropertyDescriptor) {
 670                     ipd = (IndexedPropertyDescriptor)pd;
 671                     if (ipd.getIndexedReadMethod() != null) {
 672                         if (igpd != null) {
 673                             igpd = new IndexedPropertyDescriptor(igpd, ipd);
 674                         } else {
 675                             igpd = ipd;
 676                         }
 677                     }
 678                 } else {
 679                     if (pd.getReadMethod() != null) {
 680                         String pdName = pd.getReadMethod().getName();
 681                         if (gpd != null) {
 682                             // Don't replace the existing read
 683                             // method if it starts with "is"
 684                             String gpdName = gpd.getReadMethod().getName();
 685                             if (gpdName.equals(pdName) || !gpdName.startsWith(IS_PREFIX)) {
 686                                 gpd = new PropertyDescriptor(gpd, pd);
 687                             }
 688                         } else {
 689                             gpd = pd;
 690                         }
 691                     }
 692                 }
 693             }
 694 
 695             // Second pass. Find the latest setter method which
 696             // has the same type as the getter method.
 697             for (int i = 0; i < list.size(); i++) {
 698                 pd = list.get(i);
 699                 if (pd instanceof IndexedPropertyDescriptor) {
 700                     ipd = (IndexedPropertyDescriptor)pd;
 701                     if (ipd.getIndexedWriteMethod() != null) {
 702                         if (igpd != null) {
 703                             if (isAssignable(igpd.getIndexedPropertyType(), ipd.getIndexedPropertyType())) {
 704                                 if (ispd != null) {
 705                                     ispd = new IndexedPropertyDescriptor(ispd, ipd);
 706                                 } else {
 707                                     ispd = ipd;
 708                                 }
 709                             }
 710                         } else {
 711                             if (ispd != null) {
 712                                 ispd = new IndexedPropertyDescriptor(ispd, ipd);
 713                             } else {
 714                                 ispd = ipd;
 715                             }
 716                         }
 717                     }
 718                 } else {
 719                     if (pd.getWriteMethod() != null) {
 720                         if (gpd != null) {
 721                             if (isAssignable(gpd.getPropertyType(), pd.getPropertyType())) {
 722                                 if (spd != null) {
 723                                     spd = new PropertyDescriptor(spd, pd);
 724                                 } else {
 725                                     spd = pd;
 726                                 }
 727                             }
 728                         } else {
 729                             if (spd != null) {
 730                                 spd = new PropertyDescriptor(spd, pd);
 731                             } else {
 732                                 spd = pd;
 733                             }
 734                         }
 735                     }
 736                 }
 737             }
 738 
 739             // At this stage we should have either PDs or IPDs for the
 740             // representative getters and setters. The order at which the
 741             // property descriptors are determined represent the
 742             // precedence of the property ordering.
 743             pd = null; ipd = null;
 744 
 745             if (igpd != null && ispd != null) {
 746                 // Complete indexed properties set
 747                 // Merge any classic property descriptors
 748                 if ((gpd == spd) || (gpd == null)) {
 749                     pd = spd;
 750                 } else if (spd == null) {
 751                     pd = gpd;
 752                 } else if (spd instanceof IndexedPropertyDescriptor) {
 753                     pd = mergePropertyWithIndexedProperty(gpd, (IndexedPropertyDescriptor) spd);
 754                 } else if (gpd instanceof IndexedPropertyDescriptor) {
 755                     pd = mergePropertyWithIndexedProperty(spd, (IndexedPropertyDescriptor) gpd);
 756                 } else {
 757                     pd = mergePropertyDescriptor(gpd, spd);
 758                 }
 759                 if (igpd == ispd) {
 760                     ipd = igpd;
 761                 } else {
 762                     ipd = mergePropertyDescriptor(igpd, ispd);
 763                 }
 764                 if (pd == null) {
 765                     pd = ipd;
 766                 } else {
 767                     Class<?> propType = pd.getPropertyType();
 768                     Class<?> ipropType = ipd.getIndexedPropertyType();
 769                     if (propType.isArray() && propType.getComponentType() == ipropType) {
 770                         pd = pd.getClass0().isAssignableFrom(ipd.getClass0())
 771                                 ? new IndexedPropertyDescriptor(pd, ipd)
 772                                 : new IndexedPropertyDescriptor(ipd, pd);
 773                     } else if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
 774                         pd = pd.getClass0().isAssignableFrom(ipd.getClass0())
 775                                 ? new PropertyDescriptor(pd, ipd)
 776                                 : new PropertyDescriptor(ipd, pd);
 777                     } else {
 778                         pd = ipd;
 779                     }
 780                 }
 781             } else if (gpd != null && spd != null) {
 782                 if (igpd != null) {
 783                     gpd = mergePropertyWithIndexedProperty(gpd, igpd);
 784                 }
 785                 if (ispd != null) {
 786                     spd = mergePropertyWithIndexedProperty(spd, ispd);
 787                 }
 788                 // Complete simple properties set
 789                 if (gpd == spd) {
 790                     pd = gpd;
 791                 } else if (spd instanceof IndexedPropertyDescriptor) {
 792                     pd = mergePropertyWithIndexedProperty(gpd, (IndexedPropertyDescriptor) spd);
 793                 } else if (gpd instanceof IndexedPropertyDescriptor) {
 794                     pd = mergePropertyWithIndexedProperty(spd, (IndexedPropertyDescriptor) gpd);
 795                 } else {
 796                     pd = mergePropertyDescriptor(gpd, spd);
 797                 }
 798             } else if (ispd != null) {
 799                 // indexed setter
 800                 pd = ispd;
 801                 // Merge any classic property descriptors
 802                 if (spd != null) {
 803                     pd = mergePropertyDescriptor(ispd, spd);
 804                 }
 805                 if (gpd != null) {
 806                     pd = mergePropertyDescriptor(ispd, gpd);
 807                 }
 808             } else if (igpd != null) {
 809                 // indexed getter
 810                 pd = igpd;
 811                 // Merge any classic property descriptors
 812                 if (gpd != null) {
 813                     pd = mergePropertyDescriptor(igpd, gpd);
 814                 }
 815                 if (spd != null) {
 816                     pd = mergePropertyDescriptor(igpd, spd);
 817                 }
 818             } else if (spd != null) {
 819                 // simple setter
 820                 pd = spd;
 821             } else if (gpd != null) {
 822                 // simple getter
 823                 pd = gpd;
 824             }
 825 
 826             // Very special case to ensure that an IndexedPropertyDescriptor
 827             // doesn't contain less information than the enclosed
 828             // PropertyDescriptor. If it does, then recreate as a
 829             // PropertyDescriptor. See 4168833
 830             if (pd instanceof IndexedPropertyDescriptor) {
 831                 ipd = (IndexedPropertyDescriptor)pd;
 832                 if (ipd.getIndexedReadMethod() == null && ipd.getIndexedWriteMethod() == null) {
 833                     pd = new PropertyDescriptor(ipd);
 834                 }
 835             }
 836 
 837             // Find the first property descriptor
 838             // which does not have getter and setter methods.
 839             // See regression bug 4984912.
 840             if ( (pd == null) && (list.size() > 0) ) {
 841                 pd = list.get(0);
 842             }
 843 
 844             if (pd != null) {
 845                 properties.put(pd.getName(), pd);
 846             }
 847         }
 848     }
 849 
 850     private static boolean isAssignable(Class<?> current, Class<?> candidate) {
 851         return ((current == null) || (candidate == null)) ? current == candidate : current.isAssignableFrom(candidate);
 852     }
 853 
 854     private PropertyDescriptor mergePropertyWithIndexedProperty(PropertyDescriptor pd, IndexedPropertyDescriptor ipd) {
 855         Class<?> type = pd.getPropertyType();
 856         if (type.isArray() && (type.getComponentType() == ipd.getIndexedPropertyType())) {
 857             return pd.getClass0().isAssignableFrom(ipd.getClass0())
 858                     ? new IndexedPropertyDescriptor(pd, ipd)
 859                     : new IndexedPropertyDescriptor(ipd, pd);
 860         }
 861         return pd;
 862     }
 863 
 864     /**
 865      * Adds the property descriptor to the indexedproperty descriptor only if the
 866      * types are the same.
 867      *
 868      * The most specific property descriptor will take precedence.
 869      */
 870     private PropertyDescriptor mergePropertyDescriptor(IndexedPropertyDescriptor ipd,
 871                                                        PropertyDescriptor pd) {
 872         PropertyDescriptor result = null;
 873 
 874         Class<?> propType = pd.getPropertyType();
 875         Class<?> ipropType = ipd.getIndexedPropertyType();
 876 
 877         if (propType.isArray() && propType.getComponentType() == ipropType) {
 878             if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
 879                 result = new IndexedPropertyDescriptor(pd, ipd);
 880             } else {
 881                 result = new IndexedPropertyDescriptor(ipd, pd);
 882             }
 883         } else if ((ipd.getReadMethod() == null) && (ipd.getWriteMethod() == null)) {
 884             if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
 885                 result = new PropertyDescriptor(pd, ipd);
 886             } else {
 887                 result = new PropertyDescriptor(ipd, pd);
 888             }
 889         } else {
 890             // Cannot merge the pd because of type mismatch
 891             // Return the most specific pd
 892             if (pd.getClass0().isAssignableFrom(ipd.getClass0())) {
 893                 result = ipd;
 894             } else {
 895                 result = pd;
 896                 // Try to add methods which may have been lost in the type change
 897                 // See 4168833
 898                 Method write = result.getWriteMethod();
 899                 Method read = result.getReadMethod();
 900 
 901                 if (read == null && write != null) {
 902                     read = findMethod(result.getClass0(),
 903                                       GET_PREFIX + NameGenerator.capitalize(result.getName()), 0);
 904                     if (read != null) {
 905                         try {
 906                             result.setReadMethod(read);
 907                         } catch (IntrospectionException ex) {
 908                             // no consequences for failure.
 909                         }
 910                     }
 911                 }
 912                 if (write == null && read != null) {
 913                     write = findMethod(result.getClass0(),
 914                                        SET_PREFIX + NameGenerator.capitalize(result.getName()), 1,
 915                                        new Class<?>[] { FeatureDescriptor.getReturnType(result.getClass0(), read) });
 916                     if (write != null) {
 917                         try {
 918                             result.setWriteMethod(write);
 919                         } catch (IntrospectionException ex) {
 920                             // no consequences for failure.
 921                         }
 922                     }
 923                 }
 924             }
 925         }
 926         return result;
 927     }
 928 
 929     // Handle regular pd merge
 930     private PropertyDescriptor mergePropertyDescriptor(PropertyDescriptor pd1,
 931                                                        PropertyDescriptor pd2) {
 932         if (pd1.getClass0().isAssignableFrom(pd2.getClass0())) {
 933             return new PropertyDescriptor(pd1, pd2);
 934         } else {
 935             return new PropertyDescriptor(pd2, pd1);
 936         }
 937     }
 938 
 939     // Handle regular ipd merge
 940     private IndexedPropertyDescriptor mergePropertyDescriptor(IndexedPropertyDescriptor ipd1,
 941                                                        IndexedPropertyDescriptor ipd2) {
 942         if (ipd1.getClass0().isAssignableFrom(ipd2.getClass0())) {
 943             return new IndexedPropertyDescriptor(ipd1, ipd2);
 944         } else {
 945             return new IndexedPropertyDescriptor(ipd2, ipd1);
 946         }
 947     }
 948 
 949     /**
 950      * @return An array of EventSetDescriptors describing the kinds of
 951      * events fired by the target bean.
 952      */
 953     private EventSetDescriptor[] getTargetEventInfo() throws IntrospectionException {
 954         if (events == null) {
 955             events = new HashMap<>();
 956         }
 957 
 958         // Check if the bean has its own BeanInfo that will provide
 959         // explicit information.
 960         EventSetDescriptor[] explicitEvents = null;
 961         if (explicitBeanInfo != null) {
 962             explicitEvents = explicitBeanInfo.getEventSetDescriptors();
 963             int ix = explicitBeanInfo.getDefaultEventIndex();
 964             if (ix >= 0 && ix < explicitEvents.length) {
 965                 defaultEventName = explicitEvents[ix].getName();
 966             }
 967         }
 968 
 969         if (explicitEvents == null && superBeanInfo != null) {
 970             // We have no explicit BeanInfo events.  Check with our parent.
 971             EventSetDescriptor supers[] = superBeanInfo.getEventSetDescriptors();
 972             for (int i = 0 ; i < supers.length; i++) {
 973                 addEvent(supers[i]);
 974             }
 975             int ix = superBeanInfo.getDefaultEventIndex();
 976             if (ix >= 0 && ix < supers.length) {
 977                 defaultEventName = supers[ix].getName();
 978             }
 979         }
 980 
 981         for (int i = 0; i < additionalBeanInfo.length; i++) {
 982             EventSetDescriptor additional[] = additionalBeanInfo[i].getEventSetDescriptors();
 983             if (additional != null) {
 984                 for (int j = 0 ; j < additional.length; j++) {
 985                     addEvent(additional[j]);
 986                 }
 987             }
 988         }
 989 
 990         if (explicitEvents != null) {
 991             // Add the explicit explicitBeanInfo data to our results.
 992             for (int i = 0 ; i < explicitEvents.length; i++) {
 993                 addEvent(explicitEvents[i]);
 994             }
 995 
 996         } else {
 997 
 998             // Apply some reflection to the current class.
 999 
1000             // Get an array of all the public beans methods at this level
1001             Method methodList[] = getPublicDeclaredMethods(beanClass);
1002 
1003             // Find all suitable "add", "remove" and "get" Listener methods
1004             // The name of the listener type is the key for these hashtables
1005             // i.e, ActionListener
1006             Map<String, Method> adds = null;
1007             Map<String, Method> removes = null;
1008             Map<String, Method> gets = null;
1009 
1010             for (int i = 0; i < methodList.length; i++) {
1011                 Method method = methodList[i];
1012                 if (method == null) {
1013                     continue;
1014                 }
1015                 // skip static methods.
1016                 int mods = method.getModifiers();
1017                 if (Modifier.isStatic(mods)) {
1018                     continue;
1019                 }
1020                 String name = method.getName();
1021                 // Optimization avoid getParameterTypes
1022                 if (!name.startsWith(ADD_PREFIX) && !name.startsWith(REMOVE_PREFIX)
1023                     && !name.startsWith(GET_PREFIX)) {
1024                     continue;
1025                 }
1026 
1027                 if (name.startsWith(ADD_PREFIX)) {
1028                     Class<?> returnType = method.getReturnType();
1029                     if (returnType == void.class) {
1030                         Type[] parameterTypes = method.getGenericParameterTypes();
1031                         if (parameterTypes.length == 1) {
1032                             Class<?> type = TypeResolver.erase(TypeResolver.resolveInClass(beanClass, parameterTypes[0]));
1033                             if (Introspector.isSubclass(type, eventListenerType)) {
1034                                 String listenerName = name.substring(3);
1035                                 if (listenerName.length() > 0 &&
1036                                     type.getName().endsWith(listenerName)) {
1037                                     if (adds == null) {
1038                                         adds = new HashMap<>();
1039                                     }
1040                                     adds.put(listenerName, method);
1041                                 }
1042                             }
1043                         }
1044                     }
1045                 }
1046                 else if (name.startsWith(REMOVE_PREFIX)) {
1047                     Class<?> returnType = method.getReturnType();
1048                     if (returnType == void.class) {
1049                         Type[] parameterTypes = method.getGenericParameterTypes();
1050                         if (parameterTypes.length == 1) {
1051                             Class<?> type = TypeResolver.erase(TypeResolver.resolveInClass(beanClass, parameterTypes[0]));
1052                             if (Introspector.isSubclass(type, eventListenerType)) {
1053                                 String listenerName = name.substring(6);
1054                                 if (listenerName.length() > 0 &&
1055                                     type.getName().endsWith(listenerName)) {
1056                                     if (removes == null) {
1057                                         removes = new HashMap<>();
1058                                     }
1059                                     removes.put(listenerName, method);
1060                                 }
1061                             }
1062                         }
1063                     }
1064                 }
1065                 else if (name.startsWith(GET_PREFIX)) {
1066                     Class<?>[] parameterTypes = method.getParameterTypes();
1067                     if (parameterTypes.length == 0) {
1068                         Class<?> returnType = FeatureDescriptor.getReturnType(beanClass, method);
1069                         if (returnType.isArray()) {
1070                             Class<?> type = returnType.getComponentType();
1071                             if (Introspector.isSubclass(type, eventListenerType)) {
1072                                 String listenerName  = name.substring(3, name.length() - 1);
1073                                 if (listenerName.length() > 0 &&
1074                                     type.getName().endsWith(listenerName)) {
1075                                     if (gets == null) {
1076                                         gets = new HashMap<>();
1077                                     }
1078                                     gets.put(listenerName, method);
1079                                 }
1080                             }
1081                         }
1082                     }
1083                 }
1084             }
1085 
1086             if (adds != null && removes != null) {
1087                 // Now look for matching addFooListener+removeFooListener pairs.
1088                 // Bonus if there is a matching getFooListeners method as well.
1089                 Iterator<String> keys = adds.keySet().iterator();
1090                 while (keys.hasNext()) {
1091                     String listenerName = keys.next();
1092                     // Skip any "add" which doesn't have a matching "remove" or
1093                     // a listener name that doesn't end with Listener
1094                     if (removes.get(listenerName) == null || !listenerName.endsWith("Listener")) {
1095                         continue;
1096                     }
1097                     String eventName = decapitalize(listenerName.substring(0, listenerName.length()-8));
1098                     Method addMethod = adds.get(listenerName);
1099                     Method removeMethod = removes.get(listenerName);
1100                     Method getMethod = null;
1101                     if (gets != null) {
1102                         getMethod = gets.get(listenerName);
1103                     }
1104                     Class<?> argType = FeatureDescriptor.getParameterTypes(beanClass, addMethod)[0];
1105 
1106                     // generate a list of Method objects for each of the target methods:
1107                     Method allMethods[] = getPublicDeclaredMethods(argType);
1108                     List<Method> validMethods = new ArrayList<>(allMethods.length);
1109                     for (int i = 0; i < allMethods.length; i++) {
1110                         if (allMethods[i] == null) {
1111                             continue;
1112                         }
1113 
1114                         if (isEventHandler(allMethods[i])) {
1115                             validMethods.add(allMethods[i]);
1116                         }
1117                     }
1118                     Method[] methods = validMethods.toArray(new Method[validMethods.size()]);
1119 
1120                     EventSetDescriptor esd = new EventSetDescriptor(eventName, argType,
1121                                                                     methods, addMethod,
1122                                                                     removeMethod,
1123                                                                     getMethod);
1124 
1125                     // If the adder method throws the TooManyListenersException then it
1126                     // is a Unicast event source.
1127                     if (throwsException(addMethod,
1128                                         java.util.TooManyListenersException.class)) {
1129                         esd.setUnicast(true);
1130                     }
1131                     addEvent(esd);
1132                 }
1133             } // if (adds != null ...
1134         }
1135         EventSetDescriptor[] result;
1136         if (events.size() == 0) {
1137             result = EMPTY_EVENTSETDESCRIPTORS;
1138         } else {
1139             // Allocate and populate the result array.
1140             result = new EventSetDescriptor[events.size()];
1141             result = events.values().toArray(result);
1142 
1143             // Set the default index.
1144             if (defaultEventName != null) {
1145                 for (int i = 0; i < result.length; i++) {
1146                     if (defaultEventName.equals(result[i].getName())) {
1147                         defaultEventIndex = i;
1148                     }
1149                 }
1150             }
1151         }
1152         return result;
1153     }
1154 
1155     private void addEvent(EventSetDescriptor esd) {
1156         String key = esd.getName();
1157         if (esd.getName().equals("propertyChange")) {
1158             propertyChangeSource = true;
1159         }
1160         EventSetDescriptor old = events.get(key);
1161         if (old == null) {
1162             events.put(key, esd);
1163             return;
1164         }
1165         EventSetDescriptor composite = new EventSetDescriptor(old, esd);
1166         events.put(key, composite);
1167     }
1168 
1169     /**
1170      * @return An array of MethodDescriptors describing the private
1171      * methods supported by the target bean.
1172      */
1173     private MethodDescriptor[] getTargetMethodInfo() {
1174         if (methods == null) {
1175             methods = new HashMap<>(100);
1176         }
1177 
1178         // Check if the bean has its own BeanInfo that will provide
1179         // explicit information.
1180         MethodDescriptor[] explicitMethods = null;
1181         if (explicitBeanInfo != null) {
1182             explicitMethods = explicitBeanInfo.getMethodDescriptors();
1183         }
1184 
1185         if (explicitMethods == null && superBeanInfo != null) {
1186             // We have no explicit BeanInfo methods.  Check with our parent.
1187             MethodDescriptor supers[] = superBeanInfo.getMethodDescriptors();
1188             for (int i = 0 ; i < supers.length; i++) {
1189                 addMethod(supers[i]);
1190             }
1191         }
1192 
1193         for (int i = 0; i < additionalBeanInfo.length; i++) {
1194             MethodDescriptor additional[] = additionalBeanInfo[i].getMethodDescriptors();
1195             if (additional != null) {
1196                 for (int j = 0 ; j < additional.length; j++) {
1197                     addMethod(additional[j]);
1198                 }
1199             }
1200         }
1201 
1202         if (explicitMethods != null) {
1203             // Add the explicit explicitBeanInfo data to our results.
1204             for (int i = 0 ; i < explicitMethods.length; i++) {
1205                 addMethod(explicitMethods[i]);
1206             }
1207 
1208         } else {
1209 
1210             // Apply some reflection to the current class.
1211 
1212             // First get an array of all the beans methods at this level
1213             Method methodList[] = getPublicDeclaredMethods(beanClass);
1214 
1215             // Now analyze each method.
1216             for (int i = 0; i < methodList.length; i++) {
1217                 Method method = methodList[i];
1218                 if (method == null) {
1219                     continue;
1220                 }
1221                 MethodDescriptor md = new MethodDescriptor(method);
1222                 addMethod(md);
1223             }
1224         }
1225 
1226         // Allocate and populate the result array.
1227         MethodDescriptor result[] = new MethodDescriptor[methods.size()];
1228         result = methods.values().toArray(result);
1229 
1230         return result;
1231     }
1232 
1233     private void addMethod(MethodDescriptor md) {
1234         // We have to be careful here to distinguish method by both name
1235         // and argument lists.
1236         // This method gets called a *lot, so we try to be efficient.
1237         String name = md.getName();
1238 
1239         MethodDescriptor old = methods.get(name);
1240         if (old == null) {
1241             // This is the common case.
1242             methods.put(name, md);
1243             return;
1244         }
1245 
1246         // We have a collision on method names.  This is rare.
1247 
1248         // Check if old and md have the same type.
1249         String[] p1 = md.getParamNames();
1250         String[] p2 = old.getParamNames();
1251 
1252         boolean match = false;
1253         if (p1.length == p2.length) {
1254             match = true;
1255             for (int i = 0; i < p1.length; i++) {
1256                 if (p1[i] != p2[i]) {
1257                     match = false;
1258                     break;
1259                 }
1260             }
1261         }
1262         if (match) {
1263             MethodDescriptor composite = new MethodDescriptor(old, md);
1264             methods.put(name, composite);
1265             return;
1266         }
1267 
1268         // We have a collision on method names with different type signatures.
1269         // This is very rare.
1270 
1271         String longKey = makeQualifiedMethodName(name, p1);
1272         old = methods.get(longKey);
1273         if (old == null) {
1274             methods.put(longKey, md);
1275             return;
1276         }
1277         MethodDescriptor composite = new MethodDescriptor(old, md);
1278         methods.put(longKey, composite);
1279     }
1280 
1281     /**
1282      * Creates a key for a method in a method cache.
1283      */
1284     private static String makeQualifiedMethodName(String name, String[] params) {
1285         StringBuffer sb = new StringBuffer(name);
1286         sb.append('=');
1287         for (int i = 0; i < params.length; i++) {
1288             sb.append(':');
1289             sb.append(params[i]);
1290         }
1291         return sb.toString();
1292     }
1293 
1294     private int getTargetDefaultEventIndex() {
1295         return defaultEventIndex;
1296     }
1297 
1298     private int getTargetDefaultPropertyIndex() {
1299         return defaultPropertyIndex;
1300     }
1301 
1302     private BeanDescriptor getTargetBeanDescriptor() {
1303         // Use explicit info, if available,
1304         if (explicitBeanInfo != null) {
1305             BeanDescriptor bd = explicitBeanInfo.getBeanDescriptor();
1306             if (bd != null) {
1307                 return (bd);
1308             }
1309         }
1310         // OK, fabricate a default BeanDescriptor.
1311         return new BeanDescriptor(this.beanClass, findCustomizerClass(this.beanClass));
1312     }
1313 
1314     private static Class<?> findCustomizerClass(Class<?> type) {
1315         String name = type.getName() + "Customizer";
1316         try {
1317             type = ClassFinder.findClass(name, type.getClassLoader());
1318             // Each customizer should inherit java.awt.Component and implement java.beans.Customizer
1319             // according to the section 9.3 of JavaBeans&trade; specification
1320             if (Component.class.isAssignableFrom(type) && Customizer.class.isAssignableFrom(type)) {
1321                 return type;
1322             }
1323         }
1324         catch (Exception exception) {
1325             // ignore any exceptions
1326         }
1327         return null;
1328     }
1329 
1330     private boolean isEventHandler(Method m) {
1331         // We assume that a method is an event handler if it has a single
1332         // argument, whose type inherit from java.util.Event.
1333         Type argTypes[] = m.getGenericParameterTypes();
1334         if (argTypes.length != 1) {
1335             return false;
1336         }
1337         return isSubclass(TypeResolver.erase(TypeResolver.resolveInClass(beanClass, argTypes[0])), EventObject.class);
1338     }
1339 
1340     /*
1341      * Internal method to return *public* methods within a class.
1342      */
1343     private static Method[] getPublicDeclaredMethods(Class<?> clz) {
1344         // Looking up Class.getDeclaredMethods is relatively expensive,
1345         // so we cache the results.
1346         if (!ReflectUtil.isPackageAccessible(clz)) {
1347             return new Method[0];
1348         }
1349         synchronized (declaredMethodCache) {
1350             Method[] result = declaredMethodCache.get(clz);
1351             if (result == null) {
1352                 result = clz.getMethods();
1353                 for (int i = 0; i < result.length; i++) {
1354                     Method method = result[i];
1355                     if (!method.getDeclaringClass().equals(clz)) {
1356                         result[i] = null; // ignore methods declared elsewhere
1357                     }
1358                     else {
1359                         try {
1360                             method = MethodFinder.findAccessibleMethod(method);
1361                             Class<?> type = method.getDeclaringClass();
1362                             result[i] = type.equals(clz) || type.isInterface()
1363                                     ? method
1364                                     : null; // ignore methods from superclasses
1365                         }
1366                         catch (NoSuchMethodException exception) {
1367                             // commented out because of 6976577
1368                             // result[i] = null; // ignore inaccessible methods
1369                         }
1370                     }
1371                 }
1372                 declaredMethodCache.put(clz, result);
1373             }
1374             return result;
1375         }
1376     }
1377 
1378     //======================================================================
1379     // Package private support methods.
1380     //======================================================================
1381 
1382     /**
1383      * Internal support for finding a target methodName with a given
1384      * parameter list on a given class.
1385      */
1386     private static Method internalFindMethod(Class<?> start, String methodName,
1387                                                  int argCount, Class<?> args[]) {
1388         // For overriden methods we need to find the most derived version.
1389         // So we start with the given class and walk up the superclass chain.
1390 
1391         Method method = null;
1392 
1393         for (Class<?> cl = start; cl != null; cl = cl.getSuperclass()) {
1394             Method methods[] = getPublicDeclaredMethods(cl);
1395             for (int i = 0; i < methods.length; i++) {
1396                 method = methods[i];
1397                 if (method == null) {
1398                     continue;
1399                 }
1400 
1401                 // make sure method signature matches.
1402                 if (method.getName().equals(methodName)) {
1403                     Type[] params = method.getGenericParameterTypes();
1404                     if (params.length == argCount) {
1405                         if (args != null) {
1406                             boolean different = false;
1407                             if (argCount > 0) {
1408                                 for (int j = 0; j < argCount; j++) {
1409                                     if (TypeResolver.erase(TypeResolver.resolveInClass(start, params[j])) != args[j]) {
1410                                         different = true;
1411                                         continue;
1412                                     }
1413                                 }
1414                                 if (different) {
1415                                     continue;
1416                                 }
1417                             }
1418                         }
1419                         return method;
1420                     }
1421                 }
1422             }
1423         }
1424         method = null;
1425 
1426         // Now check any inherited interfaces.  This is necessary both when
1427         // the argument class is itself an interface, and when the argument
1428         // class is an abstract class.
1429         Class<?>[] ifcs = start.getInterfaces();
1430         for (int i = 0 ; i < ifcs.length; i++) {
1431             // Note: The original implementation had both methods calling
1432             // the 3 arg method. This is preserved but perhaps it should
1433             // pass the args array instead of null.
1434             method = internalFindMethod(ifcs[i], methodName, argCount, null);
1435             if (method != null) {
1436                 break;
1437             }
1438         }
1439         return method;
1440     }
1441 
1442     /**
1443      * Find a target methodName on a given class.
1444      */
1445     static Method findMethod(Class<?> cls, String methodName, int argCount) {
1446         return findMethod(cls, methodName, argCount, null);
1447     }
1448 
1449     /**
1450      * Find a target methodName with specific parameter list on a given class.
1451      * <p>
1452      * Used in the contructors of the EventSetDescriptor,
1453      * PropertyDescriptor and the IndexedPropertyDescriptor.
1454      * <p>
1455      * @param cls The Class object on which to retrieve the method.
1456      * @param methodName Name of the method.
1457      * @param argCount Number of arguments for the desired method.
1458      * @param args Array of argument types for the method.
1459      * @return the method or null if not found
1460      */
1461     static Method findMethod(Class<?> cls, String methodName, int argCount,
1462                              Class<?>[] args) {
1463         if (methodName == null) {
1464             return null;
1465         }
1466         return internalFindMethod(cls, methodName, argCount, args);
1467     }
1468 
1469     /**
1470      * Return true if class a is either equivalent to class b, or
1471      * if class a is a subclass of class b, i.e. if a either "extends"
1472      * or "implements" b.
1473      * Note tht either or both "Class" objects may represent interfaces.
1474      */
1475     static  boolean isSubclass(Class<?> a, Class<?> b) {
1476         // We rely on the fact that for any given java class or
1477         // primtitive type there is a unqiue Class object, so
1478         // we can use object equivalence in the comparisons.
1479         if (a == b) {
1480             return true;
1481         }
1482         if (a == null || b == null) {
1483             return false;
1484         }
1485         for (Class<?> x = a; x != null; x = x.getSuperclass()) {
1486             if (x == b) {
1487                 return true;
1488             }
1489             if (b.isInterface()) {
1490                 Class<?>[] interfaces = x.getInterfaces();
1491                 for (int i = 0; i < interfaces.length; i++) {
1492                     if (isSubclass(interfaces[i], b)) {
1493                         return true;
1494                     }
1495                 }
1496             }
1497         }
1498         return false;
1499     }
1500 
1501     /**
1502      * Return true iff the given method throws the given exception.
1503      */
1504     private boolean throwsException(Method method, Class<?> exception) {
1505         Class<?>[] exs = method.getExceptionTypes();
1506         for (int i = 0; i < exs.length; i++) {
1507             if (exs[i] == exception) {
1508                 return true;
1509             }
1510         }
1511         return false;
1512     }
1513 
1514     /**
1515      * Try to create an instance of a named class.
1516      * First try the classloader of "sibling", then try the system
1517      * classloader then the class loader of the current Thread.
1518      */
1519     static Object instantiate(Class<?> sibling, String className)
1520                  throws InstantiationException, IllegalAccessException,
1521                                                 ClassNotFoundException {
1522         // First check with sibling's classloader (if any).
1523         ClassLoader cl = sibling.getClassLoader();
1524         Class<?> cls = ClassFinder.findClass(className, cl);
1525         return cls.newInstance();
1526     }
1527 
1528 } // end class Introspector
1529 
1530 //===========================================================================
1531 
1532 /**
1533  * Package private implementation support class for Introspector's
1534  * internal use.
1535  * <p>
1536  * Mostly this is used as a placeholder for the descriptors.
1537  */
1538 
1539 class GenericBeanInfo extends SimpleBeanInfo {
1540 
1541     private BeanDescriptor beanDescriptor;
1542     private EventSetDescriptor[] events;
1543     private int defaultEvent;
1544     private PropertyDescriptor[] properties;
1545     private int defaultProperty;
1546     private MethodDescriptor[] methods;
1547     private Reference<BeanInfo> targetBeanInfoRef;
1548 
1549     public GenericBeanInfo(BeanDescriptor beanDescriptor,
1550                 EventSetDescriptor[] events, int defaultEvent,
1551                 PropertyDescriptor[] properties, int defaultProperty,
1552                 MethodDescriptor[] methods, BeanInfo targetBeanInfo) {
1553         this.beanDescriptor = beanDescriptor;
1554         this.events = events;
1555         this.defaultEvent = defaultEvent;
1556         this.properties = properties;
1557         this.defaultProperty = defaultProperty;
1558         this.methods = methods;
1559         this.targetBeanInfoRef = (targetBeanInfo != null)
1560                 ? new SoftReference<>(targetBeanInfo)
1561                 : null;
1562     }
1563 
1564     /**
1565      * Package-private dup constructor
1566      * This must isolate the new object from any changes to the old object.
1567      */
1568     GenericBeanInfo(GenericBeanInfo old) {
1569 
1570         beanDescriptor = new BeanDescriptor(old.beanDescriptor);
1571         if (old.events != null) {
1572             int len = old.events.length;
1573             events = new EventSetDescriptor[len];
1574             for (int i = 0; i < len; i++) {
1575                 events[i] = new EventSetDescriptor(old.events[i]);
1576             }
1577         }
1578         defaultEvent = old.defaultEvent;
1579         if (old.properties != null) {
1580             int len = old.properties.length;
1581             properties = new PropertyDescriptor[len];
1582             for (int i = 0; i < len; i++) {
1583                 PropertyDescriptor oldp = old.properties[i];
1584                 if (oldp instanceof IndexedPropertyDescriptor) {
1585                     properties[i] = new IndexedPropertyDescriptor(
1586                                         (IndexedPropertyDescriptor) oldp);
1587                 } else {
1588                     properties[i] = new PropertyDescriptor(oldp);
1589                 }
1590             }
1591         }
1592         defaultProperty = old.defaultProperty;
1593         if (old.methods != null) {
1594             int len = old.methods.length;
1595             methods = new MethodDescriptor[len];
1596             for (int i = 0; i < len; i++) {
1597                 methods[i] = new MethodDescriptor(old.methods[i]);
1598             }
1599         }
1600         this.targetBeanInfoRef = old.targetBeanInfoRef;
1601     }
1602 
1603     public PropertyDescriptor[] getPropertyDescriptors() {
1604         return properties;
1605     }
1606 
1607     public int getDefaultPropertyIndex() {
1608         return defaultProperty;
1609     }
1610 
1611     public EventSetDescriptor[] getEventSetDescriptors() {
1612         return events;
1613     }
1614 
1615     public int getDefaultEventIndex() {
1616         return defaultEvent;
1617     }
1618 
1619     public MethodDescriptor[] getMethodDescriptors() {
1620         return methods;
1621     }
1622 
1623     public BeanDescriptor getBeanDescriptor() {
1624         return beanDescriptor;
1625     }
1626 
1627     public java.awt.Image getIcon(int iconKind) {
1628         BeanInfo targetBeanInfo = getTargetBeanInfo();
1629         if (targetBeanInfo != null) {
1630             return targetBeanInfo.getIcon(iconKind);
1631         }
1632         return super.getIcon(iconKind);
1633     }
1634 
1635     private BeanInfo getTargetBeanInfo() {
1636         if (this.targetBeanInfoRef == null) {
1637             return null;
1638         }
1639         BeanInfo targetBeanInfo = this.targetBeanInfoRef.get();
1640         if (targetBeanInfo == null) {
1641             targetBeanInfo = ThreadGroupContext.getContext().getBeanInfoFinder()
1642                     .find(this.beanDescriptor.getBeanClass());
1643             if (targetBeanInfo != null) {
1644                 this.targetBeanInfoRef = new SoftReference<>(targetBeanInfo);
1645             }
1646         }
1647         return targetBeanInfo;
1648     }
1649 }