1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 package javax.swing.text;
  26 
  27 import java.util.*;
  28 import java.util.List;
  29 import java.awt.*;
  30 import javax.swing.SwingUtilities;
  31 import javax.swing.event.DocumentEvent;
  32 
  33 /**
  34  * A box that does layout asynchronously.  This
  35  * is useful to keep the GUI event thread moving by
  36  * not doing any layout on it.  The layout is done
  37  * on a granularity of operations on the child views.
  38  * After each child view is accessed for some part
  39  * of layout (a potentially time consuming operation)
  40  * the remaining tasks can be abandoned or a new higher
  41  * priority task (i.e. to service a synchronous request
  42  * or a visible area) can be taken on.
  43  * <p>
  44  * While the child view is being accessed
  45  * a read lock is acquired on the associated document
  46  * so that the model is stable while being accessed.
  47  *
  48  * @author  Timothy Prinzing
  49  * @since   1.3
  50  */
  51 public class AsyncBoxView extends View {
  52 
  53     /**
  54      * Construct a box view that does asynchronous layout.
  55      *
  56      * @param elem the element of the model to represent
  57      * @param axis the axis to tile along.  This can be
  58      *  either X_AXIS or Y_AXIS.
  59      */
  60     public AsyncBoxView(Element elem, int axis) {
  61         super(elem);
  62         stats = new ArrayList<ChildState>();
  63         this.axis = axis;
  64         locator = new ChildLocator();
  65         flushTask = new FlushTask();
  66         minorSpan = Short.MAX_VALUE;
  67         estimatedMajorSpan = false;
  68     }
  69 
  70     /**
  71      * Fetch the major axis (the axis the children
  72      * are tiled along).  This will have a value of
  73      * either X_AXIS or Y_AXIS.
  74      * @return the major axis
  75      */
  76     public int getMajorAxis() {
  77         return axis;
  78     }
  79 
  80     /**
  81      * Fetch the minor axis (the axis orthogonal
  82      * to the tiled axis).  This will have a value of
  83      * either X_AXIS or Y_AXIS.
  84      * @return the minor axis
  85      */
  86     public int getMinorAxis() {
  87         return (axis == X_AXIS) ? Y_AXIS : X_AXIS;
  88     }
  89 
  90     /**
  91      * Get the top part of the margin around the view.
  92      * @return the top part of the margin around the view
  93      */
  94     public float getTopInset() {
  95         return topInset;
  96     }
  97 
  98     /**
  99      * Set the top part of the margin around the view.
 100      *
 101      * @param i the value of the inset
 102      */
 103     public void setTopInset(float i) {
 104         topInset = i;
 105     }
 106 
 107     /**
 108      * Get the bottom part of the margin around the view.
 109      * @return the bottom part of the margin around the view
 110      */
 111     public float getBottomInset() {
 112         return bottomInset;
 113     }
 114 
 115     /**
 116      * Set the bottom part of the margin around the view.
 117      *
 118      * @param i the value of the inset
 119      */
 120     public void setBottomInset(float i) {
 121         bottomInset = i;
 122     }
 123 
 124     /**
 125      * Get the left part of the margin around the view.
 126      * @return the left part of the margin around the view
 127      */
 128     public float getLeftInset() {
 129         return leftInset;
 130     }
 131 
 132     /**
 133      * Set the left part of the margin around the view.
 134      *
 135      * @param i the value of the inset
 136      */
 137     public void setLeftInset(float i) {
 138         leftInset = i;
 139     }
 140 
 141     /**
 142      * Get the right part of the margin around the view.
 143      * @return the right part of the margin around the view
 144      */
 145     public float getRightInset() {
 146         return rightInset;
 147     }
 148 
 149     /**
 150      * Set the right part of the margin around the view.
 151      *
 152      * @param i the value of the inset
 153      */
 154     public void setRightInset(float i) {
 155         rightInset = i;
 156     }
 157 
 158     /**
 159      * Fetch the span along an axis that is taken up by the insets.
 160      * @return the span along an axis that is taken up by the insets
 161      *
 162      * @param axis the axis to determine the total insets along,
 163      *  either X_AXIS or Y_AXIS.
 164      * @since 1.4
 165      */
 166     protected float getInsetSpan(int axis) {
 167         float margin = (axis == X_AXIS) ?
 168             getLeftInset() + getRightInset() : getTopInset() + getBottomInset();
 169         return margin;
 170     }
 171 
 172     /**
 173      * Set the estimatedMajorSpan property that determines if the
 174      * major span should be treated as being estimated.  If this
 175      * property is true, the value of setSize along the major axis
 176      * will change the requirements along the major axis and incremental
 177      * changes will be ignored until all of the children have been updated
 178      * (which will cause the property to automatically be set to false).
 179      * If the property is false the value of the majorSpan will be
 180      * considered to be accurate and incremental changes will be
 181      * added into the total as they are calculated.
 182      *
 183      * @param isEstimated new value for the estimatedMajorSpan property
 184      * @since 1.4
 185      */
 186     protected void setEstimatedMajorSpan(boolean isEstimated) {
 187         estimatedMajorSpan = isEstimated;
 188     }
 189 
 190     /**
 191      * Is the major span currently estimated?
 192      * @return whether or not the major span currently estimated
 193      *
 194      * @since 1.4
 195      */
 196     protected boolean getEstimatedMajorSpan() {
 197         return estimatedMajorSpan;
 198     }
 199 
 200     /**
 201      * Fetch the object representing the layout state of
 202      * of the child at the given index.
 203      * @return the object representing the layout state of
 204      * of the child at the given index
 205      *
 206      * @param index the child index.  This should be a
 207      *   value &gt;= 0 and &lt; getViewCount().
 208      */
 209     protected ChildState getChildState(int index) {
 210         synchronized(stats) {
 211             if ((index >= 0) && (index < stats.size())) {
 212                 return stats.get(index);
 213             }
 214             return null;
 215         }
 216     }
 217 
 218     /**
 219      * Fetch the queue to use for layout.
 220      * @return the queue to use for layout
 221      */
 222     protected LayoutQueue getLayoutQueue() {
 223         return LayoutQueue.getDefaultQueue();
 224     }
 225 
 226     /**
 227      * New ChildState records are created through
 228      * this method to allow subclasses the extend
 229      * the ChildState records to do/hold more.
 230      * @return new child state
 231      * @param v the view
 232      */
 233     protected ChildState createChildState(View v) {
 234         return new ChildState(v);
 235     }
 236 
 237     /**
 238      * Requirements changed along the major axis.
 239      * This is called by the thread doing layout for
 240      * the given ChildState object when it has completed
 241      * fetching the child views new preferences.
 242      * Typically this would be the layout thread, but
 243      * might be the event thread if it is trying to update
 244      * something immediately (such as to perform a
 245      * model/view translation).
 246      * <p>
 247      * This is implemented to mark the major axis as having
 248      * changed so that a future check to see if the requirements
 249      * need to be published to the parent view will consider
 250      * the major axis.  If the span along the major axis is
 251      * not estimated, it is updated by the given delta to reflect
 252      * the incremental change.  The delta is ignored if the
 253      * major span is estimated.
 254      * @param cs the child state
 255      * @param delta the delta
 256      */
 257     protected synchronized void majorRequirementChange(ChildState cs, float delta) {
 258         if (estimatedMajorSpan == false) {
 259             majorSpan += delta;
 260         }
 261         majorChanged = true;
 262     }
 263 
 264     /**
 265      * Requirements changed along the minor axis.
 266      * This is called by the thread doing layout for
 267      * the given ChildState object when it has completed
 268      * fetching the child views new preferences.
 269      * Typically this would be the layout thread, but
 270      * might be the GUI thread if it is trying to update
 271      * something immediately (such as to perform a
 272      * model/view translation).
 273      * @param cs the child state
 274      */
 275     protected synchronized void minorRequirementChange(ChildState cs) {
 276         minorChanged = true;
 277     }
 278 
 279     /**
 280      * Publish the changes in preferences upward to the parent
 281      * view.  This is normally called by the layout thread.
 282      */
 283     protected void flushRequirementChanges() {
 284         AbstractDocument doc = (AbstractDocument) getDocument();
 285         try {
 286             doc.readLock();
 287 
 288             View parent = null;
 289             boolean horizontal = false;
 290             boolean vertical = false;
 291 
 292             synchronized(this) {
 293                 // perform tasks that iterate over the children while
 294                 // preventing the collection from changing.
 295                 synchronized(stats) {
 296                     int n = getViewCount();
 297                     if ((n > 0) && (minorChanged || estimatedMajorSpan)) {
 298                         LayoutQueue q = getLayoutQueue();
 299                         ChildState min = getChildState(0);
 300                         ChildState pref = getChildState(0);
 301                         float span = 0f;
 302                         for (int i = 1; i < n; i++) {
 303                             ChildState cs = getChildState(i);
 304                             if (minorChanged) {
 305                                 if (cs.min > min.min) {
 306                                     min = cs;
 307                                 }
 308                                 if (cs.pref > pref.pref) {
 309                                     pref = cs;
 310                                 }
 311                             }
 312                             if (estimatedMajorSpan) {
 313                                 span += cs.getMajorSpan();
 314                             }
 315                         }
 316 
 317                         if (minorChanged) {
 318                             minRequest = min;
 319                             prefRequest = pref;
 320                         }
 321                         if (estimatedMajorSpan) {
 322                             majorSpan = span;
 323                             estimatedMajorSpan = false;
 324                             majorChanged = true;
 325                         }
 326                     }
 327                 }
 328 
 329                 // message preferenceChanged
 330                 if (majorChanged || minorChanged) {
 331                     parent = getParent();
 332                     if (parent != null) {
 333                         if (axis == X_AXIS) {
 334                             horizontal = majorChanged;
 335                             vertical = minorChanged;
 336                         } else {
 337                             vertical = majorChanged;
 338                             horizontal = minorChanged;
 339                         }
 340                     }
 341                     majorChanged = false;
 342                     minorChanged = false;
 343                 }
 344             }
 345 
 346             // propagate a preferenceChanged, using the
 347             // layout thread.
 348             if (parent != null) {
 349                 parent.preferenceChanged(this, horizontal, vertical);
 350 
 351                 // probably want to change this to be more exact.
 352                 Component c = getContainer();
 353                 if (c != null) {
 354                     c.repaint();
 355                 }
 356             }
 357         } finally {
 358             doc.readUnlock();
 359         }
 360     }
 361 
 362     /**
 363      * Calls the superclass to update the child views, and
 364      * updates the status records for the children.  This
 365      * is expected to be called while a write lock is held
 366      * on the model so that interaction with the layout
 367      * thread will not happen (i.e. the layout thread
 368      * acquires a read lock before doing anything).
 369      *
 370      * @param offset the starting offset into the child views &gt;= 0
 371      * @param length the number of existing views to replace &gt;= 0
 372      * @param views the child views to insert
 373      */
 374     public void replace(int offset, int length, View[] views) {
 375         synchronized(stats) {
 376             // remove the replaced state records
 377             for (int i = 0; i < length; i++) {
 378                 ChildState cs = stats.remove(offset);
 379                 float csSpan = cs.getMajorSpan();
 380 
 381                 cs.getChildView().setParent(null);
 382                 if (csSpan != 0) {
 383                     majorRequirementChange(cs, -csSpan);
 384                 }
 385             }
 386 
 387             // insert the state records for the new children
 388             LayoutQueue q = getLayoutQueue();
 389             if (views != null) {
 390                 for (int i = 0; i < views.length; i++) {
 391                     ChildState s = createChildState(views[i]);
 392                     stats.add(offset + i, s);
 393                     q.addTask(s);
 394                 }
 395             }
 396 
 397             // notify that the size changed
 398             q.addTask(flushTask);
 399         }
 400     }
 401 
 402     /**
 403      * Loads all of the children to initialize the view.
 404      * This is called by the {@link #setParent setParent}
 405      * method.  Subclasses can reimplement this to initialize
 406      * their child views in a different manner.  The default
 407      * implementation creates a child view for each
 408      * child element.
 409      * <p>
 410      * Normally a write-lock is held on the Document while
 411      * the children are being changed, which keeps the rendering
 412      * and layout threads safe.  The exception to this is when
 413      * the view is initialized to represent an existing element
 414      * (via this method), so it is synchronized to exclude
 415      * preferenceChanged while we are initializing.
 416      *
 417      * @param f the view factory
 418      * @see #setParent
 419      */
 420     protected void loadChildren(ViewFactory f) {
 421         Element e = getElement();
 422         int n = e.getElementCount();
 423         if (n > 0) {
 424             View[] added = new View[n];
 425             for (int i = 0; i < n; i++) {
 426                 added[i] = f.create(e.getElement(i));
 427             }
 428             replace(0, 0, added);
 429         }
 430     }
 431 
 432     /**
 433      * Fetches the child view index representing the given position in
 434      * the model.  This is implemented to fetch the view in the case
 435      * where there is a child view for each child element.
 436      *
 437      * @param pos the position &gt;= 0
 438      * @param b the position bias
 439      * @return  index of the view representing the given position, or
 440      *   -1 if no view represents that position
 441      */
 442     protected synchronized int getViewIndexAtPosition(int pos, Position.Bias b) {
 443         boolean isBackward = (b == Position.Bias.Backward);
 444         pos = (isBackward) ? Math.max(0, pos - 1) : pos;
 445         Element elem = getElement();
 446         return elem.getElementIndex(pos);
 447     }
 448 
 449     /**
 450      * Update the layout in response to receiving notification of
 451      * change from the model.  This is implemented to note the
 452      * change on the ChildLocator so that offsets of the children
 453      * will be correctly computed.
 454      *
 455      * @param ec changes to the element this view is responsible
 456      *  for (may be null if there were no changes).
 457      * @param e the change information from the associated document
 458      * @param a the current allocation of the view
 459      * @see #insertUpdate
 460      * @see #removeUpdate
 461      * @see #changedUpdate
 462      */
 463     protected void updateLayout(DocumentEvent.ElementChange ec,
 464                                     DocumentEvent e, Shape a) {
 465         if (ec != null) {
 466             // the newly inserted children don't have a valid
 467             // offset so the child locator needs to be messaged
 468             // that the child prior to the new children has
 469             // changed size.
 470             int index = Math.max(ec.getIndex() - 1, 0);
 471             ChildState cs = getChildState(index);
 472             locator.childChanged(cs);
 473         }
 474     }
 475 
 476     // --- View methods ------------------------------------
 477 
 478     /**
 479      * Sets the parent of the view.
 480      * This is reimplemented to provide the superclass
 481      * behavior as well as calling the <code>loadChildren</code>
 482      * method if this view does not already have children.
 483      * The children should not be loaded in the
 484      * constructor because the act of setting the parent
 485      * may cause them to try to search up the hierarchy
 486      * (to get the hosting Container for example).
 487      * If this view has children (the view is being moved
 488      * from one place in the view hierarchy to another),
 489      * the <code>loadChildren</code> method will not be called.
 490      *
 491      * @param parent the parent of the view, null if none
 492      */
 493     public void setParent(View parent) {
 494         super.setParent(parent);
 495         if ((parent != null) && (getViewCount() == 0)) {
 496             ViewFactory f = getViewFactory();
 497             loadChildren(f);
 498         }
 499     }
 500 
 501     /**
 502      * Child views can call this on the parent to indicate that
 503      * the preference has changed and should be reconsidered
 504      * for layout.  This is reimplemented to queue new work
 505      * on the layout thread.  This method gets messaged from
 506      * multiple threads via the children.
 507      *
 508      * @param child the child view
 509      * @param width true if the width preference has changed
 510      * @param height true if the height preference has changed
 511      * @see javax.swing.JComponent#revalidate
 512      */
 513     public synchronized void preferenceChanged(View child, boolean width, boolean height) {
 514         if (child == null) {
 515             getParent().preferenceChanged(this, width, height);
 516         } else {
 517             if (changing != null) {
 518                 View cv = changing.getChildView();
 519                 if (cv == child) {
 520                     // size was being changed on the child, no need to
 521                     // queue work for it.
 522                     changing.preferenceChanged(width, height);
 523                     return;
 524                 }
 525             }
 526             int index = getViewIndex(child.getStartOffset(),
 527                                      Position.Bias.Forward);
 528             ChildState cs = getChildState(index);
 529             cs.preferenceChanged(width, height);
 530             LayoutQueue q = getLayoutQueue();
 531             q.addTask(cs);
 532             q.addTask(flushTask);
 533         }
 534     }
 535 
 536     /**
 537      * Sets the size of the view.  This should cause
 538      * layout of the view if the view caches any layout
 539      * information.
 540      * <p>
 541      * Since the major axis is updated asynchronously and should be
 542      * the sum of the tiled children the call is ignored for the major
 543      * axis.  Since the minor axis is flexible, work is queued to resize
 544      * the children if the minor span changes.
 545      *
 546      * @param width the width &gt;= 0
 547      * @param height the height &gt;= 0
 548      */
 549     public void setSize(float width, float height) {
 550         setSpanOnAxis(X_AXIS, width);
 551         setSpanOnAxis(Y_AXIS, height);
 552     }
 553 
 554     /**
 555      * Retrieves the size of the view along an axis.
 556      *
 557      * @param axis may be either <code>View.X_AXIS</code> or
 558      *          <code>View.Y_AXIS</code>
 559      * @return the current span of the view along the given axis, >= 0
 560      */
 561     float getSpanOnAxis(int axis) {
 562         if (axis == getMajorAxis()) {
 563             return majorSpan;
 564         }
 565         return minorSpan;
 566     }
 567 
 568     /**
 569      * Sets the size of the view along an axis.  Since the major
 570      * axis is updated asynchronously and should be the sum of the
 571      * tiled children the call is ignored for the major axis.  Since
 572      * the minor axis is flexible, work is queued to resize the
 573      * children if the minor span changes.
 574      *
 575      * @param axis may be either <code>View.X_AXIS</code> or
 576      *          <code>View.Y_AXIS</code>
 577      * @param span the span to layout to >= 0
 578      */
 579     void setSpanOnAxis(int axis, float span) {
 580         float margin = getInsetSpan(axis);
 581         if (axis == getMinorAxis()) {
 582             float targetSpan = span - margin;
 583             if (targetSpan != minorSpan) {
 584                 minorSpan = targetSpan;
 585 
 586                 // mark all of the ChildState instances as needing to
 587                 // resize the child, and queue up work to fix them.
 588                 int n = getViewCount();
 589                 if (n != 0) {
 590                     LayoutQueue q = getLayoutQueue();
 591                     for (int i = 0; i < n; i++) {
 592                         ChildState cs = getChildState(i);
 593                         cs.childSizeValid = false;
 594                         q.addTask(cs);
 595                     }
 596                     q.addTask(flushTask);
 597                 }
 598             }
 599         } else {
 600             // along the major axis the value is ignored
 601             // unless the estimatedMajorSpan property is
 602             // true.
 603             if (estimatedMajorSpan) {
 604                 majorSpan = span - margin;
 605             }
 606         }
 607     }
 608 
 609     /**
 610      * Render the view using the given allocation and
 611      * rendering surface.
 612      * <p>
 613      * This is implemented to determine whether or not the
 614      * desired region to be rendered (i.e. the unclipped
 615      * area) is up to date or not.  If up-to-date the children
 616      * are rendered.  If not up-to-date, a task to build
 617      * the desired area is placed on the layout queue as
 618      * a high priority task.  This keeps by event thread
 619      * moving by rendering if ready, and postponing until
 620      * a later time if not ready (since paint requests
 621      * can be rescheduled).
 622      *
 623      * @param g the rendering surface to use
 624      * @param alloc the allocated region to render into
 625      * @see View#paint
 626      */
 627     public void paint(Graphics g, Shape alloc) {
 628         synchronized (locator) {
 629             locator.setAllocation(alloc);
 630             locator.paintChildren(g);
 631         }
 632     }
 633 
 634     /**
 635      * Determines the preferred span for this view along an
 636      * axis.
 637      *
 638      * @param axis may be either View.X_AXIS or View.Y_AXIS
 639      * @return   the span the view would like to be rendered into &gt;= 0.
 640      *           Typically the view is told to render into the span
 641      *           that is returned, although there is no guarantee.
 642      *           The parent may choose to resize or break the view.
 643      * @exception IllegalArgumentException for an invalid axis type
 644      */
 645     public float getPreferredSpan(int axis) {
 646         float margin = getInsetSpan(axis);
 647         if (axis == this.axis) {
 648             return majorSpan + margin;
 649         }
 650         if (prefRequest != null) {
 651             View child = prefRequest.getChildView();
 652             return child.getPreferredSpan(axis) + margin;
 653         }
 654 
 655         // nothing is known about the children yet
 656         return margin + 30;
 657     }
 658 
 659     /**
 660      * Determines the minimum span for this view along an
 661      * axis.
 662      *
 663      * @param axis may be either View.X_AXIS or View.Y_AXIS
 664      * @return  the span the view would like to be rendered into &gt;= 0.
 665      *           Typically the view is told to render into the span
 666      *           that is returned, although there is no guarantee.
 667      *           The parent may choose to resize or break the view.
 668      * @exception IllegalArgumentException for an invalid axis type
 669      */
 670     public float getMinimumSpan(int axis) {
 671         if (axis == this.axis) {
 672             return getPreferredSpan(axis);
 673         }
 674         if (minRequest != null) {
 675             View child = minRequest.getChildView();
 676             return child.getMinimumSpan(axis);
 677         }
 678 
 679         // nothing is known about the children yet
 680         if (axis == X_AXIS) {
 681             return getLeftInset() + getRightInset() + 5;
 682         } else {
 683             return getTopInset() + getBottomInset() + 5;
 684         }
 685     }
 686 
 687     /**
 688      * Determines the maximum span for this view along an
 689      * axis.
 690      *
 691      * @param axis may be either View.X_AXIS or View.Y_AXIS
 692      * @return   the span the view would like to be rendered into &gt;= 0.
 693      *           Typically the view is told to render into the span
 694      *           that is returned, although there is no guarantee.
 695      *           The parent may choose to resize or break the view.
 696      * @exception IllegalArgumentException for an invalid axis type
 697      */
 698     public float getMaximumSpan(int axis) {
 699         if (axis == this.axis) {
 700             return getPreferredSpan(axis);
 701         }
 702         return Integer.MAX_VALUE;
 703     }
 704 
 705 
 706     /**
 707      * Returns the number of views in this view.  Since
 708      * the default is to not be a composite view this
 709      * returns 0.
 710      *
 711      * @return the number of views &gt;= 0
 712      * @see View#getViewCount
 713      */
 714     public int getViewCount() {
 715         synchronized(stats) {
 716             return stats.size();
 717         }
 718     }
 719 
 720     /**
 721      * Gets the nth child view.  Since there are no
 722      * children by default, this returns null.
 723      *
 724      * @param n the number of the view to get, &gt;= 0 &amp;&amp; &lt; getViewCount()
 725      * @return the view
 726      */
 727     public View getView(int n) {
 728         ChildState cs = getChildState(n);
 729         if (cs != null) {
 730             return cs.getChildView();
 731         }
 732         return null;
 733     }
 734 
 735     /**
 736      * Fetches the allocation for the given child view.
 737      * This enables finding out where various views
 738      * are located, without assuming the views store
 739      * their location.  This returns null since the
 740      * default is to not have any child views.
 741      *
 742      * @param index the index of the child, &gt;= 0 &amp;&amp; &lt; getViewCount()
 743      * @param a  the allocation to this view.
 744      * @return the allocation to the child
 745      */
 746     public Shape getChildAllocation(int index, Shape a) {
 747         Shape ca = locator.getChildAllocation(index, a);
 748         return ca;
 749     }
 750 
 751     /**
 752      * Returns the child view index representing the given position in
 753      * the model.  By default a view has no children so this is implemented
 754      * to return -1 to indicate there is no valid child index for any
 755      * position.
 756      *
 757      * @param pos the position &gt;= 0
 758      * @return  index of the view representing the given position, or
 759      *   -1 if no view represents that position
 760      * @since 1.3
 761      */
 762     public int getViewIndex(int pos, Position.Bias b) {
 763         return getViewIndexAtPosition(pos, b);
 764     }
 765 
 766     /**
 767      * Provides a mapping from the document model coordinate space
 768      * to the coordinate space of the view mapped to it.
 769      *
 770      * @param pos the position to convert &gt;= 0
 771      * @param a the allocated region to render into
 772      * @param b the bias toward the previous character or the
 773      *  next character represented by the offset, in case the
 774      *  position is a boundary of two views.
 775      * @return the bounding box of the given position is returned
 776      * @exception BadLocationException  if the given position does
 777      *   not represent a valid location in the associated document
 778      * @exception IllegalArgumentException for an invalid bias argument
 779      * @see View#viewToModel
 780      */
 781     public Shape modelToView(int pos, Shape a, Position.Bias b) throws BadLocationException {
 782         int index = getViewIndex(pos, b);
 783         Shape ca = locator.getChildAllocation(index, a);
 784 
 785         // forward to the child view, and make sure we don't
 786         // interact with the layout thread by synchronizing
 787         // on the child state.
 788         ChildState cs = getChildState(index);
 789         synchronized (cs) {
 790             View cv = cs.getChildView();
 791             Shape v = cv.modelToView(pos, ca, b);
 792             return v;
 793         }
 794     }
 795 
 796     /**
 797      * Provides a mapping from the view coordinate space to the logical
 798      * coordinate space of the model.  The biasReturn argument will be
 799      * filled in to indicate that the point given is closer to the next
 800      * character in the model or the previous character in the model.
 801      * <p>
 802      * This is expected to be called by the GUI thread, holding a
 803      * read-lock on the associated model.  It is implemented to
 804      * locate the child view and determine it's allocation with a
 805      * lock on the ChildLocator object, and to call viewToModel
 806      * on the child view with a lock on the ChildState object
 807      * to avoid interaction with the layout thread.
 808      *
 809      * @param x the X coordinate &gt;= 0
 810      * @param y the Y coordinate &gt;= 0
 811      * @param a the allocated region to render into
 812      * @return the location within the model that best represents the
 813      *  given point in the view &gt;= 0.  The biasReturn argument will be
 814      * filled in to indicate that the point given is closer to the next
 815      * character in the model or the previous character in the model.
 816      */
 817     public int viewToModel(float x, float y, Shape a, Position.Bias[] biasReturn) {
 818         int pos;    // return position
 819         int index;  // child index to forward to
 820         Shape ca;   // child allocation
 821 
 822         // locate the child view and it's allocation so that
 823         // we can forward to it.  Make sure the layout thread
 824         // doesn't change anything by trying to flush changes
 825         // to the parent while the GUI thread is trying to
 826         // find the child and it's allocation.
 827         synchronized (locator) {
 828             index = locator.getViewIndexAtPoint(x, y, a);
 829             ca = locator.getChildAllocation(index, a);
 830         }
 831 
 832         // forward to the child view, and make sure we don't
 833         // interact with the layout thread by synchronizing
 834         // on the child state.
 835         ChildState cs = getChildState(index);
 836         synchronized (cs) {
 837             View v = cs.getChildView();
 838             pos = v.viewToModel(x, y, ca, biasReturn);
 839         }
 840         return pos;
 841     }
 842 
 843     /**
 844      * Provides a way to determine the next visually represented model
 845      * location that one might place a caret.  Some views may not be visible,
 846      * they might not be in the same order found in the model, or they just
 847      * might not allow access to some of the locations in the model.
 848      * This method enables specifying a position to convert
 849      * within the range of &gt;=0.  If the value is -1, a position
 850      * will be calculated automatically.  If the value &lt; -1,
 851      * the {@code BadLocationException} will be thrown.
 852      *
 853      * @param pos the position to convert
 854      * @param a the allocated region to render into
 855      * @param direction the direction from the current position that can
 856      *  be thought of as the arrow keys typically found on a keyboard;
 857      *  this may be one of the following:
 858      *  <ul style="list-style-type:none">
 859      *  <li><code>SwingConstants.WEST</code></li>
 860      *  <li><code>SwingConstants.EAST</code></li>
 861      *  <li><code>SwingConstants.NORTH</code></li>
 862      *  <li><code>SwingConstants.SOUTH</code></li>
 863      *  </ul>
 864      * @param biasRet an array contain the bias that was checked
 865      * @return the location within the model that best represents the next
 866      *  location visual position
 867      * @exception BadLocationException the given position is not a valid
 868      *                                 position within the document
 869      * @exception IllegalArgumentException if <code>direction</code> is invalid
 870      */
 871     public int getNextVisualPositionFrom(int pos, Position.Bias b, Shape a,
 872                                          int direction,
 873                                          Position.Bias[] biasRet)
 874                                                   throws BadLocationException {
 875         if (pos < -1 || pos > getDocument().getLength()) {
 876             throw new BadLocationException("invalid position", pos);
 877         }
 878         return Utilities.getNextVisualPositionFrom(
 879                             this, pos, b, a, direction, biasRet);
 880     }
 881 
 882     // --- variables -----------------------------------------
 883 
 884     /**
 885      * The major axis against which the children are
 886      * tiled.
 887      */
 888     int axis;
 889 
 890     /**
 891      * The children and their layout statistics.
 892      */
 893     List<ChildState> stats;
 894 
 895     /**
 896      * Current span along the major axis.  This
 897      * is also the value returned by getMinimumSize,
 898      * getPreferredSize, and getMaximumSize along
 899      * the major axis.
 900      */
 901     float majorSpan;
 902 
 903     /**
 904      * Is the span along the major axis estimated?
 905      */
 906     boolean estimatedMajorSpan;
 907 
 908     /**
 909      * Current span along the minor axis.  This
 910      * is what layout was done against (i.e. things
 911      * are flexible in this direction).
 912      */
 913     float minorSpan;
 914 
 915     /**
 916      * Object that manages the offsets of the
 917      * children.  All locking for management of
 918      * child locations is on this object.
 919      */
 920     protected ChildLocator locator;
 921 
 922     float topInset;
 923     float bottomInset;
 924     float leftInset;
 925     float rightInset;
 926 
 927     ChildState minRequest;
 928     ChildState prefRequest;
 929     boolean majorChanged;
 930     boolean minorChanged;
 931     Runnable flushTask;
 932 
 933     /**
 934      * Child that is actively changing size.  This often
 935      * causes a preferenceChanged, so this is a cache to
 936      * possibly speed up the marking the state.  It also
 937      * helps flag an opportunity to avoid adding to flush
 938      * task to the layout queue.
 939      */
 940     ChildState changing;
 941 
 942     /**
 943      * A class to manage the effective position of the
 944      * child views in a localized area while changes are
 945      * being made around the localized area.  The AsyncBoxView
 946      * may be continuously changing, but the visible area
 947      * needs to remain fairly stable until the layout thread
 948      * decides to publish an update to the parent.
 949      * @since 1.3
 950      */
 951     public class ChildLocator {
 952 
 953         /**
 954          * construct a child locator.
 955          */
 956         public ChildLocator() {
 957             lastAlloc = new Rectangle();
 958             childAlloc = new Rectangle();
 959         }
 960 
 961         /**
 962          * Notification that a child changed.  This can effect
 963          * whether or not new offset calculations are needed.
 964          * This is called by a ChildState object that has
 965          * changed it's major span.  This can therefore be
 966          * called by multiple threads.
 967          * @param cs the child state
 968          */
 969         public synchronized void childChanged(ChildState cs) {
 970             if (lastValidOffset == null) {
 971                 lastValidOffset = cs;
 972             } else if (cs.getChildView().getStartOffset() <
 973                        lastValidOffset.getChildView().getStartOffset()) {
 974                 lastValidOffset = cs;
 975             }
 976         }
 977 
 978         /**
 979          * Paint the children that intersect the clip area.
 980          * @param g the rendering surface to use
 981          */
 982         public synchronized void paintChildren(Graphics g) {
 983             Rectangle clip = g.getClipBounds();
 984             float targetOffset = (axis == X_AXIS) ?
 985                 clip.x - lastAlloc.x : clip.y - lastAlloc.y;
 986             int index = getViewIndexAtVisualOffset(targetOffset);
 987             int n = getViewCount();
 988             float offs = getChildState(index).getMajorOffset();
 989             for (int i = index; i < n; i++) {
 990                 ChildState cs = getChildState(i);
 991                 cs.setMajorOffset(offs);
 992                 Shape ca = getChildAllocation(i);
 993                 if (intersectsClip(ca, clip)) {
 994                     synchronized (cs) {
 995                         View v = cs.getChildView();
 996                         v.paint(g, ca);
 997                     }
 998                 } else {
 999                     // done painting intersection
1000                     break;
1001                 }
1002                 offs += cs.getMajorSpan();
1003             }
1004         }
1005 
1006         /**
1007          * Fetch the allocation to use for a child view.
1008          * This will update the offsets for all children
1009          * not yet updated before the given index.
1010          * @param index the child index
1011          * @param a the allocation
1012          * @return the allocation to use for a child view
1013          */
1014         public synchronized Shape getChildAllocation(int index, Shape a) {
1015             if (a == null) {
1016                 return null;
1017             }
1018             setAllocation(a);
1019             ChildState cs = getChildState(index);
1020             if (lastValidOffset == null) {
1021                 lastValidOffset = getChildState(0);
1022             }
1023             if (cs.getChildView().getStartOffset() >
1024                 lastValidOffset.getChildView().getStartOffset()) {
1025                 // offsets need to be updated
1026                 updateChildOffsetsToIndex(index);
1027             }
1028             Shape ca = getChildAllocation(index);
1029             return ca;
1030         }
1031 
1032         /**
1033          * Fetches the child view index at the given point.
1034          * This is called by the various View methods that
1035          * need to calculate which child to forward a message
1036          * to.  This should be called by a block synchronized
1037          * on this object, and would typically be followed
1038          * with one or more calls to getChildAllocation that
1039          * should also be in the synchronized block.
1040          *
1041          * @param x the X coordinate &gt;= 0
1042          * @param y the Y coordinate &gt;= 0
1043          * @param a the allocation to the View
1044          * @return the nearest child index
1045          */
1046         public int getViewIndexAtPoint(float x, float y, Shape a) {
1047             setAllocation(a);
1048             float targetOffset = (axis == X_AXIS) ? x - lastAlloc.x : y - lastAlloc.y;
1049             int index = getViewIndexAtVisualOffset(targetOffset);
1050             return index;
1051         }
1052 
1053         /**
1054          * Fetch the allocation to use for a child view.
1055          * <em>This does not update the offsets in the ChildState
1056          * records.</em>
1057          * @param index the index
1058          * @return the allocation to use for a child view
1059          */
1060         protected Shape getChildAllocation(int index) {
1061             ChildState cs = getChildState(index);
1062             if (! cs.isLayoutValid()) {
1063                 cs.run();
1064             }
1065             if (axis == X_AXIS) {
1066                 childAlloc.x = lastAlloc.x + (int) cs.getMajorOffset();
1067                 childAlloc.y = lastAlloc.y + (int) cs.getMinorOffset();
1068                 childAlloc.width = (int) cs.getMajorSpan();
1069                 childAlloc.height = (int) cs.getMinorSpan();
1070             } else {
1071                 childAlloc.y = lastAlloc.y + (int) cs.getMajorOffset();
1072                 childAlloc.x = lastAlloc.x + (int) cs.getMinorOffset();
1073                 childAlloc.height = (int) cs.getMajorSpan();
1074                 childAlloc.width = (int) cs.getMinorSpan();
1075             }
1076             childAlloc.x += (int)getLeftInset();
1077             childAlloc.y += (int)getRightInset();
1078             return childAlloc;
1079         }
1080 
1081         /**
1082          * Copy the currently allocated shape into the Rectangle
1083          * used to store the current allocation.  This would be
1084          * a floating point rectangle in a Java2D-specific implementation.
1085          * @param a the allocation
1086          */
1087         protected void setAllocation(Shape a) {
1088             if (a instanceof Rectangle) {
1089                 lastAlloc.setBounds((Rectangle) a);
1090             } else {
1091                 lastAlloc.setBounds(a.getBounds());
1092             }
1093             setSize(lastAlloc.width, lastAlloc.height);
1094         }
1095 
1096         /**
1097          * Locate the view responsible for an offset into the box
1098          * along the major axis.  Make sure that offsets are set
1099          * on the ChildState objects up to the given target span
1100          * past the desired offset.
1101          * @param targetOffset the target offset
1102          *
1103          * @return   index of the view representing the given visual
1104          *   location (targetOffset), or -1 if no view represents
1105          *   that location
1106          */
1107         protected int getViewIndexAtVisualOffset(float targetOffset) {
1108             int n = getViewCount();
1109             if (n > 0) {
1110                 boolean lastValid = (lastValidOffset != null);
1111 
1112                 if (lastValidOffset == null) {
1113                     lastValidOffset = getChildState(0);
1114                 }
1115                 if (targetOffset > majorSpan) {
1116                     // should only get here on the first time display.
1117                     if (!lastValid) {
1118                         return 0;
1119                     }
1120                     int pos = lastValidOffset.getChildView().getStartOffset();
1121                     int index = getViewIndex(pos, Position.Bias.Forward);
1122                     return index;
1123                 } else if (targetOffset > lastValidOffset.getMajorOffset()) {
1124                     // roll offset calculations forward
1125                     return updateChildOffsets(targetOffset);
1126                 } else {
1127                     // no changes prior to the needed offset
1128                     // this should be a binary search
1129                     float offs = 0f;
1130                     for (int i = 0; i < n; i++) {
1131                         ChildState cs = getChildState(i);
1132                         float nextOffs = offs + cs.getMajorSpan();
1133                         if (targetOffset < nextOffs) {
1134                             return i;
1135                         }
1136                         offs = nextOffs;
1137                     }
1138                 }
1139             }
1140             return n - 1;
1141         }
1142 
1143         /**
1144          * Move the location of the last offset calculation forward
1145          * to the desired offset.
1146          */
1147         int updateChildOffsets(float targetOffset) {
1148             int n = getViewCount();
1149             int targetIndex = n - 1;
1150             int pos = lastValidOffset.getChildView().getStartOffset();
1151             int startIndex = getViewIndex(pos, Position.Bias.Forward);
1152             float start = lastValidOffset.getMajorOffset();
1153             float lastOffset = start;
1154             for (int i = startIndex; i < n; i++) {
1155                 ChildState cs = getChildState(i);
1156                 cs.setMajorOffset(lastOffset);
1157                 lastOffset += cs.getMajorSpan();
1158                 if (targetOffset < lastOffset) {
1159                     targetIndex = i;
1160                     lastValidOffset = cs;
1161                     break;
1162                 }
1163             }
1164 
1165             return targetIndex;
1166         }
1167 
1168         /**
1169          * Move the location of the last offset calculation forward
1170          * to the desired index.
1171          */
1172         void updateChildOffsetsToIndex(int index) {
1173             int pos = lastValidOffset.getChildView().getStartOffset();
1174             int startIndex = getViewIndex(pos, Position.Bias.Forward);
1175             float lastOffset = lastValidOffset.getMajorOffset();
1176             for (int i = startIndex; i <= index; i++) {
1177                 ChildState cs = getChildState(i);
1178                 cs.setMajorOffset(lastOffset);
1179                 lastOffset += cs.getMajorSpan();
1180             }
1181         }
1182 
1183         boolean intersectsClip(Shape childAlloc, Rectangle clip) {
1184             Rectangle cs = (childAlloc instanceof Rectangle) ?
1185                 (Rectangle) childAlloc : childAlloc.getBounds();
1186             if (cs.intersects(clip)) {
1187                 // Make sure that lastAlloc also contains childAlloc,
1188                 // this will be false if haven't yet flushed changes.
1189                 return lastAlloc.intersects(cs);
1190             }
1191             return false;
1192         }
1193 
1194         /**
1195          * The location of the last offset calculation
1196          * that is valid.
1197          */
1198         protected ChildState lastValidOffset;
1199 
1200         /**
1201          * The last seen allocation (for repainting when changes
1202          * are flushed upward).
1203          */
1204         protected Rectangle lastAlloc;
1205 
1206         /**
1207          * A shape to use for the child allocation to avoid
1208          * creating a lot of garbage.
1209          */
1210         protected Rectangle childAlloc;
1211     }
1212 
1213     /**
1214      * A record representing the layout state of a
1215      * child view.  It is runnable as a task on another
1216      * thread.  All access to the child view that is
1217      * based upon a read-lock on the model should synchronize
1218      * on this object (i.e. The layout thread and the GUI
1219      * thread can both have a read lock on the model at the
1220      * same time and are not protected from each other).
1221      * Access to a child view hierarchy is serialized via
1222      * synchronization on the ChildState instance.
1223      * @since 1.3
1224      */
1225     public class ChildState implements Runnable {
1226 
1227         /**
1228          * Construct a child status.  This needs to start
1229          * out as fairly large so we don't falsely begin with
1230          * the idea that all of the children are visible.
1231          * @param v the view
1232          * @since 1.4
1233          */
1234         public ChildState(View v) {
1235             child = v;
1236             minorValid = false;
1237             majorValid = false;
1238             childSizeValid = false;
1239             child.setParent(AsyncBoxView.this);
1240         }
1241 
1242         /**
1243          * Fetch the child view this record represents.
1244          * @return the child view this record represents
1245          */
1246         public View getChildView() {
1247             return child;
1248         }
1249 
1250         /**
1251          * Update the child state.  This should be
1252          * called by the thread that desires to spend
1253          * time updating the child state (intended to
1254          * be the layout thread).
1255          * <p>
1256          * This acquires a read lock on the associated
1257          * document for the duration of the update to
1258          * ensure the model is not changed while it is
1259          * operating.  The first thing to do would be
1260          * to see if any work actually needs to be done.
1261          * The following could have conceivably happened
1262          * while the state was waiting to be updated:
1263          * <ol>
1264          * <li>The child may have been removed from the
1265          * view hierarchy.
1266          * <li>The child may have been updated by a
1267          * higher priority operation (i.e. the child
1268          * may have become visible).
1269          * </ol>
1270          */
1271         public void run () {
1272             AbstractDocument doc = (AbstractDocument) getDocument();
1273             try {
1274                 doc.readLock();
1275                 if (minorValid && majorValid && childSizeValid) {
1276                     // nothing to do
1277                     return;
1278                 }
1279                 if (child.getParent() == AsyncBoxView.this) {
1280                     // this may overwrite anothers threads cached
1281                     // value for actively changing... but that just
1282                     // means it won't use the cache if there is an
1283                     // overwrite.
1284                     synchronized(AsyncBoxView.this) {
1285                         changing = this;
1286                     }
1287                     updateChild();
1288                     synchronized(AsyncBoxView.this) {
1289                         changing = null;
1290                     }
1291 
1292                     // setting the child size on the minor axis
1293                     // may have caused it to change it's preference
1294                     // along the major axis.
1295                     updateChild();
1296                 }
1297             } finally {
1298                 doc.readUnlock();
1299             }
1300         }
1301 
1302         void updateChild() {
1303             boolean minorUpdated = false;
1304             synchronized(this) {
1305                 if (! minorValid) {
1306                     int minorAxis = getMinorAxis();
1307                     min = child.getMinimumSpan(minorAxis);
1308                     pref = child.getPreferredSpan(minorAxis);
1309                     max = child.getMaximumSpan(minorAxis);
1310                     minorValid = true;
1311                     minorUpdated = true;
1312                 }
1313             }
1314             if (minorUpdated) {
1315                 minorRequirementChange(this);
1316             }
1317 
1318             boolean majorUpdated = false;
1319             float delta = 0.0f;
1320             synchronized(this) {
1321                 if (! majorValid) {
1322                     float old = span;
1323                     span = child.getPreferredSpan(axis);
1324                     delta = span - old;
1325                     majorValid = true;
1326                     majorUpdated = true;
1327                 }
1328             }
1329             if (majorUpdated) {
1330                 majorRequirementChange(this, delta);
1331                 locator.childChanged(this);
1332             }
1333 
1334             synchronized(this) {
1335                 if (! childSizeValid) {
1336                     float w;
1337                     float h;
1338                     if (axis == X_AXIS) {
1339                         w = span;
1340                         h = getMinorSpan();
1341                     } else {
1342                         w = getMinorSpan();
1343                         h = span;
1344                     }
1345                     childSizeValid = true;
1346                     child.setSize(w, h);
1347                 }
1348             }
1349 
1350         }
1351 
1352         /**
1353          * What is the span along the minor axis.
1354          * @return the span along the minor axis
1355          */
1356         public float getMinorSpan() {
1357             if (max < minorSpan) {
1358                 return max;
1359             }
1360             // make it the target width, or as small as it can get.
1361             return Math.max(min, minorSpan);
1362         }
1363 
1364         /**
1365          * What is the offset along the minor axis
1366          * @return the offset along the minor axis
1367          */
1368         public float getMinorOffset() {
1369             if (max < minorSpan) {
1370                 // can't make the child this wide, align it
1371                 float align = child.getAlignment(getMinorAxis());
1372                 return ((minorSpan - max) * align);
1373             }
1374             return 0f;
1375         }
1376 
1377         /**
1378          * What is the span along the major axis.
1379          * @return the span along the major axis
1380          */
1381         public float getMajorSpan() {
1382             return span;
1383         }
1384 
1385         /**
1386          * Get the offset along the major axis.
1387          * @return the offset along the major axis
1388          */
1389         public float getMajorOffset() {
1390             return offset;
1391         }
1392 
1393         /**
1394          * This method should only be called by the ChildLocator,
1395          * it is simply a convenient place to hold the cached
1396          * location.
1397          * @param offs offsets
1398          */
1399         public void setMajorOffset(float offs) {
1400             offset = offs;
1401         }
1402 
1403         /**
1404          * Mark preferences changed for this child.
1405          *
1406          * @param width true if the width preference has changed
1407          * @param height true if the height preference has changed
1408          * @see javax.swing.JComponent#revalidate
1409          */
1410         public void preferenceChanged(boolean width, boolean height) {
1411             if (axis == X_AXIS) {
1412                 if (width) {
1413                     majorValid = false;
1414                 }
1415                 if (height) {
1416                     minorValid = false;
1417                 }
1418             } else {
1419                 if (width) {
1420                     minorValid = false;
1421                 }
1422                 if (height) {
1423                     majorValid = false;
1424                 }
1425             }
1426             childSizeValid = false;
1427         }
1428 
1429         /**
1430          * Has the child view been laid out.
1431          * @return whether or not the child view been laid out.
1432          */
1433         public boolean isLayoutValid() {
1434             return (minorValid && majorValid && childSizeValid);
1435         }
1436 
1437         // minor axis
1438         private float min;
1439         private float pref;
1440         private float max;
1441         private boolean minorValid;
1442 
1443         // major axis
1444         private float span;
1445         private float offset;
1446         private boolean majorValid;
1447 
1448         private View child;
1449         private boolean childSizeValid;
1450     }
1451 
1452     /**
1453      * Task to flush requirement changes upward
1454      */
1455     class FlushTask implements Runnable {
1456 
1457         public void run() {
1458             flushRequirementChanges();
1459         }
1460 
1461     }
1462 
1463 }