< prev index next >

src/java.base/share/classes/java/lang/FdLibm.java

Print this page




  73         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  74     }
  75 
  76     /**
  77      * Return the high-order 32 bits of the double argument as an int.
  78      */
  79     private static int __HI(double x) {
  80         long transducer = Double.doubleToRawLongBits(x);
  81         return (int)(transducer >> 32);
  82     }
  83 
  84     /**
  85      * Return a double with its high-order bits of the second argument
  86      * and the low-order bits of the first argument..
  87      */
  88     private static double __HI(double x, int high) {
  89         long transX = Double.doubleToRawLongBits(x);
  90         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  91     }
  92 



































































































  93     /**
  94      * Compute x**y
  95      *                    n
  96      * Method:  Let x =  2   * (1+f)
  97      *      1. Compute and return log2(x) in two pieces:
  98      *              log2(x) = w1 + w2,
  99      *         where w1 has 53 - 24 = 29 bit trailing zeros.
 100      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
 101      *         arithmetic, where |y'| <= 0.5.
 102      *      3. Return x**y = 2**n*exp(y'*log2)
 103      *
 104      * Special cases:
 105      *      1.  (anything) ** 0  is 1
 106      *      2.  (anything) ** 1  is itself
 107      *      3.  (anything) ** NAN is NAN
 108      *      4.  NAN ** (anything except 0) is NAN
 109      *      5.  +-(|x| > 1) **  +INF is +INF
 110      *      6.  +-(|x| > 1) **  -INF is +0
 111      *      7.  +-(|x| < 1) **  +INF is +0
 112      *      8.  +-(|x| < 1) **  -INF is +INF




  73         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  74     }
  75 
  76     /**
  77      * Return the high-order 32 bits of the double argument as an int.
  78      */
  79     private static int __HI(double x) {
  80         long transducer = Double.doubleToRawLongBits(x);
  81         return (int)(transducer >> 32);
  82     }
  83 
  84     /**
  85      * Return a double with its high-order bits of the second argument
  86      * and the low-order bits of the first argument..
  87      */
  88     private static double __HI(double x, int high) {
  89         long transX = Double.doubleToRawLongBits(x);
  90         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  91     }
  92 
  93     /** 
  94      * hypot(x,y)
  95      *
  96      * Method :
  97      *      If (assume round-to-nearest) z=x*x+y*y
  98      *      has error less than sqrt(2)/2 ulp, than
  99      *      sqrt(z) has error less than 1 ulp (exercise).
 100      *
 101      *      So, compute sqrt(x*x+y*y) with some care as
 102      *      follows to get the error below 1 ulp:
 103      *
 104      *      Assume x>y>0;
 105      *      (if possible, set rounding to round-to-nearest)
 106      *      1. if x > 2y  use
 107      *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
 108      *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
 109      *      2. if x <= 2y use
 110      *              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
 111      *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
 112      *      y1= y with lower 32 bits chopped, y2 = y-y1.
 113      *
 114      *      NOTE: scaling may be necessary if some argument is too
 115      *            large or too tiny
 116      *
 117      * Special cases:
 118      *      hypot(x,y) is INF if x or y is +INF or -INF; else
 119      *      hypot(x,y) is NAN if x or y is NAN.
 120      *
 121      * Accuracy:
 122      *      hypot(x,y) returns sqrt(x^2+y^2) with error less
 123      *      than 1 ulps (units in the last place)
 124      */
 125     public static class Hypot {
 126         public static double compute(double x, double y) {
 127             double a=x,b=y,t1,t2,y1,y2,w;
 128             int j,k,ha,hb;
 129 
 130             ha = __HI(x)&0x7fffffff;        /* high word of  x */
 131             hb = __HI(y)&0x7fffffff;        /* high word of  y */
 132             if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
 133             a = __HI(a, ha);   /* a <- |a| */
 134             b = __HI(b, hb);   /* b <- |b| */
 135             if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
 136             k=0;
 137             if(ha > 0x5f300000) {   /* a>2**500 */
 138                 if(ha >= 0x7ff00000) {       /* Inf or NaN */
 139                     w = a+b;                 /* for sNaN */
 140                     if(((ha&0xfffff)|__LO(a))==0) w = a;
 141                     if(((hb^0x7ff00000)|__LO(b))==0) w = b;
 142                     return w;
 143                 }
 144                 /* scale a and b by 2**-600 */
 145                 ha -= 0x25800000; hb -= 0x25800000;  k += 600;
 146                 a = __HI(a, ha);
 147                 b = __HI(b, hb);
 148             }
 149             if(hb < 0x20b00000) {   /* b < 2**-500 */
 150                 if(hb <= 0x000fffff) {      /* subnormal b or 0 */
 151                     if((hb|(__LO(b)))==0) return a;
 152                     t1=0;
 153                     t1 = __HI(t1, 0x7fd00000);  /* t1=2^1022 */
 154                     b *= t1;
 155                     a *= t1;
 156                     k -= 1022;
 157                 } else {            /* scale a and b by 2^600 */
 158                     ha += 0x25800000;       /* a *= 2^600 */
 159                     hb += 0x25800000;       /* b *= 2^600 */
 160                     k -= 600;
 161                     a = __HI(a, ha);
 162                     b = __HI(b, hb);
 163                 }
 164             }
 165             /* medium size a and b */
 166             w = a-b;
 167             if (w>b) {
 168                 t1 = 0;
 169                 t1 = __HI(t1, ha);
 170                 t2 = a-t1;
 171                 w  = Math.sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
 172             } else {
 173                 a  = a+a;
 174                 y1 = 0;
 175                 y1 = __HI(y1, hb);
 176                 y2 = b - y1;
 177                 t1 = 0;
 178                 t1 = __HI(t1, ha+0x00100000);
 179                 t2 = a - t1;
 180                 w  = Math.sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
 181             }
 182             if(k!=0) {
 183                 t1 = 1.0;
 184                 int t1_hi = __HI(t1);
 185                 t1_hi += (k<<20);
 186                 t1 = __HI(t1, t1_hi);
 187                 return t1*w;
 188             } else return w;
 189         }
 190     }
 191 
 192     /**
 193      * Compute x**y
 194      *                    n
 195      * Method:  Let x =  2   * (1+f)
 196      *      1. Compute and return log2(x) in two pieces:
 197      *              log2(x) = w1 + w2,
 198      *         where w1 has 53 - 24 = 29 bit trailing zeros.
 199      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
 200      *         arithmetic, where |y'| <= 0.5.
 201      *      3. Return x**y = 2**n*exp(y'*log2)
 202      *
 203      * Special cases:
 204      *      1.  (anything) ** 0  is 1
 205      *      2.  (anything) ** 1  is itself
 206      *      3.  (anything) ** NAN is NAN
 207      *      4.  NAN ** (anything except 0) is NAN
 208      *      5.  +-(|x| > 1) **  +INF is +INF
 209      *      6.  +-(|x| > 1) **  -INF is +0
 210      *      7.  +-(|x| < 1) **  +INF is +0
 211      *      8.  +-(|x| < 1) **  -INF is +INF


< prev index next >