< prev index next >

src/java.base/share/classes/java/lang/FdLibm.java

Print this page


   1 
   2 /*
   3  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.  Oracle designates this
   9  * particular file as subject to the "Classpath" exception as provided
  10  * by Oracle in the LICENSE file that accompanied this code.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  23  * or visit www.oracle.com if you need additional information or have any
  24  * questions.
  25  */
  26 
  27 /* __ieee754_hypot(x,y)











































































  28  *
  29  * Method :
  30  *      If (assume round-to-nearest) z=x*x+y*y
  31  *      has error less than sqrt(2)/2 ulp, than
  32  *      sqrt(z) has error less than 1 ulp (exercise).
  33  *
  34  *      So, compute sqrt(x*x+y*y) with some care as
  35  *      follows to get the error below 1 ulp:
  36  *
  37  *      Assume x>y>0;
  38  *      (if possible, set rounding to round-to-nearest)
  39  *      1. if x > 2y  use
  40  *              x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
  41  *      where x1 = x with lower 32 bits cleared, x2 = x-x1; else
  42  *      2. if x <= 2y use
  43  *              t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
  44  *      where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
  45  *      y1= y with lower 32 bits chopped, y2 = y-y1.
  46  *
  47  *      NOTE: scaling may be necessary if some argument is too
  48  *            large or too tiny
  49  *
  50  * Special cases:
  51  *      hypot(x,y) is INF if x or y is +INF or -INF; else
  52  *      hypot(x,y) is NAN if x or y is NAN.
  53  *
  54  * Accuracy:
  55  *      hypot(x,y) returns sqrt(x^2+y^2) with error less
  56  *      than 1 ulps (units in the last place)
  57  */



  58 
  59 #include "fdlibm.h"


  60 
  61 #ifdef __STDC__
  62         double __ieee754_hypot(double x, double y)
  63 #else
  64         double __ieee754_hypot(x,y)
  65         double x, y;
  66 #endif
  67 {
  68         double a=x,b=y,t1,t2,y1,y2,w;
  69         int j,k,ha,hb;
  70 
  71         ha = __HI(x)&0x7fffffff;        /* high word of  x */
  72         hb = __HI(y)&0x7fffffff;        /* high word of  y */
  73         if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
  74         __HI(a) = ha;   /* a <- |a| */
  75         __HI(b) = hb;   /* b <- |b| */
  76         if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
  77         k=0;
  78         if(ha > 0x5f300000) {   /* a>2**500 */
  79            if(ha >= 0x7ff00000) {       /* Inf or NaN */
  80                w = a+b;                 /* for sNaN */
  81                if(((ha&0xfffff)|__LO(a))==0) w = a;
  82                if(((hb^0x7ff00000)|__LO(b))==0) w = b;
  83                return w;










  84            }
  85            /* scale a and b by 2**-600 */
  86            ha -= 0x25800000; hb -= 0x25800000;  k += 600;
  87            __HI(a) = ha;
  88            __HI(b) = hb;
  89         }
  90         if(hb < 0x20b00000) {   /* b < 2**-500 */
  91             if(hb <= 0x000fffff) {      /* subnormal b or 0 */
  92                 if((hb|(__LO(b)))==0) return a;
  93                 t1=0;
  94                 __HI(t1) = 0x7fd00000;  /* t1=2^1022 */






  95                 b *= t1;
  96                 a *= t1;
  97                 k -= 1022;
  98             } else {            /* scale a and b by 2^600 */
  99                 ha += 0x25800000;       /* a *= 2^600 */
 100                 hb += 0x25800000;       /* b *= 2^600 */


 101                 k -= 600;
 102                 __HI(a) = ha;
 103                 __HI(b) = hb;
 104             }
 105         }
 106     /* medium size a and b */
 107         w = a-b;
 108         if (w>b) {
 109             t1 = 0;
 110             __HI(t1) = ha;
 111             t2 = a-t1;
 112             w  = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
 113         } else {
 114             a  = a+a;

 115             y1 = 0;
 116             __HI(y1) = hb;
 117             y2 = b - y1;
 118             t1 = 0;
 119             __HI(t1) = ha+0x00100000;
 120             t2 = a - t1;
 121             w  = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));









































































































































































































































































































 122         }
 123         if(k!=0) {
 124             t1 = 1.0;
 125             __HI(t1) += (k<<20);
 126             return t1*w;
 127         } else return w;
 128 }

   1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 /**
  29  * Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
  30  *
  31  * <p>The C version of fdlibm relied on the idiom of pointer aliasing
  32  * a 64-bit double floating-point value as a two-element array of
  33  * 32-bit integers and reading and writing the two halves of the
  34  * double independently. This coding pattern was problematic to C
  35  * optimizers and not directly expressible in Java. Therefore, rather
  36  * than a memory level overlay, if portions of a double need to be
  37  * operated on as integer values, the standard library methods for
  38  * bitwise floating-point to integer conversion,
  39  * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
  40  * or indirectly used .
  41  *
  42  * <p>The C version of fdlibm also took some pains to signal the
  43  * correct IEEE 754 exceptional conditions divide by zero, invalid,
  44  * overflow and underflow. For example, overflow would be signaled by
  45  * {@code huge * huge} where {@code huge} was a large constant that
  46  * would overflow when squared. Since IEEE floating-point exceptional
  47  * handling is not supported natively in the JVM, such coding patterns
  48  * have been omitted from this port. For example, rather than {@code
  49  * return huge * huge}, this port will use {@code return INFINITY}.
  50  *
  51  * <p>Various comparison and arithmetic operations in fdlibm could be
  52  * done either based on the integer view of a value or directly on the
  53  * floating-point representation. Which idiom is faster may depend on
  54  * platform specific factors. However,for code clarity if no other
  55  * reason, this port will favor expressing those semantics operations
  56  * in terms of floating-point operations when convenient to do so.
  57  */
  58 class FdLibm {
  59     // Constants used by multiple algorithms
  60     private static final double INFINITY = Double.POSITIVE_INFINITY;
  61 
  62     private FdLibm() {
  63         throw new UnsupportedOperationException("No FdLibm instances for you.");
  64     }
  65 
  66     /**
  67      * Return the low-order 32 bits of the double argument as an int.
  68      */
  69     private static int __LO(double x) {
  70         long transducer = Double.doubleToRawLongBits(x);
  71         return (int)transducer;
  72     }
  73 
  74     /**
  75      * Return a double with its low-order bits of the second argument
  76      * and the high-order bits of the first argument..
  77      */
  78     private static double __LO(double x, int low) {
  79         long transX = Double.doubleToRawLongBits(x);
  80         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  81     }
  82 
  83     /**
  84      * Return the high-order 32 bits of the double argument as an int.
  85      */
  86     private static int __HI(double x) {
  87         long transducer = Double.doubleToRawLongBits(x);
  88         return (int)(transducer >> 32);
  89     }
  90 
  91     /**
  92      * Return a double with its high-order bits of the second argument
  93      * and the low-order bits of the first argument..
  94      */
  95     private static double __HI(double x, int high) {
  96         long transX = Double.doubleToRawLongBits(x);
  97         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  98     }
  99 
 100     /** 
 101      * hypot(x,y)
 102      *
 103      * Method :
 104      *      If (assume round-to-nearest) z = x*x + y*y
 105      *      has error less than sqrt(2)/2 ulp, than
 106      *      sqrt(z) has error less than 1 ulp (exercise).
 107      *
 108      *      So, compute sqrt(x*x + y*y) with some care as
 109      *      follows to get the error below 1 ulp:
 110      *
 111      *      Assume x > y > 0;
 112      *      (if possible, set rounding to round-to-nearest)
 113      *      1. if x > 2y  use
 114      *              x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y
 115      *      where x1 = x with lower 32 bits cleared, x2 = x - x1; else
 116      *      2. if x <= 2y use
 117      *              t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y))
 118      *      where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1,
 119      *      y1= y with lower 32 bits chopped, y2 = y - y1.
 120      *
 121      *      NOTE: scaling may be necessary if some argument is too
 122      *            large or too tiny
 123      *
 124      * Special cases:
 125      *      hypot(x,y) is INF if x or y is +INF or -INF; else
 126      *      hypot(x,y) is NAN if x or y is NAN.
 127      *
 128      * Accuracy:
 129      *      hypot(x,y) returns sqrt(x^2 + y^2) with error less
 130      *      than 1 ulps (units in the last place)
 131      */
 132     public static class Hypot {
 133         public static final double TWO_MINUS_600 = 0x1.0p-600;
 134         public static final double TWO_PLUS_600  = 0x1.0p+600;
 135 
 136         public static double compute(double x, double y) {
 137             double a = Math.abs(x);
 138             double b = Math.abs(y);
 139 
 140             if (!Double.isFinite(a) || !Double.isFinite(b)) {
 141                 if (a == INFINITY || b == INFINITY)
 142                     return INFINITY;
 143                 else
 144                     return a + b; // Propagate NaN significand bits
 145             }
 146 
 147             if (b > a) {
 148                 double tmp = a;
 149                 a = b;
 150                 b = tmp;
 151             }
 152             assert a >= b;
 153 
 154             // Doing bitwise conversion after screening for NaN allows
 155             // the code to not worry about the possibility of
 156             // "negative" NaN values.
 157 
 158             // Note: the uses of ha and hb in hypot could be
 159             // eliminated by changing the relative magnitude
 160             // comparison below to either a floating-point divide or a
 161             // comparison of getExponent results coupled initializing
 162             // t1 and t2 using a split generated by floating-point
 163             // operations. The range filtering and exponent
 164             // adjustments already done by hypot implies should a
 165             // split would not need to worry about overflow or
 166             // underflow cases.
 167 
 168             int ha = __HI(a);        // high word of a
 169             int hb = __HI(b);        // high word of b
 170 
 171             if ((ha - hb) > 0x3c00000) {
 172                 return a + b;  // x / y > 2**60
 173             }
 174 
 175             int k = 0;
 176             if (a > 0x1.0p500) {   // a > 2**500
 177                 // scale a and b by 2**-600
 178                 ha -= 0x25800000;
 179                 hb -= 0x25800000;
 180                 a = a * TWO_MINUS_600;
 181                 b = b * TWO_MINUS_600;
 182                 k += 600;
 183             }
 184             double t1, t2;
 185             if (b < 0x1.0p-500) {   // b < 2**-500
 186                 if (hb <= Double.MIN_NORMAL) {      // subnormal b or 0 */
 187                     if (b == 0.0)
 188                         return a;
 189                     t1 = 0x1.0p1022;   // t1 = 2^1022
 190                     b *= t1;
 191                     a *= t1;
 192                     k -= 1022;
 193                 } else {            // scale a and b by 2^600
 194                     ha += 0x25800000;       // a *= 2^600
 195                     hb += 0x25800000;       // b *= 2^600
 196                     a = a * TWO_PLUS_600;
 197                     b = b * TWO_PLUS_600;
 198                     k -= 600;


 199                 }
 200             }
 201             // medium size a and b
 202             double w = a - b;
 203             if (w > b) {
 204                 t1 = 0;
 205                 t1 = __HI(t1, ha);
 206                 t2 = a - t1;
 207                 w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
 208             } else {
 209                 double y1, y2;
 210                 a  = a + a;
 211                 y1 = 0;
 212                 y1 = __HI(y1, hb);
 213                 y2 = b - y1;
 214                 t1 = 0;
 215                 t1 = __HI(t1, ha + 0x00100000);
 216                 t2 = a - t1;
 217                 w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
 218             }
 219             if (k != 0) {
 220                 return Math.powerOfTwoD(k) * w;
 221             } else
 222                 return w;
 223         }
 224     }
 225 
 226     /**
 227      * Compute x**y
 228      *                    n
 229      * Method:  Let x =  2   * (1+f)
 230      *      1. Compute and return log2(x) in two pieces:
 231      *              log2(x) = w1 + w2,
 232      *         where w1 has 53 - 24 = 29 bit trailing zeros.
 233      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
 234      *         arithmetic, where |y'| <= 0.5.
 235      *      3. Return x**y = 2**n*exp(y'*log2)
 236      *
 237      * Special cases:
 238      *      1.  (anything) ** 0  is 1
 239      *      2.  (anything) ** 1  is itself
 240      *      3.  (anything) ** NAN is NAN
 241      *      4.  NAN ** (anything except 0) is NAN
 242      *      5.  +-(|x| > 1) **  +INF is +INF
 243      *      6.  +-(|x| > 1) **  -INF is +0
 244      *      7.  +-(|x| < 1) **  +INF is +0
 245      *      8.  +-(|x| < 1) **  -INF is +INF
 246      *      9.  +-1         ** +-INF is NAN
 247      *      10. +0 ** (+anything except 0, NAN)               is +0
 248      *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 249      *      12. +0 ** (-anything except 0, NAN)               is +INF
 250      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 251      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 252      *      15. +INF ** (+anything except 0,NAN) is +INF
 253      *      16. +INF ** (-anything except 0,NAN) is +0
 254      *      17. -INF ** (anything)  = -0 ** (-anything)
 255      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 256      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
 257      *
 258      * Accuracy:
 259      *      pow(x,y) returns x**y nearly rounded. In particular
 260      *                      pow(integer,integer)
 261      *      always returns the correct integer provided it is
 262      *      representable.
 263      */
 264     public static class Pow {
 265         public static strictfp double compute(final double x, final double y) {
 266             double z;
 267             double r, s, t, u, v, w;
 268             int i, j, k, n;
 269 
 270             // y == zero: x**0 = 1
 271             if (y == 0.0)
 272                 return 1.0;
 273 
 274             // +/-NaN return x + y to propagate NaN significands
 275             if (Double.isNaN(x) || Double.isNaN(y))
 276                 return x + y;
 277 
 278             final double y_abs = Math.abs(y);
 279             double x_abs   = Math.abs(x);
 280             // Special values of y
 281             if (y == 2.0) {
 282                 return x * x;
 283             } else if (y == 0.5) {
 284                 if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
 285                     return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
 286             } else if (y_abs == 1.0) {        // y is  +/-1
 287                 return (y == 1.0) ? x : 1.0 / x;
 288             } else if (y_abs == INFINITY) {       // y is +/-infinity
 289                 if (x_abs == 1.0)
 290                     return  y - y;         // inf**+/-1 is NaN
 291                 else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
 292                     return (y >= 0) ? y : 0.0;
 293                 else                       // (|x| < 1)**-/+inf = inf, 0
 294                     return (y < 0) ? -y : 0.0;
 295             }
 296 
 297             final int hx = __HI(x);
 298             int ix = hx & 0x7fffffff;
 299 
 300             /*
 301              * When x < 0, determine if y is an odd integer:
 302              * y_is_int = 0       ... y is not an integer
 303              * y_is_int = 1       ... y is an odd int
 304              * y_is_int = 2       ... y is an even int
 305              */
 306             int y_is_int  = 0;
 307             if (hx < 0) {
 308                 if (y_abs >= 0x1.0p53)   // |y| >= 2^53 = 9.007199254740992E15
 309                     y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
 310                 else if (y_abs >= 1.0) { // |y| >= 1.0
 311                     long y_abs_as_long = (long) y_abs;
 312                     if ( ((double) y_abs_as_long) == y_abs) {
 313                         y_is_int = 2 -  (int)(y_abs_as_long & 0x1L);
 314                     }
 315                 }
 316             }
 317 
 318             // Special value of x
 319             if (x_abs == 0.0 ||
 320                 x_abs == INFINITY ||
 321                 x_abs == 1.0) {
 322                 z = x_abs;                 // x is +/-0, +/-inf, +/-1
 323                 if (y < 0.0)
 324                     z = 1.0/z;     // z = (1/|x|)
 325                 if (hx < 0) {
 326                     if (((ix - 0x3ff00000) | y_is_int) == 0) {
 327                         z = (z-z)/(z-z); // (-1)**non-int is NaN
 328                     } else if (y_is_int == 1)
 329                         z = -1.0 * z;             // (x < 0)**odd = -(|x|**odd)
 330                 }
 331                 return z;
 332             }
 333 
 334             n = (hx >> 31) + 1;
 335 
 336             // (x < 0)**(non-int) is NaN
 337             if ((n | y_is_int) == 0)
 338                 return (x-x)/(x-x);
 339 
 340             s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
 341             if ( (n | (y_is_int - 1)) == 0)
 342                 s = -1.0; // (-ve)**(odd int)
 343 
 344             double p_h, p_l, t1, t2;
 345             // |y| is huge
 346             if (y_abs > 0x1.0p31) { // if |y| > 2**31
 347                 final double INV_LN2   =  0x1.7154_7652_b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 348                 final double INV_LN2_H =  0x1.715476p0;            //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 349                 final double INV_LN2_L =  0x1.4ae0_bf85_ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 350 
 351                 // Over/underflow if x is not close to one
 352                 if (x_abs < 0x1.fffffp-1) // |x| < 0.9999995231628418
 353                     return (y < 0.0) ? s * INFINITY : s * 0.0;
 354                 if (x_abs > 1.0)         // |x| > 1.0
 355                     return (y > 0.0) ? s * INFINITY : s * 0.0;
 356                 /*
 357                  * now |1-x| is tiny <= 2**-20, sufficient to compute
 358                  * log(x) by x - x^2/2 + x^3/3 - x^4/4
 359                  */
 360                 t = x_abs - 1.0;        // t has 20 trailing zeros
 361                 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
 362                 u = INV_LN2_H * t;      // INV_LN2_H has 21 sig. bits
 363                 v =  t * INV_LN2_L - w * INV_LN2;
 364                 t1 = u + v;
 365                 t1 =__LO(t1, 0);
 366                 t2 = v - (t1 - u);
 367             } else {
 368                 final double CP      =  0x1.ec70_9dc3_a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 369                 final double CP_H    =  0x1.ec709ep-1;           //  9.61796700954437255859e-01 = (float)cp
 370                 final double CP_L    = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
 371 
 372                 double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
 373                 n = 0;
 374                 // Take care of subnormal numbers
 375                 if (ix < 0x00100000) {
 376                     x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
 377                     n -= 53;
 378                     ix = __HI(x_abs);
 379                 }
 380                 n  += ((ix) >> 20) - 0x3ff;
 381                 j  = ix & 0x000fffff;
 382                 // Determine interval
 383                 ix = j | 0x3ff00000;          // Normalize ix
 384                 if (j <= 0x3988E)
 385                     k = 0;         // |x| <sqrt(3/2)
 386                 else if (j < 0xBB67A)
 387                     k = 1;         // |x| <sqrt(3)
 388                 else {
 389                     k = 0;
 390                     n += 1;
 391                     ix -= 0x00100000;
 392                 }
 393                 x_abs = __HI(x_abs, ix);
 394 
 395                 // Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
 396 
 397                 final double BP[]    = {1.0,
 398                                        1.5};
 399                 final double DP_H[]  = {0.0,
 400                                         0x1.2b80_34p-1};        // 5.84962487220764160156e-01
 401                 final double DP_L[]  = {0.0,
 402                                         0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
 403 
 404                 // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 405                 final double L1      =  0x1.3333_3333_33303p-1;  //  5.99999999999994648725e-01
 406                 final double L2      =  0x1.b6db_6db6_fabffp-2;  //  4.28571428578550184252e-01
 407                 final double L3      =  0x1.5555_5518_f264dp-2;  //  3.33333329818377432918e-01
 408                 final double L4      =  0x1.1746_0a91_d4101p-2;  //  2.72728123808534006489e-01
 409                 final double L5      =  0x1.d864_a93c_9db65p-3;  //  2.30660745775561754067e-01
 410                 final double L6      =  0x1.a7e2_84a4_54eefp-3;  //  2.06975017800338417784e-01
 411                 u = x_abs - BP[k];               // BP[0]=1.0, BP[1]=1.5
 412                 v = 1.0 / (x_abs + BP[k]);
 413                 ss = u * v;
 414                 s_h = ss;
 415                 s_h = __LO(s_h, 0);
 416                 // t_h=x_abs + BP[k] High
 417                 t_h = 0.0;
 418                 t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
 419                 t_l = x_abs - (t_h - BP[k]);
 420                 s_l = v * ((u - s_h * t_h) - s_h * t_l);
 421                 // Compute log(x_abs)
 422                 s2 = ss * ss;
 423                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 424                 r += s_l * (s_h + ss);
 425                 s2  = s_h * s_h;
 426                 t_h = 3.0 + s2 + r;
 427                 t_h = __LO(t_h, 0);
 428                 t_l = r - ((t_h - 3.0) - s2);
 429                 // u+v = ss*(1+...)
 430                 u = s_h * t_h;
 431                 v = s_l * t_h + t_l * ss;
 432                 // 2/(3log2)*(ss + ...)
 433                 p_h = u + v;
 434                 p_h = __LO(p_h, 0);
 435                 p_l = v - (p_h - u);
 436                 z_h = CP_H * p_h;             // CP_H + CP_L = 2/(3*log2)
 437                 z_l = CP_L * p_h + p_l * CP + DP_L[k];
 438                 // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
 439                 t = (double)n;
 440                 t1 = (((z_h + z_l) + DP_H[k]) + t);
 441                 t1 = __LO(t1, 0);
 442                 t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
 443             }
 444 
 445             // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
 446             double y1  = y;
 447             y1 = __LO(y1, 0);
 448             p_l = (y - y1) * t1 + y * t2;
 449             p_h = y1 * t1;
 450             z = p_l + p_h;
 451             j = __HI(z);
 452             i = __LO(z);
 453             if (j >= 0x40900000) {                           // z >= 1024
 454                 if (((j - 0x40900000) | i)!=0)               // if z > 1024
 455                     return s * INFINITY;                     // Overflow
 456                 else {
 457                     final double OVT     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 458                     if (p_l + OVT > z - p_h)
 459                         return s * INFINITY;   // Overflow
 460                 }
 461             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        // z <= -1075
 462                 if (((j - 0xc090cc00) | i)!=0)           // z < -1075
 463                     return s * 0.0;           // Underflow
 464                 else {
 465                     if (p_l <= z - p_h)
 466                         return s * 0.0;      // Underflow
 467                 }
 468             }
 469             /*
 470              * Compute 2**(p_h+p_l)
 471              */
 472             // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 473             final double P1      =  0x1.5555_5555_5553ep-3;  //  1.66666666666666019037e-01
 474             final double P2      = -0x1.6c16_c16b_ebd93p-9;  // -2.77777777770155933842e-03
 475             final double P3      =  0x1.1566_aaf2_5de2cp-14; //  6.61375632143793436117e-05
 476             final double P4      = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
 477             final double P5      =  0x1.6376_972b_ea4d0p-25; //  4.13813679705723846039e-08
 478             final double LG2     =  0x1.62e4_2fef_a39efp-1;  //  6.93147180559945286227e-01
 479             final double LG2_H   =  0x1.62e43p-1;            //  6.93147182464599609375e-01
 480             final double LG2_L   = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
 481             i = j & 0x7fffffff;
 482             k = (i >> 20) - 0x3ff;
 483             n = 0;
 484             if (i > 0x3fe00000) {              // if |z| > 0.5, set n = [z + 0.5]
 485                 n = j + (0x00100000 >> (k + 1));
 486                 k = ((n & 0x7fffffff) >> 20) - 0x3ff;     // new k for n
 487                 t = 0.0;
 488                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 489                 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
 490                 if (j < 0)
 491                     n = -n;
 492                 p_h -= t;
 493             }
 494             t = p_l + p_h;
 495             t = __LO(t, 0);
 496             u = t * LG2_H;
 497             v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
 498             z = u + v;
 499             w = v - (z - u);
 500             t  = z * z;
 501             t1  = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 502             r  = (z * t1)/(t1 - 2.0) - (w + z * w);
 503             z  = 1.0 - (r - z);
 504             j  = __HI(z);
 505             j += (n << 20);
 506             if ((j >> 20) <= 0)
 507                 z = Math.scalb(z, n); // subnormal output
 508             else {
 509                 int z_hi = __HI(z);
 510                 z_hi += (n << 20);
 511                 z = __HI(z, z_hi);
 512             }
 513             return s * z;
 514         }
 515     }





 516 }
< prev index next >