1 package java.lang;
   2 
   3 /**
   4  * Port of the "Freely Distributable Math Library", version 4.3, from C to Java.
   5  */
   6 class FdLibm {
   7         /**
   8          * Return the low-order 32 bits of the double argument as an int.
   9          */
  10         private static int __LO(double x) {
  11             long transducer = Double.doubleToLongBits(x);
  12             return (int)transducer;
  13         }
  14 
  15         /**
  16          * Return the a double with its low-order bits reset.
  17          */
  18         private static double __LO(double x, int low) {
  19             long transX = Double.doubleToLongBits(x);
  20             return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  21         }
  22 
  23         /**
  24          * Return the high-order 32 bits of the double argument as an int.
  25          */
  26         private static int __HI(double x) {
  27             long transducer = Double.doubleToLongBits(x);
  28             return (int)(transducer >> 32);
  29         }
  30         /**
  31          * Return the a double with its high-order bits reset.
  32          */
  33         private static double __HI(double x, int high) {
  34             long transX = Double.doubleToLongBits(x);
  35             return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  36         }
  37 
  38     /**
  39      * Return x**y
  40      *
  41      *                    n
  42      * Method:  Let x =  2   * (1+f)
  43      *      1. Compute and return log2(x) in two pieces:
  44      *              log2(x) = w1 + w2,
  45      *         where w1 has 53-24 = 29 bit trailing zeros.
  46      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
  47      *         arithmetic, where |y'|<=0.5.
  48      *      3. Return x**y = 2**n*exp(y'*log2)
  49      *
  50      * Special cases:
  51      *      1.  (anything) ** 0  is 1
  52      *      2.  (anything) ** 1  is itself
  53      *      3.  (anything) ** NAN is NAN
  54      *      4.  NAN ** (anything except 0) is NAN
  55      *      5.  +-(|x| > 1) **  +INF is +INF
  56      *      6.  +-(|x| > 1) **  -INF is +0
  57      *      7.  +-(|x| < 1) **  +INF is +0
  58      *      8.  +-(|x| < 1) **  -INF is +INF
  59      *      9.  +-1         ** +-INF is NAN
  60      *      10. +0 ** (+anything except 0, NAN)               is +0
  61      *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
  62      *      12. +0 ** (-anything except 0, NAN)               is +INF
  63      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
  64      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  65      *      15. +INF ** (+anything except 0,NAN) is +INF
  66      *      16. +INF ** (-anything except 0,NAN) is +0
  67      *      17. -INF ** (anything)  = -0 ** (-anything)
  68      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  69      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
  70      *
  71      * Accuracy:
  72      *      pow(x,y) returns x**y nearly rounded. In particular
  73      *                      pow(integer,integer)
  74      *      always returns the correct integer provided it is
  75      *      representable.
  76      *
  77      * Constants :
  78      * The hexadecimal values are the intended ones for the following
  79      * constants. The decimal values may be used, provided that the
  80      * compiler will convert from decimal to binary accurately enough
  81      * to produce the hexadecimal values shown.
  82      */
  83     public static class Pow {
  84         static final double bp[] = {1.0, 1.5,};
  85         static final double dp_h[] = { 0.0, 0x1.2b8034p-1,}; // 5.84962487220764160156e-01
  86         static final double dp_l[] = { 0.0, 0x1.cfdeb43cfd006p-27,}; // 1.35003920212974897128e-08
  87         static final double zero    =  0.0;
  88         static final double one     =  1.0;
  89         static final double two     =  2.0;
  90         static final double two53   =  0x1.0p53;  // 9007199254740992.0
  91         static final double huge    =  1.0e300;
  92         static final double tiny    =  1.0e-300;
  93         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  94         static final double L1      =  0x1.3333333333303p-1;  //  5.99999999999994648725e-01
  95         static final double L2      =  0x1.b6db6db6fabffp-2;  //  4.28571428578550184252e-01
  96         static final double L3      =  0x1.55555518f264dp-2;  //  3.33333329818377432918e-01
  97         static final double L4      =  0x1.17460a91d4101p-2;  //  2.72728123808534006489e-01
  98         static final double L5      =  0x1.d864a93c9db65p-3;  //  2.30660745775561754067e-01
  99         static final double L6      =  0x1.a7e284a454eefp-3;  //  2.06975017800338417784e-01
 100         static final double P1      =  0x1.555555555553ep-3;  //  1.66666666666666019037e-01
 101         static final double P2      = -0x1.6c16c16bebd93p-9;  // -2.77777777770155933842e-03
 102         static final double P3      =  0x1.1566aaf25de2cp-14; //  6.61375632143793436117e-05
 103         static final double P4      = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
 104         static final double P5      =  0x1.6376972bea4d0p-25; //  4.13813679705723846039e-08
 105         static final double lg2     =  0x1.62e42fefa39efp-1;  //  6.93147180559945286227e-01
 106         static final double lg2_h   =  0x1.62e43p-1;          //  6.93147182464599609375e-01
 107         static final double lg2_l   = -0x1.05c610ca86c39p-29; // -1.90465429995776804525e-09
 108         static final double ovt     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 109         static final double cp      =  0x1.ec709dc3a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 110         static final double cp_h    =  0x1.ec709ep-1;         //  9.61796700954437255859e-01 = (float)cp
 111         static final double cp_l    = -0x1.e2fe0145b01f5p-28; // -7.02846165095275826516e-09 = tail of cp_h
 112         static final double ivln2   =  0x1.71547652b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 113         static final double ivln2_h =  0x1.715476p0;          //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 114         static final double ivln2_l =  0x1.4ae0bf85ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 115 
 116         public static double pow(double x, double y) {
 117             double z, ax, z_h, z_l, p_h, p_l;
 118             double y1, t1, t2, r, s, t, u, v, w;
 119             int i, j, k, yisint, n;
 120             int hx, hy, ix, iy;
 121             /*unsigned*/ int lx, ly;
 122 
 123             hx = __HI(x);
 124             lx = __LO(x);
 125             hy = __HI(y);
 126             ly = __LO(y);
 127             ix = hx & 0x7fffffff;
 128             iy = hy & 0x7fffffff;
 129 
 130             /* y==zero: x**0 = 1 */
 131             if (y == 0.0)
 132                 return 1.0;
 133 
 134             /* +-NaN return x+y */
 135             if (Double.isNaN(x) || Double.isNaN(y))
 136                 return x + y;
 137 
 138             /* determine if y is an odd int when x < 0
 139              * yisint = 0       ... y is not an integer
 140              * yisint = 1       ... y is an odd int
 141              * yisint = 2       ... y is an even int
 142              */
 143             yisint  = 0;
 144             if (hx < 0) {
 145                 if (iy >= 0x43400000)
 146                     yisint = 2; /* even integer y */
 147                 else if (iy >= 0x3ff00000) {
 148                     k = (iy >> 20) - 0x3ff;        /* exponent */
 149                     if (k > 20) {
 150                         j = ly >> (52-k);
 151                         if ((j << (52-k) )==ly)
 152                             yisint = 2 - (j&1);
 153                     } else if (ly == 0) {
 154                         j = iy >> (20-k);
 155                         if ((j << (20-k))==iy) {
 156                             yisint = 2-(j & 1);
 157                         }
 158                     }
 159                 }
 160             }
 161 
 162             /* special value of y */
 163             if ( ly == 0 ) {
 164                 if (iy == 0x7ff00000) {       /* y is +-inf */
 165                     if (((ix - 0x3ff00000) | lx) == 0)
 166                         return  y - y;         /* inf**+-1 is NaN */
 167                     else if (ix >= 0x3ff00000) /* (|x| > 1)**+-inf = inf,0 */
 168                         return (hy >= 0) ? y: zero;
 169                     else                       /* (|x| < 1)**-,+inf = inf,0 */
 170                         return (hy < 0) ? -y: zero;
 171                 }
 172                 if (iy == 0x3ff00000) {        /* y is  +-1 */
 173                     if (hy < 0)
 174                         return one/x;
 175                     else
 176                         return x;
 177                 }
 178                 if (hy == 0x40000000)
 179                     return x*x; /* y is  2 */
 180                 if (hy == 0x3fe00000) {        /* y is  0.5 */
 181                     if (hx >= 0)       /* x >= +0 */
 182                         return Math.sqrt(x);
 183                 }
 184             }
 185 
 186             ax   = Math.abs(x);
 187             /* special value of x */
 188             if (lx == 0) {
 189                 if (ix == 0x7ff00000 || ix==0 || ix == 0x3ff00000){
 190                     z = ax;                 /*x is +-0,+-inf,+-1*/
 191                     if (hy < 0)
 192                         z = one/z;     /* z = (1/|x|) */
 193                     if (hx < 0) {
 194                         if (((ix - 0x3ff00000) | yisint)==0) {
 195                             z = (z-z)/(z-z); /* (-1)**non-int is NaN */
 196                         } else if (yisint == 1)
 197                             z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */
 198                     }
 199                     return z;
 200                 }
 201             }
 202 
 203             n = (hx >> 31)+1;
 204 
 205             /* (x<0)**(non-int) is NaN */
 206             if ((n | yisint) == 0)
 207                 return (x-x)/(x-x);
 208 
 209             s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
 210             if ( (n | (yisint-1)) == 0)
 211                 s = -one;/* (-ve)**(odd int) */
 212 
 213             /* |y| is huge */
 214             if(iy > 0x41e00000) { /* if |y| > 2**31 */
 215                 if(iy > 0x43f00000){  /* if |y| > 2**64, must o/uflow */
 216                     if (ix <= 0x3fefffff)
 217                         return (hy < 0) ? huge*huge : tiny*tiny;
 218                     if (ix >= 0x3ff00000)
 219                         return (hy > 0) ? huge*huge : tiny*tiny;
 220                 }
 221                 /* over/underflow if x is not close to one */
 222                 if (ix < 0x3fefffff)
 223                     return (hy < 0) ? s*huge*huge : s*tiny*tiny;
 224                 if (ix > 0x3ff00000)
 225                     return (hy > 0) ? s*huge*huge : s*tiny*tiny;
 226                 /* now |1-x| is tiny <= 2**-20, suffice to compute
 227                    log(x) by x-x^2/2+x^3/3-x^4/4 */
 228                 t = ax-one;         /* t has 20 trailing zeros */
 229                 w = (t*t) * (0.5-t*(0.3333333333333333333333-t*0.25));
 230                 u = ivln2_h * t;      /* ivln2_h has 21 sig. bits */
 231                 v = t*ivln2_l-w*ivln2;
 232                 t1 = u + v;
 233                 t1 =__LO(t1, 0);
 234                 t2 = v-(t1-u);
 235             } else {
 236                 double ss, s2, s_h, s_l, t_h, t_l;
 237                 n = 0;
 238                 /* take care subnormal number */
 239                 if (ix < 0x00100000) {
 240                     ax *= two53;
 241                     n -= 53;
 242                     ix = __HI(ax);
 243                 }
 244                 n  += ((ix) >> 20) - 0x3ff;
 245                 j  = ix & 0x000fffff;
 246                 /* determine interval */
 247                 ix = j | 0x3ff00000;          /* normalize ix */
 248                 if(j <= 0x3988E)
 249                     k=0;         /* |x| <sqrt(3/2) */
 250                 else if (j < 0xBB67A)
 251                     k=1;         /* |x| <sqrt(3)   */
 252                 else {
 253                     k = 0;
 254                     n += 1;
 255                     ix -= 0x00100000;
 256                 }
 257                 ax = __HI(ax, ix);
 258 
 259                 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
 260                 u = ax - bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
 261                 v = one / (ax + bp[k]);
 262                 ss = u * v;
 263                 s_h = ss;
 264                 s_h = __LO(s_h, 0);
 265                 /* t_h=ax+bp[k] High */
 266                 t_h = zero;
 267                 t_h = __HI(t_h, ((ix >> 1)|0x20000000)+0x00080000+(k << 18) );
 268                 t_l = ax - (t_h - bp[k]);
 269                 s_l = v * ((u- s_h * t_h) - s_h * t_l);
 270                 /* compute log(ax) */
 271                 s2 = ss * ss;
 272                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 273                 r += s_l * (s_h + ss);
 274                 s2  = s_h * s_h;
 275                 t_h = 3.0 + s2 + r;
 276                 t_h = __LO(t_h, 0);
 277                 t_l = r-((t_h - 3.0)-s2);
 278                 /* u+v = ss*(1+...) */
 279                 u = s_h * t_h;
 280                 v = s_l * t_h + t_l * ss;
 281                 /* 2/(3log2)*(ss+...) */
 282                 p_h = u + v;
 283                 p_h = __LO(p_h, 0);
 284                 p_l = v-(p_h-u);
 285                 z_h = cp_h * p_h;             /* cp_h+cp_l = 2/(3*log2) */
 286                 z_l = cp_l * p_h + p_l * cp + dp_l[k];
 287                 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
 288                 t = (double)n;
 289                 t1 = (((z_h + z_l) + dp_h[k]) + t);
 290                 t1 = __LO(t1, 0);
 291                 t2 = z_l - (((t1-t)-dp_h[k])-z_h);
 292             }
 293 
 294             /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
 295             y1  = y;
 296             y1 = __LO(y1, 0);
 297             p_l = (y-y1) * t1 + y *t2;
 298             p_h = y1 * t1;
 299             z = p_l + p_h;
 300             j = __HI(z);
 301             i = __LO(z);
 302             if (j >= 0x40900000) {                            /* z >= 1024 */
 303                 if (((j - 0x40900000) | i)!=0)                   /* if z > 1024 */
 304                     return s*huge*huge;                     /* overflow */
 305                 else {
 306                     if (p_l+ovt>z-p_h)
 307                         return s*huge*huge;   /* overflow */
 308                 }
 309             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        /* z <= -1075 */
 310                 if (((j-0xc090cc00)|i)!=0)           /* z < -1075 */
 311                     return s*tiny*tiny;             /* underflow */
 312                 else {
 313                     if(p_l<=z-p_h)
 314                         return s*tiny*tiny;      /* underflow */
 315                 }
 316             }
 317             /*
 318              * compute 2**(p_h+p_l)
 319              */
 320             i = j & 0x7fffffff;
 321             k = (i >> 20)-0x3ff;
 322             n = 0;
 323             if (i > 0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
 324                 n = j + (0x00100000 >> (k+1));
 325                 k = ((n & 0x7fffffff) >> 20)-0x3ff;     /* new k for n */
 326                 t = zero;
 327                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 328                 n = ((n & 0x000fffff)|0x00100000) >> (20-k);
 329                 if (j < 0)
 330                     n = -n;
 331                 p_h -= t;
 332             }
 333             t = p_l+p_h;
 334             t = __LO(t, 0);
 335             u = t * lg2_h;
 336             v = (p_l-(t-p_h))* lg2 + t * lg2_l;
 337             z = u + v;
 338             w = v-(z-u);
 339             t  = z * z;
 340             t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 341             r  = (z*t1)/(t1-two)-(w+z*w);
 342             z  = one - (r-z);
 343             j  = __HI(z);
 344             j += (n << 20);
 345             if ((j >> 20) <= 0)
 346                 z = Math.scalb(z, n); /* subnormal output */
 347             else {
 348                 int z_hi = __HI(z);
 349                 z_hi += (n << 20);
 350                 z = __HI(z, z_hi);
 351             }
 352             return s * z;
 353         }
 354     }
 355 }