< prev index next >

src/java.base/share/classes/java/lang/FdLibm.java

Print this page



   1 
   2 /*
   3  * Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.  Oracle designates this
   9  * particular file as subject to the "Classpath" exception as provided
  10  * by Oracle in the LICENSE file that accompanied this code.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  23  * or visit www.oracle.com if you need additional information or have any
  24  * questions.
  25  */











  26 
  27 /* __ieee754_pow(x,y) return x**y

  28  *
  29  *                    n
  30  * Method:  Let x =  2   * (1+f)
  31  *      1. Compute and return log2(x) in two pieces:
  32  *              log2(x) = w1 + w2,
  33  *         where w1 has 53-24 = 29 bit trailing zeros.
  34  *      2. Perform y*log2(x) = n+y' by simulating muti-precision
  35  *         arithmetic, where |y'|<=0.5.
  36  *      3. Return x**y = 2**n*exp(y'*log2)
  37  *
  38  * Special cases:
  39  *      1.  (anything) ** 0  is 1
  40  *      2.  (anything) ** 1  is itself
  41  *      3.  (anything) ** NAN is NAN
  42  *      4.  NAN ** (anything except 0) is NAN
  43  *      5.  +-(|x| > 1) **  +INF is +INF
  44  *      6.  +-(|x| > 1) **  -INF is +0
  45  *      7.  +-(|x| < 1) **  +INF is +0
  46  *      8.  +-(|x| < 1) **  -INF is +INF
  47  *      9.  +-1         ** +-INF is NAN


  51  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
  52  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  53  *      15. +INF ** (+anything except 0,NAN) is +INF
  54  *      16. +INF ** (-anything except 0,NAN) is +0
  55  *      17. -INF ** (anything)  = -0 ** (-anything)
  56  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  57  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
  58  *
  59  * Accuracy:
  60  *      pow(x,y) returns x**y nearly rounded. In particular
  61  *                      pow(integer,integer)
  62  *      always returns the correct integer provided it is
  63  *      representable.
  64  *
  65  * Constants :
  66  * The hexadecimal values are the intended ones for the following
  67  * constants. The decimal values may be used, provided that the
  68  * compiler will convert from decimal to binary accurately enough
  69  * to produce the hexadecimal values shown.
  70  */
  71 
  72 #include "fdlibm.h"
  73 
  74 #ifdef __STDC__
  75 static const double
  76 #else
  77 static double
  78 #endif
  79 bp[] = {1.0, 1.5,},
  80 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  81 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  82 zero    =  0.0,
  83 one     =  1.0,
  84 two     =  2.0,
  85 two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
  86 huge    =  1.0e300,
  87 tiny    =  1.0e-300,
  88         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  89 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  90 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  91 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  92 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  93 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  94 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  95 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  96 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  97 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  98 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  99 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
 100 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
 101 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
 102 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
 103 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
 104 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
 105 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
 106 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
 107 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
 108 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
 109 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
 110 
 111 #ifdef __STDC__
 112         double __ieee754_pow(double x, double y)
 113 #else
 114         double __ieee754_pow(x,y)
 115         double x, y;
 116 #endif
 117 {
 118         double z,ax,z_h,z_l,p_h,p_l;
 119         double y1,t1,t2,r,s,t,u,v,w;
 120         int i0,i1,i,j,k,yisint,n;
 121         int hx,hy,ix,iy;
 122         unsigned lx,ly;
 123 
 124         i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
 125         hx = __HI(x); lx = __LO(x);
 126         hy = __HI(y); ly = __LO(y);
 127         ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
 128 
 129     /* y==zero: x**0 = 1 */
 130         if((iy|ly)==0) return one;

 131 
 132     /* +-NaN return x+y */
 133         if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
 134            iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
 135                 return x+y;
 136 
 137     /* determine if y is an odd int when x < 0
 138      * yisint = 0       ... y is not an integer
 139      * yisint = 1       ... y is an odd int
 140      * yisint = 2       ... y is an even int
 141      */
 142         yisint  = 0;
 143         if(hx<0) {
 144             if(iy>=0x43400000) yisint = 2; /* even integer y */
 145             else if(iy>=0x3ff00000) {
 146                 k = (iy>>20)-0x3ff;        /* exponent */
 147                 if(k>20) {
 148                     j = ly>>(52-k);
 149                     if((j<<(52-k))==ly) yisint = 2-(j&1);
 150                 } else if(ly==0) {
 151                     j = iy>>(20-k);
 152                     if((j<<(20-k))==iy) yisint = 2-(j&1);




 153                 }
 154             }
 155         }
 156 
 157     /* special value of y */
 158         if(ly==0) {
 159             if (iy==0x7ff00000) {       /* y is +-inf */
 160                 if(((ix-0x3ff00000)|lx)==0)
 161                     return  y - y;      /* inf**+-1 is NaN */
 162                 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
 163                     return (hy>=0)? y: zero;
 164                 else                    /* (|x|<1)**-,+inf = inf,0 */
 165                     return (hy<0)?-y: zero;
 166             }
 167             if(iy==0x3ff00000) {        /* y is  +-1 */
 168                 if(hy<0) return one/x; else return x;
 169             }
 170             if(hy==0x40000000) return x*x; /* y is  2 */
 171             if(hy==0x3fe00000) {        /* y is  0.5 */
 172                 if(hx>=0)       /* x >= +0 */
 173                 return sqrt(x);




 174             }
 175         }
 176 
 177         ax   = fabs(x);
 178     /* special value of x */
 179         if(lx==0) {
 180             if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
 181                 z = ax;                 /*x is +-0,+-inf,+-1*/
 182                 if(hy<0) z = one/z;     /* z = (1/|x|) */
 183                 if(hx<0) {
 184                     if(((ix-0x3ff00000)|yisint)==0) {

 185                         z = (z-z)/(z-z); /* (-1)**non-int is NaN */
 186                     } else if(yisint==1)
 187                         z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */
 188                 }
 189                 return z;
 190             }
 191         }
 192 
 193         n = (hx>>31)+1;
 194 
 195     /* (x<0)**(non-int) is NaN */
 196         if((n|yisint)==0) return (x-x)/(x-x);

 197 
 198         s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
 199         if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */

 200 
 201     /* |y| is huge */
 202         if(iy>0x41e00000) { /* if |y| > 2**31 */
 203             if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
 204                 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
 205                 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;


 206             }
 207         /* over/underflow if x is not close to one */
 208             if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
 209             if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;


 210         /* now |1-x| is tiny <= 2**-20, suffice to compute
 211            log(x) by x-x^2/2+x^3/3-x^4/4 */
 212             t = ax-one;         /* t has 20 trailing zeros */
 213             w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
 214             u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
 215             v = t*ivln2_l-w*ivln2;
 216             t1 = u+v;
 217             __LO(t1) = 0;
 218             t2 = v-(t1-u);
 219         } else {
 220             double ss,s2,s_h,s_l,t_h,t_l;
 221             n = 0;
 222         /* take care subnormal number */
 223             if(ix<0x00100000)
 224                 {ax *= two53; n -= 53; ix = __HI(ax); }
 225             n  += ((ix)>>20)-0x3ff;
 226             j  = ix&0x000fffff;



 227         /* determine interval */
 228             ix = j|0x3ff00000;          /* normalize ix */
 229             if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
 230             else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
 231             else {k=0;n+=1;ix -= 0x00100000;}
 232             __HI(ax) = ix;






 233 
 234         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
 235             u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
 236             v = one/(ax+bp[k]);
 237             ss = u*v;
 238             s_h = ss;
 239             __LO(s_h) = 0;
 240         /* t_h=ax+bp[k] High */
 241             t_h = zero;
 242             __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
 243             t_l = ax - (t_h-bp[k]);
 244             s_l = v*((u-s_h*t_h)-s_h*t_l);
 245         /* compute log(ax) */
 246             s2 = ss*ss;
 247             r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
 248             r += s_l*(s_h+ss);
 249             s2  = s_h*s_h;
 250             t_h = 3.0+s2+r;
 251             __LO(t_h) = 0;
 252             t_l = r-((t_h-3.0)-s2);
 253         /* u+v = ss*(1+...) */
 254             u = s_h*t_h;
 255             v = s_l*t_h+t_l*ss;
 256         /* 2/(3log2)*(ss+...) */
 257             p_h = u+v;
 258             __LO(p_h) = 0;
 259             p_l = v-(p_h-u);
 260             z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
 261             z_l = cp_l*p_h+p_l*cp+dp_l[k];
 262         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
 263             t = (double)n;
 264             t1 = (((z_h+z_l)+dp_h[k])+t);
 265             __LO(t1) = 0;
 266             t2 = z_l-(((t1-t)-dp_h[k])-z_h);
 267         }
 268 
 269     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
 270         y1  = y;
 271         __LO(y1) = 0;
 272         p_l = (y-y1)*t1+y*t2;
 273         p_h = y1*t1;
 274         z = p_l+p_h;
 275         j = __HI(z);
 276         i = __LO(z);
 277         if (j>=0x40900000) {                            /* z >= 1024 */
 278             if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
 279                 return s*huge*huge;                     /* overflow */
 280             else {
 281                 if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */

 282             }
 283         } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
 284             if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
 285                 return s*tiny*tiny;             /* underflow */
 286             else {
 287                 if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */

 288             }
 289         }
 290     /*
 291      * compute 2**(p_h+p_l)
 292      */
 293         i = j&0x7fffffff;
 294         k = (i>>20)-0x3ff;
 295         n = 0;
 296         if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
 297             n = j+(0x00100000>>(k+1));
 298             k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
 299             t = zero;
 300             __HI(t) = (n&~(0x000fffff>>k));
 301             n = ((n&0x000fffff)|0x00100000)>>(20-k);
 302             if(j<0) n = -n;

 303             p_h -= t;
 304         }
 305         t = p_l+p_h;
 306         __LO(t) = 0;
 307         u = t*lg2_h;
 308         v = (p_l-(t-p_h))*lg2+t*lg2_l;
 309         z = u+v;
 310         w = v-(z-u);
 311         t  = z*z;
 312         t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 313         r  = (z*t1)/(t1-two)-(w+z*w);
 314         z  = one-(r-z);
 315         j  = __HI(z);
 316         j += (n<<20);
 317         if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
 318         else __HI(z) += (n<<20);
 319         return s*z;







 320 }
   1 package java.lang;
   2 
   3 /**
   4  * Port of the "Freely Distributable Math Library", version 4.3, from C to Java.
   5  */
   6 class FdLibm {
   7         /**
   8          * Return the low-order 32 bits of the double argument as an int.
   9          */
  10         private static int __LO(double x) {
  11             long transducer = Double.doubleToLongBits(x);
  12             return (int)transducer;
  13         }
  14 
  15         /**
  16          * Return the a double with its low-order bits reset.
  17          */
  18         private static double __LO(double x, int low) {
  19             long transX = Double.doubleToLongBits(x);
  20             return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  21         }
  22 
  23         /**
  24          * Return the high-order 32 bits of the double argument as an int.

  25          */
  26         private static int __HI(double x) {
  27             long transducer = Double.doubleToLongBits(x);
  28             return (int)(transducer >> 32);
  29         }
  30         /**
  31          * Return the a double with its high-order bits reset.
  32          */
  33         private static double __HI(double x, int high) {
  34             long transX = Double.doubleToLongBits(x);
  35             return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  36         }
  37 
  38     /**
  39      * Return x**y
  40      *
  41      *                    n
  42      * Method:  Let x =  2   * (1+f)
  43      *      1. Compute and return log2(x) in two pieces:
  44      *              log2(x) = w1 + w2,
  45      *         where w1 has 53-24 = 29 bit trailing zeros.
  46      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
  47      *         arithmetic, where |y'|<=0.5.
  48      *      3. Return x**y = 2**n*exp(y'*log2)
  49      *
  50      * Special cases:
  51      *      1.  (anything) ** 0  is 1
  52      *      2.  (anything) ** 1  is itself
  53      *      3.  (anything) ** NAN is NAN
  54      *      4.  NAN ** (anything except 0) is NAN
  55      *      5.  +-(|x| > 1) **  +INF is +INF
  56      *      6.  +-(|x| > 1) **  -INF is +0
  57      *      7.  +-(|x| < 1) **  +INF is +0
  58      *      8.  +-(|x| < 1) **  -INF is +INF
  59      *      9.  +-1         ** +-INF is NAN


  63      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
  64      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  65      *      15. +INF ** (+anything except 0,NAN) is +INF
  66      *      16. +INF ** (-anything except 0,NAN) is +0
  67      *      17. -INF ** (anything)  = -0 ** (-anything)
  68      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  69      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
  70      *
  71      * Accuracy:
  72      *      pow(x,y) returns x**y nearly rounded. In particular
  73      *                      pow(integer,integer)
  74      *      always returns the correct integer provided it is
  75      *      representable.
  76      *
  77      * Constants :
  78      * The hexadecimal values are the intended ones for the following
  79      * constants. The decimal values may be used, provided that the
  80      * compiler will convert from decimal to binary accurately enough
  81      * to produce the hexadecimal values shown.
  82      */
  83     public static class Pow {
  84         static final double bp[] = {1.0, 1.5,};
  85         static final double dp_h[] = { 0.0, 0x1.2b8034p-1,}; // 5.84962487220764160156e-01
  86         static final double dp_l[] = { 0.0, 0x1.cfdeb43cfd006p-27,}; // 1.35003920212974897128e-08
  87         static final double zero    =  0.0;
  88         static final double one     =  1.0;
  89         static final double two     =  2.0;
  90         static final double two53   =  0x1.0p53;  // 9007199254740992.0
  91         static final double huge    =  1.0e300;
  92         static final double tiny    =  1.0e-300;







  93         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  94         static final double L1      =  0x1.3333333333303p-1;  //  5.99999999999994648725e-01
  95         static final double L2      =  0x1.b6db6db6fabffp-2;  //  4.28571428578550184252e-01
  96         static final double L3      =  0x1.55555518f264dp-2;  //  3.33333329818377432918e-01
  97         static final double L4      =  0x1.17460a91d4101p-2;  //  2.72728123808534006489e-01
  98         static final double L5      =  0x1.d864a93c9db65p-3;  //  2.30660745775561754067e-01
  99         static final double L6      =  0x1.a7e284a454eefp-3;  //  2.06975017800338417784e-01
 100         static final double P1      =  0x1.555555555553ep-3;  //  1.66666666666666019037e-01
 101         static final double P2      = -0x1.6c16c16bebd93p-9;  // -2.77777777770155933842e-03
 102         static final double P3      =  0x1.1566aaf25de2cp-14; //  6.61375632143793436117e-05
 103         static final double P4      = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
 104         static final double P5      =  0x1.6376972bea4d0p-25; //  4.13813679705723846039e-08
 105         static final double lg2     =  0x1.62e42fefa39efp-1;  //  6.93147180559945286227e-01
 106         static final double lg2_h   =  0x1.62e43p-1;          //  6.93147182464599609375e-01
 107         static final double lg2_l   = -0x1.05c610ca86c39p-29; // -1.90465429995776804525e-09
 108         static final double ovt     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 109         static final double cp      =  0x1.ec709dc3a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 110         static final double cp_h    =  0x1.ec709ep-1;         //  9.61796700954437255859e-01 = (float)cp
 111         static final double cp_l    = -0x1.e2fe0145b01f5p-28; // -7.02846165095275826516e-09 = tail of cp_h
 112         static final double ivln2   =  0x1.71547652b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 113         static final double ivln2_h =  0x1.715476p0;          //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 114         static final double ivln2_l =  0x1.4ae0bf85ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 115 
 116         public static double pow(double x, double y) {
 117             double z, ax, z_h, z_l, p_h, p_l;
 118             double y1, t1, t2, r, s, t, u, v, w;
 119             int i, j, k, yisint, n;
 120             int hx, hy, ix, iy;
 121             /*unsigned*/ int lx, ly;
 122 
 123             hx = __HI(x);
 124             lx = __LO(x);
 125             hy = __HI(y);
 126             ly = __LO(y);
 127             ix = hx & 0x7fffffff;
 128             iy = hy & 0x7fffffff;




 129 
 130             /* y==zero: x**0 = 1 */
 131             if (y == 0.0)
 132                 return 1.0;
 133 
 134             /* +-NaN return x+y */
 135             if (Double.isNaN(x) || Double.isNaN(y))
 136                 return x + y;

 137 
 138             /* determine if y is an odd int when x < 0
 139              * yisint = 0       ... y is not an integer
 140              * yisint = 1       ... y is an odd int
 141              * yisint = 2       ... y is an even int
 142              */
 143             yisint  = 0;
 144             if (hx < 0) {
 145                 if (iy >= 0x43400000)
 146                     yisint = 2; /* even integer y */
 147                 else if (iy >= 0x3ff00000) {
 148                     k = (iy >> 20) - 0x3ff;        /* exponent */
 149                     if (k > 20) {
 150                         j = ly >> (52-k);
 151                         if ((j << (52-k) )==ly)
 152                             yisint = 2 - (j&1);
 153                     } else if (ly == 0) {
 154                         j = iy >> (20-k);
 155                         if ((j << (20-k))==iy) {
 156                             yisint = 2-(j & 1);
 157                         }
 158                     }
 159                 }
 160             }
 161 
 162             /* special value of y */
 163             if ( ly == 0 ) {
 164                 if (iy == 0x7ff00000) {       /* y is +-inf */
 165                     if (((ix - 0x3ff00000) | lx) == 0)
 166                         return  y - y;         /* inf**+-1 is NaN */
 167                     else if (ix >= 0x3ff00000) /* (|x| > 1)**+-inf = inf,0 */
 168                         return (hy >= 0) ? y: zero;
 169                     else                       /* (|x| < 1)**-,+inf = inf,0 */
 170                         return (hy < 0) ? -y: zero;
 171                 }
 172                 if (iy == 0x3ff00000) {        /* y is  +-1 */
 173                     if (hy < 0)
 174                         return one/x;
 175                     else
 176                         return x;
 177                 }
 178                 if (hy == 0x40000000)
 179                     return x*x; /* y is  2 */
 180                 if (hy == 0x3fe00000) {        /* y is  0.5 */
 181                     if (hx >= 0)       /* x >= +0 */
 182                         return Math.sqrt(x);
 183                 }
 184             }
 185 
 186             ax   = Math.abs(x);
 187             /* special value of x */
 188             if (lx == 0) {
 189                 if (ix == 0x7ff00000 || ix==0 || ix == 0x3ff00000){
 190                     z = ax;                 /*x is +-0,+-inf,+-1*/
 191                     if (hy < 0)
 192                         z = one/z;     /* z = (1/|x|) */
 193                     if (hx < 0) {
 194                         if (((ix - 0x3ff00000) | yisint)==0) {
 195                             z = (z-z)/(z-z); /* (-1)**non-int is NaN */
 196                         } else if (yisint == 1)
 197                             z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */
 198                     }
 199                     return z;
 200                 }
 201             }
 202 
 203             n = (hx >> 31)+1;
 204 
 205             /* (x<0)**(non-int) is NaN */
 206             if ((n | yisint) == 0)
 207                 return (x-x)/(x-x);
 208 
 209             s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
 210             if ( (n | (yisint-1)) == 0)
 211                 s = -one;/* (-ve)**(odd int) */
 212 
 213             /* |y| is huge */
 214             if(iy > 0x41e00000) { /* if |y| > 2**31 */
 215                 if(iy > 0x43f00000){  /* if |y| > 2**64, must o/uflow */
 216                     if (ix <= 0x3fefffff)
 217                         return (hy < 0) ? huge*huge : tiny*tiny;
 218                     if (ix >= 0x3ff00000)
 219                         return (hy > 0) ? huge*huge : tiny*tiny;
 220                 }
 221                 /* over/underflow if x is not close to one */
 222                 if (ix < 0x3fefffff)
 223                     return (hy < 0) ? s*huge*huge : s*tiny*tiny;
 224                 if (ix > 0x3ff00000)
 225                     return (hy > 0) ? s*huge*huge : s*tiny*tiny;
 226                 /* now |1-x| is tiny <= 2**-20, suffice to compute
 227                    log(x) by x-x^2/2+x^3/3-x^4/4 */
 228                 t = ax-one;         /* t has 20 trailing zeros */
 229                 w = (t*t) * (0.5-t*(0.3333333333333333333333-t*0.25));
 230                 u = ivln2_h * t;      /* ivln2_h has 21 sig. bits */
 231                 v = t*ivln2_l-w*ivln2;
 232                 t1 = u + v;
 233                 t1 =__LO(t1, 0);
 234                 t2 = v-(t1-u);
 235             } else {
 236                 double ss, s2, s_h, s_l, t_h, t_l;
 237                 n = 0;
 238                 /* take care subnormal number */
 239                 if (ix < 0x00100000) {
 240                     ax *= two53;
 241                     n -= 53;
 242                     ix = __HI(ax);
 243                 }
 244                 n  += ((ix) >> 20) - 0x3ff;
 245                 j  = ix & 0x000fffff;
 246                 /* determine interval */
 247                 ix = j | 0x3ff00000;          /* normalize ix */
 248                 if(j <= 0x3988E)
 249                     k=0;         /* |x| <sqrt(3/2) */
 250                 else if (j < 0xBB67A)
 251                     k=1;         /* |x| <sqrt(3)   */
 252                 else {
 253                     k = 0;
 254                     n += 1;
 255                     ix -= 0x00100000;
 256                 }
 257                 ax = __HI(ax, ix);
 258 
 259                 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
 260                 u = ax - bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
 261                 v = one / (ax + bp[k]);
 262                 ss = u * v;
 263                 s_h = ss;
 264                 s_h = __LO(s_h, 0);
 265                 /* t_h=ax+bp[k] High */
 266                 t_h = zero;
 267                 t_h = __HI(t_h, ((ix >> 1)|0x20000000)+0x00080000+(k << 18) );
 268                 t_l = ax - (t_h - bp[k]);
 269                 s_l = v * ((u- s_h * t_h) - s_h * t_l);
 270                 /* compute log(ax) */
 271                 s2 = ss * ss;
 272                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 273                 r += s_l * (s_h + ss);
 274                 s2  = s_h * s_h;
 275                 t_h = 3.0 + s2 + r;
 276                 t_h = __LO(t_h, 0);
 277                 t_l = r-((t_h - 3.0)-s2);
 278                 /* u+v = ss*(1+...) */
 279                 u = s_h * t_h;
 280                 v = s_l * t_h + t_l * ss;
 281                 /* 2/(3log2)*(ss+...) */
 282                 p_h = u + v;
 283                 p_h = __LO(p_h, 0);
 284                 p_l = v-(p_h-u);
 285                 z_h = cp_h * p_h;             /* cp_h+cp_l = 2/(3*log2) */
 286                 z_l = cp_l * p_h + p_l * cp + dp_l[k];
 287                 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
 288                 t = (double)n;
 289                 t1 = (((z_h + z_l) + dp_h[k]) + t);
 290                 t1 = __LO(t1, 0);
 291                 t2 = z_l - (((t1-t)-dp_h[k])-z_h);
 292             }
 293 
 294             /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
 295             y1  = y;
 296             y1 = __LO(y1, 0);
 297             p_l = (y-y1) * t1 + y *t2;
 298             p_h = y1 * t1;
 299             z = p_l + p_h;
 300             j = __HI(z);
 301             i = __LO(z);
 302             if (j >= 0x40900000) {                            /* z >= 1024 */
 303                 if (((j - 0x40900000) | i)!=0)                   /* if z > 1024 */
 304                     return s*huge*huge;                     /* overflow */
 305                 else {
 306                     if (p_l+ovt>z-p_h)
 307                         return s*huge*huge;   /* overflow */
 308                 }
 309             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        /* z <= -1075 */
 310                 if (((j-0xc090cc00)|i)!=0)           /* z < -1075 */
 311                     return s*tiny*tiny;             /* underflow */
 312                 else {
 313                     if(p_l<=z-p_h)
 314                         return s*tiny*tiny;      /* underflow */
 315                 }
 316             }
 317             /*
 318              * compute 2**(p_h+p_l)
 319              */
 320             i = j & 0x7fffffff;
 321             k = (i >> 20)-0x3ff;
 322             n = 0;
 323             if (i > 0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
 324                 n = j + (0x00100000 >> (k+1));
 325                 k = ((n & 0x7fffffff) >> 20)-0x3ff;     /* new k for n */
 326                 t = zero;
 327                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 328                 n = ((n & 0x000fffff)|0x00100000) >> (20-k);
 329                 if (j < 0)
 330                     n = -n;
 331                 p_h -= t;
 332             }
 333             t = p_l+p_h;
 334             t = __LO(t, 0);
 335             u = t * lg2_h;
 336             v = (p_l-(t-p_h))* lg2 + t * lg2_l;
 337             z = u + v;
 338             w = v-(z-u);
 339             t  = z * z;
 340             t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 341             r  = (z*t1)/(t1-two)-(w+z*w);
 342             z  = one - (r-z);
 343             j  = __HI(z);
 344             j += (n << 20);
 345             if ((j >> 20) <= 0)
 346                 z = Math.scalb(z, n); /* subnormal output */
 347             else {
 348                 int z_hi = __HI(z);
 349                 z_hi += (n << 20);
 350                 z = __HI(z, z_hi);
 351             }
 352             return s * z;
 353         }
 354     }
 355 }
< prev index next >