< prev index next >

src/java.base/share/classes/java/lang/FdLibm.java

Print this page


   1 
   2 /*
   3  * Copyright (c) 1998, 2004, Oracle and/or its affiliates. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.  Oracle designates this
   9  * particular file as subject to the "Classpath" exception as provided
  10  * by Oracle in the LICENSE file that accompanied this code.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  23  * or visit www.oracle.com if you need additional information or have any
  24  * questions.
  25  */
  26 
  27 /* __ieee754_pow(x,y) return x**y
  28  *





































  29  *                    n
  30  * Method:  Let x =  2   * (1+f)
  31  *      1. Compute and return log2(x) in two pieces:
  32  *              log2(x) = w1 + w2,
  33  *         where w1 has 53-24 = 29 bit trailing zeros.
  34  *      2. Perform y*log2(x) = n+y' by simulating muti-precision
  35  *         arithmetic, where |y'|<=0.5.
  36  *      3. Return x**y = 2**n*exp(y'*log2)
  37  *
  38  * Special cases:
  39  *      1.  (anything) ** 0  is 1
  40  *      2.  (anything) ** 1  is itself
  41  *      3.  (anything) ** NAN is NAN
  42  *      4.  NAN ** (anything except 0) is NAN
  43  *      5.  +-(|x| > 1) **  +INF is +INF
  44  *      6.  +-(|x| > 1) **  -INF is +0
  45  *      7.  +-(|x| < 1) **  +INF is +0
  46  *      8.  +-(|x| < 1) **  -INF is +INF
  47  *      9.  +-1         ** +-INF is NAN
  48  *      10. +0 ** (+anything except 0, NAN)               is +0
  49  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
  50  *      12. +0 ** (-anything except 0, NAN)               is +INF
  51  *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
  52  *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  53  *      15. +INF ** (+anything except 0,NAN) is +INF
  54  *      16. +INF ** (-anything except 0,NAN) is +0
  55  *      17. -INF ** (anything)  = -0 ** (-anything)
  56  *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  57  *      19. (-anything except 0 and inf) ** (non-integer) is NAN
  58  *
  59  * Accuracy:
  60  *      pow(x,y) returns x**y nearly rounded. In particular
  61  *                      pow(integer,integer)
  62  *      always returns the correct integer provided it is
  63  *      representable.
  64  *
  65  * Constants :
  66  * The hexadecimal values are the intended ones for the following
  67  * constants. The decimal values may be used, provided that the
  68  * compiler will convert from decimal to binary accurately enough
  69  * to produce the hexadecimal values shown.
  70  */










































































  71 
  72 #include "fdlibm.h"
  73 
  74 #ifdef __STDC__
  75 static const double
  76 #else
  77 static double
  78 #endif
  79 bp[] = {1.0, 1.5,},
  80 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
  81 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
  82 zero    =  0.0,
  83 one     =  1.0,
  84 two     =  2.0,
  85 two53   =  9007199254740992.0,  /* 0x43400000, 0x00000000 */
  86 huge    =  1.0e300,
  87 tiny    =  1.0e-300,
  88         /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
  89 L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
  90 L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
  91 L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
  92 L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
  93 L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
  94 L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
  95 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
  96 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
  97 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
  98 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
  99 P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
 100 lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
 101 lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
 102 lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
 103 ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
 104 cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
 105 cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
 106 cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
 107 ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
 108 ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
 109 ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
 110 
 111 #ifdef __STDC__
 112         double __ieee754_pow(double x, double y)
 113 #else
 114         double __ieee754_pow(x,y)
 115         double x, y;
 116 #endif
 117 {
 118         double z,ax,z_h,z_l,p_h,p_l;
 119         double y1,t1,t2,r,s,t,u,v,w;
 120         int i0,i1,i,j,k,yisint,n;
 121         int hx,hy,ix,iy;
 122         unsigned lx,ly;
 123 
 124         i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
 125         hx = __HI(x); lx = __LO(x);
 126         hy = __HI(y); ly = __LO(y);
 127         ix = hx&0x7fffffff;  iy = hy&0x7fffffff;
 128 
 129     /* y==zero: x**0 = 1 */
 130         if((iy|ly)==0) return one;
 131 
 132     /* +-NaN return x+y */
 133         if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
 134            iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
 135                 return x+y;
 136 
 137     /* determine if y is an odd int when x < 0
 138      * yisint = 0       ... y is not an integer
 139      * yisint = 1       ... y is an odd int
 140      * yisint = 2       ... y is an even int
 141      */
 142         yisint  = 0;
 143         if(hx<0) {
 144             if(iy>=0x43400000) yisint = 2; /* even integer y */
 145             else if(iy>=0x3ff00000) {
 146                 k = (iy>>20)-0x3ff;        /* exponent */
 147                 if(k>20) {
 148                     j = ly>>(52-k);
 149                     if((j<<(52-k))==ly) yisint = 2-(j&1);
 150                 } else if(ly==0) {
 151                     j = iy>>(20-k);
 152                     if((j<<(20-k))==iy) yisint = 2-(j&1);
 153                 }



 154             }
 155         }
 156 
 157     /* special value of y */
 158         if(ly==0) {
 159             if (iy==0x7ff00000) {       /* y is +-inf */
 160                 if(((ix-0x3ff00000)|lx)==0)
 161                     return  y - y;      /* inf**+-1 is NaN */
 162                 else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
 163                     return (hy>=0)? y: zero;
 164                 else                    /* (|x|<1)**-,+inf = inf,0 */
 165                     return (hy<0)?-y: zero;
 166             }
 167             if(iy==0x3ff00000) {        /* y is  +-1 */
 168                 if(hy<0) return one/x; else return x;
 169             }
 170             if(hy==0x40000000) return x*x; /* y is  2 */
 171             if(hy==0x3fe00000) {        /* y is  0.5 */
 172                 if(hx>=0)       /* x >= +0 */
 173                 return sqrt(x);
 174             }
 175         }
 176 
 177         ax   = fabs(x);
 178     /* special value of x */
 179         if(lx==0) {
 180             if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
 181                 z = ax;                 /*x is +-0,+-inf,+-1*/
 182                 if(hy<0) z = one/z;     /* z = (1/|x|) */
 183                 if(hx<0) {
 184                     if(((ix-0x3ff00000)|yisint)==0) {
 185                         z = (z-z)/(z-z); /* (-1)**non-int is NaN */
 186                     } else if(yisint==1)
 187                         z = -1.0*z;             /* (x<0)**odd = -(|x|**odd) */

 188                 }
 189                 return z;
 190             }
 191         }
 192 
 193         n = (hx>>31)+1;
 194 
 195     /* (x<0)**(non-int) is NaN */
 196         if((n|yisint)==0) return (x-x)/(x-x);
 197 
 198         s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
 199         if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
 200 
 201     /* |y| is huge */
 202         if(iy>0x41e00000) { /* if |y| > 2**31 */
 203             if(iy>0x43f00000){  /* if |y| > 2**64, must o/uflow */
 204                 if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
 205                 if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
 206             }
 207         /* over/underflow if x is not close to one */
 208             if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
 209             if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
 210         /* now |1-x| is tiny <= 2**-20, suffice to compute
 211            log(x) by x-x^2/2+x^3/3-x^4/4 */
 212             t = ax-one;         /* t has 20 trailing zeros */
 213             w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
 214             u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
 215             v = t*ivln2_l-w*ivln2;
 216             t1 = u+v;
 217             __LO(t1) = 0;
 218             t2 = v-(t1-u);















 219         } else {
 220             double ss,s2,s_h,s_l,t_h,t_l;
 221             n = 0;
 222         /* take care subnormal number */
 223             if(ix<0x00100000)
 224                 {ax *= two53; n -= 53; ix = __HI(ax); }
 225             n  += ((ix)>>20)-0x3ff;
 226             j  = ix&0x000fffff;
 227         /* determine interval */
 228             ix = j|0x3ff00000;          /* normalize ix */
 229             if(j<=0x3988E) k=0;         /* |x|<sqrt(3/2) */
 230             else if(j<0xBB67A) k=1;     /* |x|<sqrt(3)   */
 231             else {k=0;n+=1;ix -= 0x00100000;}
 232             __HI(ax) = ix;
 233 
 234         /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
 235             u = ax-bp[k];               /* bp[0]=1.0, bp[1]=1.5 */
 236             v = one/(ax+bp[k]);
 237             ss = u*v;









 238             s_h = ss;
 239             __LO(s_h) = 0;
 240         /* t_h=ax+bp[k] High */
 241             t_h = zero;
 242             __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
 243             t_l = ax - (t_h-bp[k]);
 244             s_l = v*((u-s_h*t_h)-s_h*t_l);
 245         /* compute log(ax) */
 246             s2 = ss*ss;
 247             r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
 248             r += s_l*(s_h+ss);
 249             s2  = s_h*s_h;
 250             t_h = 3.0+s2+r;
 251             __LO(t_h) = 0;
 252             t_l = r-((t_h-3.0)-s2);
 253         /* u+v = ss*(1+...) */
 254             u = s_h*t_h;
 255             v = s_l*t_h+t_l*ss;
 256         /* 2/(3log2)*(ss+...) */
 257             p_h = u+v;
 258             __LO(p_h) = 0;
 259             p_l = v-(p_h-u);
 260             z_h = cp_h*p_h;             /* cp_h+cp_l = 2/(3*log2) */
 261             z_l = cp_l*p_h+p_l*cp+dp_l[k];
 262         /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
 263             t = (double)n;
 264             t1 = (((z_h+z_l)+dp_h[k])+t);
 265             __LO(t1) = 0;
 266             t2 = z_l-(((t1-t)-dp_h[k])-z_h);
 267         }
 268 
 269     /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
 270         y1  = y;
 271         __LO(y1) = 0;
 272         p_l = (y-y1)*t1+y*t2;
 273         p_h = y1*t1;
 274         z = p_l+p_h;
 275         j = __HI(z);
 276         i = __LO(z);
 277         if (j>=0x40900000) {                            /* z >= 1024 */
 278             if(((j-0x40900000)|i)!=0)                   /* if z > 1024 */
 279                 return s*huge*huge;                     /* overflow */
 280             else {
 281                 if(p_l+ovt>z-p_h) return s*huge*huge;   /* overflow */

 282             }
 283         } else if((j&0x7fffffff)>=0x4090cc00 ) {        /* z <= -1075 */
 284             if(((j-0xc090cc00)|i)!=0)           /* z < -1075 */
 285                 return s*tiny*tiny;             /* underflow */
 286             else {
 287                 if(p_l<=z-p_h) return s*tiny*tiny;      /* underflow */

 288             }
 289         }
 290     /*
 291      * compute 2**(p_h+p_l)
 292      */
 293         i = j&0x7fffffff;
 294         k = (i>>20)-0x3ff;
 295         n = 0;
 296         if(i>0x3fe00000) {              /* if |z| > 0.5, set n = [z+0.5] */
 297             n = j+(0x00100000>>(k+1));
 298             k = ((n&0x7fffffff)>>20)-0x3ff;     /* new k for n */
 299             t = zero;
 300             __HI(t) = (n&~(0x000fffff>>k));
 301             n = ((n&0x000fffff)|0x00100000)>>(20-k);
 302             if(j<0) n = -n;

 303             p_h -= t;
 304         }
 305         t = p_l+p_h;
 306         __LO(t) = 0;
 307         u = t*lg2_h;
 308         v = (p_l-(t-p_h))*lg2+t*lg2_l;
 309         z = u+v;
 310         w = v-(z-u);
 311         t  = z*z;
 312         t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 313         r  = (z*t1)/(t1-two)-(w+z*w);
 314         z  = one-(r-z);
 315         j  = __HI(z);
 316         j += (n<<20);
 317         if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
 318         else __HI(z) += (n<<20);
 319         return s*z;







 320 }

   1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 /**
  29  * Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
  30  */
  31 class FdLibm {
  32     /**
  33      * Return the low-order 32 bits of the double argument as an int.
  34      */
  35     private static int __LO(double x) {
  36         long transducer = Double.doubleToLongBits(x);
  37         return (int)transducer;
  38     }
  39 
  40     /**
  41      * Return the a double with its low-order bits reset.
  42      */
  43     private static double __LO(double x, int low) {
  44         long transX = Double.doubleToLongBits(x);
  45         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  46     }
  47 
  48     /**
  49      * Return the high-order 32 bits of the double argument as an int.
  50      */
  51     private static int __HI(double x) {
  52         long transducer = Double.doubleToLongBits(x);
  53         return (int)(transducer >> 32);
  54     }
  55     /**
  56      * Return the a double with its high-order bits reset.
  57      */
  58     private static double __HI(double x, int high) {
  59         long transX = Double.doubleToLongBits(x);
  60         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  61     }
  62 
  63     /**
  64      * Compute x**y
  65      *                    n
  66      * Method:  Let x =  2   * (1+f)
  67      *      1. Compute and return log2(x) in two pieces:
  68      *              log2(x) = w1 + w2,
  69      *         where w1 has 53 - 24 = 29 bit trailing zeros.
  70      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
  71      *         arithmetic, where |y'| <= 0.5.
  72      *      3. Return x**y = 2**n*exp(y'*log2)
  73      *
  74      * Special cases:
  75      *      1.  (anything) ** 0  is 1
  76      *      2.  (anything) ** 1  is itself
  77      *      3.  (anything) ** NAN is NAN
  78      *      4.  NAN ** (anything except 0) is NAN
  79      *      5.  +-(|x| > 1) **  +INF is +INF
  80      *      6.  +-(|x| > 1) **  -INF is +0
  81      *      7.  +-(|x| < 1) **  +INF is +0
  82      *      8.  +-(|x| < 1) **  -INF is +INF
  83      *      9.  +-1         ** +-INF is NAN
  84      *      10. +0 ** (+anything except 0, NAN)               is +0
  85      *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
  86      *      12. +0 ** (-anything except 0, NAN)               is +INF
  87      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
  88      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
  89      *      15. +INF ** (+anything except 0,NAN) is +INF
  90      *      16. +INF ** (-anything except 0,NAN) is +0
  91      *      17. -INF ** (anything)  = -0 ** (-anything)
  92      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
  93      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
  94      *
  95      * Accuracy:
  96      *      pow(x,y) returns x**y nearly rounded. In particular
  97      *                      pow(integer,integer)
  98      *      always returns the correct integer provided it is
  99      *      representable.






 100      */
 101     public static class Pow {
 102         static final double bp[]    = {1.0,
 103                                        1.5};
 104         static final double dp_h[]  = {0.0,
 105                                        0x1.2b8034p-1};        // 5.84962487220764160156e-01
 106         static final double dp_l[]  = {0.0,
 107                                        0x1.cfdeb43cfd006p-27};// 1.35003920212974897128e-08
 108         static final double zero    =  0.0;
 109         static final double one     =  1.0;
 110         static final double two     =  2.0;
 111         static final double two53   =  0x1.0p53;              // 9007199254740992.0
 112         static final double huge    =  1.0e300;
 113         static final double tiny    =  1.0e-300;
 114         // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 115         static final double L1      =  0x1.3333333333303p-1;  //  5.99999999999994648725e-01
 116         static final double L2      =  0x1.b6db6db6fabffp-2;  //  4.28571428578550184252e-01
 117         static final double L3      =  0x1.55555518f264dp-2;  //  3.33333329818377432918e-01
 118         static final double L4      =  0x1.17460a91d4101p-2;  //  2.72728123808534006489e-01
 119         static final double L5      =  0x1.d864a93c9db65p-3;  //  2.30660745775561754067e-01
 120         static final double L6      =  0x1.a7e284a454eefp-3;  //  2.06975017800338417784e-01
 121         static final double P1      =  0x1.555555555553ep-3;  //  1.66666666666666019037e-01
 122         static final double P2      = -0x1.6c16c16bebd93p-9;  // -2.77777777770155933842e-03
 123         static final double P3      =  0x1.1566aaf25de2cp-14; //  6.61375632143793436117e-05
 124         static final double P4      = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
 125         static final double P5      =  0x1.6376972bea4d0p-25; //  4.13813679705723846039e-08
 126         static final double lg2     =  0x1.62e42fefa39efp-1;  //  6.93147180559945286227e-01
 127         static final double lg2_h   =  0x1.62e43p-1;          //  6.93147182464599609375e-01
 128         static final double lg2_l   = -0x1.05c610ca86c39p-29; // -1.90465429995776804525e-09
 129         static final double ovt     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 130         static final double cp      =  0x1.ec709dc3a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 131         static final double cp_h    =  0x1.ec709ep-1;         //  9.61796700954437255859e-01 = (float)cp
 132         static final double cp_l    = -0x1.e2fe0145b01f5p-28; // -7.02846165095275826516e-09 = tail of cp_h
 133         static final double ivln2   =  0x1.71547652b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 134         static final double ivln2_h =  0x1.715476p0;          //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 135         static final double ivln2_l =  0x1.4ae0bf85ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 136 
 137         public static double pow(final double x, final double y) {
 138             double z;
 139             double t1, t2, r, s, t, u, v, w;
 140             int i, j, k, n;
 141 
 142             // y == zero: x**0 = 1
 143             if (y == 0.0)
 144                 return 1.0;
 145 
 146             // +/-NaN return x + y to propagate NaN significands
 147             if (Double.isNaN(x) || Double.isNaN(y))
 148                 return x + y;
 149 
 150             final double y_abs = Math.abs(y);
 151             double x_abs   = Math.abs(x);
 152             // Special values of y
 153             if (y == 2.0) {
 154                 return x * x;
 155             } else if (y == 0.5) {
 156                 if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
 157                     return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
 158             } else if (y_abs == 1.0) {        // y is  +/-1
 159                 return (y == 1.0) ? x : one / x;
 160             } else if (y_abs == Double.POSITIVE_INFINITY) {       // y is +/-infinity
 161                 if (x_abs == 1.0)
 162                     return  y - y;         // inf**+/-1 is NaN
 163                 else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
 164                     return (y >= 0) ? y : zero;
 165                 else                       // (|x| < 1)**-, +inf = inf, 0
 166                     return (y < 0) ? -y : zero;
 167             } 
 168 
 169             final int hx = __HI(x); // Try to replace with copysign usage
 170             // final int lx = __LO(x);
 171             // final int hy = __HI(y);
 172             final int ly = __LO(y);
 173             int ix = hx & 0x7fffffff;
 174             final int iy = __HI(y) & 0x7fffffff; // Try to replace with getExponent in yisint
 175 
 176             /*
 177              * When x < 0, determine if y is an odd integer:
































































 178              * yisint = 0       ... y is not an integer
 179              * yisint = 1       ... y is an odd int
 180              * yisint = 2       ... y is an even int
 181              */
 182             {
 183                 int yisint  = 0;
 184                 if (hx < 0) {
 185                     if (iy >= 0x43400000)
 186                         yisint = 2; // even integer y
 187                     else if (iy >= 0x3ff00000) {
 188                         k = (iy >> 20) - 0x3ff;        // exponent
 189                         if (k > 20) {
 190                             j = ly >> (52 - k);
 191                             if ((j << (52 - k) ) == ly)
 192                                 yisint = 2 - (j & 1);
 193                         } else if (ly == 0) {
 194                             j = iy >> (20 - k);
 195                             if ((j << (20 - k)) == iy) {
 196                                 yisint = 2 - (j & 1);
 197                             }
 198                         }


















 199                     }
 200                 }
 201 
 202                 // Special value of x
 203                 if (x_abs == 0.0 ||
 204                     x_abs == Double.POSITIVE_INFINITY ||
 205                     x_abs == 1.0) {
 206                     z = x_abs;                 // x is +/-0, +/-inf, +/-1
 207                     if (y < 0.0)
 208                         z = one/z;     // z = (1/|x|)
 209                     if (hx < 0) {
 210                         if (((ix - 0x3ff00000) | yisint) == 0) {
 211                             z = (z-z)/(z-z); // (-1)**non-int is NaN
 212                         } else if (yisint == 1)
 213                             z = -1.0 * z;             // (x < 0)**odd = -(|x|**odd)
 214                     }
 215                     return z;
 216                 }






 217                 
 218                 n = (hx >> 31) + 1;

 219 
 220                 // (x < 0)**(non-int) is NaN
 221                 if ((n | yisint) == 0)
 222                     return (x-x)/(x-x);
 223 
 224                 s = one; // s (sign of result -ve**odd) = -1 else = 1
 225                 if ( (n | (yisint - 1)) == 0)
 226                     s = -one; // (-ve)**(odd int)
 227             }
 228             double p_h, p_l; 
 229             // |y| is huge
 230             if (y_abs > 0x1.0p31) { // if |y| > 2**31
 231                 if (y_abs > 0x1.0p64){  // if |y| > 2**64, must over/underflow
 232                     if (ix <= 0x3fefffff)
 233                         return (y < 0.0) ? huge*huge : tiny*tiny;
 234                     if (ix >= 0x3ff00000)
 235                         return (y > 0.0) ? huge*huge : tiny*tiny;
 236                 }
 237                 // Over/underflow if x is not close to one
 238                 if (ix < 0x3fefffff)
 239                     return (y < 0.0) ? s*huge*huge : s*tiny*tiny;
 240                 if (ix > 0x3ff00000)
 241                     return (y > 0.0) ? s*huge*huge : s*tiny*tiny;
 242                 /*
 243                  * now |1-x| is tiny <= 2**-20, sufficient to compute
 244                  * log(x) by x - x^2/2 + x^3/3 - x^4/4
 245                  */
 246                 t = x_abs - one;        // t has 20 trailing zeros
 247                 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
 248                 u = ivln2_h * t;      // ivln2_h has 21 sig. bits
 249                 v =  t * ivln2_l - w * ivln2;
 250                 t1 = u + v;
 251                 t1 =__LO(t1, 0);
 252                 t2 = v - (t1 - u);
 253             } else {
 254                 double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
 255                 n = 0;
 256                 // Take care of subnormal numbers
 257                 if (ix < 0x00100000) {
 258                     x_abs *= two53;
 259                     n -= 53;
 260                     ix = __HI(x_abs);
 261                 }
 262                 n  += ((ix) >> 20) - 0x3ff;
 263                 j  = ix & 0x000fffff;
 264                 // Determine interval
 265                 ix = j | 0x3ff00000;          // Normalize ix
 266                 if (j <= 0x3988E)
 267                     k = 0;         // |x| <sqrt(3/2)
 268                 else if (j < 0xBB67A)
 269                     k = 1;         // |x| <sqrt(3)
 270                 else {
 271                     k = 0;
 272                     n += 1;
 273                     ix -= 0x00100000;
 274                 }
 275                 x_abs = __HI(x_abs, ix);
 276 
 277                 // Compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
 278                 u = x_abs - bp[k];               // bp[0]=1.0, bp[1]=1.5
 279                 v = one / (x_abs + bp[k]);
 280                 ss = u * v;
 281                 s_h = ss;
 282                 s_h = __LO(s_h, 0);
 283                 // t_h=x_abs+bp[k] High
 284                 t_h = zero;
 285                 t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
 286                 t_l = x_abs - (t_h - bp[k]);
 287                 s_l = v * ((u - s_h * t_h) - s_h * t_l);
 288                 // Compute log(x_abs)
 289                 s2 = ss * ss;
 290                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 291                 r += s_l * (s_h + ss);
 292                 s2  = s_h * s_h;
 293                 t_h = 3.0 + s2 + r;
 294                 t_h = __LO(t_h, 0);
 295                 t_l = r - ((t_h - 3.0) - s2);
 296                 // u+v = ss*(1+...)
 297                 u = s_h * t_h;
 298                 v = s_l * t_h + t_l * ss;
 299                 // 2/(3log2)*(ss+...)
 300                 p_h = u + v;
 301                 p_h = __LO(p_h, 0);
 302                 p_l = v - (p_h - u);
 303                 z_h = cp_h * p_h;             // cp_h+cp_l = 2/(3*log2)
 304                 z_l = cp_l * p_h + p_l * cp + dp_l[k];
 305                 // log2(x_abs) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l
 306                 t = (double)n;
 307                 t1 = (((z_h + z_l) + dp_h[k]) + t);
 308                 t1 = __LO(t1, 0);
 309                 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
 310             }
 311 
 312             // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
 313             double y1  = y;
 314             y1 = __LO(y1, 0);
 315             p_l = (y - y1) * t1 + y * t2;
 316             p_h = y1 * t1;
 317             z = p_l + p_h;
 318             j = __HI(z);
 319             i = __LO(z);
 320             if (j >= 0x40900000) {                            // z >= 1024
 321                 if (((j - 0x40900000) | i)!=0)                   // if z > 1024
 322                     return s*huge*huge;                     // Overflow
 323                 else {
 324                     if (p_l + ovt > z - p_h)
 325                         return s*huge*huge;   // Overflow
 326                 }
 327             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        // z <= -1075
 328                 if (((j - 0xc090cc00) | i)!=0)           // z < -1075
 329                     return s*tiny*tiny;             // Underflow
 330                 else {
 331                     if (p_l <= z - p_h)
 332                         return s*tiny*tiny;      // Underflow
 333                 }
 334             }
 335             /*
 336              * Compute 2**(p_h+p_l)
 337              */
 338             i = j & 0x7fffffff;
 339             k = (i >> 20) - 0x3ff;
 340             n = 0;
 341             if (i > 0x3fe00000) {              // if |z| > 0.5, set n = [z+0.5]
 342                 n = j + (0x00100000 >> (k + 1));
 343                 k = ((n & 0x7fffffff) >> 20) - 0x3ff;     // new k for n
 344                 t = zero;
 345                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 346                 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
 347                 if (j < 0)
 348                     n = -n;
 349                 p_h -= t;
 350             }
 351             t = p_l + p_h;
 352             t = __LO(t, 0);
 353             u = t * lg2_h;
 354             v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
 355             z = u + v;
 356             w = v - (z - u);
 357             t  = z * z;
 358             t1  = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 359             r  = (z * t1)/(t1 - two) - (w + z * w);
 360             z  = one - (r - z);
 361             j  = __HI(z);
 362             j += (n << 20);
 363             if ((j >> 20) <= 0)
 364                 z = Math.scalb(z, n); // subnormal output
 365             else {
 366                 int z_hi = __HI(z);
 367                 z_hi += (n << 20);
 368                 z = __HI(z, z_hi);
 369             }
 370             return s * z;
 371         }
 372     }
 373 }
< prev index next >