1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.util.Random;
  29 import sun.misc.DoubleConsts;
  30 import jdk.internal.HotSpotIntrinsicCandidate;
  31 
  32 /**
  33  * The class {@code StrictMath} contains methods for performing basic
  34  * numeric operations such as the elementary exponential, logarithm,
  35  * square root, and trigonometric functions.
  36  *
  37  * <p>To help ensure portability of Java programs, the definitions of
  38  * some of the numeric functions in this package require that they
  39  * produce the same results as certain published algorithms. These
  40  * algorithms are available from the well-known network library
  41  * {@code netlib} as the package "Freely Distributable Math
  42  * Library," <a
  43  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
  44  * algorithms, which are written in the C programming language, are
  45  * then to be understood as executed with all floating-point
  46  * operations following the rules of Java floating-point arithmetic.
  47  *
  48  * <p>The Java math library is defined with respect to
  49  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
  50  * more than one definition for a function (such as
  51  * {@code acos}), use the "IEEE 754 core function" version
  52  * (residing in a file whose name begins with the letter
  53  * {@code e}).  The methods which require {@code fdlibm}
  54  * semantics are {@code sin}, {@code cos}, {@code tan},
  55  * {@code asin}, {@code acos}, {@code atan},
  56  * {@code exp}, {@code log}, {@code log10},
  57  * {@code cbrt}, {@code atan2}, {@code pow},
  58  * {@code sinh}, {@code cosh}, {@code tanh},
  59  * {@code hypot}, {@code expm1}, and {@code log1p}.
  60  *
  61  * <p>
  62  * The platform uses signed two's complement integer arithmetic with
  63  * int and long primitive types.  The developer should choose
  64  * the primitive type to ensure that arithmetic operations consistently
  65  * produce correct results, which in some cases means the operations
  66  * will not overflow the range of values of the computation.
  67  * The best practice is to choose the primitive type and algorithm to avoid
  68  * overflow. In cases where the size is {@code int} or {@code long} and
  69  * overflow errors need to be detected, the methods {@code addExact},
  70  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
  71  * throw an {@code ArithmeticException} when the results overflow.
  72  * For other arithmetic operations such as divide, absolute value,
  73  * increment, decrement, and negation overflow occurs only with
  74  * a specific minimum or maximum value and should be checked against
  75  * the minimum or maximum as appropriate.
  76  *
  77  * @author  unascribed
  78  * @author  Joseph D. Darcy
  79  * @since   1.3
  80  */
  81 
  82 public final class StrictMath {
  83 
  84     /**
  85      * Don't let anyone instantiate this class.
  86      */
  87     private StrictMath() {}
  88 
  89     /**
  90      * The {@code double} value that is closer than any other to
  91      * <i>e</i>, the base of the natural logarithms.
  92      */
  93     public static final double E = 2.7182818284590452354;
  94 
  95     /**
  96      * The {@code double} value that is closer than any other to
  97      * <i>pi</i>, the ratio of the circumference of a circle to its
  98      * diameter.
  99      */
 100     public static final double PI = 3.14159265358979323846;
 101 
 102     /**
 103      * Constant by which to multiply an angular value in degrees to obtain an
 104      * angular value in radians.
 105      */
 106     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
 107 
 108     /**
 109      * Constant by which to multiply an angular value in radians to obtain an
 110      * angular value in degrees.
 111      */
 112 
 113     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
 114 
 115     /**
 116      * Returns the trigonometric sine of an angle. Special cases:
 117      * <ul><li>If the argument is NaN or an infinity, then the
 118      * result is NaN.
 119      * <li>If the argument is zero, then the result is a zero with the
 120      * same sign as the argument.</ul>
 121      *
 122      * @param   a   an angle, in radians.
 123      * @return  the sine of the argument.
 124      */
 125     public static native double sin(double a);
 126 
 127     /**
 128      * Returns the trigonometric cosine of an angle. Special cases:
 129      * <ul><li>If the argument is NaN or an infinity, then the
 130      * result is NaN.</ul>
 131      *
 132      * @param   a   an angle, in radians.
 133      * @return  the cosine of the argument.
 134      */
 135     public static native double cos(double a);
 136 
 137     /**
 138      * Returns the trigonometric tangent of an angle. Special cases:
 139      * <ul><li>If the argument is NaN or an infinity, then the result
 140      * is NaN.
 141      * <li>If the argument is zero, then the result is a zero with the
 142      * same sign as the argument.</ul>
 143      *
 144      * @param   a   an angle, in radians.
 145      * @return  the tangent of the argument.
 146      */
 147     public static native double tan(double a);
 148 
 149     /**
 150      * Returns the arc sine of a value; the returned angle is in the
 151      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 152      * <ul><li>If the argument is NaN or its absolute value is greater
 153      * than 1, then the result is NaN.
 154      * <li>If the argument is zero, then the result is a zero with the
 155      * same sign as the argument.</ul>
 156      *
 157      * @param   a   the value whose arc sine is to be returned.
 158      * @return  the arc sine of the argument.
 159      */
 160     public static native double asin(double a);
 161 
 162     /**
 163      * Returns the arc cosine of a value; the returned angle is in the
 164      * range 0.0 through <i>pi</i>.  Special case:
 165      * <ul><li>If the argument is NaN or its absolute value is greater
 166      * than 1, then the result is NaN.</ul>
 167      *
 168      * @param   a   the value whose arc cosine is to be returned.
 169      * @return  the arc cosine of the argument.
 170      */
 171     public static native double acos(double a);
 172 
 173     /**
 174      * Returns the arc tangent of a value; the returned angle is in the
 175      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 176      * <ul><li>If the argument is NaN, then the result is NaN.
 177      * <li>If the argument is zero, then the result is a zero with the
 178      * same sign as the argument.</ul>
 179      *
 180      * @param   a   the value whose arc tangent is to be returned.
 181      * @return  the arc tangent of the argument.
 182      */
 183     public static native double atan(double a);
 184 
 185     /**
 186      * Converts an angle measured in degrees to an approximately
 187      * equivalent angle measured in radians.  The conversion from
 188      * degrees to radians is generally inexact.
 189      *
 190      * @param   angdeg   an angle, in degrees
 191      * @return  the measurement of the angle {@code angdeg}
 192      *          in radians.
 193      */
 194     public static strictfp double toRadians(double angdeg) {
 195         // Do not delegate to Math.toRadians(angdeg) because
 196         // this method has the strictfp modifier.
 197         return angdeg * DEGREES_TO_RADIANS;
 198     }
 199 
 200     /**
 201      * Converts an angle measured in radians to an approximately
 202      * equivalent angle measured in degrees.  The conversion from
 203      * radians to degrees is generally inexact; users should
 204      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 205      * equal {@code 0.0}.
 206      *
 207      * @param   angrad   an angle, in radians
 208      * @return  the measurement of the angle {@code angrad}
 209      *          in degrees.
 210      */
 211     public static strictfp double toDegrees(double angrad) {
 212         // Do not delegate to Math.toDegrees(angrad) because
 213         // this method has the strictfp modifier.
 214         return angrad * RADIANS_TO_DEGREES;
 215     }
 216 
 217     /**
 218      * Returns Euler's number <i>e</i> raised to the power of a
 219      * {@code double} value. Special cases:
 220      * <ul><li>If the argument is NaN, the result is NaN.
 221      * <li>If the argument is positive infinity, then the result is
 222      * positive infinity.
 223      * <li>If the argument is negative infinity, then the result is
 224      * positive zero.</ul>
 225      *
 226      * @param   a   the exponent to raise <i>e</i> to.
 227      * @return  the value <i>e</i><sup>{@code a}</sup>,
 228      *          where <i>e</i> is the base of the natural logarithms.
 229      */
 230     public static native double exp(double a);
 231 
 232     /**
 233      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 234      * value. Special cases:
 235      * <ul><li>If the argument is NaN or less than zero, then the result
 236      * is NaN.
 237      * <li>If the argument is positive infinity, then the result is
 238      * positive infinity.
 239      * <li>If the argument is positive zero or negative zero, then the
 240      * result is negative infinity.</ul>
 241      *
 242      * @param   a   a value
 243      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 244      *          {@code a}.
 245      */
 246     public static native double log(double a);
 247 
 248     /**
 249      * Returns the base 10 logarithm of a {@code double} value.
 250      * Special cases:
 251      *
 252      * <ul><li>If the argument is NaN or less than zero, then the result
 253      * is NaN.
 254      * <li>If the argument is positive infinity, then the result is
 255      * positive infinity.
 256      * <li>If the argument is positive zero or negative zero, then the
 257      * result is negative infinity.
 258      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 259      * integer <i>n</i>, then the result is <i>n</i>.
 260      * </ul>
 261      *
 262      * @param   a   a value
 263      * @return  the base 10 logarithm of  {@code a}.
 264      * @since 1.5
 265      */
 266     public static native double log10(double a);
 267 
 268     /**
 269      * Returns the correctly rounded positive square root of a
 270      * {@code double} value.
 271      * Special cases:
 272      * <ul><li>If the argument is NaN or less than zero, then the result
 273      * is NaN.
 274      * <li>If the argument is positive infinity, then the result is positive
 275      * infinity.
 276      * <li>If the argument is positive zero or negative zero, then the
 277      * result is the same as the argument.</ul>
 278      * Otherwise, the result is the {@code double} value closest to
 279      * the true mathematical square root of the argument value.
 280      *
 281      * @param   a   a value.
 282      * @return  the positive square root of {@code a}.
 283      */
 284     @HotSpotIntrinsicCandidate
 285     public static native double sqrt(double a);
 286 
 287     /**
 288      * Returns the cube root of a {@code double} value.  For
 289      * positive finite {@code x}, {@code cbrt(-x) ==
 290      * -cbrt(x)}; that is, the cube root of a negative value is
 291      * the negative of the cube root of that value's magnitude.
 292      * Special cases:
 293      *
 294      * <ul>
 295      *
 296      * <li>If the argument is NaN, then the result is NaN.
 297      *
 298      * <li>If the argument is infinite, then the result is an infinity
 299      * with the same sign as the argument.
 300      *
 301      * <li>If the argument is zero, then the result is a zero with the
 302      * same sign as the argument.
 303      *
 304      * </ul>
 305      *
 306      * @param   a   a value.
 307      * @return  the cube root of {@code a}.
 308      * @since 1.5
 309      */
 310     public static native double cbrt(double a);
 311 
 312     /**
 313      * Computes the remainder operation on two arguments as prescribed
 314      * by the IEEE 754 standard.
 315      * The remainder value is mathematically equal to
 316      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 317      * where <i>n</i> is the mathematical integer closest to the exact
 318      * mathematical value of the quotient {@code f1/f2}, and if two
 319      * mathematical integers are equally close to {@code f1/f2},
 320      * then <i>n</i> is the integer that is even. If the remainder is
 321      * zero, its sign is the same as the sign of the first argument.
 322      * Special cases:
 323      * <ul><li>If either argument is NaN, or the first argument is infinite,
 324      * or the second argument is positive zero or negative zero, then the
 325      * result is NaN.
 326      * <li>If the first argument is finite and the second argument is
 327      * infinite, then the result is the same as the first argument.</ul>
 328      *
 329      * @param   f1   the dividend.
 330      * @param   f2   the divisor.
 331      * @return  the remainder when {@code f1} is divided by
 332      *          {@code f2}.
 333      */
 334     public static native double IEEEremainder(double f1, double f2);
 335 
 336     /**
 337      * Returns the smallest (closest to negative infinity)
 338      * {@code double} value that is greater than or equal to the
 339      * argument and is equal to a mathematical integer. Special cases:
 340      * <ul><li>If the argument value is already equal to a
 341      * mathematical integer, then the result is the same as the
 342      * argument.  <li>If the argument is NaN or an infinity or
 343      * positive zero or negative zero, then the result is the same as
 344      * the argument.  <li>If the argument value is less than zero but
 345      * greater than -1.0, then the result is negative zero.</ul> Note
 346      * that the value of {@code StrictMath.ceil(x)} is exactly the
 347      * value of {@code -StrictMath.floor(-x)}.
 348      *
 349      * @param   a   a value.
 350      * @return  the smallest (closest to negative infinity)
 351      *          floating-point value that is greater than or equal to
 352      *          the argument and is equal to a mathematical integer.
 353      */
 354     public static double ceil(double a) {
 355         return floorOrCeil(a, -0.0, 1.0, 1.0);
 356     }
 357 
 358     /**
 359      * Returns the largest (closest to positive infinity)
 360      * {@code double} value that is less than or equal to the
 361      * argument and is equal to a mathematical integer. Special cases:
 362      * <ul><li>If the argument value is already equal to a
 363      * mathematical integer, then the result is the same as the
 364      * argument.  <li>If the argument is NaN or an infinity or
 365      * positive zero or negative zero, then the result is the same as
 366      * the argument.</ul>
 367      *
 368      * @param   a   a value.
 369      * @return  the largest (closest to positive infinity)
 370      *          floating-point value that less than or equal to the argument
 371      *          and is equal to a mathematical integer.
 372      */
 373     public static double floor(double a) {
 374         return floorOrCeil(a, -1.0, 0.0, -1.0);
 375     }
 376 
 377     /**
 378      * Internal method to share logic between floor and ceil.
 379      *
 380      * @param a the value to be floored or ceiled
 381      * @param negativeBoundary result for values in (-1, 0)
 382      * @param positiveBoundary result for values in (0, 1)
 383      * @param increment value to add when the argument is non-integral
 384      */
 385     private static double floorOrCeil(double a,
 386                                       double negativeBoundary,
 387                                       double positiveBoundary,
 388                                       double sign) {
 389         int exponent = Math.getExponent(a);
 390 
 391         if (exponent < 0) {
 392             /*
 393              * Absolute value of argument is less than 1.
 394              * floorOrceil(-0.0) => -0.0
 395              * floorOrceil(+0.0) => +0.0
 396              */
 397             return ((a == 0.0) ? a :
 398                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
 399         } else if (exponent >= 52) {
 400             /*
 401              * Infinity, NaN, or a value so large it must be integral.
 402              */
 403             return a;
 404         }
 405         // Else the argument is either an integral value already XOR it
 406         // has to be rounded to one.
 407         assert exponent >= 0 && exponent <= 51;
 408 
 409         long doppel = Double.doubleToRawLongBits(a);
 410         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
 411 
 412         if ( (mask & doppel) == 0L )
 413             return a; // integral value
 414         else {
 415             double result = Double.longBitsToDouble(doppel & (~mask));
 416             if (sign*a > 0.0)
 417                 result = result + sign;
 418             return result;
 419         }
 420     }
 421 
 422     /**
 423      * Returns the {@code double} value that is closest in value
 424      * to the argument and is equal to a mathematical integer. If two
 425      * {@code double} values that are mathematical integers are
 426      * equally close to the value of the argument, the result is the
 427      * integer value that is even. Special cases:
 428      * <ul><li>If the argument value is already equal to a mathematical
 429      * integer, then the result is the same as the argument.
 430      * <li>If the argument is NaN or an infinity or positive zero or negative
 431      * zero, then the result is the same as the argument.</ul>
 432      *
 433      * @param   a   a value.
 434      * @return  the closest floating-point value to {@code a} that is
 435      *          equal to a mathematical integer.
 436      * @author Joseph D. Darcy
 437      */
 438     public static double rint(double a) {
 439         /*
 440          * If the absolute value of a is not less than 2^52, it
 441          * is either a finite integer (the double format does not have
 442          * enough significand bits for a number that large to have any
 443          * fractional portion), an infinity, or a NaN.  In any of
 444          * these cases, rint of the argument is the argument.
 445          *
 446          * Otherwise, the sum (twoToThe52 + a ) will properly round
 447          * away any fractional portion of a since ulp(twoToThe52) ==
 448          * 1.0; subtracting out twoToThe52 from this sum will then be
 449          * exact and leave the rounded integer portion of a.
 450          *
 451          * This method does *not* need to be declared strictfp to get
 452          * fully reproducible results.  Whether or not a method is
 453          * declared strictfp can only make a difference in the
 454          * returned result if some operation would overflow or
 455          * underflow with strictfp semantics.  The operation
 456          * (twoToThe52 + a ) cannot overflow since large values of a
 457          * are screened out; the add cannot underflow since twoToThe52
 458          * is too large.  The subtraction ((twoToThe52 + a ) -
 459          * twoToThe52) will be exact as discussed above and thus
 460          * cannot overflow or meaningfully underflow.  Finally, the
 461          * last multiply in the return statement is by plus or minus
 462          * 1.0, which is exact too.
 463          */
 464         double twoToThe52 = (double)(1L << 52); // 2^52
 465         double sign = Math.copySign(1.0, a); // preserve sign info
 466         a = Math.abs(a);
 467 
 468         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
 469             a = ((twoToThe52 + a ) - twoToThe52);
 470         }
 471 
 472         return sign * a; // restore original sign
 473     }
 474 
 475     /**
 476      * Returns the angle <i>theta</i> from the conversion of rectangular
 477      * coordinates ({@code x},&nbsp;{@code y}) to polar
 478      * coordinates (r,&nbsp;<i>theta</i>).
 479      * This method computes the phase <i>theta</i> by computing an arc tangent
 480      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 481      * cases:
 482      * <ul><li>If either argument is NaN, then the result is NaN.
 483      * <li>If the first argument is positive zero and the second argument
 484      * is positive, or the first argument is positive and finite and the
 485      * second argument is positive infinity, then the result is positive
 486      * zero.
 487      * <li>If the first argument is negative zero and the second argument
 488      * is positive, or the first argument is negative and finite and the
 489      * second argument is positive infinity, then the result is negative zero.
 490      * <li>If the first argument is positive zero and the second argument
 491      * is negative, or the first argument is positive and finite and the
 492      * second argument is negative infinity, then the result is the
 493      * {@code double} value closest to <i>pi</i>.
 494      * <li>If the first argument is negative zero and the second argument
 495      * is negative, or the first argument is negative and finite and the
 496      * second argument is negative infinity, then the result is the
 497      * {@code double} value closest to -<i>pi</i>.
 498      * <li>If the first argument is positive and the second argument is
 499      * positive zero or negative zero, or the first argument is positive
 500      * infinity and the second argument is finite, then the result is the
 501      * {@code double} value closest to <i>pi</i>/2.
 502      * <li>If the first argument is negative and the second argument is
 503      * positive zero or negative zero, or the first argument is negative
 504      * infinity and the second argument is finite, then the result is the
 505      * {@code double} value closest to -<i>pi</i>/2.
 506      * <li>If both arguments are positive infinity, then the result is the
 507      * {@code double} value closest to <i>pi</i>/4.
 508      * <li>If the first argument is positive infinity and the second argument
 509      * is negative infinity, then the result is the {@code double}
 510      * value closest to 3*<i>pi</i>/4.
 511      * <li>If the first argument is negative infinity and the second argument
 512      * is positive infinity, then the result is the {@code double} value
 513      * closest to -<i>pi</i>/4.
 514      * <li>If both arguments are negative infinity, then the result is the
 515      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 516      *
 517      * @param   y   the ordinate coordinate
 518      * @param   x   the abscissa coordinate
 519      * @return  the <i>theta</i> component of the point
 520      *          (<i>r</i>,&nbsp;<i>theta</i>)
 521      *          in polar coordinates that corresponds to the point
 522      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 523      */
 524     public static native double atan2(double y, double x);
 525 
 526     /**
 527      * Returns the value of the first argument raised to the power of the
 528      * second argument. Special cases:
 529      *
 530      * <ul><li>If the second argument is positive or negative zero, then the
 531      * result is 1.0.
 532      * <li>If the second argument is 1.0, then the result is the same as the
 533      * first argument.
 534      * <li>If the second argument is NaN, then the result is NaN.
 535      * <li>If the first argument is NaN and the second argument is nonzero,
 536      * then the result is NaN.
 537      *
 538      * <li>If
 539      * <ul>
 540      * <li>the absolute value of the first argument is greater than 1
 541      * and the second argument is positive infinity, or
 542      * <li>the absolute value of the first argument is less than 1 and
 543      * the second argument is negative infinity,
 544      * </ul>
 545      * then the result is positive infinity.
 546      *
 547      * <li>If
 548      * <ul>
 549      * <li>the absolute value of the first argument is greater than 1 and
 550      * the second argument is negative infinity, or
 551      * <li>the absolute value of the
 552      * first argument is less than 1 and the second argument is positive
 553      * infinity,
 554      * </ul>
 555      * then the result is positive zero.
 556      *
 557      * <li>If the absolute value of the first argument equals 1 and the
 558      * second argument is infinite, then the result is NaN.
 559      *
 560      * <li>If
 561      * <ul>
 562      * <li>the first argument is positive zero and the second argument
 563      * is greater than zero, or
 564      * <li>the first argument is positive infinity and the second
 565      * argument is less than zero,
 566      * </ul>
 567      * then the result is positive zero.
 568      *
 569      * <li>If
 570      * <ul>
 571      * <li>the first argument is positive zero and the second argument
 572      * is less than zero, or
 573      * <li>the first argument is positive infinity and the second
 574      * argument is greater than zero,
 575      * </ul>
 576      * then the result is positive infinity.
 577      *
 578      * <li>If
 579      * <ul>
 580      * <li>the first argument is negative zero and the second argument
 581      * is greater than zero but not a finite odd integer, or
 582      * <li>the first argument is negative infinity and the second
 583      * argument is less than zero but not a finite odd integer,
 584      * </ul>
 585      * then the result is positive zero.
 586      *
 587      * <li>If
 588      * <ul>
 589      * <li>the first argument is negative zero and the second argument
 590      * is a positive finite odd integer, or
 591      * <li>the first argument is negative infinity and the second
 592      * argument is a negative finite odd integer,
 593      * </ul>
 594      * then the result is negative zero.
 595      *
 596      * <li>If
 597      * <ul>
 598      * <li>the first argument is negative zero and the second argument
 599      * is less than zero but not a finite odd integer, or
 600      * <li>the first argument is negative infinity and the second
 601      * argument is greater than zero but not a finite odd integer,
 602      * </ul>
 603      * then the result is positive infinity.
 604      *
 605      * <li>If
 606      * <ul>
 607      * <li>the first argument is negative zero and the second argument
 608      * is a negative finite odd integer, or
 609      * <li>the first argument is negative infinity and the second
 610      * argument is a positive finite odd integer,
 611      * </ul>
 612      * then the result is negative infinity.
 613      *
 614      * <li>If the first argument is finite and less than zero
 615      * <ul>
 616      * <li> if the second argument is a finite even integer, the
 617      * result is equal to the result of raising the absolute value of
 618      * the first argument to the power of the second argument
 619      *
 620      * <li>if the second argument is a finite odd integer, the result
 621      * is equal to the negative of the result of raising the absolute
 622      * value of the first argument to the power of the second
 623      * argument
 624      *
 625      * <li>if the second argument is finite and not an integer, then
 626      * the result is NaN.
 627      * </ul>
 628      *
 629      * <li>If both arguments are integers, then the result is exactly equal
 630      * to the mathematical result of raising the first argument to the power
 631      * of the second argument if that result can in fact be represented
 632      * exactly as a {@code double} value.</ul>
 633      *
 634      * <p>(In the foregoing descriptions, a floating-point value is
 635      * considered to be an integer if and only if it is finite and a
 636      * fixed point of the method {@link #ceil ceil} or,
 637      * equivalently, a fixed point of the method {@link #floor
 638      * floor}. A value is a fixed point of a one-argument
 639      * method if and only if the result of applying the method to the
 640      * value is equal to the value.)
 641      *
 642      * @param   a   base.
 643      * @param   b   the exponent.
 644      * @return  the value {@code a}<sup>{@code b}</sup>.
 645      */
 646     public static native double pow(double a, double b);
 647 
 648     /**
 649      * Returns the closest {@code int} to the argument, with ties
 650      * rounding to positive infinity.
 651      *
 652      * <p>Special cases:
 653      * <ul><li>If the argument is NaN, the result is 0.
 654      * <li>If the argument is negative infinity or any value less than or
 655      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 656      * equal to the value of {@code Integer.MIN_VALUE}.
 657      * <li>If the argument is positive infinity or any value greater than or
 658      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 659      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 660      *
 661      * @param   a   a floating-point value to be rounded to an integer.
 662      * @return  the value of the argument rounded to the nearest
 663      *          {@code int} value.
 664      * @see     java.lang.Integer#MAX_VALUE
 665      * @see     java.lang.Integer#MIN_VALUE
 666      */
 667     public static int round(float a) {
 668         return Math.round(a);
 669     }
 670 
 671     /**
 672      * Returns the closest {@code long} to the argument, with ties
 673      * rounding to positive infinity.
 674      *
 675      * <p>Special cases:
 676      * <ul><li>If the argument is NaN, the result is 0.
 677      * <li>If the argument is negative infinity or any value less than or
 678      * equal to the value of {@code Long.MIN_VALUE}, the result is
 679      * equal to the value of {@code Long.MIN_VALUE}.
 680      * <li>If the argument is positive infinity or any value greater than or
 681      * equal to the value of {@code Long.MAX_VALUE}, the result is
 682      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 683      *
 684      * @param   a  a floating-point value to be rounded to a
 685      *          {@code long}.
 686      * @return  the value of the argument rounded to the nearest
 687      *          {@code long} value.
 688      * @see     java.lang.Long#MAX_VALUE
 689      * @see     java.lang.Long#MIN_VALUE
 690      */
 691     public static long round(double a) {
 692         return Math.round(a);
 693     }
 694 
 695     private static final class RandomNumberGeneratorHolder {
 696         static final Random randomNumberGenerator = new Random();
 697     }
 698 
 699     /**
 700      * Returns a {@code double} value with a positive sign, greater
 701      * than or equal to {@code 0.0} and less than {@code 1.0}.
 702      * Returned values are chosen pseudorandomly with (approximately)
 703      * uniform distribution from that range.
 704      *
 705      * <p>When this method is first called, it creates a single new
 706      * pseudorandom-number generator, exactly as if by the expression
 707      *
 708      * <blockquote>{@code new java.util.Random()}</blockquote>
 709      *
 710      * This new pseudorandom-number generator is used thereafter for
 711      * all calls to this method and is used nowhere else.
 712      *
 713      * <p>This method is properly synchronized to allow correct use by
 714      * more than one thread. However, if many threads need to generate
 715      * pseudorandom numbers at a great rate, it may reduce contention
 716      * for each thread to have its own pseudorandom-number generator.
 717      *
 718      * @return  a pseudorandom {@code double} greater than or equal
 719      * to {@code 0.0} and less than {@code 1.0}.
 720      * @see Random#nextDouble()
 721      */
 722     public static double random() {
 723         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
 724     }
 725 
 726     /**
 727      * Returns the sum of its arguments,
 728      * throwing an exception if the result overflows an {@code int}.
 729      *
 730      * @param x the first value
 731      * @param y the second value
 732      * @return the result
 733      * @throws ArithmeticException if the result overflows an int
 734      * @see Math#addExact(int,int)
 735      * @since 1.8
 736      */
 737     public static int addExact(int x, int y) {
 738         return Math.addExact(x, y);
 739     }
 740 
 741     /**
 742      * Returns the sum of its arguments,
 743      * throwing an exception if the result overflows a {@code long}.
 744      *
 745      * @param x the first value
 746      * @param y the second value
 747      * @return the result
 748      * @throws ArithmeticException if the result overflows a long
 749      * @see Math#addExact(long,long)
 750      * @since 1.8
 751      */
 752     public static long addExact(long x, long y) {
 753         return Math.addExact(x, y);
 754     }
 755 
 756     /**
 757      * Returns the difference of the arguments,
 758      * throwing an exception if the result overflows an {@code int}.
 759      *
 760      * @param x the first value
 761      * @param y the second value to subtract from the first
 762      * @return the result
 763      * @throws ArithmeticException if the result overflows an int
 764      * @see Math#subtractExact(int,int)
 765      * @since 1.8
 766      */
 767     public static int subtractExact(int x, int y) {
 768         return Math.subtractExact(x, y);
 769     }
 770 
 771     /**
 772      * Returns the difference of the arguments,
 773      * throwing an exception if the result overflows a {@code long}.
 774      *
 775      * @param x the first value
 776      * @param y the second value to subtract from the first
 777      * @return the result
 778      * @throws ArithmeticException if the result overflows a long
 779      * @see Math#subtractExact(long,long)
 780      * @since 1.8
 781      */
 782     public static long subtractExact(long x, long y) {
 783         return Math.subtractExact(x, y);
 784     }
 785 
 786     /**
 787      * Returns the product of the arguments,
 788      * throwing an exception if the result overflows an {@code int}.
 789      *
 790      * @param x the first value
 791      * @param y the second value
 792      * @return the result
 793      * @throws ArithmeticException if the result overflows an int
 794      * @see Math#multiplyExact(int,int)
 795      * @since 1.8
 796      */
 797     public static int multiplyExact(int x, int y) {
 798         return Math.multiplyExact(x, y);
 799     }
 800 
 801     /**
 802      * Returns the product of the arguments,
 803      * throwing an exception if the result overflows a {@code long}.
 804      *
 805      * @param x the first value
 806      * @param y the second value
 807      * @return the result
 808      * @throws ArithmeticException if the result overflows a long
 809      * @see Math#multiplyExact(long,long)
 810      * @since 1.8
 811      */
 812     public static long multiplyExact(long x, long y) {
 813         return Math.multiplyExact(x, y);
 814     }
 815 
 816     /**
 817      * Returns the value of the {@code long} argument;
 818      * throwing an exception if the value overflows an {@code int}.
 819      *
 820      * @param value the long value
 821      * @return the argument as an int
 822      * @throws ArithmeticException if the {@code argument} overflows an int
 823      * @see Math#toIntExact(long)
 824      * @since 1.8
 825      */
 826     public static int toIntExact(long value) {
 827         return Math.toIntExact(value);
 828     }
 829 
 830     /**
 831      * Returns the largest (closest to positive infinity)
 832      * {@code int} value that is less than or equal to the algebraic quotient.
 833      * There is one special case, if the dividend is the
 834      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
 835      * then integer overflow occurs and
 836      * the result is equal to the {@code Integer.MIN_VALUE}.
 837      * <p>
 838      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
 839      * a comparison to the integer division {@code /} operator.
 840      *
 841      * @param x the dividend
 842      * @param y the divisor
 843      * @return the largest (closest to positive infinity)
 844      * {@code int} value that is less than or equal to the algebraic quotient.
 845      * @throws ArithmeticException if the divisor {@code y} is zero
 846      * @see Math#floorDiv(int, int)
 847      * @see Math#floor(double)
 848      * @since 1.8
 849      */
 850     public static int floorDiv(int x, int y) {
 851         return Math.floorDiv(x, y);
 852     }
 853 
 854     /**
 855      * Returns the largest (closest to positive infinity)
 856      * {@code long} value that is less than or equal to the algebraic quotient.
 857      * There is one special case, if the dividend is the
 858      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
 859      * then integer overflow occurs and
 860      * the result is equal to the {@code Long.MIN_VALUE}.
 861      * <p>
 862      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
 863      * a comparison to the integer division {@code /} operator.
 864      *
 865      * @param x the dividend
 866      * @param y the divisor
 867      * @return the largest (closest to positive infinity)
 868      * {@code long} value that is less than or equal to the algebraic quotient.
 869      * @throws ArithmeticException if the divisor {@code y} is zero
 870      * @see Math#floorDiv(long, long)
 871      * @see Math#floor(double)
 872      * @since 1.8
 873      */
 874     public static long floorDiv(long x, long y) {
 875         return Math.floorDiv(x, y);
 876     }
 877 
 878     /**
 879      * Returns the floor modulus of the {@code int} arguments.
 880      * <p>
 881      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
 882      * has the same sign as the divisor {@code y}, and
 883      * is in the range of {@code -abs(y) < r < +abs(y)}.
 884      * <p>
 885      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
 886      * <ul>
 887      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
 888      * </ul>
 889      * <p>
 890      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
 891      * a comparison to the {@code %} operator.
 892      *
 893      * @param x the dividend
 894      * @param y the divisor
 895      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
 896      * @throws ArithmeticException if the divisor {@code y} is zero
 897      * @see Math#floorMod(int, int)
 898      * @see StrictMath#floorDiv(int, int)
 899      * @since 1.8
 900      */
 901     public static int floorMod(int x, int y) {
 902         return Math.floorMod(x , y);
 903     }
 904     /**
 905      * Returns the floor modulus of the {@code long} arguments.
 906      * <p>
 907      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
 908      * has the same sign as the divisor {@code y}, and
 909      * is in the range of {@code -abs(y) < r < +abs(y)}.
 910      * <p>
 911      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
 912      * <ul>
 913      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
 914      * </ul>
 915      * <p>
 916      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
 917      * a comparison to the {@code %} operator.
 918      *
 919      * @param x the dividend
 920      * @param y the divisor
 921      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
 922      * @throws ArithmeticException if the divisor {@code y} is zero
 923      * @see Math#floorMod(long, long)
 924      * @see StrictMath#floorDiv(long, long)
 925      * @since 1.8
 926      */
 927     public static long floorMod(long x, long y) {
 928         return Math.floorMod(x, y);
 929     }
 930 
 931     /**
 932      * Returns the absolute value of an {@code int} value.
 933      * If the argument is not negative, the argument is returned.
 934      * If the argument is negative, the negation of the argument is returned.
 935      *
 936      * <p>Note that if the argument is equal to the value of
 937      * {@link Integer#MIN_VALUE}, the most negative representable
 938      * {@code int} value, the result is that same value, which is
 939      * negative.
 940      *
 941      * @param   a   the  argument whose absolute value is to be determined.
 942      * @return  the absolute value of the argument.
 943      */
 944     public static int abs(int a) {
 945         return Math.abs(a);
 946     }
 947 
 948     /**
 949      * Returns the absolute value of a {@code long} value.
 950      * If the argument is not negative, the argument is returned.
 951      * If the argument is negative, the negation of the argument is returned.
 952      *
 953      * <p>Note that if the argument is equal to the value of
 954      * {@link Long#MIN_VALUE}, the most negative representable
 955      * {@code long} value, the result is that same value, which
 956      * is negative.
 957      *
 958      * @param   a   the  argument whose absolute value is to be determined.
 959      * @return  the absolute value of the argument.
 960      */
 961     public static long abs(long a) {
 962         return Math.abs(a);
 963     }
 964 
 965     /**
 966      * Returns the absolute value of a {@code float} value.
 967      * If the argument is not negative, the argument is returned.
 968      * If the argument is negative, the negation of the argument is returned.
 969      * Special cases:
 970      * <ul><li>If the argument is positive zero or negative zero, the
 971      * result is positive zero.
 972      * <li>If the argument is infinite, the result is positive infinity.
 973      * <li>If the argument is NaN, the result is NaN.</ul>
 974      * In other words, the result is the same as the value of the expression:
 975      * <p>{@code Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))}
 976      *
 977      * @param   a   the argument whose absolute value is to be determined
 978      * @return  the absolute value of the argument.
 979      */
 980     public static float abs(float a) {
 981         return Math.abs(a);
 982     }
 983 
 984     /**
 985      * Returns the absolute value of a {@code double} value.
 986      * If the argument is not negative, the argument is returned.
 987      * If the argument is negative, the negation of the argument is returned.
 988      * Special cases:
 989      * <ul><li>If the argument is positive zero or negative zero, the result
 990      * is positive zero.
 991      * <li>If the argument is infinite, the result is positive infinity.
 992      * <li>If the argument is NaN, the result is NaN.</ul>
 993      * In other words, the result is the same as the value of the expression:
 994      * <p>{@code Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)}
 995      *
 996      * @param   a   the argument whose absolute value is to be determined
 997      * @return  the absolute value of the argument.
 998      */
 999     public static double abs(double a) {
1000         return Math.abs(a);
1001     }
1002 
1003     /**
1004      * Returns the greater of two {@code int} values. That is, the
1005      * result is the argument closer to the value of
1006      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1007      * the result is that same value.
1008      *
1009      * @param   a   an argument.
1010      * @param   b   another argument.
1011      * @return  the larger of {@code a} and {@code b}.
1012      */
1013     @HotSpotIntrinsicCandidate
1014     public static int max(int a, int b) {
1015         return Math.max(a, b);
1016     }
1017 
1018     /**
1019      * Returns the greater of two {@code long} values. That is, the
1020      * result is the argument closer to the value of
1021      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1022      * the result is that same value.
1023      *
1024      * @param   a   an argument.
1025      * @param   b   another argument.
1026      * @return  the larger of {@code a} and {@code b}.
1027         */
1028     public static long max(long a, long b) {
1029         return Math.max(a, b);
1030     }
1031 
1032     /**
1033      * Returns the greater of two {@code float} values.  That is,
1034      * the result is the argument closer to positive infinity. If the
1035      * arguments have the same value, the result is that same
1036      * value. If either value is NaN, then the result is NaN.  Unlike
1037      * the numerical comparison operators, this method considers
1038      * negative zero to be strictly smaller than positive zero. If one
1039      * argument is positive zero and the other negative zero, the
1040      * result is positive zero.
1041      *
1042      * @param   a   an argument.
1043      * @param   b   another argument.
1044      * @return  the larger of {@code a} and {@code b}.
1045      */
1046     public static float max(float a, float b) {
1047         return Math.max(a, b);
1048     }
1049 
1050     /**
1051      * Returns the greater of two {@code double} values.  That
1052      * is, the result is the argument closer to positive infinity. If
1053      * the arguments have the same value, the result is that same
1054      * value. If either value is NaN, then the result is NaN.  Unlike
1055      * the numerical comparison operators, this method considers
1056      * negative zero to be strictly smaller than positive zero. If one
1057      * argument is positive zero and the other negative zero, the
1058      * result is positive zero.
1059      *
1060      * @param   a   an argument.
1061      * @param   b   another argument.
1062      * @return  the larger of {@code a} and {@code b}.
1063      */
1064     public static double max(double a, double b) {
1065         return Math.max(a, b);
1066     }
1067 
1068     /**
1069      * Returns the smaller of two {@code int} values. That is,
1070      * the result the argument closer to the value of
1071      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1072      * value, the result is that same value.
1073      *
1074      * @param   a   an argument.
1075      * @param   b   another argument.
1076      * @return  the smaller of {@code a} and {@code b}.
1077      */
1078     @HotSpotIntrinsicCandidate
1079     public static int min(int a, int b) {
1080         return Math.min(a, b);
1081     }
1082 
1083     /**
1084      * Returns the smaller of two {@code long} values. That is,
1085      * the result is the argument closer to the value of
1086      * {@link Long#MIN_VALUE}. If the arguments have the same
1087      * value, the result is that same value.
1088      *
1089      * @param   a   an argument.
1090      * @param   b   another argument.
1091      * @return  the smaller of {@code a} and {@code b}.
1092      */
1093     public static long min(long a, long b) {
1094         return Math.min(a, b);
1095     }
1096 
1097     /**
1098      * Returns the smaller of two {@code float} values.  That is,
1099      * the result is the value closer to negative infinity. If the
1100      * arguments have the same value, the result is that same
1101      * value. If either value is NaN, then the result is NaN.  Unlike
1102      * the numerical comparison operators, this method considers
1103      * negative zero to be strictly smaller than positive zero.  If
1104      * one argument is positive zero and the other is negative zero,
1105      * the result is negative zero.
1106      *
1107      * @param   a   an argument.
1108      * @param   b   another argument.
1109      * @return  the smaller of {@code a} and {@code b.}
1110      */
1111     public static float min(float a, float b) {
1112         return Math.min(a, b);
1113     }
1114 
1115     /**
1116      * Returns the smaller of two {@code double} values.  That
1117      * is, the result is the value closer to negative infinity. If the
1118      * arguments have the same value, the result is that same
1119      * value. If either value is NaN, then the result is NaN.  Unlike
1120      * the numerical comparison operators, this method considers
1121      * negative zero to be strictly smaller than positive zero. If one
1122      * argument is positive zero and the other is negative zero, the
1123      * result is negative zero.
1124      *
1125      * @param   a   an argument.
1126      * @param   b   another argument.
1127      * @return  the smaller of {@code a} and {@code b}.
1128      */
1129     public static double min(double a, double b) {
1130         return Math.min(a, b);
1131     }
1132 
1133     /**
1134      * Returns the size of an ulp of the argument.  An ulp, unit in
1135      * the last place, of a {@code double} value is the positive
1136      * distance between this floating-point value and the {@code
1137      * double} value next larger in magnitude.  Note that for non-NaN
1138      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1139      *
1140      * <p>Special Cases:
1141      * <ul>
1142      * <li> If the argument is NaN, then the result is NaN.
1143      * <li> If the argument is positive or negative infinity, then the
1144      * result is positive infinity.
1145      * <li> If the argument is positive or negative zero, then the result is
1146      * {@code Double.MIN_VALUE}.
1147      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1148      * the result is equal to 2<sup>971</sup>.
1149      * </ul>
1150      *
1151      * @param d the floating-point value whose ulp is to be returned
1152      * @return the size of an ulp of the argument
1153      * @author Joseph D. Darcy
1154      * @since 1.5
1155      */
1156     public static double ulp(double d) {
1157         return Math.ulp(d);
1158     }
1159 
1160     /**
1161      * Returns the size of an ulp of the argument.  An ulp, unit in
1162      * the last place, of a {@code float} value is the positive
1163      * distance between this floating-point value and the {@code
1164      * float} value next larger in magnitude.  Note that for non-NaN
1165      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1166      *
1167      * <p>Special Cases:
1168      * <ul>
1169      * <li> If the argument is NaN, then the result is NaN.
1170      * <li> If the argument is positive or negative infinity, then the
1171      * result is positive infinity.
1172      * <li> If the argument is positive or negative zero, then the result is
1173      * {@code Float.MIN_VALUE}.
1174      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1175      * the result is equal to 2<sup>104</sup>.
1176      * </ul>
1177      *
1178      * @param f the floating-point value whose ulp is to be returned
1179      * @return the size of an ulp of the argument
1180      * @author Joseph D. Darcy
1181      * @since 1.5
1182      */
1183     public static float ulp(float f) {
1184         return Math.ulp(f);
1185     }
1186 
1187     /**
1188      * Returns the signum function of the argument; zero if the argument
1189      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1190      * argument is less than zero.
1191      *
1192      * <p>Special Cases:
1193      * <ul>
1194      * <li> If the argument is NaN, then the result is NaN.
1195      * <li> If the argument is positive zero or negative zero, then the
1196      *      result is the same as the argument.
1197      * </ul>
1198      *
1199      * @param d the floating-point value whose signum is to be returned
1200      * @return the signum function of the argument
1201      * @author Joseph D. Darcy
1202      * @since 1.5
1203      */
1204     public static double signum(double d) {
1205         return Math.signum(d);
1206     }
1207 
1208     /**
1209      * Returns the signum function of the argument; zero if the argument
1210      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1211      * argument is less than zero.
1212      *
1213      * <p>Special Cases:
1214      * <ul>
1215      * <li> If the argument is NaN, then the result is NaN.
1216      * <li> If the argument is positive zero or negative zero, then the
1217      *      result is the same as the argument.
1218      * </ul>
1219      *
1220      * @param f the floating-point value whose signum is to be returned
1221      * @return the signum function of the argument
1222      * @author Joseph D. Darcy
1223      * @since 1.5
1224      */
1225     public static float signum(float f) {
1226         return Math.signum(f);
1227     }
1228 
1229     /**
1230      * Returns the hyperbolic sine of a {@code double} value.
1231      * The hyperbolic sine of <i>x</i> is defined to be
1232      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1233      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1234      *
1235      * <p>Special cases:
1236      * <ul>
1237      *
1238      * <li>If the argument is NaN, then the result is NaN.
1239      *
1240      * <li>If the argument is infinite, then the result is an infinity
1241      * with the same sign as the argument.
1242      *
1243      * <li>If the argument is zero, then the result is a zero with the
1244      * same sign as the argument.
1245      *
1246      * </ul>
1247      *
1248      * @param   x The number whose hyperbolic sine is to be returned.
1249      * @return  The hyperbolic sine of {@code x}.
1250      * @since 1.5
1251      */
1252     public static native double sinh(double x);
1253 
1254     /**
1255      * Returns the hyperbolic cosine of a {@code double} value.
1256      * The hyperbolic cosine of <i>x</i> is defined to be
1257      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1258      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1259      *
1260      * <p>Special cases:
1261      * <ul>
1262      *
1263      * <li>If the argument is NaN, then the result is NaN.
1264      *
1265      * <li>If the argument is infinite, then the result is positive
1266      * infinity.
1267      *
1268      * <li>If the argument is zero, then the result is {@code 1.0}.
1269      *
1270      * </ul>
1271      *
1272      * @param   x The number whose hyperbolic cosine is to be returned.
1273      * @return  The hyperbolic cosine of {@code x}.
1274      * @since 1.5
1275      */
1276     public static native double cosh(double x);
1277 
1278     /**
1279      * Returns the hyperbolic tangent of a {@code double} value.
1280      * The hyperbolic tangent of <i>x</i> is defined to be
1281      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1282      * in other words, {@linkplain Math#sinh
1283      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1284      * that the absolute value of the exact tanh is always less than
1285      * 1.
1286      *
1287      * <p>Special cases:
1288      * <ul>
1289      *
1290      * <li>If the argument is NaN, then the result is NaN.
1291      *
1292      * <li>If the argument is zero, then the result is a zero with the
1293      * same sign as the argument.
1294      *
1295      * <li>If the argument is positive infinity, then the result is
1296      * {@code +1.0}.
1297      *
1298      * <li>If the argument is negative infinity, then the result is
1299      * {@code -1.0}.
1300      *
1301      * </ul>
1302      *
1303      * @param   x The number whose hyperbolic tangent is to be returned.
1304      * @return  The hyperbolic tangent of {@code x}.
1305      * @since 1.5
1306      */
1307     public static native double tanh(double x);
1308 
1309     /**
1310      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1311      * without intermediate overflow or underflow.
1312      *
1313      * <p>Special cases:
1314      * <ul>
1315      *
1316      * <li> If either argument is infinite, then the result
1317      * is positive infinity.
1318      *
1319      * <li> If either argument is NaN and neither argument is infinite,
1320      * then the result is NaN.
1321      *
1322      * </ul>
1323      *
1324      * @param x a value
1325      * @param y a value
1326      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1327      * without intermediate overflow or underflow
1328      * @since 1.5
1329      */
1330     public static native double hypot(double x, double y);
1331 
1332     /**
1333      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1334      * <i>x</i> near 0, the exact sum of
1335      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1336      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1337      *
1338      * <p>Special cases:
1339      * <ul>
1340      * <li>If the argument is NaN, the result is NaN.
1341      *
1342      * <li>If the argument is positive infinity, then the result is
1343      * positive infinity.
1344      *
1345      * <li>If the argument is negative infinity, then the result is
1346      * -1.0.
1347      *
1348      * <li>If the argument is zero, then the result is a zero with the
1349      * same sign as the argument.
1350      *
1351      * </ul>
1352      *
1353      * @param   x   the exponent to raise <i>e</i> to in the computation of
1354      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1355      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1356      * @since 1.5
1357      */
1358     public static native double expm1(double x);
1359 
1360     /**
1361      * Returns the natural logarithm of the sum of the argument and 1.
1362      * Note that for small values {@code x}, the result of
1363      * {@code log1p(x)} is much closer to the true result of ln(1
1364      * + {@code x}) than the floating-point evaluation of
1365      * {@code log(1.0+x)}.
1366      *
1367      * <p>Special cases:
1368      * <ul>
1369      *
1370      * <li>If the argument is NaN or less than -1, then the result is
1371      * NaN.
1372      *
1373      * <li>If the argument is positive infinity, then the result is
1374      * positive infinity.
1375      *
1376      * <li>If the argument is negative one, then the result is
1377      * negative infinity.
1378      *
1379      * <li>If the argument is zero, then the result is a zero with the
1380      * same sign as the argument.
1381      *
1382      * </ul>
1383      *
1384      * @param   x   a value
1385      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1386      * log of {@code x}&nbsp;+&nbsp;1
1387      * @since 1.5
1388      */
1389     public static native double log1p(double x);
1390 
1391     /**
1392      * Returns the first floating-point argument with the sign of the
1393      * second floating-point argument.  For this method, a NaN
1394      * {@code sign} argument is always treated as if it were
1395      * positive.
1396      *
1397      * @param magnitude  the parameter providing the magnitude of the result
1398      * @param sign   the parameter providing the sign of the result
1399      * @return a value with the magnitude of {@code magnitude}
1400      * and the sign of {@code sign}.
1401      * @since 1.6
1402      */
1403     public static double copySign(double magnitude, double sign) {
1404         return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
1405     }
1406 
1407     /**
1408      * Returns the first floating-point argument with the sign of the
1409      * second floating-point argument.  For this method, a NaN
1410      * {@code sign} argument is always treated as if it were
1411      * positive.
1412      *
1413      * @param magnitude  the parameter providing the magnitude of the result
1414      * @param sign   the parameter providing the sign of the result
1415      * @return a value with the magnitude of {@code magnitude}
1416      * and the sign of {@code sign}.
1417      * @since 1.6
1418      */
1419     public static float copySign(float magnitude, float sign) {
1420         return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
1421     }
1422     /**
1423      * Returns the unbiased exponent used in the representation of a
1424      * {@code float}.  Special cases:
1425      *
1426      * <ul>
1427      * <li>If the argument is NaN or infinite, then the result is
1428      * {@link Float#MAX_EXPONENT} + 1.
1429      * <li>If the argument is zero or subnormal, then the result is
1430      * {@link Float#MIN_EXPONENT} -1.
1431      * </ul>
1432      * @param f a {@code float} value
1433      * @return the unbiased exponent of the argument
1434      * @since 1.6
1435      */
1436     public static int getExponent(float f) {
1437         return Math.getExponent(f);
1438     }
1439 
1440     /**
1441      * Returns the unbiased exponent used in the representation of a
1442      * {@code double}.  Special cases:
1443      *
1444      * <ul>
1445      * <li>If the argument is NaN or infinite, then the result is
1446      * {@link Double#MAX_EXPONENT} + 1.
1447      * <li>If the argument is zero or subnormal, then the result is
1448      * {@link Double#MIN_EXPONENT} -1.
1449      * </ul>
1450      * @param d a {@code double} value
1451      * @return the unbiased exponent of the argument
1452      * @since 1.6
1453      */
1454     public static int getExponent(double d) {
1455         return Math.getExponent(d);
1456     }
1457 
1458     /**
1459      * Returns the floating-point number adjacent to the first
1460      * argument in the direction of the second argument.  If both
1461      * arguments compare as equal the second argument is returned.
1462      *
1463      * <p>Special cases:
1464      * <ul>
1465      * <li> If either argument is a NaN, then NaN is returned.
1466      *
1467      * <li> If both arguments are signed zeros, {@code direction}
1468      * is returned unchanged (as implied by the requirement of
1469      * returning the second argument if the arguments compare as
1470      * equal).
1471      *
1472      * <li> If {@code start} is
1473      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1474      * has a value such that the result should have a smaller
1475      * magnitude, then a zero with the same sign as {@code start}
1476      * is returned.
1477      *
1478      * <li> If {@code start} is infinite and
1479      * {@code direction} has a value such that the result should
1480      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1481      * same sign as {@code start} is returned.
1482      *
1483      * <li> If {@code start} is equal to &plusmn;
1484      * {@link Double#MAX_VALUE} and {@code direction} has a
1485      * value such that the result should have a larger magnitude, an
1486      * infinity with same sign as {@code start} is returned.
1487      * </ul>
1488      *
1489      * @param start  starting floating-point value
1490      * @param direction value indicating which of
1491      * {@code start}'s neighbors or {@code start} should
1492      * be returned
1493      * @return The floating-point number adjacent to {@code start} in the
1494      * direction of {@code direction}.
1495      * @since 1.6
1496      */
1497     public static double nextAfter(double start, double direction) {
1498         return Math.nextAfter(start, direction);
1499     }
1500 
1501     /**
1502      * Returns the floating-point number adjacent to the first
1503      * argument in the direction of the second argument.  If both
1504      * arguments compare as equal a value equivalent to the second argument
1505      * is returned.
1506      *
1507      * <p>Special cases:
1508      * <ul>
1509      * <li> If either argument is a NaN, then NaN is returned.
1510      *
1511      * <li> If both arguments are signed zeros, a value equivalent
1512      * to {@code direction} is returned.
1513      *
1514      * <li> If {@code start} is
1515      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1516      * has a value such that the result should have a smaller
1517      * magnitude, then a zero with the same sign as {@code start}
1518      * is returned.
1519      *
1520      * <li> If {@code start} is infinite and
1521      * {@code direction} has a value such that the result should
1522      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1523      * same sign as {@code start} is returned.
1524      *
1525      * <li> If {@code start} is equal to &plusmn;
1526      * {@link Float#MAX_VALUE} and {@code direction} has a
1527      * value such that the result should have a larger magnitude, an
1528      * infinity with same sign as {@code start} is returned.
1529      * </ul>
1530      *
1531      * @param start  starting floating-point value
1532      * @param direction value indicating which of
1533      * {@code start}'s neighbors or {@code start} should
1534      * be returned
1535      * @return The floating-point number adjacent to {@code start} in the
1536      * direction of {@code direction}.
1537      * @since 1.6
1538      */
1539     public static float nextAfter(float start, double direction) {
1540         return Math.nextAfter(start, direction);
1541     }
1542 
1543     /**
1544      * Returns the floating-point value adjacent to {@code d} in
1545      * the direction of positive infinity.  This method is
1546      * semantically equivalent to {@code nextAfter(d,
1547      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1548      * implementation may run faster than its equivalent
1549      * {@code nextAfter} call.
1550      *
1551      * <p>Special Cases:
1552      * <ul>
1553      * <li> If the argument is NaN, the result is NaN.
1554      *
1555      * <li> If the argument is positive infinity, the result is
1556      * positive infinity.
1557      *
1558      * <li> If the argument is zero, the result is
1559      * {@link Double#MIN_VALUE}
1560      *
1561      * </ul>
1562      *
1563      * @param d starting floating-point value
1564      * @return The adjacent floating-point value closer to positive
1565      * infinity.
1566      * @since 1.6
1567      */
1568     public static double nextUp(double d) {
1569         return Math.nextUp(d);
1570     }
1571 
1572     /**
1573      * Returns the floating-point value adjacent to {@code f} in
1574      * the direction of positive infinity.  This method is
1575      * semantically equivalent to {@code nextAfter(f,
1576      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1577      * implementation may run faster than its equivalent
1578      * {@code nextAfter} call.
1579      *
1580      * <p>Special Cases:
1581      * <ul>
1582      * <li> If the argument is NaN, the result is NaN.
1583      *
1584      * <li> If the argument is positive infinity, the result is
1585      * positive infinity.
1586      *
1587      * <li> If the argument is zero, the result is
1588      * {@link Float#MIN_VALUE}
1589      *
1590      * </ul>
1591      *
1592      * @param f starting floating-point value
1593      * @return The adjacent floating-point value closer to positive
1594      * infinity.
1595      * @since 1.6
1596      */
1597     public static float nextUp(float f) {
1598         return Math.nextUp(f);
1599     }
1600 
1601     /**
1602      * Returns the floating-point value adjacent to {@code d} in
1603      * the direction of negative infinity.  This method is
1604      * semantically equivalent to {@code nextAfter(d,
1605      * Double.NEGATIVE_INFINITY)}; however, a
1606      * {@code nextDown} implementation may run faster than its
1607      * equivalent {@code nextAfter} call.
1608      *
1609      * <p>Special Cases:
1610      * <ul>
1611      * <li> If the argument is NaN, the result is NaN.
1612      *
1613      * <li> If the argument is negative infinity, the result is
1614      * negative infinity.
1615      *
1616      * <li> If the argument is zero, the result is
1617      * {@code -Double.MIN_VALUE}
1618      *
1619      * </ul>
1620      *
1621      * @param d  starting floating-point value
1622      * @return The adjacent floating-point value closer to negative
1623      * infinity.
1624      * @since 1.8
1625      */
1626     public static double nextDown(double d) {
1627         return Math.nextDown(d);
1628     }
1629 
1630     /**
1631      * Returns the floating-point value adjacent to {@code f} in
1632      * the direction of negative infinity.  This method is
1633      * semantically equivalent to {@code nextAfter(f,
1634      * Float.NEGATIVE_INFINITY)}; however, a
1635      * {@code nextDown} implementation may run faster than its
1636      * equivalent {@code nextAfter} call.
1637      *
1638      * <p>Special Cases:
1639      * <ul>
1640      * <li> If the argument is NaN, the result is NaN.
1641      *
1642      * <li> If the argument is negative infinity, the result is
1643      * negative infinity.
1644      *
1645      * <li> If the argument is zero, the result is
1646      * {@code -Float.MIN_VALUE}
1647      *
1648      * </ul>
1649      *
1650      * @param f  starting floating-point value
1651      * @return The adjacent floating-point value closer to negative
1652      * infinity.
1653      * @since 1.8
1654      */
1655     public static float nextDown(float f) {
1656         return Math.nextDown(f);
1657     }
1658 
1659     /**
1660      * Returns {@code d} &times;
1661      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1662      * by a single correctly rounded floating-point multiply to a
1663      * member of the double value set.  See the Java
1664      * Language Specification for a discussion of floating-point
1665      * value sets.  If the exponent of the result is between {@link
1666      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1667      * answer is calculated exactly.  If the exponent of the result
1668      * would be larger than {@code Double.MAX_EXPONENT}, an
1669      * infinity is returned.  Note that if the result is subnormal,
1670      * precision may be lost; that is, when {@code scalb(x, n)}
1671      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1672      * <i>x</i>.  When the result is non-NaN, the result has the same
1673      * sign as {@code d}.
1674      *
1675      * <p>Special cases:
1676      * <ul>
1677      * <li> If the first argument is NaN, NaN is returned.
1678      * <li> If the first argument is infinite, then an infinity of the
1679      * same sign is returned.
1680      * <li> If the first argument is zero, then a zero of the same
1681      * sign is returned.
1682      * </ul>
1683      *
1684      * @param d number to be scaled by a power of two.
1685      * @param scaleFactor power of 2 used to scale {@code d}
1686      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1687      * @since 1.6
1688      */
1689     public static double scalb(double d, int scaleFactor) {
1690         return Math.scalb(d, scaleFactor);
1691     }
1692 
1693     /**
1694      * Returns {@code f} &times;
1695      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1696      * by a single correctly rounded floating-point multiply to a
1697      * member of the float value set.  See the Java
1698      * Language Specification for a discussion of floating-point
1699      * value sets.  If the exponent of the result is between {@link
1700      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1701      * answer is calculated exactly.  If the exponent of the result
1702      * would be larger than {@code Float.MAX_EXPONENT}, an
1703      * infinity is returned.  Note that if the result is subnormal,
1704      * precision may be lost; that is, when {@code scalb(x, n)}
1705      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1706      * <i>x</i>.  When the result is non-NaN, the result has the same
1707      * sign as {@code f}.
1708      *
1709      * <p>Special cases:
1710      * <ul>
1711      * <li> If the first argument is NaN, NaN is returned.
1712      * <li> If the first argument is infinite, then an infinity of the
1713      * same sign is returned.
1714      * <li> If the first argument is zero, then a zero of the same
1715      * sign is returned.
1716      * </ul>
1717      *
1718      * @param f number to be scaled by a power of two.
1719      * @param scaleFactor power of 2 used to scale {@code f}
1720      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1721      * @since 1.6
1722      */
1723     public static float scalb(float f, int scaleFactor) {
1724         return Math.scalb(f, scaleFactor);
1725     }
1726 }