1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 /**
  29  * Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
  30  *
  31  * <p>The C version of fdlibm relied on the idiom of pointer aliasing
  32  * a 64-bit double floating-point value as a two-element array of
  33  * 32-bit integers and reading and writing the two halves of the
  34  * double independently. This coding pattern was problematic to C
  35  * optimizers and not directly expressible in Java. Therefore, rather
  36  * than a memory level overlay, if portions of a double need to be
  37  * operated on as integer values, the standard library methods for
  38  * bitwise floating-point to integer conversion are directly or
  39  * indirectly used, Double.longBitsToDouble and
  40  * Double.doubleToLongBits.
  41  *
  42  * <p>The C version of fdlibm also took some pains to signal the
  43  * correct IEEE 754 exceptional conditions divide by zero, invalid,
  44  * overflow and underflow. For example, overflow would be signaled by
  45  * {@code huge * huge} where {@code huge} was a large constant that
  46  * would overflow when squared. Since IEEE floating-point exceptional
  47  * handling is not supported natively in the JVM, such coding patterns
  48  * have been omitted from this port. For example, rather than {@code
  49  * return huge * huge}, this port will use {@code return INFINITY}.
  50  */
  51 class FdLibm {
  52     // Constants used by multiple algorithms
  53     private static final double INFINITY=  Double.POSITIVE_INFINITY;
  54 
  55     /**
  56      * Return the low-order 32 bits of the double argument as an int.
  57      */
  58     private static int __LO(double x) {
  59         long transducer = Double.doubleToLongBits(x);
  60         return (int)transducer;
  61     }
  62 
  63     /**
  64      * Return a double with its low-order bits of the second argument
  65      * and the high-order bits of the first argument..
  66      */
  67     private static double __LO(double x, int low) {
  68         long transX = Double.doubleToLongBits(x);
  69         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  70     }
  71 
  72     /**
  73      * Return the high-order 32 bits of the double argument as an int.
  74      */
  75     private static int __HI(double x) {
  76         long transducer = Double.doubleToLongBits(x);
  77         return (int)(transducer >> 32);
  78     }
  79 
  80     /**
  81      * Return a double with its high-order bits of the second argument
  82      * and the low-order bits of the first argument..
  83      */
  84     private static double __HI(double x, int high) {
  85         long transX = Double.doubleToLongBits(x);
  86         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  87     }
  88 
  89     /**
  90      * Compute x**y
  91      *                    n
  92      * Method:  Let x =  2   * (1+f)
  93      *      1. Compute and return log2(x) in two pieces:
  94      *              log2(x) = w1 + w2,
  95      *         where w1 has 53 - 24 = 29 bit trailing zeros.
  96      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
  97      *         arithmetic, where |y'| <= 0.5.
  98      *      3. Return x**y = 2**n*exp(y'*log2)
  99      *
 100      * Special cases:
 101      *      1.  (anything) ** 0  is 1
 102      *      2.  (anything) ** 1  is itself
 103      *      3.  (anything) ** NAN is NAN
 104      *      4.  NAN ** (anything except 0) is NAN
 105      *      5.  +-(|x| > 1) **  +INF is +INF
 106      *      6.  +-(|x| > 1) **  -INF is +0
 107      *      7.  +-(|x| < 1) **  +INF is +0
 108      *      8.  +-(|x| < 1) **  -INF is +INF
 109      *      9.  +-1         ** +-INF is NAN
 110      *      10. +0 ** (+anything except 0, NAN)               is +0
 111      *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 112      *      12. +0 ** (-anything except 0, NAN)               is +INF
 113      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 114      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 115      *      15. +INF ** (+anything except 0,NAN) is +INF
 116      *      16. +INF ** (-anything except 0,NAN) is +0
 117      *      17. -INF ** (anything)  = -0 ** (-anything)
 118      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 119      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
 120      *
 121      * Accuracy:
 122      *      pow(x,y) returns x**y nearly rounded. In particular
 123      *                      pow(integer,integer)
 124      *      always returns the correct integer provided it is
 125      *      representable.
 126      */
 127     public static class Pow {
 128         public static strictfp double compute(final double x, final double y) {
 129             double z;
 130             double r, s, t, u, v, w;
 131             int i, j, k, n;
 132 
 133             // y == zero: x**0 = 1
 134             if (y == 0.0)
 135                 return 1.0;
 136 
 137             // +/-NaN return x + y to propagate NaN significands
 138             if (Double.isNaN(x) || Double.isNaN(y))
 139                 return x + y;
 140 
 141             final double y_abs = Math.abs(y);
 142             double x_abs   = Math.abs(x);
 143             // Special values of y
 144             if (y == 2.0) {
 145                 return x * x;
 146             } else if (y == 0.5) {
 147                 if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
 148                     return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
 149             } else if (y_abs == 1.0) {        // y is  +/-1
 150                 return (y == 1.0) ? x : 1.0 / x;
 151             } else if (y_abs == INFINITY) {       // y is +/-infinity
 152                 if (x_abs == 1.0)
 153                     return  y - y;         // inf**+/-1 is NaN
 154                 else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
 155                     return (y >= 0) ? y : 0.0;
 156                 else                       // (|x| < 1)**-/+inf = inf, 0
 157                     return (y < 0) ? -y : 0.0;
 158             } 
 159 
 160             final int hx = __HI(x);
 161             int ix = hx & 0x7fffffff;
 162 
 163             /*
 164              * When x < 0, determine if y is an odd integer:
 165              * y_is_int = 0       ... y is not an integer
 166              * y_is_int = 1       ... y is an odd int
 167              * y_is_int = 2       ... y is an even int
 168              */
 169             int y_is_int  = 0;
 170             if (hx < 0) {
 171                 if (y_abs >= 0x1.0p53)   // |y| >= 2^53 = 9.007199254740992E15
 172                     y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
 173                 else if (y_abs >= 1.0) { // |y| >= 1.0
 174                     long y_abs_as_long = (long) y_abs;
 175                     if ( ((double) y_abs_as_long) == y_abs) {
 176                         y_is_int = 2 -  (int)(y_abs_as_long & 0x1L);
 177                     }
 178                 }
 179             }
 180 
 181             // Special value of x
 182             if (x_abs == 0.0 ||
 183                 x_abs == INFINITY ||
 184                 x_abs == 1.0) {
 185                 z = x_abs;                 // x is +/-0, +/-inf, +/-1
 186                 if (y < 0.0)
 187                     z = 1.0/z;     // z = (1/|x|)
 188                 if (hx < 0) {
 189                     if (((ix - 0x3ff00000) | y_is_int) == 0) {
 190                         z = (z-z)/(z-z); // (-1)**non-int is NaN
 191                     } else if (y_is_int == 1)
 192                         z = -1.0 * z;             // (x < 0)**odd = -(|x|**odd)
 193                 }
 194                 return z;
 195             }
 196                 
 197             n = (hx >> 31) + 1;
 198 
 199             // (x < 0)**(non-int) is NaN
 200             if ((n | y_is_int) == 0)
 201                 return (x-x)/(x-x);
 202 
 203             s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
 204             if ( (n | (y_is_int - 1)) == 0)
 205                 s = -1.0; // (-ve)**(odd int)
 206 
 207             double p_h, p_l, t1, t2;
 208             // |y| is huge
 209             if (y_abs > 0x1.0p31) { // if |y| > 2**31
 210                 final double INV_LN2   =  0x1.7154_7652_b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 211                 final double INV_LN2_H =  0x1.715476p0;            //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 212                 final double INV_LN2_L =  0x1.4ae0_bf85_ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 213 
 214                 // Over/underflow if x is not close to one
 215                 if (x_abs < 0x1.fffffp-1) // |x| < 0.9999995231628418
 216                     return (y < 0.0) ? s * INFINITY : s * 0.0;
 217                 if (x_abs > 1.0)         // |x| > 1.0
 218                     return (y > 0.0) ? s * INFINITY : s * 0.0;
 219                 /*
 220                  * now |1-x| is tiny <= 2**-20, sufficient to compute
 221                  * log(x) by x - x^2/2 + x^3/3 - x^4/4
 222                  */
 223                 t = x_abs - 1.0;        // t has 20 trailing zeros
 224                 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
 225                 u = INV_LN2_H * t;      // INV_LN2_H has 21 sig. bits
 226                 v =  t * INV_LN2_L - w * INV_LN2;
 227                 t1 = u + v;
 228                 t1 =__LO(t1, 0);
 229                 t2 = v - (t1 - u);
 230             } else {
 231                 final double CP      =  0x1.ec70_9dc3_a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 232                 final double CP_H    =  0x1.ec709ep-1;           //  9.61796700954437255859e-01 = (float)cp
 233                 final double CP_L    = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
 234 
 235                 double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
 236                 n = 0;
 237                 // Take care of subnormal numbers
 238                 if (ix < 0x00100000) {
 239                     x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
 240                     n -= 53;
 241                     ix = __HI(x_abs);
 242                 }
 243                 n  += ((ix) >> 20) - 0x3ff;
 244                 j  = ix & 0x000fffff;
 245                 // Determine interval
 246                 ix = j | 0x3ff00000;          // Normalize ix
 247                 if (j <= 0x3988E)
 248                     k = 0;         // |x| <sqrt(3/2)
 249                 else if (j < 0xBB67A)
 250                     k = 1;         // |x| <sqrt(3)
 251                 else {
 252                     k = 0;
 253                     n += 1;
 254                     ix -= 0x00100000;
 255                 }
 256                 x_abs = __HI(x_abs, ix);
 257 
 258                 // Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
 259 
 260                 final double BP[]    = {1.0,
 261                                        1.5};
 262                 final double DP_H[]  = {0.0,
 263                                         0x1.2b80_34p-1};        // 5.84962487220764160156e-01
 264                 final double DP_L[]  = {0.0,
 265                                         0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
 266 
 267                 // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 268                 final double L1      =  0x1.3333_3333_33303p-1;  //  5.99999999999994648725e-01
 269                 final double L2      =  0x1.b6db_6db6_fabffp-2;  //  4.28571428578550184252e-01
 270                 final double L3      =  0x1.5555_5518_f264dp-2;  //  3.33333329818377432918e-01
 271                 final double L4      =  0x1.1746_0a91_d4101p-2;  //  2.72728123808534006489e-01
 272                 final double L5      =  0x1.d864_a93c_9db65p-3;  //  2.30660745775561754067e-01
 273                 final double L6      =  0x1.a7e2_84a4_54eefp-3;  //  2.06975017800338417784e-01
 274                 u = x_abs - BP[k];               // BP[0]=1.0, BP[1]=1.5
 275                 v = 1.0 / (x_abs + BP[k]);
 276                 ss = u * v;
 277                 s_h = ss;
 278                 s_h = __LO(s_h, 0);
 279                 // t_h=x_abs + BP[k] High
 280                 t_h = 0.0;
 281                 t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
 282                 t_l = x_abs - (t_h - BP[k]);
 283                 s_l = v * ((u - s_h * t_h) - s_h * t_l);
 284                 // Compute log(x_abs)
 285                 s2 = ss * ss;
 286                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 287                 r += s_l * (s_h + ss);
 288                 s2  = s_h * s_h;
 289                 t_h = 3.0 + s2 + r;
 290                 t_h = __LO(t_h, 0);
 291                 t_l = r - ((t_h - 3.0) - s2);
 292                 // u+v = ss*(1+...)
 293                 u = s_h * t_h;
 294                 v = s_l * t_h + t_l * ss;
 295                 // 2/(3log2)*(ss + ...)
 296                 p_h = u + v;
 297                 p_h = __LO(p_h, 0);
 298                 p_l = v - (p_h - u);
 299                 z_h = CP_H * p_h;             // CP_H + CP_L = 2/(3*log2)
 300                 z_l = CP_L * p_h + p_l * CP + DP_L[k];
 301                 // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
 302                 t = (double)n;
 303                 t1 = (((z_h + z_l) + DP_H[k]) + t);
 304                 t1 = __LO(t1, 0);
 305                 t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
 306             }
 307 
 308             // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
 309             double y1  = y;
 310             y1 = __LO(y1, 0);
 311             p_l = (y - y1) * t1 + y * t2;
 312             p_h = y1 * t1;
 313             z = p_l + p_h;
 314             j = __HI(z);
 315             i = __LO(z);
 316             if (j >= 0x40900000) {                           // z >= 1024
 317                 if (((j - 0x40900000) | i)!=0)               // if z > 1024
 318                     return s * INFINITY;                     // Overflow
 319                 else {
 320                     final double OVT     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 321                     if (p_l + OVT > z - p_h)
 322                         return s * INFINITY;   // Overflow
 323                 }
 324             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        // z <= -1075
 325                 if (((j - 0xc090cc00) | i)!=0)           // z < -1075
 326                     return s * 0.0;           // Underflow
 327                 else {
 328                     if (p_l <= z - p_h)
 329                         return s * 0.0;      // Underflow
 330                 }
 331             }
 332             /*
 333              * Compute 2**(p_h+p_l)
 334              */
 335             // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 336             final double P1      =  0x1.5555_5555_5553ep-3;  //  1.66666666666666019037e-01
 337             final double P2      = -0x1.6c16_c16b_ebd93p-9;  // -2.77777777770155933842e-03
 338             final double P3      =  0x1.1566_aaf2_5de2cp-14; //  6.61375632143793436117e-05
 339             final double P4      = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
 340             final double P5      =  0x1.6376_972b_ea4d0p-25; //  4.13813679705723846039e-08
 341             final double LG2     =  0x1.62e4_2fef_a39efp-1;  //  6.93147180559945286227e-01
 342             final double LG2_H   =  0x1.62e43p-1;            //  6.93147182464599609375e-01
 343             final double LG2_L   = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
 344             i = j & 0x7fffffff;
 345             k = (i >> 20) - 0x3ff;
 346             n = 0;
 347             if (i > 0x3fe00000) {              // if |z| > 0.5, set n = [z + 0.5]
 348                 n = j + (0x00100000 >> (k + 1));
 349                 k = ((n & 0x7fffffff) >> 20) - 0x3ff;     // new k for n
 350                 t = 0.0;
 351                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 352                 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
 353                 if (j < 0)
 354                     n = -n;
 355                 p_h -= t;
 356             }
 357             t = p_l + p_h;
 358             t = __LO(t, 0);
 359             u = t * LG2_H;
 360             v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
 361             z = u + v;
 362             w = v - (z - u);
 363             t  = z * z;
 364             t1  = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 365             r  = (z * t1)/(t1 - 2.0) - (w + z * w);
 366             z  = 1.0 - (r - z);
 367             j  = __HI(z);
 368             j += (n << 20);
 369             if ((j >> 20) <= 0)
 370                 z = Math.scalb(z, n); // subnormal output
 371             else {
 372                 int z_hi = __HI(z);
 373                 z_hi += (n << 20);
 374                 z = __HI(z, z_hi);
 375             }
 376             return s * z;
 377         }
 378     }
 379 }