1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 /**
  29  * Port of the "Freely Distributable Math Library", version 5.3, from C to Java.
  30  *
  31  * <p>The C version of fdlibm relied on the idiom of pointer aliasing
  32  * a 64-bit double floating-point value as a two-element array of
  33  * 32-bit integers and reading and writing the two halves of the
  34  * double independently. This coding pattern was problematic to C
  35  * optimizers and not directly expressible in Java. Therefore, rather
  36  * than a memory level overlay, if portions of a double need to be
  37  * operated on as integer values, the standard library methods for
  38  * bitwise floating-point to integer conversion,
  39  * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly
  40  * or indirectly used .
  41  *
  42  * <p>The C version of fdlibm also took some pains to signal the
  43  * correct IEEE 754 exceptional conditions divide by zero, invalid,
  44  * overflow and underflow. For example, overflow would be signaled by
  45  * {@code huge * huge} where {@code huge} was a large constant that
  46  * would overflow when squared. Since IEEE floating-point exceptional
  47  * handling is not supported natively in the JVM, such coding patterns
  48  * have been omitted from this port. For example, rather than {@code
  49  * return huge * huge}, this port will use {@code return INFINITY}.
  50  */
  51 class FdLibm {
  52     // Constants used by multiple algorithms
  53     private static final double INFINITY = Double.POSITIVE_INFINITY;
  54 
  55     private FdLibm() {
  56         throw new UnsupportedOperationException("No instances for you.");
  57     }
  58 
  59     /**
  60      * Return the low-order 32 bits of the double argument as an int.
  61      */
  62     private static int __LO(double x) {
  63         long transducer = Double.doubleToRawLongBits(x);
  64         return (int)transducer;
  65     }
  66 
  67     /**
  68      * Return a double with its low-order bits of the second argument
  69      * and the high-order bits of the first argument..
  70      */
  71     private static double __LO(double x, int low) {
  72         long transX = Double.doubleToRawLongBits(x);
  73         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  74     }
  75 
  76     /**
  77      * Return the high-order 32 bits of the double argument as an int.
  78      */
  79     private static int __HI(double x) {
  80         long transducer = Double.doubleToRawLongBits(x);
  81         return (int)(transducer >> 32);
  82     }
  83 
  84     /**
  85      * Return a double with its high-order bits of the second argument
  86      * and the low-order bits of the first argument..
  87      */
  88     private static double __HI(double x, int high) {
  89         long transX = Double.doubleToRawLongBits(x);
  90         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
  91     }
  92 
  93     /**
  94      * Compute x**y
  95      *                    n
  96      * Method:  Let x =  2   * (1+f)
  97      *      1. Compute and return log2(x) in two pieces:
  98      *              log2(x) = w1 + w2,
  99      *         where w1 has 53 - 24 = 29 bit trailing zeros.
 100      *      2. Perform y*log2(x) = n+y' by simulating muti-precision
 101      *         arithmetic, where |y'| <= 0.5.
 102      *      3. Return x**y = 2**n*exp(y'*log2)
 103      *
 104      * Special cases:
 105      *      1.  (anything) ** 0  is 1
 106      *      2.  (anything) ** 1  is itself
 107      *      3.  (anything) ** NAN is NAN
 108      *      4.  NAN ** (anything except 0) is NAN
 109      *      5.  +-(|x| > 1) **  +INF is +INF
 110      *      6.  +-(|x| > 1) **  -INF is +0
 111      *      7.  +-(|x| < 1) **  +INF is +0
 112      *      8.  +-(|x| < 1) **  -INF is +INF
 113      *      9.  +-1         ** +-INF is NAN
 114      *      10. +0 ** (+anything except 0, NAN)               is +0
 115      *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 116      *      12. +0 ** (-anything except 0, NAN)               is +INF
 117      *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 118      *      14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 119      *      15. +INF ** (+anything except 0,NAN) is +INF
 120      *      16. +INF ** (-anything except 0,NAN) is +0
 121      *      17. -INF ** (anything)  = -0 ** (-anything)
 122      *      18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 123      *      19. (-anything except 0 and inf) ** (non-integer) is NAN
 124      *
 125      * Accuracy:
 126      *      pow(x,y) returns x**y nearly rounded. In particular
 127      *                      pow(integer,integer)
 128      *      always returns the correct integer provided it is
 129      *      representable.
 130      */
 131     public static class Pow {
 132         public static strictfp double compute(final double x, final double y) {
 133             double z;
 134             double r, s, t, u, v, w;
 135             int i, j, k, n;
 136 
 137             // y == zero: x**0 = 1
 138             if (y == 0.0)
 139                 return 1.0;
 140 
 141             // +/-NaN return x + y to propagate NaN significands
 142             if (Double.isNaN(x) || Double.isNaN(y))
 143                 return x + y;
 144 
 145             final double y_abs = Math.abs(y);
 146             double x_abs   = Math.abs(x);
 147             // Special values of y
 148             if (y == 2.0) {
 149                 return x * x;
 150             } else if (y == 0.5) {
 151                 if (x >= -Double.MAX_VALUE) // Handle x == -infinity later
 152                     return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0
 153             } else if (y_abs == 1.0) {        // y is  +/-1
 154                 return (y == 1.0) ? x : 1.0 / x;
 155             } else if (y_abs == INFINITY) {       // y is +/-infinity
 156                 if (x_abs == 1.0)
 157                     return  y - y;         // inf**+/-1 is NaN
 158                 else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0
 159                     return (y >= 0) ? y : 0.0;
 160                 else                       // (|x| < 1)**-/+inf = inf, 0
 161                     return (y < 0) ? -y : 0.0;
 162             } 
 163 
 164             final int hx = __HI(x);
 165             int ix = hx & 0x7fffffff;
 166 
 167             /*
 168              * When x < 0, determine if y is an odd integer:
 169              * y_is_int = 0       ... y is not an integer
 170              * y_is_int = 1       ... y is an odd int
 171              * y_is_int = 2       ... y is an even int
 172              */
 173             int y_is_int  = 0;
 174             if (hx < 0) {
 175                 if (y_abs >= 0x1.0p53)   // |y| >= 2^53 = 9.007199254740992E15
 176                     y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0
 177                 else if (y_abs >= 1.0) { // |y| >= 1.0
 178                     long y_abs_as_long = (long) y_abs;
 179                     if ( ((double) y_abs_as_long) == y_abs) {
 180                         y_is_int = 2 -  (int)(y_abs_as_long & 0x1L);
 181                     }
 182                 }
 183             }
 184 
 185             // Special value of x
 186             if (x_abs == 0.0 ||
 187                 x_abs == INFINITY ||
 188                 x_abs == 1.0) {
 189                 z = x_abs;                 // x is +/-0, +/-inf, +/-1
 190                 if (y < 0.0)
 191                     z = 1.0/z;     // z = (1/|x|)
 192                 if (hx < 0) {
 193                     if (((ix - 0x3ff00000) | y_is_int) == 0) {
 194                         z = (z-z)/(z-z); // (-1)**non-int is NaN
 195                     } else if (y_is_int == 1)
 196                         z = -1.0 * z;             // (x < 0)**odd = -(|x|**odd)
 197                 }
 198                 return z;
 199             }
 200                 
 201             n = (hx >> 31) + 1;
 202 
 203             // (x < 0)**(non-int) is NaN
 204             if ((n | y_is_int) == 0)
 205                 return (x-x)/(x-x);
 206 
 207             s = 1.0; // s (sign of result -ve**odd) = -1 else = 1
 208             if ( (n | (y_is_int - 1)) == 0)
 209                 s = -1.0; // (-ve)**(odd int)
 210 
 211             double p_h, p_l, t1, t2;
 212             // |y| is huge
 213             if (y_abs > 0x1.0p31) { // if |y| > 2**31
 214                 final double INV_LN2   =  0x1.7154_7652_b82fep0;   //  1.44269504088896338700e+00 = 1/ln2
 215                 final double INV_LN2_H =  0x1.715476p0;            //  1.44269502162933349609e+00 = 24 bits of 1/ln2
 216                 final double INV_LN2_L =  0x1.4ae0_bf85_ddf44p-26; //  1.92596299112661746887e-08 = 1/ln2 tail
 217 
 218                 // Over/underflow if x is not close to one
 219                 if (x_abs < 0x1.fffffp-1) // |x| < 0.9999995231628418
 220                     return (y < 0.0) ? s * INFINITY : s * 0.0;
 221                 if (x_abs > 1.0)         // |x| > 1.0
 222                     return (y > 0.0) ? s * INFINITY : s * 0.0;
 223                 /*
 224                  * now |1-x| is tiny <= 2**-20, sufficient to compute
 225                  * log(x) by x - x^2/2 + x^3/3 - x^4/4
 226                  */
 227                 t = x_abs - 1.0;        // t has 20 trailing zeros
 228                 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
 229                 u = INV_LN2_H * t;      // INV_LN2_H has 21 sig. bits
 230                 v =  t * INV_LN2_L - w * INV_LN2;
 231                 t1 = u + v;
 232                 t1 =__LO(t1, 0);
 233                 t2 = v - (t1 - u);
 234             } else {
 235                 final double CP      =  0x1.ec70_9dc3_a03fdp-1;  //  9.61796693925975554329e-01 = 2/(3ln2)
 236                 final double CP_H    =  0x1.ec709ep-1;           //  9.61796700954437255859e-01 = (float)cp
 237                 final double CP_L    = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H
 238 
 239                 double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l;
 240                 n = 0;
 241                 // Take care of subnormal numbers
 242                 if (ix < 0x00100000) {
 243                     x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0
 244                     n -= 53;
 245                     ix = __HI(x_abs);
 246                 }
 247                 n  += ((ix) >> 20) - 0x3ff;
 248                 j  = ix & 0x000fffff;
 249                 // Determine interval
 250                 ix = j | 0x3ff00000;          // Normalize ix
 251                 if (j <= 0x3988E)
 252                     k = 0;         // |x| <sqrt(3/2)
 253                 else if (j < 0xBB67A)
 254                     k = 1;         // |x| <sqrt(3)
 255                 else {
 256                     k = 0;
 257                     n += 1;
 258                     ix -= 0x00100000;
 259                 }
 260                 x_abs = __HI(x_abs, ix);
 261 
 262                 // Compute ss = s_h + s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5)
 263 
 264                 final double BP[]    = {1.0,
 265                                        1.5};
 266                 final double DP_H[]  = {0.0,
 267                                         0x1.2b80_34p-1};        // 5.84962487220764160156e-01
 268                 final double DP_L[]  = {0.0,
 269                                         0x1.cfde_b43c_fd006p-27};// 1.35003920212974897128e-08
 270 
 271                 // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 272                 final double L1      =  0x1.3333_3333_33303p-1;  //  5.99999999999994648725e-01
 273                 final double L2      =  0x1.b6db_6db6_fabffp-2;  //  4.28571428578550184252e-01
 274                 final double L3      =  0x1.5555_5518_f264dp-2;  //  3.33333329818377432918e-01
 275                 final double L4      =  0x1.1746_0a91_d4101p-2;  //  2.72728123808534006489e-01
 276                 final double L5      =  0x1.d864_a93c_9db65p-3;  //  2.30660745775561754067e-01
 277                 final double L6      =  0x1.a7e2_84a4_54eefp-3;  //  2.06975017800338417784e-01
 278                 u = x_abs - BP[k];               // BP[0]=1.0, BP[1]=1.5
 279                 v = 1.0 / (x_abs + BP[k]);
 280                 ss = u * v;
 281                 s_h = ss;
 282                 s_h = __LO(s_h, 0);
 283                 // t_h=x_abs + BP[k] High
 284                 t_h = 0.0;
 285                 t_h = __HI(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18) );
 286                 t_l = x_abs - (t_h - BP[k]);
 287                 s_l = v * ((u - s_h * t_h) - s_h * t_l);
 288                 // Compute log(x_abs)
 289                 s2 = ss * ss;
 290                 r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
 291                 r += s_l * (s_h + ss);
 292                 s2  = s_h * s_h;
 293                 t_h = 3.0 + s2 + r;
 294                 t_h = __LO(t_h, 0);
 295                 t_l = r - ((t_h - 3.0) - s2);
 296                 // u+v = ss*(1+...)
 297                 u = s_h * t_h;
 298                 v = s_l * t_h + t_l * ss;
 299                 // 2/(3log2)*(ss + ...)
 300                 p_h = u + v;
 301                 p_h = __LO(p_h, 0);
 302                 p_l = v - (p_h - u);
 303                 z_h = CP_H * p_h;             // CP_H + CP_L = 2/(3*log2)
 304                 z_l = CP_L * p_h + p_l * CP + DP_L[k];
 305                 // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l
 306                 t = (double)n;
 307                 t1 = (((z_h + z_l) + DP_H[k]) + t);
 308                 t1 = __LO(t1, 0);
 309                 t2 = z_l - (((t1 - t) - DP_H[k]) - z_h);
 310             }
 311 
 312             // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2)
 313             double y1  = y;
 314             y1 = __LO(y1, 0);
 315             p_l = (y - y1) * t1 + y * t2;
 316             p_h = y1 * t1;
 317             z = p_l + p_h;
 318             j = __HI(z);
 319             i = __LO(z);
 320             if (j >= 0x40900000) {                           // z >= 1024
 321                 if (((j - 0x40900000) | i)!=0)               // if z > 1024
 322                     return s * INFINITY;                     // Overflow
 323                 else {
 324                     final double OVT     =  8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp))
 325                     if (p_l + OVT > z - p_h)
 326                         return s * INFINITY;   // Overflow
 327                 }
 328             } else if ((j & 0x7fffffff) >= 0x4090cc00 ) {        // z <= -1075
 329                 if (((j - 0xc090cc00) | i)!=0)           // z < -1075
 330                     return s * 0.0;           // Underflow
 331                 else {
 332                     if (p_l <= z - p_h)
 333                         return s * 0.0;      // Underflow
 334                 }
 335             }
 336             /*
 337              * Compute 2**(p_h+p_l)
 338              */
 339             // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3
 340             final double P1      =  0x1.5555_5555_5553ep-3;  //  1.66666666666666019037e-01
 341             final double P2      = -0x1.6c16_c16b_ebd93p-9;  // -2.77777777770155933842e-03
 342             final double P3      =  0x1.1566_aaf2_5de2cp-14; //  6.61375632143793436117e-05
 343             final double P4      = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06
 344             final double P5      =  0x1.6376_972b_ea4d0p-25; //  4.13813679705723846039e-08
 345             final double LG2     =  0x1.62e4_2fef_a39efp-1;  //  6.93147180559945286227e-01
 346             final double LG2_H   =  0x1.62e43p-1;            //  6.93147182464599609375e-01
 347             final double LG2_L   = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09
 348             i = j & 0x7fffffff;
 349             k = (i >> 20) - 0x3ff;
 350             n = 0;
 351             if (i > 0x3fe00000) {              // if |z| > 0.5, set n = [z + 0.5]
 352                 n = j + (0x00100000 >> (k + 1));
 353                 k = ((n & 0x7fffffff) >> 20) - 0x3ff;     // new k for n
 354                 t = 0.0;
 355                 t = __HI(t, (n & ~(0x000fffff >> k)) );
 356                 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
 357                 if (j < 0)
 358                     n = -n;
 359                 p_h -= t;
 360             }
 361             t = p_l + p_h;
 362             t = __LO(t, 0);
 363             u = t * LG2_H;
 364             v = (p_l - (t - p_h)) * LG2 + t * LG2_L;
 365             z = u + v;
 366             w = v - (z - u);
 367             t  = z * z;
 368             t1  = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
 369             r  = (z * t1)/(t1 - 2.0) - (w + z * w);
 370             z  = 1.0 - (r - z);
 371             j  = __HI(z);
 372             j += (n << 20);
 373             if ((j >> 20) <= 0)
 374                 z = Math.scalb(z, n); // subnormal output
 375             else {
 376                 int z_hi = __HI(z);
 377                 z_hi += (n << 20);
 378                 z = __HI(z, z_hi);
 379             }
 380             return s * z;
 381         }
 382     }
 383 }