--- old/make/mapfiles/libjava/mapfile-vers 2015-10-07 15:28:33.771576886 -0700 +++ new/make/mapfiles/libjava/mapfile-vers 2015-10-07 15:28:33.603576879 -0700 @@ -152,7 +152,6 @@ Java_java_lang_StrictMath_log10; Java_java_lang_StrictMath_sin; Java_java_lang_StrictMath_sqrt; - Java_java_lang_StrictMath_cbrt; Java_java_lang_StrictMath_tan; Java_java_lang_StrictMath_cosh; Java_java_lang_StrictMath_sinh; --- old/src/java.base/share/native/libfdlibm/s_cbrt.c 2015-10-07 15:28:34.255576906 -0700 +++ /dev/null 2015-10-02 10:10:00.970447879 -0700 @@ -1,99 +0,0 @@ - -/* - * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. Oracle designates this - * particular file as subject to the "Classpath" exception as provided - * by Oracle in the LICENSE file that accompanied this code. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - */ - -#include "fdlibm.h" - -/* cbrt(x) - * Return cube root of x - */ -#ifdef __STDC__ -static const unsigned -#else -static unsigned -#endif - B1 = 715094163, /* B1 = (682-0.03306235651)*2**20 */ - B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ - -#ifdef __STDC__ -static const double -#else -static double -#endif -C = 5.42857142857142815906e-01, /* 19/35 = 0x3FE15F15, 0xF15F15F1 */ -D = -7.05306122448979611050e-01, /* -864/1225 = 0xBFE691DE, 0x2532C834 */ -E = 1.41428571428571436819e+00, /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */ -F = 1.60714285714285720630e+00, /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */ -G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */ - -#ifdef __STDC__ - double cbrt(double x) -#else - double cbrt(x) - double x; -#endif -{ - int hx; - double r,s,t=0.0,w; - unsigned sign; - - - hx = __HI(x); /* high word of x */ - sign=hx&0x80000000; /* sign= sign(x) */ - hx ^=sign; - if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */ - if((hx|__LO(x))==0) - return(x); /* cbrt(0) is itself */ - - __HI(x) = hx; /* x <- |x| */ - /* rough cbrt to 5 bits */ - if(hx<0x00100000) /* subnormal number */ - {__HI(t)=0x43500000; /* set t= 2**54 */ - t*=x; __HI(t)=__HI(t)/3+B2; - } - else - __HI(t)=hx/3+B1; - - - /* new cbrt to 23 bits, may be implemented in single precision */ - r=t*t/x; - s=C+r*t; - t*=G+F/(s+E+D/s); - - /* chopped to 20 bits and make it larger than cbrt(x) */ - __LO(t)=0; __HI(t)+=0x00000001; - - - /* one step newton iteration to 53 bits with error less than 0.667 ulps */ - s=t*t; /* t*t is exact */ - r=x/s; - w=t+t; - r=(r-t)/(w+r); /* r-s is exact */ - t=t+t*r; - - /* retore the sign bit */ - __HI(t) |= sign; - return(t); -} --- /dev/null 2015-10-02 10:10:00.970447879 -0700 +++ new/src/java.base/share/classes/java/lang/FdLibm.java 2015-10-07 15:28:34.023576896 -0700 @@ -0,0 +1,586 @@ +/* + * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. Oracle designates this + * particular file as subject to the "Classpath" exception as provided + * by Oracle in the LICENSE file that accompanied this code. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + */ + +package java.lang; + +/** + * Port of the "Freely Distributable Math Library", version 5.3, from + * C to Java. + * + *

The C version of fdlibm relied on the idiom of pointer aliasing + * a 64-bit double floating-point value as a two-element array of + * 32-bit integers and reading and writing the two halves of the + * double independently. This coding pattern was problematic to C + * optimizers and not directly expressible in Java. Therefore, rather + * than a memory level overlay, if portions of a double need to be + * operated on as integer values, the standard library methods for + * bitwise floating-point to integer conversion, + * Double.longBitsToDouble and Double.doubleToRawLongBits, are directly + * or indirectly used. + * + *

The C version of fdlibm also took some pains to signal the + * correct IEEE 754 exceptional conditions divide by zero, invalid, + * overflow and underflow. For example, overflow would be signaled by + * {@code huge * huge} where {@code huge} was a large constant that + * would overflow when squared. Since IEEE floating-point exceptional + * handling is not supported natively in the JVM, such coding patterns + * have been omitted from this port. For example, rather than {@code + * return huge * huge}, this port will use {@code return INFINITY}. + * + *

Various comparison and arithmetic operations in fdlibm could be + * done either based on the integer view of a value or directly on the + * floating-point representation. Which idiom is faster may depend on + * platform specific factors. However, for code clarity if no other + * reason, this port will favor expressing the semantics of those + * operations in terms of floating-point operations when convenient to + * do so. + */ +class FdLibm { + // Constants used by multiple algorithms + private static final double INFINITY = Double.POSITIVE_INFINITY; + + private FdLibm() { + throw new UnsupportedOperationException("No FdLibm instances for you."); + } + + /** + * Return the low-order 32 bits of the double argument as an int. + */ + private static int __LO(double x) { + long transducer = Double.doubleToRawLongBits(x); + return (int)transducer; + } + + /** + * Return a double with its low-order bits of the second argument + * and the high-order bits of the first argument.. + */ + private static double __LO(double x, int low) { + long transX = Double.doubleToRawLongBits(x); + return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low ); + } + + /** + * Return the high-order 32 bits of the double argument as an int. + */ + private static int __HI(double x) { + long transducer = Double.doubleToRawLongBits(x); + return (int)(transducer >> 32); + } + + /** + * Return a double with its high-order bits of the second argument + * and the low-order bits of the first argument.. + */ + private static double __HI(double x, int high) { + long transX = Double.doubleToRawLongBits(x); + return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 ); + } + + /** + * cbrt(x) + * Return cube root of x + */ + public static class Cbrt { + // unsigned + private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */ + private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */ + + private static final double C = 5.42857142857142815906e-01; /* 19/35 = 0x3FE15F15, 0xF15F15F1 */ + private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */ + private static final double E = 1.41428571428571436819e+00; /* 99/70 = 0x3FF6A0EA, 0x0EA0EA0F */ + private static final double F = 1.60714285714285720630e+00; /* 45/28 = 0x3FF9B6DB, 0x6DB6DB6E */ + private static final double G = 3.57142857142857150787e-01; /* 5/14 = 0x3FD6DB6D, 0xB6DB6DB7 */ + + public static strictfp double compute(double x) { + int hx; + double r, s, t=0.0, w; + int sign; // unsigned + + hx = __HI(x); // high word of x + sign = hx & 0x80000000; // sign= sign(x) + hx ^= sign; + if (hx >= 0x7ff00000) + return (x+x); // cbrt(NaN,INF) is itself + if ((hx | __LO(x)) == 0) + return(x); // cbrt(0) is itself + + x = __HI(x, hx); // x <- |x| + // rough cbrt to 5 bits + if (hx < 0x00100000) { // subnormal number + t = __HI(t, 0x43500000); // set t= 2**54 + t *= x; + t = __HI(t, __HI(t)/3+B2); + } else { + t = __HI(t, hx/3+B1); + } + + // new cbrt to 23 bits, may be implemented in single precision + r = t * t/x; + s = C + r*t; + t *= G + F/(s + E + D/s); + + // chopped to 20 bits and make it larger than cbrt(x) + t = __LO(t, 0); + t = __HI(t, __HI(t)+0x00000001); + + + // one step newton iteration to 53 bits with error less than 0.667 ulps + s = t * t; // t*t is exact + r = x / s; + w = t + t; + r= (r - t)/(w + r); // r-s is exact + t= t + t*r; + + // retore the sign bit + t = __HI(t, __HI(t) | sign); + return(t); + } + } + + /** + * hypot(x,y) + * + * Method : + * If (assume round-to-nearest) z = x*x + y*y + * has error less than sqrt(2)/2 ulp, than + * sqrt(z) has error less than 1 ulp (exercise). + * + * So, compute sqrt(x*x + y*y) with some care as + * follows to get the error below 1 ulp: + * + * Assume x > y > 0; + * (if possible, set rounding to round-to-nearest) + * 1. if x > 2y use + * x1*x1 + (y*y + (x2*(x + x1))) for x*x + y*y + * where x1 = x with lower 32 bits cleared, x2 = x - x1; else + * 2. if x <= 2y use + * t1*y1 + ((x-y) * (x-y) + (t1*y2 + t2*y)) + * where t1 = 2x with lower 32 bits cleared, t2 = 2x - t1, + * y1= y with lower 32 bits chopped, y2 = y - y1. + * + * NOTE: scaling may be necessary if some argument is too + * large or too tiny + * + * Special cases: + * hypot(x,y) is INF if x or y is +INF or -INF; else + * hypot(x,y) is NAN if x or y is NAN. + * + * Accuracy: + * hypot(x,y) returns sqrt(x^2 + y^2) with error less + * than 1 ulp (unit in the last place) + */ + public static class Hypot { + public static final double TWO_MINUS_600 = 0x1.0p-600; + public static final double TWO_PLUS_600 = 0x1.0p+600; + + public static strictfp double compute(double x, double y) { + double a = Math.abs(x); + double b = Math.abs(y); + + if (!Double.isFinite(a) || !Double.isFinite(b)) { + if (a == INFINITY || b == INFINITY) + return INFINITY; + else + return a + b; // Propagate NaN significand bits + } + + if (b > a) { + double tmp = a; + a = b; + b = tmp; + } + assert a >= b; + + // Doing bitwise conversion after screening for NaN allows + // the code to not worry about the possibility of + // "negative" NaN values. + + // Note: the ha and hb variables are the high-order + // 32-bits of a and b stored as integer values. The ha and + // hb values are used first for a rough magnitude + // comparison of a and b and second for simulating higher + // precision by allowing a and b, respectively, to be + // decomposed into non-overlapping portions. Both of these + // uses could be eliminated. The magnitude comparison + // could be eliminated by extracting and comparing the + // exponents of a and b or just be performing a + // floating-point divide. Splitting a floating-point + // number into non-overlapping portions can be + // accomplished by judicious use of multiplies and + // additions. For details see T. J. Dekker, A Floating + // Point Technique for Extending the Available Precision , + // Numerische Mathematik, vol. 18, 1971, pp.224-242 and + // subsequent work. + + int ha = __HI(a); // high word of a + int hb = __HI(b); // high word of b + + if ((ha - hb) > 0x3c00000) { + return a + b; // x / y > 2**60 + } + + int k = 0; + if (a > 0x1.00000_ffff_ffffp500) { // a > ~2**500 + // scale a and b by 2**-600 + ha -= 0x25800000; + hb -= 0x25800000; + a = a * TWO_MINUS_600; + b = b * TWO_MINUS_600; + k += 600; + } + double t1, t2; + if (b < 0x1.0p-500) { // b < 2**-500 + if (b < Double.MIN_NORMAL) { // subnormal b or 0 */ + if (b == 0.0) + return a; + t1 = 0x1.0p1022; // t1 = 2^1022 + b *= t1; + a *= t1; + k -= 1022; + } else { // scale a and b by 2^600 + ha += 0x25800000; // a *= 2^600 + hb += 0x25800000; // b *= 2^600 + a = a * TWO_PLUS_600; + b = b * TWO_PLUS_600; + k -= 600; + } + } + // medium size a and b + double w = a - b; + if (w > b) { + t1 = 0; + t1 = __HI(t1, ha); + t2 = a - t1; + w = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1))); + } else { + double y1, y2; + a = a + a; + y1 = 0; + y1 = __HI(y1, hb); + y2 = b - y1; + t1 = 0; + t1 = __HI(t1, ha + 0x00100000); + t2 = a - t1; + w = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b))); + } + if (k != 0) { + return Math.powerOfTwoD(k) * w; + } else + return w; + } + } + + /** + * Compute x**y + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 53 - 24 = 29 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating multi-precision + * arithmetic, where |y'| <= 0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + * pow(x,y) returns x**y nearly rounded. In particular + * pow(integer,integer) + * always returns the correct integer provided it is + * representable. + */ + public static class Pow { + public static strictfp double compute(final double x, final double y) { + double z; + double r, s, t, u, v, w; + int i, j, k, n; + + // y == zero: x**0 = 1 + if (y == 0.0) + return 1.0; + + // +/-NaN return x + y to propagate NaN significands + if (Double.isNaN(x) || Double.isNaN(y)) + return x + y; + + final double y_abs = Math.abs(y); + double x_abs = Math.abs(x); + // Special values of y + if (y == 2.0) { + return x * x; + } else if (y == 0.5) { + if (x >= -Double.MAX_VALUE) // Handle x == -infinity later + return Math.sqrt(x + 0.0); // Add 0.0 to properly handle x == -0.0 + } else if (y_abs == 1.0) { // y is +/-1 + return (y == 1.0) ? x : 1.0 / x; + } else if (y_abs == INFINITY) { // y is +/-infinity + if (x_abs == 1.0) + return y - y; // inf**+/-1 is NaN + else if (x_abs > 1.0) // (|x| > 1)**+/-inf = inf, 0 + return (y >= 0) ? y : 0.0; + else // (|x| < 1)**-/+inf = inf, 0 + return (y < 0) ? -y : 0.0; + } + + final int hx = __HI(x); + int ix = hx & 0x7fffffff; + + /* + * When x < 0, determine if y is an odd integer: + * y_is_int = 0 ... y is not an integer + * y_is_int = 1 ... y is an odd int + * y_is_int = 2 ... y is an even int + */ + int y_is_int = 0; + if (hx < 0) { + if (y_abs >= 0x1.0p53) // |y| >= 2^53 = 9.007199254740992E15 + y_is_int = 2; // y is an even integer since ulp(2^53) = 2.0 + else if (y_abs >= 1.0) { // |y| >= 1.0 + long y_abs_as_long = (long) y_abs; + if ( ((double) y_abs_as_long) == y_abs) { + y_is_int = 2 - (int)(y_abs_as_long & 0x1L); + } + } + } + + // Special value of x + if (x_abs == 0.0 || + x_abs == INFINITY || + x_abs == 1.0) { + z = x_abs; // x is +/-0, +/-inf, +/-1 + if (y < 0.0) + z = 1.0/z; // z = (1/|x|) + if (hx < 0) { + if (((ix - 0x3ff00000) | y_is_int) == 0) { + z = (z-z)/(z-z); // (-1)**non-int is NaN + } else if (y_is_int == 1) + z = -1.0 * z; // (x < 0)**odd = -(|x|**odd) + } + return z; + } + + n = (hx >> 31) + 1; + + // (x < 0)**(non-int) is NaN + if ((n | y_is_int) == 0) + return (x-x)/(x-x); + + s = 1.0; // s (sign of result -ve**odd) = -1 else = 1 + if ( (n | (y_is_int - 1)) == 0) + s = -1.0; // (-ve)**(odd int) + + double p_h, p_l, t1, t2; + // |y| is huge + if (y_abs > 0x1.00000_ffff_ffffp31) { // if |y| > ~2**31 + final double INV_LN2 = 0x1.7154_7652_b82fep0; // 1.44269504088896338700e+00 = 1/ln2 + final double INV_LN2_H = 0x1.715476p0; // 1.44269502162933349609e+00 = 24 bits of 1/ln2 + final double INV_LN2_L = 0x1.4ae0_bf85_ddf44p-26; // 1.92596299112661746887e-08 = 1/ln2 tail + + // Over/underflow if x is not close to one + if (x_abs < 0x1.fffff_0000_0000p-1) // |x| < ~0.9999995231628418 + return (y < 0.0) ? s * INFINITY : s * 0.0; + if (x_abs > 0x1.00000_ffff_ffffp0) // |x| > ~1.0 + return (y > 0.0) ? s * INFINITY : s * 0.0; + /* + * now |1-x| is tiny <= 2**-20, sufficient to compute + * log(x) by x - x^2/2 + x^3/3 - x^4/4 + */ + t = x_abs - 1.0; // t has 20 trailing zeros + w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); + u = INV_LN2_H * t; // INV_LN2_H has 21 sig. bits + v = t * INV_LN2_L - w * INV_LN2; + t1 = u + v; + t1 =__LO(t1, 0); + t2 = v - (t1 - u); + } else { + final double CP = 0x1.ec70_9dc3_a03fdp-1; // 9.61796693925975554329e-01 = 2/(3ln2) + final double CP_H = 0x1.ec709ep-1; // 9.61796700954437255859e-01 = (float)cp + final double CP_L = -0x1.e2fe_0145_b01f5p-28; // -7.02846165095275826516e-09 = tail of CP_H + + double z_h, z_l, ss, s2, s_h, s_l, t_h, t_l; + n = 0; + // Take care of subnormal numbers + if (ix < 0x00100000) { + x_abs *= 0x1.0p53; // 2^53 = 9007199254740992.0 + n -= 53; + ix = __HI(x_abs); + } + n += ((ix) >> 20) - 0x3ff; + j = ix & 0x000fffff; + // Determine interval + ix = j | 0x3ff00000; // Normalize ix + if (j <= 0x3988E) + k = 0; // |x| > 1) | 0x20000000) + 0x00080000 + (k << 18) ); + t_l = x_abs - (t_h - BP[k]); + s_l = v * ((u - s_h * t_h) - s_h * t_l); + // Compute log(x_abs) + s2 = ss * ss; + r = s2 * s2* (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); + r += s_l * (s_h + ss); + s2 = s_h * s_h; + t_h = 3.0 + s2 + r; + t_h = __LO(t_h, 0); + t_l = r - ((t_h - 3.0) - s2); + // u+v = ss*(1+...) + u = s_h * t_h; + v = s_l * t_h + t_l * ss; + // 2/(3log2)*(ss + ...) + p_h = u + v; + p_h = __LO(p_h, 0); + p_l = v - (p_h - u); + z_h = CP_H * p_h; // CP_H + CP_L = 2/(3*log2) + z_l = CP_L * p_h + p_l * CP + DP_L[k]; + // log2(x_abs) = (ss + ..)*2/(3*log2) = n + DP_H + z_h + z_l + t = (double)n; + t1 = (((z_h + z_l) + DP_H[k]) + t); + t1 = __LO(t1, 0); + t2 = z_l - (((t1 - t) - DP_H[k]) - z_h); + } + + // Split up y into (y1 + y2) and compute (y1 + y2) * (t1 + t2) + double y1 = y; + y1 = __LO(y1, 0); + p_l = (y - y1) * t1 + y * t2; + p_h = y1 * t1; + z = p_l + p_h; + j = __HI(z); + i = __LO(z); + if (j >= 0x40900000) { // z >= 1024 + if (((j - 0x40900000) | i)!=0) // if z > 1024 + return s * INFINITY; // Overflow + else { + final double OVT = 8.0085662595372944372e-0017; // -(1024-log2(ovfl+.5ulp)) + if (p_l + OVT > z - p_h) + return s * INFINITY; // Overflow + } + } else if ((j & 0x7fffffff) >= 0x4090cc00 ) { // z <= -1075 + if (((j - 0xc090cc00) | i)!=0) // z < -1075 + return s * 0.0; // Underflow + else { + if (p_l <= z - p_h) + return s * 0.0; // Underflow + } + } + /* + * Compute 2**(p_h+p_l) + */ + // Poly coefs for (3/2)*(log(x)-2s-2/3*s**3 + final double P1 = 0x1.5555_5555_5553ep-3; // 1.66666666666666019037e-01 + final double P2 = -0x1.6c16_c16b_ebd93p-9; // -2.77777777770155933842e-03 + final double P3 = 0x1.1566_aaf2_5de2cp-14; // 6.61375632143793436117e-05 + final double P4 = -0x1.bbd4_1c5d_26bf1p-20; // -1.65339022054652515390e-06 + final double P5 = 0x1.6376_972b_ea4d0p-25; // 4.13813679705723846039e-08 + final double LG2 = 0x1.62e4_2fef_a39efp-1; // 6.93147180559945286227e-01 + final double LG2_H = 0x1.62e43p-1; // 6.93147182464599609375e-01 + final double LG2_L = -0x1.05c6_10ca_86c39p-29; // -1.90465429995776804525e-09 + i = j & 0x7fffffff; + k = (i >> 20) - 0x3ff; + n = 0; + if (i > 0x3fe00000) { // if |z| > 0.5, set n = [z + 0.5] + n = j + (0x00100000 >> (k + 1)); + k = ((n & 0x7fffffff) >> 20) - 0x3ff; // new k for n + t = 0.0; + t = __HI(t, (n & ~(0x000fffff >> k)) ); + n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); + if (j < 0) + n = -n; + p_h -= t; + } + t = p_l + p_h; + t = __LO(t, 0); + u = t * LG2_H; + v = (p_l - (t - p_h)) * LG2 + t * LG2_L; + z = u + v; + w = v - (z - u); + t = z * z; + t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); + r = (z * t1)/(t1 - 2.0) - (w + z * w); + z = 1.0 - (r - z); + j = __HI(z); + j += (n << 20); + if ((j >> 20) <= 0) + z = Math.scalb(z, n); // subnormal output + else { + int z_hi = __HI(z); + z_hi += (n << 20); + z = __HI(z, z_hi); + } + return s * z; + } + } +} --- old/src/java.base/share/classes/java/lang/StrictMath.java 2015-10-07 15:28:34.723576925 -0700 +++ new/src/java.base/share/classes/java/lang/StrictMath.java 2015-10-07 15:28:34.547576917 -0700 @@ -307,7 +307,9 @@ * @return the cube root of {@code a}. * @since 1.5 */ - public static native double cbrt(double a); + public static double cbrt(double a) { + return FdLibm.Cbrt.compute(a); + } /** * Computes the remainder operation on two arguments as prescribed --- old/src/java.base/share/native/libjava/StrictMath.c 2015-10-07 15:28:35.183576943 -0700 +++ new/src/java.base/share/native/libjava/StrictMath.c 2015-10-07 15:28:34.999576936 -0700 @@ -89,12 +89,6 @@ } JNIEXPORT jdouble JNICALL -Java_java_lang_StrictMath_cbrt(JNIEnv *env, jclass unused, jdouble d) -{ - return (jdouble) jcbrt((double)d); -} - -JNIEXPORT jdouble JNICALL Java_java_lang_StrictMath_atan2(JNIEnv *env, jclass unused, jdouble d1, jdouble d2) { return (jdouble) jatan2((double)d1, (double)d2);