1 /*
   2  * Copyright (c) 2003, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @library /lib/testlibrary/
  27  * @build jdk.testlibrary.*
  28  * @run main HypotTests
  29  * @bug 4851638 4939441 8078672
  30  * @summary Tests for {Math, StrictMath}.hypot (use -Dseed=X to set PRNG seed)
  31  * @author Joseph D. Darcy
  32  * @key randomness
  33  */
  34 
  35 import jdk.testlibrary.RandomFactory;
  36 
  37 public class HypotTests {
  38     private HypotTests(){}
  39 
  40     static final double infinityD = Double.POSITIVE_INFINITY;
  41     static final double NaNd      = Double.NaN;
  42 
  43     /**
  44      * Given integers m and n, assuming m < n, the triple (n^2 - m^2,
  45      * 2mn, and n^2 + m^2) is a Pythagorean triple with a^2 + b^2 =
  46      * c^2.  This methods returns a long array holding the Pythagorean
  47      * triple corresponding to the inputs.
  48      */
  49     static long [] pythagoreanTriple(int m, int n) {
  50         long M = m;
  51         long N = n;
  52         long result[] = new long[3];
  53 
  54 
  55         result[0] = Math.abs(M*M - N*N);
  56         result[1] = Math.abs(2*M*N);
  57         result[2] = Math.abs(M*M + N*N);
  58 
  59         return result;
  60     }
  61 
  62     static int testHypot() {
  63         int failures = 0;
  64 
  65         double [][] testCases = {
  66             // Special cases
  67             {infinityD,         infinityD,              infinityD},
  68             {infinityD,         0.0,                    infinityD},
  69             {infinityD,         1.0,                    infinityD},
  70             {infinityD,         NaNd,                   infinityD},
  71             {NaNd,              NaNd,                   NaNd},
  72             {0.0,               NaNd,                   NaNd},
  73             {1.0,               NaNd,                   NaNd},
  74             {Double.longBitsToDouble(0x7FF0000000000001L),      1.0,    NaNd},
  75             {Double.longBitsToDouble(0xFFF0000000000001L),      1.0,    NaNd},
  76             {Double.longBitsToDouble(0x7FF8555555555555L),      1.0,    NaNd},
  77             {Double.longBitsToDouble(0xFFF8555555555555L),      1.0,    NaNd},
  78             {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      1.0,    NaNd},
  79             {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      1.0,    NaNd},
  80             {Double.longBitsToDouble(0x7FFDeadBeef00000L),      1.0,    NaNd},
  81             {Double.longBitsToDouble(0xFFFDeadBeef00000L),      1.0,    NaNd},
  82             {Double.longBitsToDouble(0x7FFCafeBabe00000L),      1.0,    NaNd},
  83             {Double.longBitsToDouble(0xFFFCafeBabe00000L),      1.0,    NaNd},
  84         };
  85 
  86         for(int i = 0; i < testCases.length; i++) {
  87             failures += testHypotCase(testCases[i][0], testCases[i][1],
  88                                       testCases[i][2]);
  89         }
  90 
  91         // Verify hypot(x, 0.0) is close to x over the entire exponent
  92         // range.
  93         for(int i = DoubleConsts.MIN_SUB_EXPONENT;
  94             i <= Double.MAX_EXPONENT;
  95             i++) {
  96             double input = Math.scalb(2, i);
  97             failures += testHypotCase(input, 0.0, input);
  98         }
  99 
 100 
 101         // Test Pythagorean triples
 102 
 103         // Small ones
 104         for(int m = 1; m < 10; m++) {
 105             for(int n = m+1; n < 11; n++) {
 106                 long [] result = pythagoreanTriple(m, n);
 107                 failures += testHypotCase(result[0], result[1], result[2]);
 108             }
 109         }
 110 
 111         // Big ones
 112         for(int m = 100000; m < 100100; m++) {
 113             for(int n = m+100000; n < 200200; n++) {
 114                 long [] result = pythagoreanTriple(m, n);
 115                 failures += testHypotCase(result[0], result[1], result[2]);
 116             }
 117         }
 118 
 119         // Approaching overflow tests
 120 
 121         /*
 122          * Create a random value r with an large-ish exponent.  The
 123          * result of hypot(3*r, 4*r) should be approximately 5*r. (The
 124          * computation of 4*r is exact since it just changes the
 125          * exponent).  While the exponent of r is less than or equal
 126          * to (MAX_EXPONENT - 3), the computation should not overflow.
 127          */
 128         java.util.Random rand = RandomFactory.getRandom();
 129         for(int i = 0; i < 1000; i++) {
 130             double d = rand.nextDouble();
 131             // Scale d to have an exponent equal to MAX_EXPONENT -15
 132             d = Math.scalb(d, Double.MAX_EXPONENT
 133                                  -15 - Tests.ilogb(d));
 134             for(int j = 0; j <= 13; j += 1) {
 135                 failures += testHypotCase(3*d, 4*d, 5*d, 2.5);
 136                 d *= 2.0; // increase exponent by 1
 137             }
 138         }
 139 
 140         // Test for monotonicity failures.  Fix one argument and test
 141         // two numbers before and two numbers after each chosen value;
 142         // i.e.
 143         //
 144         // pcNeighbors[] =
 145         // {nextDown(nextDown(pc)),
 146         // nextDown(pc),
 147         // pc,
 148         // nextUp(pc),
 149         // nextUp(nextUp(pc))}
 150         //
 151         // and we test that hypot(pcNeighbors[i]) <= hypot(pcNeighbors[i+1])
 152         {
 153             double pcNeighbors[] = new double[5];
 154             double pcNeighborsHypot[] = new double[5];
 155             double pcNeighborsStrictHypot[] = new double[5];
 156 
 157 
 158             for(int i = -18; i <= 18; i++) {
 159                 double pc = Math.scalb(1.0, i);
 160 
 161                 pcNeighbors[2] = pc;
 162                 pcNeighbors[1] = Math.nextDown(pc);
 163                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 164                 pcNeighbors[3] = Math.nextUp(pc);
 165                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 166 
 167                 for(int j = 0; j < pcNeighbors.length; j++) {
 168                     pcNeighborsHypot[j]       =       Math.hypot(2.0, pcNeighbors[j]);
 169                     pcNeighborsStrictHypot[j] = StrictMath.hypot(2.0, pcNeighbors[j]);
 170                 }
 171 
 172                 for(int j = 0; j < pcNeighborsHypot.length-1; j++) {
 173                     if(pcNeighborsHypot[j] >  pcNeighborsHypot[j+1] ) {
 174                         failures++;
 175                         System.err.println("Monotonicity failure for Math.hypot on " +
 176                                           pcNeighbors[j] + " and "  +
 177                                           pcNeighbors[j+1] + "\n\treturned " +
 178                                           pcNeighborsHypot[j] + " and " +
 179                                           pcNeighborsHypot[j+1] );
 180                     }
 181 
 182                     if(pcNeighborsStrictHypot[j] >  pcNeighborsStrictHypot[j+1] ) {
 183                         failures++;
 184                         System.err.println("Monotonicity failure for StrictMath.hypot on " +
 185                                           pcNeighbors[j] + " and "  +
 186                                           pcNeighbors[j+1] + "\n\treturned " +
 187                                           pcNeighborsStrictHypot[j] + " and " +
 188                                           pcNeighborsStrictHypot[j+1] );
 189                     }
 190 
 191 
 192                 }
 193 
 194             }
 195         }
 196 
 197 
 198         return failures;
 199     }
 200 
 201     static int testHypotCase(double input1, double input2, double expected) {
 202         return testHypotCase(input1,input2, expected, 1);
 203     }
 204 
 205     static int testHypotCase(double input1, double input2, double expected,
 206                              double ulps) {
 207         int failures = 0;
 208         if (expected < 0.0) {
 209             throw new AssertionError("Result of hypot must be greater than " +
 210                                      "or equal to zero");
 211         }
 212 
 213         // Test Math and StrictMath methods with no inputs negated,
 214         // each input negated singly, and both inputs negated.  Also
 215         // test inputs in reversed order.
 216 
 217         for(int i = -1; i <= 1; i+=2) {
 218             for(int j = -1; j <= 1; j+=2) {
 219                 double x = i * input1;
 220                 double y = j * input2;
 221                 failures += Tests.testUlpDiff("Math.hypot", x, y,
 222                                               Math.hypot(x, y), expected, ulps);
 223                 failures += Tests.testUlpDiff("Math.hypot", y, x,
 224                                               Math.hypot(y, x ), expected, ulps);
 225 
 226                 failures += Tests.testUlpDiff("StrictMath.hypot", x, y,
 227                                               StrictMath.hypot(x, y), expected, ulps);
 228                 failures += Tests.testUlpDiff("StrictMath.hypot", y, x,
 229                                               StrictMath.hypot(y, x), expected, ulps);
 230             }
 231         }
 232 
 233         return failures;
 234     }
 235 
 236     public static void main(String argv[]) {
 237         int failures = 0;
 238 
 239         failures += testHypot();
 240 
 241         if (failures > 0) {
 242             System.err.println("Testing the hypot incurred "
 243                                + failures + " failures.");
 244             throw new RuntimeException();
 245         }
 246     }
 247 
 248 }