< prev index next >

src/java.base/share/classes/java/lang/FdLibm.java

Print this page

        

*** 94,104 **** * Return a double with its high-order bits of the second argument * and the low-order bits of the first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); ! return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 ); } /** * cbrt(x) * Return cube root of x --- 94,105 ---- * Return a double with its high-order bits of the second argument * and the low-order bits of the first argument.. */ private static double __HI(double x, int high) { long transX = Double.doubleToRawLongBits(x); ! return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) | ! ( ((long)high)) << 32 ); } /** * cbrt(x) * Return cube root of x
*** 578,583 **** --- 579,731 ---- z = __HI(z, z_hi); } return s * z; } } + + /** + * Returns the exponential of x. + * + * Method + * 1. Argument reduction: + * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. + * Given x, find r and integer k such that + * + * x = k*ln2 + r, |r| <= 0.5*ln2. + * + * Here r will be represented as r = hi-lo for better + * accuracy. + * + * 2. Approximation of exp(r) by a special rational function on + * the interval [0,0.34658]: + * Write + * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... + * We use a special Reme algorithm on [0,0.34658] to generate + * a polynomial of degree 5 to approximate R. The maximum error + * of this polynomial approximation is bounded by 2**-59. In + * other words, + * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 + * (where z=r*r, and the values of P1 to P5 are listed below) + * and + * | 5 | -59 + * | 2.0+P1*z+...+P5*z - R(z) | <= 2 + * | | + * The computation of exp(r) thus becomes + * 2*r + * exp(r) = 1 + ------- + * R - r + * r*R1(r) + * = 1 + r + ----------- (for better accuracy) + * 2 - R1(r) + * where + * 2 4 10 + * R1(r) = r - (P1*r + P2*r + ... + P5*r ). + * + * 3. Scale back to obtain exp(x): + * From step 1, we have + * exp(x) = 2^k * exp(r) + * + * Special cases: + * exp(INF) is INF, exp(NaN) is NaN; + * exp(-INF) is 0, and + * for finite argument, only exp(0)=1 is exact. + * + * Accuracy: + * according to an error analysis, the error is always less than + * 1 ulp (unit in the last place). + * + * Misc. info. + * For IEEE double + * if x > 7.09782712893383973096e+02 then exp(x) overflow + * if x < -7.45133219101941108420e+02 then exp(x) underflow + * + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + static class Exp { + private static final double one = 1.0; + private static final double[] halF = {0.5, -0.5,}; + private static final double huge = 1.0e+300; + private static final double twom1000= 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0*/ + private static final double o_threshold= 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */ + private static final double u_threshold= -7.45133219101941108420e+02; /* 0xc0874910, 0xD52D3051 */ + private static final double[] ln2HI ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */ + -6.93147180369123816490e-01}; /* 0xbfe62e42, 0xfee00000 */ + private static final double[] ln2LO ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */ + -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */ + private static final double invln2 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */ + private static final double P1 = 1.66666666666666019037e-01; /* 0x3FC55555, 0x5555553E */ + private static final double P2 = -2.77777777770155933842e-03; /* 0xBF66C16C, 0x16BEBD93 */ + private static final double P3 = 6.61375632143793436117e-05; /* 0x3F11566A, 0xAF25DE2C */ + private static final double P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41, 0xC5D26BF1 */ + private static final double P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */ + + // should be able to forgo strictfp due to controlled over/underflow + public static strictfp double compute(double x) { + double y; + double hi = 0.0; + double lo = 0.0; + double c; + double t; + int k = 0; + int xsb; + /*unsigned*/ int hx; + + hx = __HI(x); /* high word of x */ + xsb = (hx >> 31) & 1; /* sign bit of x */ + hx &= 0x7fffffff; /* high word of |x| */ + + /* filter out non-finite argument */ + if (hx >= 0x40862E42) { /* if |x| >= 709.78... */ + if (hx >= 0x7ff00000) { + if (((hx & 0xfffff) | __LO(x)) != 0) + return x + x; /* NaN */ + else + return (xsb == 0) ? x : 0.0; /* exp(+-inf) = {inf, 0} */ + } + if (x > o_threshold) + return huge * huge; /* overflow */ + if (x < u_threshold) // unsigned compare needed here? + return twom1000 * twom1000; /* underflow */ + } + + /* argument reduction */ + if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */ + if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */ + hi = x - ln2HI[xsb]; + lo=ln2LO[xsb]; + k = 1 - xsb - xsb; + } else { + k = (int)(invln2 * x + halF[xsb]); + t = k; + hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */ + lo = t*ln2LO[0]; + } + x = hi - lo; + } else if (hx < 0x3e300000) { /* when |x|<2**-28 */ + if (huge + x > one) + return one + x;/* trigger inexact */ + } else { + k = 0; + } + + /* x is now in primary range */ + t = x * x; + c = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5)))); + if (k == 0) + return one - ((x*c)/(c - 2.0) -x); + else + y = one - ((lo - (x*c)/(2.0 - c)) - hi); + + if(k >= -1021) { + y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */ + return y; + } else { + y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */ + return y * twom1000; + } + } + } }
< prev index next >