1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.util.Random;
  29 import jdk.internal.math.DoubleConsts;
  30 import jdk.internal.HotSpotIntrinsicCandidate;
  31 
  32 /**
  33  * The class {@code StrictMath} contains methods for performing basic
  34  * numeric operations such as the elementary exponential, logarithm,
  35  * square root, and trigonometric functions.
  36  *
  37  * <p>To help ensure portability of Java programs, the definitions of
  38  * some of the numeric functions in this package require that they
  39  * produce the same results as certain published algorithms. These
  40  * algorithms are available from the well-known network library
  41  * {@code netlib} as the package "Freely Distributable Math
  42  * Library," <a
  43  * href="ftp://ftp.netlib.org/fdlibm.tar">{@code fdlibm}</a>. These
  44  * algorithms, which are written in the C programming language, are
  45  * then to be understood as executed with all floating-point
  46  * operations following the rules of Java floating-point arithmetic.
  47  *
  48  * <p>The Java math library is defined with respect to
  49  * {@code fdlibm} version 5.3. Where {@code fdlibm} provides
  50  * more than one definition for a function (such as
  51  * {@code acos}), use the "IEEE 754 core function" version
  52  * (residing in a file whose name begins with the letter
  53  * {@code e}).  The methods which require {@code fdlibm}
  54  * semantics are {@code sin}, {@code cos}, {@code tan},
  55  * {@code asin}, {@code acos}, {@code atan},
  56  * {@code exp}, {@code log}, {@code log10},
  57  * {@code cbrt}, {@code atan2}, {@code pow},
  58  * {@code sinh}, {@code cosh}, {@code tanh},
  59  * {@code hypot}, {@code expm1}, and {@code log1p}.
  60  *
  61  * <p>
  62  * The platform uses signed two's complement integer arithmetic with
  63  * int and long primitive types.  The developer should choose
  64  * the primitive type to ensure that arithmetic operations consistently
  65  * produce correct results, which in some cases means the operations
  66  * will not overflow the range of values of the computation.
  67  * The best practice is to choose the primitive type and algorithm to avoid
  68  * overflow. In cases where the size is {@code int} or {@code long} and
  69  * overflow errors need to be detected, the methods {@code addExact},
  70  * {@code subtractExact}, {@code multiplyExact}, and {@code toIntExact}
  71  * throw an {@code ArithmeticException} when the results overflow.
  72  * For other arithmetic operations such as divide, absolute value,
  73  * increment by one, decrement by one, and negation overflow occurs only with
  74  * a specific minimum or maximum value and should be checked against
  75  * the minimum or maximum as appropriate.
  76  *
  77  * @author  unascribed
  78  * @author  Joseph D. Darcy
  79  * @since   1.3
  80  */
  81 
  82 public final class StrictMath {
  83 
  84     /**
  85      * Don't let anyone instantiate this class.
  86      */
  87     private StrictMath() {}
  88 
  89     /**
  90      * The {@code double} value that is closer than any other to
  91      * <i>e</i>, the base of the natural logarithms.
  92      */
  93     public static final double E = 2.7182818284590452354;
  94 
  95     /**
  96      * The {@code double} value that is closer than any other to
  97      * <i>pi</i>, the ratio of the circumference of a circle to its
  98      * diameter.
  99      */
 100     public static final double PI = 3.14159265358979323846;
 101 
 102     /**
 103      * Constant by which to multiply an angular value in degrees to obtain an
 104      * angular value in radians.
 105      */
 106     private static final double DEGREES_TO_RADIANS = 0.017453292519943295;
 107 
 108     /**
 109      * Constant by which to multiply an angular value in radians to obtain an
 110      * angular value in degrees.
 111      */
 112 
 113     private static final double RADIANS_TO_DEGREES = 57.29577951308232;
 114 
 115     /**
 116      * Returns the trigonometric sine of an angle. Special cases:
 117      * <ul><li>If the argument is NaN or an infinity, then the
 118      * result is NaN.
 119      * <li>If the argument is zero, then the result is a zero with the
 120      * same sign as the argument.</ul>
 121      *
 122      * @param   a   an angle, in radians.
 123      * @return  the sine of the argument.
 124      */
 125     public static native double sin(double a);
 126 
 127     /**
 128      * Returns the trigonometric cosine of an angle. Special cases:
 129      * <ul><li>If the argument is NaN or an infinity, then the
 130      * result is NaN.</ul>
 131      *
 132      * @param   a   an angle, in radians.
 133      * @return  the cosine of the argument.
 134      */
 135     public static native double cos(double a);
 136 
 137     /**
 138      * Returns the trigonometric tangent of an angle. Special cases:
 139      * <ul><li>If the argument is NaN or an infinity, then the result
 140      * is NaN.
 141      * <li>If the argument is zero, then the result is a zero with the
 142      * same sign as the argument.</ul>
 143      *
 144      * @param   a   an angle, in radians.
 145      * @return  the tangent of the argument.
 146      */
 147     public static native double tan(double a);
 148 
 149     /**
 150      * Returns the arc sine of a value; the returned angle is in the
 151      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 152      * <ul><li>If the argument is NaN or its absolute value is greater
 153      * than 1, then the result is NaN.
 154      * <li>If the argument is zero, then the result is a zero with the
 155      * same sign as the argument.</ul>
 156      *
 157      * @param   a   the value whose arc sine is to be returned.
 158      * @return  the arc sine of the argument.
 159      */
 160     public static native double asin(double a);
 161 
 162     /**
 163      * Returns the arc cosine of a value; the returned angle is in the
 164      * range 0.0 through <i>pi</i>.  Special case:
 165      * <ul><li>If the argument is NaN or its absolute value is greater
 166      * than 1, then the result is NaN.</ul>
 167      *
 168      * @param   a   the value whose arc cosine is to be returned.
 169      * @return  the arc cosine of the argument.
 170      */
 171     public static native double acos(double a);
 172 
 173     /**
 174      * Returns the arc tangent of a value; the returned angle is in the
 175      * range -<i>pi</i>/2 through <i>pi</i>/2.  Special cases:
 176      * <ul><li>If the argument is NaN, then the result is NaN.
 177      * <li>If the argument is zero, then the result is a zero with the
 178      * same sign as the argument.</ul>
 179      *
 180      * @param   a   the value whose arc tangent is to be returned.
 181      * @return  the arc tangent of the argument.
 182      */
 183     public static native double atan(double a);
 184 
 185     /**
 186      * Converts an angle measured in degrees to an approximately
 187      * equivalent angle measured in radians.  The conversion from
 188      * degrees to radians is generally inexact.
 189      *
 190      * @param   angdeg   an angle, in degrees
 191      * @return  the measurement of the angle {@code angdeg}
 192      *          in radians.
 193      */
 194     public static strictfp double toRadians(double angdeg) {
 195         // Do not delegate to Math.toRadians(angdeg) because
 196         // this method has the strictfp modifier.
 197         return angdeg * DEGREES_TO_RADIANS;
 198     }
 199 
 200     /**
 201      * Converts an angle measured in radians to an approximately
 202      * equivalent angle measured in degrees.  The conversion from
 203      * radians to degrees is generally inexact; users should
 204      * <i>not</i> expect {@code cos(toRadians(90.0))} to exactly
 205      * equal {@code 0.0}.
 206      *
 207      * @param   angrad   an angle, in radians
 208      * @return  the measurement of the angle {@code angrad}
 209      *          in degrees.
 210      */
 211     public static strictfp double toDegrees(double angrad) {
 212         // Do not delegate to Math.toDegrees(angrad) because
 213         // this method has the strictfp modifier.
 214         return angrad * RADIANS_TO_DEGREES;
 215     }
 216 
 217     /**
 218      * Returns Euler's number <i>e</i> raised to the power of a
 219      * {@code double} value. Special cases:
 220      * <ul><li>If the argument is NaN, the result is NaN.
 221      * <li>If the argument is positive infinity, then the result is
 222      * positive infinity.
 223      * <li>If the argument is negative infinity, then the result is
 224      * positive zero.</ul>
 225      *
 226      * @param   a   the exponent to raise <i>e</i> to.
 227      * @return  the value <i>e</i><sup>{@code a}</sup>,
 228      *          where <i>e</i> is the base of the natural logarithms.
 229      */
 230     public static native double exp(double a);
 231 
 232     /**
 233      * Returns the natural logarithm (base <i>e</i>) of a {@code double}
 234      * value. Special cases:
 235      * <ul><li>If the argument is NaN or less than zero, then the result
 236      * is NaN.
 237      * <li>If the argument is positive infinity, then the result is
 238      * positive infinity.
 239      * <li>If the argument is positive zero or negative zero, then the
 240      * result is negative infinity.</ul>
 241      *
 242      * @param   a   a value
 243      * @return  the value ln&nbsp;{@code a}, the natural logarithm of
 244      *          {@code a}.
 245      */
 246     public static native double log(double a);
 247 
 248     /**
 249      * Returns the base 10 logarithm of a {@code double} value.
 250      * Special cases:
 251      *
 252      * <ul><li>If the argument is NaN or less than zero, then the result
 253      * is NaN.
 254      * <li>If the argument is positive infinity, then the result is
 255      * positive infinity.
 256      * <li>If the argument is positive zero or negative zero, then the
 257      * result is negative infinity.
 258      * <li> If the argument is equal to 10<sup><i>n</i></sup> for
 259      * integer <i>n</i>, then the result is <i>n</i>.
 260      * </ul>
 261      *
 262      * @param   a   a value
 263      * @return  the base 10 logarithm of  {@code a}.
 264      * @since 1.5
 265      */
 266     public static native double log10(double a);
 267 
 268     /**
 269      * Returns the correctly rounded positive square root of a
 270      * {@code double} value.
 271      * Special cases:
 272      * <ul><li>If the argument is NaN or less than zero, then the result
 273      * is NaN.
 274      * <li>If the argument is positive infinity, then the result is positive
 275      * infinity.
 276      * <li>If the argument is positive zero or negative zero, then the
 277      * result is the same as the argument.</ul>
 278      * Otherwise, the result is the {@code double} value closest to
 279      * the true mathematical square root of the argument value.
 280      *
 281      * @param   a   a value.
 282      * @return  the positive square root of {@code a}.
 283      */
 284     @HotSpotIntrinsicCandidate
 285     public static native double sqrt(double a);
 286 
 287     /**
 288      * Returns the cube root of a {@code double} value.  For
 289      * positive finite {@code x}, {@code cbrt(-x) ==
 290      * -cbrt(x)}; that is, the cube root of a negative value is
 291      * the negative of the cube root of that value's magnitude.
 292      * Special cases:
 293      *
 294      * <ul>
 295      *
 296      * <li>If the argument is NaN, then the result is NaN.
 297      *
 298      * <li>If the argument is infinite, then the result is an infinity
 299      * with the same sign as the argument.
 300      *
 301      * <li>If the argument is zero, then the result is a zero with the
 302      * same sign as the argument.
 303      *
 304      * </ul>
 305      *
 306      * @param   a   a value.
 307      * @return  the cube root of {@code a}.
 308      * @since 1.5
 309      */
 310     public static double cbrt(double a) {
 311         return FdLibm.Cbrt.compute(a);
 312     }
 313 
 314     /**
 315      * Computes the remainder operation on two arguments as prescribed
 316      * by the IEEE 754 standard.
 317      * The remainder value is mathematically equal to
 318      * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
 319      * where <i>n</i> is the mathematical integer closest to the exact
 320      * mathematical value of the quotient {@code f1/f2}, and if two
 321      * mathematical integers are equally close to {@code f1/f2},
 322      * then <i>n</i> is the integer that is even. If the remainder is
 323      * zero, its sign is the same as the sign of the first argument.
 324      * Special cases:
 325      * <ul><li>If either argument is NaN, or the first argument is infinite,
 326      * or the second argument is positive zero or negative zero, then the
 327      * result is NaN.
 328      * <li>If the first argument is finite and the second argument is
 329      * infinite, then the result is the same as the first argument.</ul>
 330      *
 331      * @param   f1   the dividend.
 332      * @param   f2   the divisor.
 333      * @return  the remainder when {@code f1} is divided by
 334      *          {@code f2}.
 335      */
 336     public static native double IEEEremainder(double f1, double f2);
 337 
 338     /**
 339      * Returns the smallest (closest to negative infinity)
 340      * {@code double} value that is greater than or equal to the
 341      * argument and is equal to a mathematical integer. Special cases:
 342      * <ul><li>If the argument value is already equal to a
 343      * mathematical integer, then the result is the same as the
 344      * argument.  <li>If the argument is NaN or an infinity or
 345      * positive zero or negative zero, then the result is the same as
 346      * the argument.  <li>If the argument value is less than zero but
 347      * greater than -1.0, then the result is negative zero.</ul> Note
 348      * that the value of {@code StrictMath.ceil(x)} is exactly the
 349      * value of {@code -StrictMath.floor(-x)}.
 350      *
 351      * @param   a   a value.
 352      * @return  the smallest (closest to negative infinity)
 353      *          floating-point value that is greater than or equal to
 354      *          the argument and is equal to a mathematical integer.
 355      */
 356     public static double ceil(double a) {
 357         return floorOrCeil(a, -0.0, 1.0, 1.0);
 358     }
 359 
 360     /**
 361      * Returns the largest (closest to positive infinity)
 362      * {@code double} value that is less than or equal to the
 363      * argument and is equal to a mathematical integer. Special cases:
 364      * <ul><li>If the argument value is already equal to a
 365      * mathematical integer, then the result is the same as the
 366      * argument.  <li>If the argument is NaN or an infinity or
 367      * positive zero or negative zero, then the result is the same as
 368      * the argument.</ul>
 369      *
 370      * @param   a   a value.
 371      * @return  the largest (closest to positive infinity)
 372      *          floating-point value that less than or equal to the argument
 373      *          and is equal to a mathematical integer.
 374      */
 375     public static double floor(double a) {
 376         return floorOrCeil(a, -1.0, 0.0, -1.0);
 377     }
 378 
 379     /**
 380      * Internal method to share logic between floor and ceil.
 381      *
 382      * @param a the value to be floored or ceiled
 383      * @param negativeBoundary result for values in (-1, 0)
 384      * @param positiveBoundary result for values in (0, 1)
 385      * @param increment value to add when the argument is non-integral
 386      */
 387     private static double floorOrCeil(double a,
 388                                       double negativeBoundary,
 389                                       double positiveBoundary,
 390                                       double sign) {
 391         int exponent = Math.getExponent(a);
 392 
 393         if (exponent < 0) {
 394             /*
 395              * Absolute value of argument is less than 1.
 396              * floorOrceil(-0.0) => -0.0
 397              * floorOrceil(+0.0) => +0.0
 398              */
 399             return ((a == 0.0) ? a :
 400                     ( (a < 0.0) ?  negativeBoundary : positiveBoundary) );
 401         } else if (exponent >= 52) {
 402             /*
 403              * Infinity, NaN, or a value so large it must be integral.
 404              */
 405             return a;
 406         }
 407         // Else the argument is either an integral value already XOR it
 408         // has to be rounded to one.
 409         assert exponent >= 0 && exponent <= 51;
 410 
 411         long doppel = Double.doubleToRawLongBits(a);
 412         long mask   = DoubleConsts.SIGNIF_BIT_MASK >> exponent;
 413 
 414         if ( (mask & doppel) == 0L )
 415             return a; // integral value
 416         else {
 417             double result = Double.longBitsToDouble(doppel & (~mask));
 418             if (sign*a > 0.0)
 419                 result = result + sign;
 420             return result;
 421         }
 422     }
 423 
 424     /**
 425      * Returns the {@code double} value that is closest in value
 426      * to the argument and is equal to a mathematical integer. If two
 427      * {@code double} values that are mathematical integers are
 428      * equally close to the value of the argument, the result is the
 429      * integer value that is even. Special cases:
 430      * <ul><li>If the argument value is already equal to a mathematical
 431      * integer, then the result is the same as the argument.
 432      * <li>If the argument is NaN or an infinity or positive zero or negative
 433      * zero, then the result is the same as the argument.</ul>
 434      *
 435      * @param   a   a value.
 436      * @return  the closest floating-point value to {@code a} that is
 437      *          equal to a mathematical integer.
 438      * @author Joseph D. Darcy
 439      */
 440     public static double rint(double a) {
 441         /*
 442          * If the absolute value of a is not less than 2^52, it
 443          * is either a finite integer (the double format does not have
 444          * enough significand bits for a number that large to have any
 445          * fractional portion), an infinity, or a NaN.  In any of
 446          * these cases, rint of the argument is the argument.
 447          *
 448          * Otherwise, the sum (twoToThe52 + a ) will properly round
 449          * away any fractional portion of a since ulp(twoToThe52) ==
 450          * 1.0; subtracting out twoToThe52 from this sum will then be
 451          * exact and leave the rounded integer portion of a.
 452          *
 453          * This method does *not* need to be declared strictfp to get
 454          * fully reproducible results.  Whether or not a method is
 455          * declared strictfp can only make a difference in the
 456          * returned result if some operation would overflow or
 457          * underflow with strictfp semantics.  The operation
 458          * (twoToThe52 + a ) cannot overflow since large values of a
 459          * are screened out; the add cannot underflow since twoToThe52
 460          * is too large.  The subtraction ((twoToThe52 + a ) -
 461          * twoToThe52) will be exact as discussed above and thus
 462          * cannot overflow or meaningfully underflow.  Finally, the
 463          * last multiply in the return statement is by plus or minus
 464          * 1.0, which is exact too.
 465          */
 466         double twoToThe52 = (double)(1L << 52); // 2^52
 467         double sign = Math.copySign(1.0, a); // preserve sign info
 468         a = Math.abs(a);
 469 
 470         if (a < twoToThe52) { // E_min <= ilogb(a) <= 51
 471             a = ((twoToThe52 + a ) - twoToThe52);
 472         }
 473 
 474         return sign * a; // restore original sign
 475     }
 476 
 477     /**
 478      * Returns the angle <i>theta</i> from the conversion of rectangular
 479      * coordinates ({@code x},&nbsp;{@code y}) to polar
 480      * coordinates (r,&nbsp;<i>theta</i>).
 481      * This method computes the phase <i>theta</i> by computing an arc tangent
 482      * of {@code y/x} in the range of -<i>pi</i> to <i>pi</i>. Special
 483      * cases:
 484      * <ul><li>If either argument is NaN, then the result is NaN.
 485      * <li>If the first argument is positive zero and the second argument
 486      * is positive, or the first argument is positive and finite and the
 487      * second argument is positive infinity, then the result is positive
 488      * zero.
 489      * <li>If the first argument is negative zero and the second argument
 490      * is positive, or the first argument is negative and finite and the
 491      * second argument is positive infinity, then the result is negative zero.
 492      * <li>If the first argument is positive zero and the second argument
 493      * is negative, or the first argument is positive and finite and the
 494      * second argument is negative infinity, then the result is the
 495      * {@code double} value closest to <i>pi</i>.
 496      * <li>If the first argument is negative zero and the second argument
 497      * is negative, or the first argument is negative and finite and the
 498      * second argument is negative infinity, then the result is the
 499      * {@code double} value closest to -<i>pi</i>.
 500      * <li>If the first argument is positive and the second argument is
 501      * positive zero or negative zero, or the first argument is positive
 502      * infinity and the second argument is finite, then the result is the
 503      * {@code double} value closest to <i>pi</i>/2.
 504      * <li>If the first argument is negative and the second argument is
 505      * positive zero or negative zero, or the first argument is negative
 506      * infinity and the second argument is finite, then the result is the
 507      * {@code double} value closest to -<i>pi</i>/2.
 508      * <li>If both arguments are positive infinity, then the result is the
 509      * {@code double} value closest to <i>pi</i>/4.
 510      * <li>If the first argument is positive infinity and the second argument
 511      * is negative infinity, then the result is the {@code double}
 512      * value closest to 3*<i>pi</i>/4.
 513      * <li>If the first argument is negative infinity and the second argument
 514      * is positive infinity, then the result is the {@code double} value
 515      * closest to -<i>pi</i>/4.
 516      * <li>If both arguments are negative infinity, then the result is the
 517      * {@code double} value closest to -3*<i>pi</i>/4.</ul>
 518      *
 519      * @param   y   the ordinate coordinate
 520      * @param   x   the abscissa coordinate
 521      * @return  the <i>theta</i> component of the point
 522      *          (<i>r</i>,&nbsp;<i>theta</i>)
 523      *          in polar coordinates that corresponds to the point
 524      *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
 525      */
 526     public static native double atan2(double y, double x);
 527 
 528     /**
 529      * Returns the value of the first argument raised to the power of the
 530      * second argument. Special cases:
 531      *
 532      * <ul><li>If the second argument is positive or negative zero, then the
 533      * result is 1.0.
 534      * <li>If the second argument is 1.0, then the result is the same as the
 535      * first argument.
 536      * <li>If the second argument is NaN, then the result is NaN.
 537      * <li>If the first argument is NaN and the second argument is nonzero,
 538      * then the result is NaN.
 539      *
 540      * <li>If
 541      * <ul>
 542      * <li>the absolute value of the first argument is greater than 1
 543      * and the second argument is positive infinity, or
 544      * <li>the absolute value of the first argument is less than 1 and
 545      * the second argument is negative infinity,
 546      * </ul>
 547      * then the result is positive infinity.
 548      *
 549      * <li>If
 550      * <ul>
 551      * <li>the absolute value of the first argument is greater than 1 and
 552      * the second argument is negative infinity, or
 553      * <li>the absolute value of the
 554      * first argument is less than 1 and the second argument is positive
 555      * infinity,
 556      * </ul>
 557      * then the result is positive zero.
 558      *
 559      * <li>If the absolute value of the first argument equals 1 and the
 560      * second argument is infinite, then the result is NaN.
 561      *
 562      * <li>If
 563      * <ul>
 564      * <li>the first argument is positive zero and the second argument
 565      * is greater than zero, or
 566      * <li>the first argument is positive infinity and the second
 567      * argument is less than zero,
 568      * </ul>
 569      * then the result is positive zero.
 570      *
 571      * <li>If
 572      * <ul>
 573      * <li>the first argument is positive zero and the second argument
 574      * is less than zero, or
 575      * <li>the first argument is positive infinity and the second
 576      * argument is greater than zero,
 577      * </ul>
 578      * then the result is positive infinity.
 579      *
 580      * <li>If
 581      * <ul>
 582      * <li>the first argument is negative zero and the second argument
 583      * is greater than zero but not a finite odd integer, or
 584      * <li>the first argument is negative infinity and the second
 585      * argument is less than zero but not a finite odd integer,
 586      * </ul>
 587      * then the result is positive zero.
 588      *
 589      * <li>If
 590      * <ul>
 591      * <li>the first argument is negative zero and the second argument
 592      * is a positive finite odd integer, or
 593      * <li>the first argument is negative infinity and the second
 594      * argument is a negative finite odd integer,
 595      * </ul>
 596      * then the result is negative zero.
 597      *
 598      * <li>If
 599      * <ul>
 600      * <li>the first argument is negative zero and the second argument
 601      * is less than zero but not a finite odd integer, or
 602      * <li>the first argument is negative infinity and the second
 603      * argument is greater than zero but not a finite odd integer,
 604      * </ul>
 605      * then the result is positive infinity.
 606      *
 607      * <li>If
 608      * <ul>
 609      * <li>the first argument is negative zero and the second argument
 610      * is a negative finite odd integer, or
 611      * <li>the first argument is negative infinity and the second
 612      * argument is a positive finite odd integer,
 613      * </ul>
 614      * then the result is negative infinity.
 615      *
 616      * <li>If the first argument is finite and less than zero
 617      * <ul>
 618      * <li> if the second argument is a finite even integer, the
 619      * result is equal to the result of raising the absolute value of
 620      * the first argument to the power of the second argument
 621      *
 622      * <li>if the second argument is a finite odd integer, the result
 623      * is equal to the negative of the result of raising the absolute
 624      * value of the first argument to the power of the second
 625      * argument
 626      *
 627      * <li>if the second argument is finite and not an integer, then
 628      * the result is NaN.
 629      * </ul>
 630      *
 631      * <li>If both arguments are integers, then the result is exactly equal
 632      * to the mathematical result of raising the first argument to the power
 633      * of the second argument if that result can in fact be represented
 634      * exactly as a {@code double} value.</ul>
 635      *
 636      * <p>(In the foregoing descriptions, a floating-point value is
 637      * considered to be an integer if and only if it is finite and a
 638      * fixed point of the method {@link #ceil ceil} or,
 639      * equivalently, a fixed point of the method {@link #floor
 640      * floor}. A value is a fixed point of a one-argument
 641      * method if and only if the result of applying the method to the
 642      * value is equal to the value.)
 643      *
 644      * @param   a   base.
 645      * @param   b   the exponent.
 646      * @return  the value {@code a}<sup>{@code b}</sup>.
 647      */
 648     public static double pow(double a, double b) {
 649         return FdLibm.Pow.compute(a, b);
 650     }
 651 
 652     /**
 653      * Returns the closest {@code int} to the argument, with ties
 654      * rounding to positive infinity.
 655      *
 656      * <p>Special cases:
 657      * <ul><li>If the argument is NaN, the result is 0.
 658      * <li>If the argument is negative infinity or any value less than or
 659      * equal to the value of {@code Integer.MIN_VALUE}, the result is
 660      * equal to the value of {@code Integer.MIN_VALUE}.
 661      * <li>If the argument is positive infinity or any value greater than or
 662      * equal to the value of {@code Integer.MAX_VALUE}, the result is
 663      * equal to the value of {@code Integer.MAX_VALUE}.</ul>
 664      *
 665      * @param   a   a floating-point value to be rounded to an integer.
 666      * @return  the value of the argument rounded to the nearest
 667      *          {@code int} value.
 668      * @see     java.lang.Integer#MAX_VALUE
 669      * @see     java.lang.Integer#MIN_VALUE
 670      */
 671     public static int round(float a) {
 672         return Math.round(a);
 673     }
 674 
 675     /**
 676      * Returns the closest {@code long} to the argument, with ties
 677      * rounding to positive infinity.
 678      *
 679      * <p>Special cases:
 680      * <ul><li>If the argument is NaN, the result is 0.
 681      * <li>If the argument is negative infinity or any value less than or
 682      * equal to the value of {@code Long.MIN_VALUE}, the result is
 683      * equal to the value of {@code Long.MIN_VALUE}.
 684      * <li>If the argument is positive infinity or any value greater than or
 685      * equal to the value of {@code Long.MAX_VALUE}, the result is
 686      * equal to the value of {@code Long.MAX_VALUE}.</ul>
 687      *
 688      * @param   a  a floating-point value to be rounded to a
 689      *          {@code long}.
 690      * @return  the value of the argument rounded to the nearest
 691      *          {@code long} value.
 692      * @see     java.lang.Long#MAX_VALUE
 693      * @see     java.lang.Long#MIN_VALUE
 694      */
 695     public static long round(double a) {
 696         return Math.round(a);
 697     }
 698 
 699     private static final class RandomNumberGeneratorHolder {
 700         static final Random randomNumberGenerator = new Random();
 701     }
 702 
 703     /**
 704      * Returns a {@code double} value with a positive sign, greater
 705      * than or equal to {@code 0.0} and less than {@code 1.0}.
 706      * Returned values are chosen pseudorandomly with (approximately)
 707      * uniform distribution from that range.
 708      *
 709      * <p>When this method is first called, it creates a single new
 710      * pseudorandom-number generator, exactly as if by the expression
 711      *
 712      * <blockquote>{@code new java.util.Random()}</blockquote>
 713      *
 714      * This new pseudorandom-number generator is used thereafter for
 715      * all calls to this method and is used nowhere else.
 716      *
 717      * <p>This method is properly synchronized to allow correct use by
 718      * more than one thread. However, if many threads need to generate
 719      * pseudorandom numbers at a great rate, it may reduce contention
 720      * for each thread to have its own pseudorandom-number generator.
 721      *
 722      * @return  a pseudorandom {@code double} greater than or equal
 723      * to {@code 0.0} and less than {@code 1.0}.
 724      * @see Random#nextDouble()
 725      */
 726     public static double random() {
 727         return RandomNumberGeneratorHolder.randomNumberGenerator.nextDouble();
 728     }
 729 
 730     /**
 731      * Returns the sum of its arguments,
 732      * throwing an exception if the result overflows an {@code int}.
 733      *
 734      * @param x the first value
 735      * @param y the second value
 736      * @return the result
 737      * @throws ArithmeticException if the result overflows an int
 738      * @see Math#addExact(int,int)
 739      * @since 1.8
 740      */
 741     public static int addExact(int x, int y) {
 742         return Math.addExact(x, y);
 743     }
 744 
 745     /**
 746      * Returns the sum of its arguments,
 747      * throwing an exception if the result overflows a {@code long}.
 748      *
 749      * @param x the first value
 750      * @param y the second value
 751      * @return the result
 752      * @throws ArithmeticException if the result overflows a long
 753      * @see Math#addExact(long,long)
 754      * @since 1.8
 755      */
 756     public static long addExact(long x, long y) {
 757         return Math.addExact(x, y);
 758     }
 759 
 760     /**
 761      * Returns the difference of the arguments,
 762      * throwing an exception if the result overflows an {@code int}.
 763      *
 764      * @param x the first value
 765      * @param y the second value to subtract from the first
 766      * @return the result
 767      * @throws ArithmeticException if the result overflows an int
 768      * @see Math#subtractExact(int,int)
 769      * @since 1.8
 770      */
 771     public static int subtractExact(int x, int y) {
 772         return Math.subtractExact(x, y);
 773     }
 774 
 775     /**
 776      * Returns the difference of the arguments,
 777      * throwing an exception if the result overflows a {@code long}.
 778      *
 779      * @param x the first value
 780      * @param y the second value to subtract from the first
 781      * @return the result
 782      * @throws ArithmeticException if the result overflows a long
 783      * @see Math#subtractExact(long,long)
 784      * @since 1.8
 785      */
 786     public static long subtractExact(long x, long y) {
 787         return Math.subtractExact(x, y);
 788     }
 789 
 790     /**
 791      * Returns the product of the arguments,
 792      * throwing an exception if the result overflows an {@code int}.
 793      *
 794      * @param x the first value
 795      * @param y the second value
 796      * @return the result
 797      * @throws ArithmeticException if the result overflows an int
 798      * @see Math#multiplyExact(int,int)
 799      * @since 1.8
 800      */
 801     public static int multiplyExact(int x, int y) {
 802         return Math.multiplyExact(x, y);
 803     }
 804 
 805     /**
 806      * Returns the product of the arguments, throwing an exception if the result
 807      * overflows a {@code long}.
 808      *
 809      * @param x the first value
 810      * @param y the second value
 811      * @return the result
 812      * @throws ArithmeticException if the result overflows a long
 813      * @see Math#multiplyExact(long,int)
 814      * @since 9
 815      */
 816     public static long multiplyExact(long x, int y) {
 817         return Math.multiplyExact(x, y);
 818     }
 819 
 820     /**
 821      * Returns the product of the arguments,
 822      * throwing an exception if the result overflows a {@code long}.
 823      *
 824      * @param x the first value
 825      * @param y the second value
 826      * @return the result
 827      * @throws ArithmeticException if the result overflows a long
 828      * @see Math#multiplyExact(long,long)
 829      * @since 1.8
 830      */
 831     public static long multiplyExact(long x, long y) {
 832         return Math.multiplyExact(x, y);
 833     }
 834 
 835     /**
 836      * Returns the value of the {@code long} argument;
 837      * throwing an exception if the value overflows an {@code int}.
 838      *
 839      * @param value the long value
 840      * @return the argument as an int
 841      * @throws ArithmeticException if the {@code argument} overflows an int
 842      * @see Math#toIntExact(long)
 843      * @since 1.8
 844      */
 845     public static int toIntExact(long value) {
 846         return Math.toIntExact(value);
 847     }
 848 
 849     /**
 850      * Returns the exact mathematical product of the arguments.
 851      *
 852      * @param x the first value
 853      * @param y the second value
 854      * @return the result
 855      * @see Math#multiplyFull(int,int)
 856      * @since 9
 857      */
 858     public static long multiplyFull(int x, int y) {
 859         return Math.multiplyFull(x, y);
 860     }
 861 
 862     /**
 863      * Returns as a {@code long} the most significant 64 bits of the 128-bit
 864      * product of two 64-bit factors.
 865      *
 866      * @param x the first value
 867      * @param y the second value
 868      * @return the result
 869      * @see Math#multiplyHigh(long,long)
 870      * @since 9
 871      */
 872     public static long multiplyHigh(long x, long y) {
 873         return Math.multiplyHigh(x, y);
 874     }
 875 
 876     /**
 877      * Returns the largest (closest to positive infinity)
 878      * {@code int} value that is less than or equal to the algebraic quotient.
 879      * There is one special case, if the dividend is the
 880      * {@linkplain Integer#MIN_VALUE Integer.MIN_VALUE} and the divisor is {@code -1},
 881      * then integer overflow occurs and
 882      * the result is equal to the {@code Integer.MIN_VALUE}.
 883      * <p>
 884      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
 885      * a comparison to the integer division {@code /} operator.
 886      *
 887      * @param x the dividend
 888      * @param y the divisor
 889      * @return the largest (closest to positive infinity)
 890      * {@code int} value that is less than or equal to the algebraic quotient.
 891      * @throws ArithmeticException if the divisor {@code y} is zero
 892      * @see Math#floorDiv(int, int)
 893      * @see Math#floor(double)
 894      * @since 1.8
 895      */
 896     public static int floorDiv(int x, int y) {
 897         return Math.floorDiv(x, y);
 898     }
 899 
 900     /**
 901      * Returns the largest (closest to positive infinity)
 902      * {@code long} value that is less than or equal to the algebraic quotient.
 903      * There is one special case, if the dividend is the
 904      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
 905      * then integer overflow occurs and
 906      * the result is equal to {@code Long.MIN_VALUE}.
 907      * <p>
 908      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
 909      * a comparison to the integer division {@code /} operator.
 910      *
 911      * @param x the dividend
 912      * @param y the divisor
 913      * @return the largest (closest to positive infinity)
 914      * {@code int} value that is less than or equal to the algebraic quotient.
 915      * @throws ArithmeticException if the divisor {@code y} is zero
 916      * @see Math#floorDiv(long, int)
 917      * @see Math#floor(double)
 918      * @since 9
 919      */
 920     public static long floorDiv(long x, int y) {
 921         return Math.floorDiv(x, y);
 922     }
 923 
 924     /**
 925      * Returns the largest (closest to positive infinity)
 926      * {@code long} value that is less than or equal to the algebraic quotient.
 927      * There is one special case, if the dividend is the
 928      * {@linkplain Long#MIN_VALUE Long.MIN_VALUE} and the divisor is {@code -1},
 929      * then integer overflow occurs and
 930      * the result is equal to the {@code Long.MIN_VALUE}.
 931      * <p>
 932      * See {@link Math#floorDiv(int, int) Math.floorDiv} for examples and
 933      * a comparison to the integer division {@code /} operator.
 934      *
 935      * @param x the dividend
 936      * @param y the divisor
 937      * @return the largest (closest to positive infinity)
 938      * {@code long} value that is less than or equal to the algebraic quotient.
 939      * @throws ArithmeticException if the divisor {@code y} is zero
 940      * @see Math#floorDiv(long, long)
 941      * @see Math#floor(double)
 942      * @since 1.8
 943      */
 944     public static long floorDiv(long x, long y) {
 945         return Math.floorDiv(x, y);
 946     }
 947 
 948     /**
 949      * Returns the floor modulus of the {@code int} arguments.
 950      * <p>
 951      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
 952      * has the same sign as the divisor {@code y}, and
 953      * is in the range of {@code -abs(y) < r < +abs(y)}.
 954      * <p>
 955      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
 956      * <ul>
 957      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
 958      * </ul>
 959      * <p>
 960      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
 961      * a comparison to the {@code %} operator.
 962      *
 963      * @param x the dividend
 964      * @param y the divisor
 965      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
 966      * @throws ArithmeticException if the divisor {@code y} is zero
 967      * @see Math#floorMod(int, int)
 968      * @see StrictMath#floorDiv(int, int)
 969      * @since 1.8
 970      */
 971     public static int floorMod(int x, int y) {
 972         return Math.floorMod(x , y);
 973     }
 974 
 975     /**
 976      * Returns the floor modulus of the {@code long} and {@int} arguments.
 977      * <p>
 978      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
 979      * has the same sign as the divisor {@code y}, and
 980      * is in the range of {@code -abs(y) < r < +abs(y)}.
 981      *
 982      * <p>
 983      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
 984      * <ul>
 985      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
 986      * </ul>
 987      * <p>
 988      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
 989      * a comparison to the {@code %} operator.
 990      *
 991      * @param x the dividend
 992      * @param y the divisor
 993      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
 994      * @throws ArithmeticException if the divisor {@code y} is zero
 995      * @see Math#floorMod(long, int)
 996      * @see StrictMath#floorDiv(long, int)
 997      * @since 9
 998      */
 999     public static int floorMod(long x, int y) {
1000         return Math.floorMod(x , y);
1001     }
1002 
1003     /**
1004      * Returns the floor modulus of the {@code long} arguments.
1005      * <p>
1006      * The floor modulus is {@code x - (floorDiv(x, y) * y)},
1007      * has the same sign as the divisor {@code y}, and
1008      * is in the range of {@code -abs(y) < r < +abs(y)}.
1009      * <p>
1010      * The relationship between {@code floorDiv} and {@code floorMod} is such that:
1011      * <ul>
1012      *   <li>{@code floorDiv(x, y) * y + floorMod(x, y) == x}
1013      * </ul>
1014      * <p>
1015      * See {@link Math#floorMod(int, int) Math.floorMod} for examples and
1016      * a comparison to the {@code %} operator.
1017      *
1018      * @param x the dividend
1019      * @param y the divisor
1020      * @return the floor modulus {@code x - (floorDiv(x, y) * y)}
1021      * @throws ArithmeticException if the divisor {@code y} is zero
1022      * @see Math#floorMod(long, long)
1023      * @see StrictMath#floorDiv(long, long)
1024      * @since 1.8
1025      */
1026     public static long floorMod(long x, long y) {
1027         return Math.floorMod(x, y);
1028     }
1029 
1030     /**
1031      * Returns the absolute value of an {@code int} value.
1032      * If the argument is not negative, the argument is returned.
1033      * If the argument is negative, the negation of the argument is returned.
1034      *
1035      * <p>Note that if the argument is equal to the value of
1036      * {@link Integer#MIN_VALUE}, the most negative representable
1037      * {@code int} value, the result is that same value, which is
1038      * negative.
1039      *
1040      * @param   a   the  argument whose absolute value is to be determined.
1041      * @return  the absolute value of the argument.
1042      */
1043     public static int abs(int a) {
1044         return Math.abs(a);
1045     }
1046 
1047     /**
1048      * Returns the absolute value of a {@code long} value.
1049      * If the argument is not negative, the argument is returned.
1050      * If the argument is negative, the negation of the argument is returned.
1051      *
1052      * <p>Note that if the argument is equal to the value of
1053      * {@link Long#MIN_VALUE}, the most negative representable
1054      * {@code long} value, the result is that same value, which
1055      * is negative.
1056      *
1057      * @param   a   the  argument whose absolute value is to be determined.
1058      * @return  the absolute value of the argument.
1059      */
1060     public static long abs(long a) {
1061         return Math.abs(a);
1062     }
1063 
1064     /**
1065      * Returns the absolute value of a {@code float} value.
1066      * If the argument is not negative, the argument is returned.
1067      * If the argument is negative, the negation of the argument is returned.
1068      * Special cases:
1069      * <ul><li>If the argument is positive zero or negative zero, the
1070      * result is positive zero.
1071      * <li>If the argument is infinite, the result is positive infinity.
1072      * <li>If the argument is NaN, the result is NaN.</ul>
1073      *
1074      * @apiNote As implied by the above, one valid implementation of
1075      * this method is given by the expression below which computes a
1076      * {@code float} with the same exponent and significand as the
1077      * argument but with a guaranteed zero sign bit indicating a
1078      * positive value: <br>
1079      * {@code Float.intBitsToFloat(0x7fffffff & Float.floatToRawIntBits(a))}
1080      *
1081      * @param   a   the argument whose absolute value is to be determined
1082      * @return  the absolute value of the argument.
1083      */
1084     public static float abs(float a) {
1085         return Math.abs(a);
1086     }
1087 
1088     /**
1089      * Returns the absolute value of a {@code double} value.
1090      * If the argument is not negative, the argument is returned.
1091      * If the argument is negative, the negation of the argument is returned.
1092      * Special cases:
1093      * <ul><li>If the argument is positive zero or negative zero, the result
1094      * is positive zero.
1095      * <li>If the argument is infinite, the result is positive infinity.
1096      * <li>If the argument is NaN, the result is NaN.</ul>
1097      *
1098      * @apiNote As implied by the above, one valid implementation of
1099      * this method is given by the expression below which computes a
1100      * {@code double} with the same exponent and significand as the
1101      * argument but with a guaranteed zero sign bit indicating a
1102      * positive value: <br>
1103      * {@code Double.longBitsToDouble((Double.doubleToRawLongBits(a)<<1)>>>1)}
1104      *
1105      * @param   a   the argument whose absolute value is to be determined
1106      * @return  the absolute value of the argument.
1107      */
1108     public static double abs(double a) {
1109         return Math.abs(a);
1110     }
1111 
1112     /**
1113      * Returns the greater of two {@code int} values. That is, the
1114      * result is the argument closer to the value of
1115      * {@link Integer#MAX_VALUE}. If the arguments have the same value,
1116      * the result is that same value.
1117      *
1118      * @param   a   an argument.
1119      * @param   b   another argument.
1120      * @return  the larger of {@code a} and {@code b}.
1121      */
1122     @HotSpotIntrinsicCandidate
1123     public static int max(int a, int b) {
1124         return Math.max(a, b);
1125     }
1126 
1127     /**
1128      * Returns the greater of two {@code long} values. That is, the
1129      * result is the argument closer to the value of
1130      * {@link Long#MAX_VALUE}. If the arguments have the same value,
1131      * the result is that same value.
1132      *
1133      * @param   a   an argument.
1134      * @param   b   another argument.
1135      * @return  the larger of {@code a} and {@code b}.
1136         */
1137     public static long max(long a, long b) {
1138         return Math.max(a, b);
1139     }
1140 
1141     /**
1142      * Returns the greater of two {@code float} values.  That is,
1143      * the result is the argument closer to positive infinity. If the
1144      * arguments have the same value, the result is that same
1145      * value. If either value is NaN, then the result is NaN.  Unlike
1146      * the numerical comparison operators, this method considers
1147      * negative zero to be strictly smaller than positive zero. If one
1148      * argument is positive zero and the other negative zero, the
1149      * result is positive zero.
1150      *
1151      * @param   a   an argument.
1152      * @param   b   another argument.
1153      * @return  the larger of {@code a} and {@code b}.
1154      */
1155     public static float max(float a, float b) {
1156         return Math.max(a, b);
1157     }
1158 
1159     /**
1160      * Returns the greater of two {@code double} values.  That
1161      * is, the result is the argument closer to positive infinity. If
1162      * the arguments have the same value, the result is that same
1163      * value. If either value is NaN, then the result is NaN.  Unlike
1164      * the numerical comparison operators, this method considers
1165      * negative zero to be strictly smaller than positive zero. If one
1166      * argument is positive zero and the other negative zero, the
1167      * result is positive zero.
1168      *
1169      * @param   a   an argument.
1170      * @param   b   another argument.
1171      * @return  the larger of {@code a} and {@code b}.
1172      */
1173     public static double max(double a, double b) {
1174         return Math.max(a, b);
1175     }
1176 
1177     /**
1178      * Returns the smaller of two {@code int} values. That is,
1179      * the result the argument closer to the value of
1180      * {@link Integer#MIN_VALUE}.  If the arguments have the same
1181      * value, the result is that same value.
1182      *
1183      * @param   a   an argument.
1184      * @param   b   another argument.
1185      * @return  the smaller of {@code a} and {@code b}.
1186      */
1187     @HotSpotIntrinsicCandidate
1188     public static int min(int a, int b) {
1189         return Math.min(a, b);
1190     }
1191 
1192     /**
1193      * Returns the smaller of two {@code long} values. That is,
1194      * the result is the argument closer to the value of
1195      * {@link Long#MIN_VALUE}. If the arguments have the same
1196      * value, the result is that same value.
1197      *
1198      * @param   a   an argument.
1199      * @param   b   another argument.
1200      * @return  the smaller of {@code a} and {@code b}.
1201      */
1202     public static long min(long a, long b) {
1203         return Math.min(a, b);
1204     }
1205 
1206     /**
1207      * Returns the smaller of two {@code float} values.  That is,
1208      * the result is the value closer to negative infinity. If the
1209      * arguments have the same value, the result is that same
1210      * value. If either value is NaN, then the result is NaN.  Unlike
1211      * the numerical comparison operators, this method considers
1212      * negative zero to be strictly smaller than positive zero.  If
1213      * one argument is positive zero and the other is negative zero,
1214      * the result is negative zero.
1215      *
1216      * @param   a   an argument.
1217      * @param   b   another argument.
1218      * @return  the smaller of {@code a} and {@code b.}
1219      */
1220     public static float min(float a, float b) {
1221         return Math.min(a, b);
1222     }
1223 
1224     /**
1225      * Returns the smaller of two {@code double} values.  That
1226      * is, the result is the value closer to negative infinity. If the
1227      * arguments have the same value, the result is that same
1228      * value. If either value is NaN, then the result is NaN.  Unlike
1229      * the numerical comparison operators, this method considers
1230      * negative zero to be strictly smaller than positive zero. If one
1231      * argument is positive zero and the other is negative zero, the
1232      * result is negative zero.
1233      *
1234      * @param   a   an argument.
1235      * @param   b   another argument.
1236      * @return  the smaller of {@code a} and {@code b}.
1237      */
1238     public static double min(double a, double b) {
1239         return Math.min(a, b);
1240     }
1241 
1242     /**
1243      * Returns the fused multiply add of the three arguments; that is,
1244      * returns the exact product of the first two arguments summed
1245      * with the third argument and then rounded once to the nearest
1246      * {@code double}.
1247      *
1248      * The rounding is done using the {@linkplain
1249      * java.math.RoundingMode#HALF_EVEN round to nearest even
1250      * rounding mode}.
1251      *
1252      * In contrast, if {@code a * b + c} is evaluated as a regular
1253      * floating-point expression, two rounding errors are involved,
1254      * the first for the multiply operation, the second for the
1255      * addition operation.
1256      *
1257      * <p>Special cases:
1258      * <ul>
1259      * <li> If any argument is NaN, the result is NaN.
1260      *
1261      * <li> If one of the first two arguments is infinite and the
1262      * other is zero, the result is NaN.
1263      *
1264      * <li> If the exact product of the first two arguments is infinite
1265      * (in other words, at least one of the arguments is infinite and
1266      * the other is neither zero nor NaN) and the third argument is an
1267      * infinity of the opposite sign, the result is NaN.
1268      *
1269      * </ul>
1270      *
1271      * <p>Note that {@code fusedMac(a, 1.0, c)} returns the same
1272      * result as ({@code a + c}).  However,
1273      * {@code fusedMac(a, b, +0.0)} does <em>not</em> always return the
1274      * same result as ({@code a * b}) since
1275      * {@code fusedMac(-0.0, +0.0, +0.0)} is {@code +0.0} while
1276      * ({@code -0.0 * +0.0}) is {@code -0.0}; {@code fusedMac(a, b, -0.0)} is
1277      * equivalent to ({@code a * b}) however.
1278      *
1279      * @apiNote This method corresponds to the fusedMultiplyAdd
1280      * operation defined in IEEE 754-2008.
1281      *
1282      * @param a a value
1283      * @param b a value
1284      * @param c a value
1285      *
1286      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1287      * computed, as if with unlimited range and precision, and rounded
1288      * once to the nearest {@code double} value
1289      *
1290      * @since 9
1291      */
1292     public static double fma(double a, double b, double c) {
1293         return Math.fma(a, b, c);
1294     }
1295 
1296     /**
1297      * Returns the fused multiply add of the three arguments; that is,
1298      * returns the exact product of the first two arguments summed
1299      * with the third argument and then rounded once to the nearest
1300      * {@code float}.
1301      *
1302      * The rounding is done using the {@linkplain
1303      * java.math.RoundingMode#HALF_EVEN round to nearest even
1304      * rounding mode}.
1305      *
1306      * In contrast, if {@code a * b + c} is evaluated as a regular
1307      * floating-point expression, two rounding errors are involved,
1308      * the first for the multiply operation, the second for the
1309      * addition operation.
1310      *
1311      * <p>Special cases:
1312      * <ul>
1313      * <li> If any argument is NaN, the result is NaN.
1314      *
1315      * <li> If one of the first two arguments is infinite and the
1316      * other is zero, the result is NaN.
1317      *
1318      * <li> If the exact product of the first two arguments is infinite
1319      * (in other words, at least one of the arguments is infinite and
1320      * the other is neither zero nor NaN) and the third argument is an
1321      * infinity of the opposite sign, the result is NaN.
1322      *
1323      * </ul>
1324      *
1325      * <p>Note that {@code fma(a, 1.0f, c)} returns the same
1326      * result as ({@code a + c}).  However,
1327      * {@code fma(a, b, +0.0f)} does <em>not</em> always return the
1328      * same result as ({@code a * b}) since
1329      * {@code fma(-0.0f, +0.0f, +0.0f)} is {@code +0.0f} while
1330      * ({@code -0.0f * +0.0f}) is {@code -0.0f}; {@code fma(a, b, -0.0f)} is
1331      * equivalent to ({@code a * b}) however.
1332      *
1333      * @apiNote This method corresponds to the fusedMultiplyAdd
1334      * operation defined in IEEE 754-2008.
1335      *
1336      * @param a a value
1337      * @param b a value
1338      * @param c a value
1339      *
1340      * @return (<i>a</i>&nbsp;&times;&nbsp;<i>b</i>&nbsp;+&nbsp;<i>c</i>)
1341      * computed, as if with unlimited range and precision, and rounded
1342      * once to the nearest {@code float} value
1343      *
1344      * @since 9
1345      */
1346     public static float fma(float a, float b, float c) {
1347         return Math.fma(a, b, c);
1348     }
1349 
1350     /**
1351      * Returns the size of an ulp of the argument.  An ulp, unit in
1352      * the last place, of a {@code double} value is the positive
1353      * distance between this floating-point value and the {@code
1354      * double} value next larger in magnitude.  Note that for non-NaN
1355      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1356      *
1357      * <p>Special Cases:
1358      * <ul>
1359      * <li> If the argument is NaN, then the result is NaN.
1360      * <li> If the argument is positive or negative infinity, then the
1361      * result is positive infinity.
1362      * <li> If the argument is positive or negative zero, then the result is
1363      * {@code Double.MIN_VALUE}.
1364      * <li> If the argument is &plusmn;{@code Double.MAX_VALUE}, then
1365      * the result is equal to 2<sup>971</sup>.
1366      * </ul>
1367      *
1368      * @param d the floating-point value whose ulp is to be returned
1369      * @return the size of an ulp of the argument
1370      * @author Joseph D. Darcy
1371      * @since 1.5
1372      */
1373     public static double ulp(double d) {
1374         return Math.ulp(d);
1375     }
1376 
1377     /**
1378      * Returns the size of an ulp of the argument.  An ulp, unit in
1379      * the last place, of a {@code float} value is the positive
1380      * distance between this floating-point value and the {@code
1381      * float} value next larger in magnitude.  Note that for non-NaN
1382      * <i>x</i>, <code>ulp(-<i>x</i>) == ulp(<i>x</i>)</code>.
1383      *
1384      * <p>Special Cases:
1385      * <ul>
1386      * <li> If the argument is NaN, then the result is NaN.
1387      * <li> If the argument is positive or negative infinity, then the
1388      * result is positive infinity.
1389      * <li> If the argument is positive or negative zero, then the result is
1390      * {@code Float.MIN_VALUE}.
1391      * <li> If the argument is &plusmn;{@code Float.MAX_VALUE}, then
1392      * the result is equal to 2<sup>104</sup>.
1393      * </ul>
1394      *
1395      * @param f the floating-point value whose ulp is to be returned
1396      * @return the size of an ulp of the argument
1397      * @author Joseph D. Darcy
1398      * @since 1.5
1399      */
1400     public static float ulp(float f) {
1401         return Math.ulp(f);
1402     }
1403 
1404     /**
1405      * Returns the signum function of the argument; zero if the argument
1406      * is zero, 1.0 if the argument is greater than zero, -1.0 if the
1407      * argument is less than zero.
1408      *
1409      * <p>Special Cases:
1410      * <ul>
1411      * <li> If the argument is NaN, then the result is NaN.
1412      * <li> If the argument is positive zero or negative zero, then the
1413      *      result is the same as the argument.
1414      * </ul>
1415      *
1416      * @param d the floating-point value whose signum is to be returned
1417      * @return the signum function of the argument
1418      * @author Joseph D. Darcy
1419      * @since 1.5
1420      */
1421     public static double signum(double d) {
1422         return Math.signum(d);
1423     }
1424 
1425     /**
1426      * Returns the signum function of the argument; zero if the argument
1427      * is zero, 1.0f if the argument is greater than zero, -1.0f if the
1428      * argument is less than zero.
1429      *
1430      * <p>Special Cases:
1431      * <ul>
1432      * <li> If the argument is NaN, then the result is NaN.
1433      * <li> If the argument is positive zero or negative zero, then the
1434      *      result is the same as the argument.
1435      * </ul>
1436      *
1437      * @param f the floating-point value whose signum is to be returned
1438      * @return the signum function of the argument
1439      * @author Joseph D. Darcy
1440      * @since 1.5
1441      */
1442     public static float signum(float f) {
1443         return Math.signum(f);
1444     }
1445 
1446     /**
1447      * Returns the hyperbolic sine of a {@code double} value.
1448      * The hyperbolic sine of <i>x</i> is defined to be
1449      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/2
1450      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1451      *
1452      * <p>Special cases:
1453      * <ul>
1454      *
1455      * <li>If the argument is NaN, then the result is NaN.
1456      *
1457      * <li>If the argument is infinite, then the result is an infinity
1458      * with the same sign as the argument.
1459      *
1460      * <li>If the argument is zero, then the result is a zero with the
1461      * same sign as the argument.
1462      *
1463      * </ul>
1464      *
1465      * @param   x The number whose hyperbolic sine is to be returned.
1466      * @return  The hyperbolic sine of {@code x}.
1467      * @since 1.5
1468      */
1469     public static native double sinh(double x);
1470 
1471     /**
1472      * Returns the hyperbolic cosine of a {@code double} value.
1473      * The hyperbolic cosine of <i>x</i> is defined to be
1474      * (<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>)/2
1475      * where <i>e</i> is {@linkplain Math#E Euler's number}.
1476      *
1477      * <p>Special cases:
1478      * <ul>
1479      *
1480      * <li>If the argument is NaN, then the result is NaN.
1481      *
1482      * <li>If the argument is infinite, then the result is positive
1483      * infinity.
1484      *
1485      * <li>If the argument is zero, then the result is {@code 1.0}.
1486      *
1487      * </ul>
1488      *
1489      * @param   x The number whose hyperbolic cosine is to be returned.
1490      * @return  The hyperbolic cosine of {@code x}.
1491      * @since 1.5
1492      */
1493     public static native double cosh(double x);
1494 
1495     /**
1496      * Returns the hyperbolic tangent of a {@code double} value.
1497      * The hyperbolic tangent of <i>x</i> is defined to be
1498      * (<i>e<sup>x</sup>&nbsp;-&nbsp;e<sup>-x</sup></i>)/(<i>e<sup>x</sup>&nbsp;+&nbsp;e<sup>-x</sup></i>),
1499      * in other words, {@linkplain Math#sinh
1500      * sinh(<i>x</i>)}/{@linkplain Math#cosh cosh(<i>x</i>)}.  Note
1501      * that the absolute value of the exact tanh is always less than
1502      * 1.
1503      *
1504      * <p>Special cases:
1505      * <ul>
1506      *
1507      * <li>If the argument is NaN, then the result is NaN.
1508      *
1509      * <li>If the argument is zero, then the result is a zero with the
1510      * same sign as the argument.
1511      *
1512      * <li>If the argument is positive infinity, then the result is
1513      * {@code +1.0}.
1514      *
1515      * <li>If the argument is negative infinity, then the result is
1516      * {@code -1.0}.
1517      *
1518      * </ul>
1519      *
1520      * @param   x The number whose hyperbolic tangent is to be returned.
1521      * @return  The hyperbolic tangent of {@code x}.
1522      * @since 1.5
1523      */
1524     public static native double tanh(double x);
1525 
1526     /**
1527      * Returns sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1528      * without intermediate overflow or underflow.
1529      *
1530      * <p>Special cases:
1531      * <ul>
1532      *
1533      * <li> If either argument is infinite, then the result
1534      * is positive infinity.
1535      *
1536      * <li> If either argument is NaN and neither argument is infinite,
1537      * then the result is NaN.
1538      *
1539      * </ul>
1540      *
1541      * @param x a value
1542      * @param y a value
1543      * @return sqrt(<i>x</i><sup>2</sup>&nbsp;+<i>y</i><sup>2</sup>)
1544      * without intermediate overflow or underflow
1545      * @since 1.5
1546      */
1547     public static double hypot(double x, double y) {
1548         return FdLibm.Hypot.compute(x, y);
1549     }
1550 
1551     /**
1552      * Returns <i>e</i><sup>x</sup>&nbsp;-1.  Note that for values of
1553      * <i>x</i> near 0, the exact sum of
1554      * {@code expm1(x)}&nbsp;+&nbsp;1 is much closer to the true
1555      * result of <i>e</i><sup>x</sup> than {@code exp(x)}.
1556      *
1557      * <p>Special cases:
1558      * <ul>
1559      * <li>If the argument is NaN, the result is NaN.
1560      *
1561      * <li>If the argument is positive infinity, then the result is
1562      * positive infinity.
1563      *
1564      * <li>If the argument is negative infinity, then the result is
1565      * -1.0.
1566      *
1567      * <li>If the argument is zero, then the result is a zero with the
1568      * same sign as the argument.
1569      *
1570      * </ul>
1571      *
1572      * @param   x   the exponent to raise <i>e</i> to in the computation of
1573      *              <i>e</i><sup>{@code x}</sup>&nbsp;-1.
1574      * @return  the value <i>e</i><sup>{@code x}</sup>&nbsp;-&nbsp;1.
1575      * @since 1.5
1576      */
1577     public static native double expm1(double x);
1578 
1579     /**
1580      * Returns the natural logarithm of the sum of the argument and 1.
1581      * Note that for small values {@code x}, the result of
1582      * {@code log1p(x)} is much closer to the true result of ln(1
1583      * + {@code x}) than the floating-point evaluation of
1584      * {@code log(1.0+x)}.
1585      *
1586      * <p>Special cases:
1587      * <ul>
1588      *
1589      * <li>If the argument is NaN or less than -1, then the result is
1590      * NaN.
1591      *
1592      * <li>If the argument is positive infinity, then the result is
1593      * positive infinity.
1594      *
1595      * <li>If the argument is negative one, then the result is
1596      * negative infinity.
1597      *
1598      * <li>If the argument is zero, then the result is a zero with the
1599      * same sign as the argument.
1600      *
1601      * </ul>
1602      *
1603      * @param   x   a value
1604      * @return the value ln({@code x}&nbsp;+&nbsp;1), the natural
1605      * log of {@code x}&nbsp;+&nbsp;1
1606      * @since 1.5
1607      */
1608     public static native double log1p(double x);
1609 
1610     /**
1611      * Returns the first floating-point argument with the sign of the
1612      * second floating-point argument.  For this method, a NaN
1613      * {@code sign} argument is always treated as if it were
1614      * positive.
1615      *
1616      * @param magnitude  the parameter providing the magnitude of the result
1617      * @param sign   the parameter providing the sign of the result
1618      * @return a value with the magnitude of {@code magnitude}
1619      * and the sign of {@code sign}.
1620      * @since 1.6
1621      */
1622     public static double copySign(double magnitude, double sign) {
1623         return Math.copySign(magnitude, (Double.isNaN(sign)?1.0d:sign));
1624     }
1625 
1626     /**
1627      * Returns the first floating-point argument with the sign of the
1628      * second floating-point argument.  For this method, a NaN
1629      * {@code sign} argument is always treated as if it were
1630      * positive.
1631      *
1632      * @param magnitude  the parameter providing the magnitude of the result
1633      * @param sign   the parameter providing the sign of the result
1634      * @return a value with the magnitude of {@code magnitude}
1635      * and the sign of {@code sign}.
1636      * @since 1.6
1637      */
1638     public static float copySign(float magnitude, float sign) {
1639         return Math.copySign(magnitude, (Float.isNaN(sign)?1.0f:sign));
1640     }
1641     /**
1642      * Returns the unbiased exponent used in the representation of a
1643      * {@code float}.  Special cases:
1644      *
1645      * <ul>
1646      * <li>If the argument is NaN or infinite, then the result is
1647      * {@link Float#MAX_EXPONENT} + 1.
1648      * <li>If the argument is zero or subnormal, then the result is
1649      * {@link Float#MIN_EXPONENT} -1.
1650      * </ul>
1651      * @param f a {@code float} value
1652      * @return the unbiased exponent of the argument
1653      * @since 1.6
1654      */
1655     public static int getExponent(float f) {
1656         return Math.getExponent(f);
1657     }
1658 
1659     /**
1660      * Returns the unbiased exponent used in the representation of a
1661      * {@code double}.  Special cases:
1662      *
1663      * <ul>
1664      * <li>If the argument is NaN or infinite, then the result is
1665      * {@link Double#MAX_EXPONENT} + 1.
1666      * <li>If the argument is zero or subnormal, then the result is
1667      * {@link Double#MIN_EXPONENT} -1.
1668      * </ul>
1669      * @param d a {@code double} value
1670      * @return the unbiased exponent of the argument
1671      * @since 1.6
1672      */
1673     public static int getExponent(double d) {
1674         return Math.getExponent(d);
1675     }
1676 
1677     /**
1678      * Returns the floating-point number adjacent to the first
1679      * argument in the direction of the second argument.  If both
1680      * arguments compare as equal the second argument is returned.
1681      *
1682      * <p>Special cases:
1683      * <ul>
1684      * <li> If either argument is a NaN, then NaN is returned.
1685      *
1686      * <li> If both arguments are signed zeros, {@code direction}
1687      * is returned unchanged (as implied by the requirement of
1688      * returning the second argument if the arguments compare as
1689      * equal).
1690      *
1691      * <li> If {@code start} is
1692      * &plusmn;{@link Double#MIN_VALUE} and {@code direction}
1693      * has a value such that the result should have a smaller
1694      * magnitude, then a zero with the same sign as {@code start}
1695      * is returned.
1696      *
1697      * <li> If {@code start} is infinite and
1698      * {@code direction} has a value such that the result should
1699      * have a smaller magnitude, {@link Double#MAX_VALUE} with the
1700      * same sign as {@code start} is returned.
1701      *
1702      * <li> If {@code start} is equal to &plusmn;
1703      * {@link Double#MAX_VALUE} and {@code direction} has a
1704      * value such that the result should have a larger magnitude, an
1705      * infinity with same sign as {@code start} is returned.
1706      * </ul>
1707      *
1708      * @param start  starting floating-point value
1709      * @param direction value indicating which of
1710      * {@code start}'s neighbors or {@code start} should
1711      * be returned
1712      * @return The floating-point number adjacent to {@code start} in the
1713      * direction of {@code direction}.
1714      * @since 1.6
1715      */
1716     public static double nextAfter(double start, double direction) {
1717         return Math.nextAfter(start, direction);
1718     }
1719 
1720     /**
1721      * Returns the floating-point number adjacent to the first
1722      * argument in the direction of the second argument.  If both
1723      * arguments compare as equal a value equivalent to the second argument
1724      * is returned.
1725      *
1726      * <p>Special cases:
1727      * <ul>
1728      * <li> If either argument is a NaN, then NaN is returned.
1729      *
1730      * <li> If both arguments are signed zeros, a value equivalent
1731      * to {@code direction} is returned.
1732      *
1733      * <li> If {@code start} is
1734      * &plusmn;{@link Float#MIN_VALUE} and {@code direction}
1735      * has a value such that the result should have a smaller
1736      * magnitude, then a zero with the same sign as {@code start}
1737      * is returned.
1738      *
1739      * <li> If {@code start} is infinite and
1740      * {@code direction} has a value such that the result should
1741      * have a smaller magnitude, {@link Float#MAX_VALUE} with the
1742      * same sign as {@code start} is returned.
1743      *
1744      * <li> If {@code start} is equal to &plusmn;
1745      * {@link Float#MAX_VALUE} and {@code direction} has a
1746      * value such that the result should have a larger magnitude, an
1747      * infinity with same sign as {@code start} is returned.
1748      * </ul>
1749      *
1750      * @param start  starting floating-point value
1751      * @param direction value indicating which of
1752      * {@code start}'s neighbors or {@code start} should
1753      * be returned
1754      * @return The floating-point number adjacent to {@code start} in the
1755      * direction of {@code direction}.
1756      * @since 1.6
1757      */
1758     public static float nextAfter(float start, double direction) {
1759         return Math.nextAfter(start, direction);
1760     }
1761 
1762     /**
1763      * Returns the floating-point value adjacent to {@code d} in
1764      * the direction of positive infinity.  This method is
1765      * semantically equivalent to {@code nextAfter(d,
1766      * Double.POSITIVE_INFINITY)}; however, a {@code nextUp}
1767      * implementation may run faster than its equivalent
1768      * {@code nextAfter} call.
1769      *
1770      * <p>Special Cases:
1771      * <ul>
1772      * <li> If the argument is NaN, the result is NaN.
1773      *
1774      * <li> If the argument is positive infinity, the result is
1775      * positive infinity.
1776      *
1777      * <li> If the argument is zero, the result is
1778      * {@link Double#MIN_VALUE}
1779      *
1780      * </ul>
1781      *
1782      * @param d starting floating-point value
1783      * @return The adjacent floating-point value closer to positive
1784      * infinity.
1785      * @since 1.6
1786      */
1787     public static double nextUp(double d) {
1788         return Math.nextUp(d);
1789     }
1790 
1791     /**
1792      * Returns the floating-point value adjacent to {@code f} in
1793      * the direction of positive infinity.  This method is
1794      * semantically equivalent to {@code nextAfter(f,
1795      * Float.POSITIVE_INFINITY)}; however, a {@code nextUp}
1796      * implementation may run faster than its equivalent
1797      * {@code nextAfter} call.
1798      *
1799      * <p>Special Cases:
1800      * <ul>
1801      * <li> If the argument is NaN, the result is NaN.
1802      *
1803      * <li> If the argument is positive infinity, the result is
1804      * positive infinity.
1805      *
1806      * <li> If the argument is zero, the result is
1807      * {@link Float#MIN_VALUE}
1808      *
1809      * </ul>
1810      *
1811      * @param f starting floating-point value
1812      * @return The adjacent floating-point value closer to positive
1813      * infinity.
1814      * @since 1.6
1815      */
1816     public static float nextUp(float f) {
1817         return Math.nextUp(f);
1818     }
1819 
1820     /**
1821      * Returns the floating-point value adjacent to {@code d} in
1822      * the direction of negative infinity.  This method is
1823      * semantically equivalent to {@code nextAfter(d,
1824      * Double.NEGATIVE_INFINITY)}; however, a
1825      * {@code nextDown} implementation may run faster than its
1826      * equivalent {@code nextAfter} call.
1827      *
1828      * <p>Special Cases:
1829      * <ul>
1830      * <li> If the argument is NaN, the result is NaN.
1831      *
1832      * <li> If the argument is negative infinity, the result is
1833      * negative infinity.
1834      *
1835      * <li> If the argument is zero, the result is
1836      * {@code -Double.MIN_VALUE}
1837      *
1838      * </ul>
1839      *
1840      * @param d  starting floating-point value
1841      * @return The adjacent floating-point value closer to negative
1842      * infinity.
1843      * @since 1.8
1844      */
1845     public static double nextDown(double d) {
1846         return Math.nextDown(d);
1847     }
1848 
1849     /**
1850      * Returns the floating-point value adjacent to {@code f} in
1851      * the direction of negative infinity.  This method is
1852      * semantically equivalent to {@code nextAfter(f,
1853      * Float.NEGATIVE_INFINITY)}; however, a
1854      * {@code nextDown} implementation may run faster than its
1855      * equivalent {@code nextAfter} call.
1856      *
1857      * <p>Special Cases:
1858      * <ul>
1859      * <li> If the argument is NaN, the result is NaN.
1860      *
1861      * <li> If the argument is negative infinity, the result is
1862      * negative infinity.
1863      *
1864      * <li> If the argument is zero, the result is
1865      * {@code -Float.MIN_VALUE}
1866      *
1867      * </ul>
1868      *
1869      * @param f  starting floating-point value
1870      * @return The adjacent floating-point value closer to negative
1871      * infinity.
1872      * @since 1.8
1873      */
1874     public static float nextDown(float f) {
1875         return Math.nextDown(f);
1876     }
1877 
1878     /**
1879      * Returns {@code d} &times;
1880      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1881      * by a single correctly rounded floating-point multiply to a
1882      * member of the double value set.  See the Java
1883      * Language Specification for a discussion of floating-point
1884      * value sets.  If the exponent of the result is between {@link
1885      * Double#MIN_EXPONENT} and {@link Double#MAX_EXPONENT}, the
1886      * answer is calculated exactly.  If the exponent of the result
1887      * would be larger than {@code Double.MAX_EXPONENT}, an
1888      * infinity is returned.  Note that if the result is subnormal,
1889      * precision may be lost; that is, when {@code scalb(x, n)}
1890      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1891      * <i>x</i>.  When the result is non-NaN, the result has the same
1892      * sign as {@code d}.
1893      *
1894      * <p>Special cases:
1895      * <ul>
1896      * <li> If the first argument is NaN, NaN is returned.
1897      * <li> If the first argument is infinite, then an infinity of the
1898      * same sign is returned.
1899      * <li> If the first argument is zero, then a zero of the same
1900      * sign is returned.
1901      * </ul>
1902      *
1903      * @param d number to be scaled by a power of two.
1904      * @param scaleFactor power of 2 used to scale {@code d}
1905      * @return {@code d} &times; 2<sup>{@code scaleFactor}</sup>
1906      * @since 1.6
1907      */
1908     public static double scalb(double d, int scaleFactor) {
1909         return Math.scalb(d, scaleFactor);
1910     }
1911 
1912     /**
1913      * Returns {@code f} &times;
1914      * 2<sup>{@code scaleFactor}</sup> rounded as if performed
1915      * by a single correctly rounded floating-point multiply to a
1916      * member of the float value set.  See the Java
1917      * Language Specification for a discussion of floating-point
1918      * value sets.  If the exponent of the result is between {@link
1919      * Float#MIN_EXPONENT} and {@link Float#MAX_EXPONENT}, the
1920      * answer is calculated exactly.  If the exponent of the result
1921      * would be larger than {@code Float.MAX_EXPONENT}, an
1922      * infinity is returned.  Note that if the result is subnormal,
1923      * precision may be lost; that is, when {@code scalb(x, n)}
1924      * is subnormal, {@code scalb(scalb(x, n), -n)} may not equal
1925      * <i>x</i>.  When the result is non-NaN, the result has the same
1926      * sign as {@code f}.
1927      *
1928      * <p>Special cases:
1929      * <ul>
1930      * <li> If the first argument is NaN, NaN is returned.
1931      * <li> If the first argument is infinite, then an infinity of the
1932      * same sign is returned.
1933      * <li> If the first argument is zero, then a zero of the same
1934      * sign is returned.
1935      * </ul>
1936      *
1937      * @param f number to be scaled by a power of two.
1938      * @param scaleFactor power of 2 used to scale {@code f}
1939      * @return {@code f} &times; 2<sup>{@code scaleFactor}</sup>
1940      * @since 1.6
1941      */
1942     public static float scalb(float f, int scaleFactor) {
1943         return Math.scalb(f, scaleFactor);
1944     }
1945 }