< prev index next >

test/java/lang/StrictMath/FdlibmTranslit.java

Print this page




  48      */
  49     private static double __LO(double x, int low) {
  50         long transX = Double.doubleToRawLongBits(x);
  51         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  52     }
  53 
  54     /**
  55      * Return the high-order 32 bits of the double argument as an int.
  56      */
  57     private static int __HI(double x) {
  58         long transducer = Double.doubleToRawLongBits(x);
  59         return (int)(transducer >> 32);
  60     }
  61 
  62     /**
  63      * Return a double with its high-order bits of the second argument
  64      * and the low-order bits of the first argument..
  65      */
  66     private static double __HI(double x, int high) {
  67         long transX = Double.doubleToRawLongBits(x);
  68         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );

  69     }
  70 
  71     public static double hypot(double x, double y) {
  72         return Hypot.compute(x, y);
  73     }
  74 
  75     /**
  76      * cbrt(x)
  77      * Return cube root of x
  78      */
  79     public static class Cbrt {
  80         // unsigned
  81         private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
  82         private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
  83 
  84         private static final double C =  5.42857142857142815906e-01; /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
  85         private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
  86         private static final double E =  1.41428571428571436819e+00; /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
  87         private static final double F =  1.60714285714285720630e+00; /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
  88         private static final double G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */


 231                 t2 = a - t1;
 232                 w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
 233             } else {
 234                 a  = a + a;
 235                 y1 = 0;
 236                 y1 = __HI(y1, hb);
 237                 y2 = b - y1;
 238                 t1 = 0;
 239                 t1 = __HI(t1, ha + 0x00100000);
 240                 t2 = a - t1;
 241                 w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
 242             }
 243             if (k != 0) {
 244                 t1 = 1.0;
 245                 int t1_hi = __HI(t1);
 246                 t1_hi += (k << 20);
 247                 t1 = __HI(t1, t1_hi);
 248                 return t1 * w;
 249             } else
 250                 return w;




































































































































 251         }
 252     }
 253 }


  48      */
  49     private static double __LO(double x, int low) {
  50         long transX = Double.doubleToRawLongBits(x);
  51         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
  52     }
  53 
  54     /**
  55      * Return the high-order 32 bits of the double argument as an int.
  56      */
  57     private static int __HI(double x) {
  58         long transducer = Double.doubleToRawLongBits(x);
  59         return (int)(transducer >> 32);
  60     }
  61 
  62     /**
  63      * Return a double with its high-order bits of the second argument
  64      * and the low-order bits of the first argument..
  65      */
  66     private static double __HI(double x, int high) {
  67         long transX = Double.doubleToRawLongBits(x);
  68         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
  69                                        ( ((long)high)) << 32 );
  70     }
  71 
  72     public static double hypot(double x, double y) {
  73         return Hypot.compute(x, y);
  74     }
  75 
  76     /**
  77      * cbrt(x)
  78      * Return cube root of x
  79      */
  80     public static class Cbrt {
  81         // unsigned
  82         private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
  83         private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
  84 
  85         private static final double C =  5.42857142857142815906e-01; /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
  86         private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
  87         private static final double E =  1.41428571428571436819e+00; /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
  88         private static final double F =  1.60714285714285720630e+00; /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
  89         private static final double G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */


 232                 t2 = a - t1;
 233                 w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
 234             } else {
 235                 a  = a + a;
 236                 y1 = 0;
 237                 y1 = __HI(y1, hb);
 238                 y2 = b - y1;
 239                 t1 = 0;
 240                 t1 = __HI(t1, ha + 0x00100000);
 241                 t2 = a - t1;
 242                 w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
 243             }
 244             if (k != 0) {
 245                 t1 = 1.0;
 246                 int t1_hi = __HI(t1);
 247                 t1_hi += (k << 20);
 248                 t1 = __HI(t1, t1_hi);
 249                 return t1 * w;
 250             } else
 251                 return w;
 252         }
 253     }
 254 
 255     /**
 256      * Returns the exponential of x.
 257      *
 258      * Method
 259      *   1. Argument reduction:
 260      *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 261      *      Given x, find r and integer k such that
 262      *
 263      *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 264      *
 265      *      Here r will be represented as r = hi-lo for better
 266      *      accuracy.
 267      *
 268      *   2. Approximation of exp(r) by a special rational function on
 269      *      the interval [0,0.34658]:
 270      *      Write
 271      *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 272      *      We use a special Reme algorithm on [0,0.34658] to generate
 273      *      a polynomial of degree 5 to approximate R. The maximum error
 274      *      of this polynomial approximation is bounded by 2**-59. In
 275      *      other words,
 276      *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 277      *      (where z=r*r, and the values of P1 to P5 are listed below)
 278      *      and
 279      *          |                  5          |     -59
 280      *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 281      *          |                             |
 282      *      The computation of exp(r) thus becomes
 283      *                             2*r
 284      *              exp(r) = 1 + -------
 285      *                            R - r
 286      *                                 r*R1(r)
 287      *                     = 1 + r + ----------- (for better accuracy)
 288      *                                2 - R1(r)
 289      *      where
 290      *                               2       4             10
 291      *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 292      *
 293      *   3. Scale back to obtain exp(x):
 294      *      From step 1, we have
 295      *         exp(x) = 2^k * exp(r)
 296      *
 297      * Special cases:
 298      *      exp(INF) is INF, exp(NaN) is NaN;
 299      *      exp(-INF) is 0, and
 300      *      for finite argument, only exp(0)=1 is exact.
 301      *
 302      * Accuracy:
 303      *      according to an error analysis, the error is always less than
 304      *      1 ulp (unit in the last place).
 305      *
 306      * Misc. info.
 307      *      For IEEE double
 308      *          if x >  7.09782712893383973096e+02 then exp(x) overflow
 309      *          if x < -7.45133219101941108420e+02 then exp(x) underflow
 310      *
 311      * Constants:
 312      * The hexadecimal values are the intended ones for the following
 313      * constants. The decimal values may be used, provided that the
 314      * compiler will convert from decimal to binary accurately enough
 315      * to produce the hexadecimal values shown.
 316      */
 317     static class Exp {
 318         private static final double one     = 1.0;
 319         private static final double[] halF = {0.5,-0.5,};
 320         private static final double huge    = 1.0e+300;
 321         private static final double twom1000= 9.33263618503218878990e-302;      /* 2**-1000=0x01700000,0*/
 322         private static final double o_threshold=  7.09782712893383973096e+02;   /* 0x40862E42, 0xFEFA39EF */
 323         private static final double u_threshold= -7.45133219101941108420e+02;   /* 0xc0874910, 0xD52D3051 */
 324         private static final double[] ln2HI   ={ 6.93147180369123816490e-01,    /* 0x3fe62e42, 0xfee00000 */
 325                                                  -6.93147180369123816490e-01};  /* 0xbfe62e42, 0xfee00000 */
 326         private static final double[] ln2LO   ={ 1.90821492927058770002e-10,    /* 0x3dea39ef, 0x35793c76 */
 327                                                  -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
 328         private static final double invln2 =  1.44269504088896338700e+00;       /* 0x3ff71547, 0x652b82fe */
 329         private static final double P1   =  1.66666666666666019037e-01;         /* 0x3FC55555, 0x5555553E */
 330         private static final double P2   = -2.77777777770155933842e-03;         /* 0xBF66C16C, 0x16BEBD93 */
 331         private static final double P3   =  6.61375632143793436117e-05;         /* 0x3F11566A, 0xAF25DE2C */
 332         private static final double P4   = -1.65339022054652515390e-06;         /* 0xBEBBBD41, 0xC5D26BF1 */
 333         private static final double P5   =  4.13813679705723846039e-08;         /* 0x3E663769, 0x72BEA4D0 */
 334 
 335         public static strictfp double compute(double x) {
 336             double y,hi=0,lo=0,c,t;
 337             int k=0,xsb;
 338             /*unsigned*/ int hx;
 339 
 340             hx  = __HI(x);  /* high word of x */
 341             xsb = (hx>>31)&1;               /* sign bit of x */
 342             hx &= 0x7fffffff;               /* high word of |x| */
 343 
 344             /* filter out non-finite argument */
 345             if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
 346                 if(hx>=0x7ff00000) {
 347                     if(((hx&0xfffff)|__LO(x))!=0)
 348                         return x+x;                /* NaN */
 349                     else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
 350                 }
 351                 if(x > o_threshold) return huge*huge; /* overflow */
 352                 if(x < u_threshold) return twom1000*twom1000; /* underflow */
 353             }
 354 
 355             /* argument reduction */
 356             if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
 357                 if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
 358                     hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
 359                 } else {
 360                     k  = (int)(invln2*x+halF[xsb]);
 361                     t  = k;
 362                     hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
 363                     lo = t*ln2LO[0];
 364                 }
 365                 x  = hi - lo;
 366             }
 367             else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
 368                 if(huge+x>one) return one+x;/* trigger inexact */
 369             }
 370             else k = 0;
 371 
 372             /* x is now in primary range */
 373             t  = x*x;
 374             c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 375             if(k==0)        return one-((x*c)/(c-2.0)-x);
 376             else            y = one-((lo-(x*c)/(2.0-c))-hi);
 377             if(k >= -1021) {
 378                 y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
 379                 return y;
 380             } else {
 381                 y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */
 382                 return y*twom1000;
 383             }
 384         }
 385     }
 386 }
< prev index next >