< prev index next >

test/java/lang/StrictMath/FdlibmTranslit.java

Print this page

        

@@ -63,11 +63,12 @@
      * Return a double with its high-order bits of the second argument
      * and the low-order bits of the first argument..
      */
     private static double __HI(double x, int high) {
         long transX = Double.doubleToRawLongBits(x);
-        return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
+        return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
+                                       ( ((long)high)) << 32 );
     }
 
     public static double hypot(double x, double y) {
         return Hypot.compute(x, y);
     }

@@ -248,6 +249,138 @@
                 return t1 * w;
             } else
                 return w;
         }
     }
+
+    /**
+     * Returns the exponential of x.
+     *
+     * Method
+     *   1. Argument reduction:
+     *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+     *      Given x, find r and integer k such that
+     *
+     *               x = k*ln2 + r,  |r| <= 0.5*ln2.
+     *
+     *      Here r will be represented as r = hi-lo for better
+     *      accuracy.
+     *
+     *   2. Approximation of exp(r) by a special rational function on
+     *      the interval [0,0.34658]:
+     *      Write
+     *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+     *      We use a special Reme algorithm on [0,0.34658] to generate
+     *      a polynomial of degree 5 to approximate R. The maximum error
+     *      of this polynomial approximation is bounded by 2**-59. In
+     *      other words,
+     *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+     *      (where z=r*r, and the values of P1 to P5 are listed below)
+     *      and
+     *          |                  5          |     -59
+     *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
+     *          |                             |
+     *      The computation of exp(r) thus becomes
+     *                             2*r
+     *              exp(r) = 1 + -------
+     *                            R - r
+     *                                 r*R1(r)
+     *                     = 1 + r + ----------- (for better accuracy)
+     *                                2 - R1(r)
+     *      where
+     *                               2       4             10
+     *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
+     *
+     *   3. Scale back to obtain exp(x):
+     *      From step 1, we have
+     *         exp(x) = 2^k * exp(r)
+     *
+     * Special cases:
+     *      exp(INF) is INF, exp(NaN) is NaN;
+     *      exp(-INF) is 0, and
+     *      for finite argument, only exp(0)=1 is exact.
+     *
+     * Accuracy:
+     *      according to an error analysis, the error is always less than
+     *      1 ulp (unit in the last place).
+     *
+     * Misc. info.
+     *      For IEEE double
+     *          if x >  7.09782712893383973096e+02 then exp(x) overflow
+     *          if x < -7.45133219101941108420e+02 then exp(x) underflow
+     *
+     * Constants:
+     * The hexadecimal values are the intended ones for the following
+     * constants. The decimal values may be used, provided that the
+     * compiler will convert from decimal to binary accurately enough
+     * to produce the hexadecimal values shown.
+     */
+    static class Exp {
+        private static final double one     = 1.0;
+        private static final double[] halF = {0.5,-0.5,};
+        private static final double huge    = 1.0e+300;
+        private static final double twom1000= 9.33263618503218878990e-302;      /* 2**-1000=0x01700000,0*/
+        private static final double o_threshold=  7.09782712893383973096e+02;   /* 0x40862E42, 0xFEFA39EF */
+        private static final double u_threshold= -7.45133219101941108420e+02;   /* 0xc0874910, 0xD52D3051 */
+        private static final double[] ln2HI   ={ 6.93147180369123816490e-01,    /* 0x3fe62e42, 0xfee00000 */
+                                                 -6.93147180369123816490e-01};  /* 0xbfe62e42, 0xfee00000 */
+        private static final double[] ln2LO   ={ 1.90821492927058770002e-10,    /* 0x3dea39ef, 0x35793c76 */
+                                                 -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
+        private static final double invln2 =  1.44269504088896338700e+00;       /* 0x3ff71547, 0x652b82fe */
+        private static final double P1   =  1.66666666666666019037e-01;         /* 0x3FC55555, 0x5555553E */
+        private static final double P2   = -2.77777777770155933842e-03;         /* 0xBF66C16C, 0x16BEBD93 */
+        private static final double P3   =  6.61375632143793436117e-05;         /* 0x3F11566A, 0xAF25DE2C */
+        private static final double P4   = -1.65339022054652515390e-06;         /* 0xBEBBBD41, 0xC5D26BF1 */
+        private static final double P5   =  4.13813679705723846039e-08;         /* 0x3E663769, 0x72BEA4D0 */
+
+        public static strictfp double compute(double x) {
+            double y,hi=0,lo=0,c,t;
+            int k=0,xsb;
+            /*unsigned*/ int hx;
+
+            hx  = __HI(x);  /* high word of x */
+            xsb = (hx>>31)&1;               /* sign bit of x */
+            hx &= 0x7fffffff;               /* high word of |x| */
+
+            /* filter out non-finite argument */
+            if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
+                if(hx>=0x7ff00000) {
+                    if(((hx&0xfffff)|__LO(x))!=0)
+                        return x+x;                /* NaN */
+                    else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
+                }
+                if(x > o_threshold) return huge*huge; /* overflow */
+                if(x < u_threshold) return twom1000*twom1000; /* underflow */
+            }
+
+            /* argument reduction */
+            if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
+                if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
+                    hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
+                } else {
+                    k  = (int)(invln2*x+halF[xsb]);
+                    t  = k;
+                    hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
+                    lo = t*ln2LO[0];
+                }
+                x  = hi - lo;
+            }
+            else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
+                if(huge+x>one) return one+x;/* trigger inexact */
+            }
+            else k = 0;
+
+            /* x is now in primary range */
+            t  = x*x;
+            c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+            if(k==0)        return one-((x*c)/(c-2.0)-x);
+            else            y = one-((lo-(x*c)/(2.0-c))-hi);
+            if(k >= -1021) {
+                y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
+                return y;
+            } else {
+                y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */
+                return y*twom1000;
+            }
+        }
+    }
 }
< prev index next >