< prev index next >

src/java.base/share/classes/java/lang/FdLibm.java

Print this page

        

@@ -1,7 +1,7 @@
 /*
- * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  *
  * This code is free software; you can redistribute it and/or modify it
  * under the terms of the GNU General Public License version 2 only, as
  * published by the Free Software Foundation.  Oracle designates this

@@ -77,11 +77,12 @@
      * Return a double with its low-order bits of the second argument
      * and the high-order bits of the first argument..
      */
     private static double __LO(double x, int low) {
         long transX = Double.doubleToRawLongBits(x);
-        return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );
+        return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
+                                       (low    & 0x0000_0000_FFFF_FFFFL));
     }
 
     /**
      * Return the high-order 32 bits of the double argument as an int.
      */

@@ -94,11 +95,12 @@
      * Return a double with its high-order bits of the second argument
      * and the low-order bits of the first argument..
      */
     private static double __HI(double x, int high) {
         long transX = Double.doubleToRawLongBits(x);
-        return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );
+        return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
+                                       ( ((long)high)) << 32 );
     }
 
     /**
      * cbrt(x)
      * Return cube root of x

@@ -578,6 +580,154 @@
                 z = __HI(z, z_hi);
             }
             return s * z;
         }
     }
+
+    /**
+     * Returns the exponential of x.
+     *
+     * Method
+     *   1. Argument reduction:
+     *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+     *      Given x, find r and integer k such that
+     *
+     *               x = k*ln2 + r,  |r| <= 0.5*ln2.
+     *
+     *      Here r will be represented as r = hi-lo for better
+     *      accuracy.
+     *
+     *   2. Approximation of exp(r) by a special rational function on
+     *      the interval [0,0.34658]:
+     *      Write
+     *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+     *      We use a special Reme algorithm on [0,0.34658] to generate
+     *      a polynomial of degree 5 to approximate R. The maximum error
+     *      of this polynomial approximation is bounded by 2**-59. In
+     *      other words,
+     *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+     *      (where z=r*r, and the values of P1 to P5 are listed below)
+     *      and
+     *          |                  5          |     -59
+     *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
+     *          |                             |
+     *      The computation of exp(r) thus becomes
+     *                             2*r
+     *              exp(r) = 1 + -------
+     *                            R - r
+     *                                 r*R1(r)
+     *                     = 1 + r + ----------- (for better accuracy)
+     *                                2 - R1(r)
+     *      where
+     *                               2       4             10
+     *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
+     *
+     *   3. Scale back to obtain exp(x):
+     *      From step 1, we have
+     *         exp(x) = 2^k * exp(r)
+     *
+     * Special cases:
+     *      exp(INF) is INF, exp(NaN) is NaN;
+     *      exp(-INF) is 0, and
+     *      for finite argument, only exp(0)=1 is exact.
+     *
+     * Accuracy:
+     *      according to an error analysis, the error is always less than
+     *      1 ulp (unit in the last place).
+     *
+     * Misc. info.
+     *      For IEEE double
+     *          if x >  7.09782712893383973096e+02 then exp(x) overflow
+     *          if x < -7.45133219101941108420e+02 then exp(x) underflow
+     *
+     * Constants:
+     * The hexadecimal values are the intended ones for the following
+     * constants. The decimal values may be used, provided that the
+     * compiler will convert from decimal to binary accurately enough
+     * to produce the hexadecimal values shown.
+     */
+    static class Exp {
+        private static final double one     = 1.0;
+        private static final double[] half = {0.5, -0.5,};
+        private static final double huge    = 1.0e+300;
+        private static final double twom1000=     0x1.0p-1000;             //  9.33263618503218878990e-302 = 2^-1000
+        private static final double o_threshold=  0x1.62e42fefa39efp9;     //  7.09782712893383973096e+02
+        private static final double u_threshold= -0x1.74910d52d3051p9;     // -7.45133219101941108420e+02;
+        private static final double[] ln2HI   ={  0x1.62e42feep-1,         //  6.93147180369123816490e-01
+                                                 -0x1.62e42feep-1};        // -6.93147180369123816490e-01
+        private static final double[] ln2LO   ={  0x1.a39ef35793c76p-33,   //  1.90821492927058770002e-10
+                                                 -0x1.a39ef35793c76p-33};  // -1.90821492927058770002e-10
+        private static final double invln2 =      0x1.71547652b82fep0;     //  1.44269504088896338700e+00
+
+        private static final double P1   =  0x1.555555555553ep-3;  //  1.66666666666666019037e-01
+        private static final double P2   = -0x1.6c16c16bebd93p-9;  // -2.77777777770155933842e-03
+        private static final double P3   =  0x1.1566aaf25de2cp-14; //  6.61375632143793436117e-05
+        private static final double P4   = -0x1.bbd41c5d26bf1p-20; // -1.65339022054652515390e-06
+        private static final double P5   =  0x1.6376972bea4d0p-25; //  4.13813679705723846039e-08
+
+        // should be able to forgo strictfp due to controlled over/underflow
+        public static strictfp double compute(double x) {
+            double y;
+            double hi = 0.0;
+            double lo = 0.0;
+            double c;
+            double t;
+            int k = 0;
+            int xsb;
+            /*unsigned*/ int hx;
+
+            hx  = __HI(x);  /* high word of x */
+            xsb = (hx >> 31) & 1;               /* sign bit of x */
+            hx &= 0x7fffffff;               /* high word of |x| */
+
+            /* filter out non-finite argument */
+            if (hx >= 0x40862E42) {                  /* if |x| >= 709.78... */
+                if (hx >= 0x7ff00000) {
+                    if (((hx & 0xfffff) | __LO(x)) != 0)
+                        return x + x;                /* NaN */
+                    else
+                        return (xsb == 0) ? x : 0.0;    /* exp(+-inf) = {inf, 0} */
+                }
+                if (x > o_threshold)
+                    return huge * huge; /* overflow */
+                if (x < u_threshold) // unsigned compare needed here?
+                    return twom1000 * twom1000; /* underflow */
+            }
+
+            /* argument reduction */
+            if (hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
+                if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
+                    hi = x - ln2HI[xsb];
+                    lo=ln2LO[xsb];
+                    k = 1 - xsb - xsb;
+                } else {
+                    k  = (int)(invln2 * x + half[xsb]);
+                    t  = k;
+                    hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
+                    lo = t*ln2LO[0];
+                }
+                x  = hi - lo;
+            } else if (hx < 0x3e300000)  {     /* when |x|<2**-28 */
+                if (huge + x > one)
+                    return one + x; /* trigger inexact */
+            } else {
+                k = 0;
+            }
+
+            /* x is now in primary range */
+            t  = x * x;
+            c  = x - t*(P1 + t*(P2 + t*(P3 + t*(P4 + t*P5))));
+            if (k == 0)
+                return one - ((x*c)/(c - 2.0) - x);
+            else
+                y = one - ((lo - (x*c)/(2.0 - c)) - hi);
+
+            if(k >= -1021) {
+                y = __HI(y, __HI(y) + (k << 20)); /* add k to y's exponent */
+                return y;
+            } else {
+                y = __HI(y, __HI(y) + ((k + 1000) << 20)); /* add k to y's exponent */
+                return y * twom1000;
+            }
+        }
+    }
 }
< prev index next >