< prev index next >

test/java/lang/StrictMath/FdlibmTranslit.java

Print this page


   1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any


  31  */
  32 public class FdlibmTranslit {
  33     private FdlibmTranslit() {
  34         throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
  35     }
  36 
  37     /**
  38      * Return the low-order 32 bits of the double argument as an int.
  39      */
  40     private static int __LO(double x) {
  41         long transducer = Double.doubleToRawLongBits(x);
  42         return (int)transducer;
  43     }
  44 
  45     /**
  46      * Return a double with its low-order bits of the second argument
  47      * and the high-order bits of the first argument..
  48      */
  49     private static double __LO(double x, int low) {
  50         long transX = Double.doubleToRawLongBits(x);
  51         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L)|low );

  52     }
  53 
  54     /**
  55      * Return the high-order 32 bits of the double argument as an int.
  56      */
  57     private static int __HI(double x) {
  58         long transducer = Double.doubleToRawLongBits(x);
  59         return (int)(transducer >> 32);
  60     }
  61 
  62     /**
  63      * Return a double with its high-order bits of the second argument
  64      * and the low-order bits of the first argument..
  65      */
  66     private static double __HI(double x, int high) {
  67         long transX = Double.doubleToRawLongBits(x);
  68         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL)|( ((long)high)) << 32 );

  69     }
  70 
  71     public static double hypot(double x, double y) {
  72         return Hypot.compute(x, y);
  73     }
  74 
  75     /**
  76      * cbrt(x)
  77      * Return cube root of x
  78      */
  79     public static class Cbrt {
  80         // unsigned
  81         private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
  82         private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
  83 
  84         private static final double C =  5.42857142857142815906e-01; /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
  85         private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
  86         private static final double E =  1.41428571428571436819e+00; /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
  87         private static final double F =  1.60714285714285720630e+00; /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
  88         private static final double G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */


 231                 t2 = a - t1;
 232                 w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
 233             } else {
 234                 a  = a + a;
 235                 y1 = 0;
 236                 y1 = __HI(y1, hb);
 237                 y2 = b - y1;
 238                 t1 = 0;
 239                 t1 = __HI(t1, ha + 0x00100000);
 240                 t2 = a - t1;
 241                 w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
 242             }
 243             if (k != 0) {
 244                 t1 = 1.0;
 245                 int t1_hi = __HI(t1);
 246                 t1_hi += (k << 20);
 247                 t1 = __HI(t1, t1_hi);
 248                 return t1 * w;
 249             } else
 250                 return w;




































































































































 251         }
 252     }
 253 }
   1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any


  31  */
  32 public class FdlibmTranslit {
  33     private FdlibmTranslit() {
  34         throw new UnsupportedOperationException("No FdLibmTranslit instances for you.");
  35     }
  36 
  37     /**
  38      * Return the low-order 32 bits of the double argument as an int.
  39      */
  40     private static int __LO(double x) {
  41         long transducer = Double.doubleToRawLongBits(x);
  42         return (int)transducer;
  43     }
  44 
  45     /**
  46      * Return a double with its low-order bits of the second argument
  47      * and the high-order bits of the first argument..
  48      */
  49     private static double __LO(double x, int low) {
  50         long transX = Double.doubleToRawLongBits(x);
  51         return Double.longBitsToDouble((transX & 0xFFFF_FFFF_0000_0000L) |
  52                                        (low    & 0x0000_0000_FFFF_FFFFL));
  53     }
  54 
  55     /**
  56      * Return the high-order 32 bits of the double argument as an int.
  57      */
  58     private static int __HI(double x) {
  59         long transducer = Double.doubleToRawLongBits(x);
  60         return (int)(transducer >> 32);
  61     }
  62 
  63     /**
  64      * Return a double with its high-order bits of the second argument
  65      * and the low-order bits of the first argument..
  66      */
  67     private static double __HI(double x, int high) {
  68         long transX = Double.doubleToRawLongBits(x);
  69         return Double.longBitsToDouble((transX & 0x0000_0000_FFFF_FFFFL) |
  70                                        ( ((long)high)) << 32 );
  71     }
  72 
  73     public static double hypot(double x, double y) {
  74         return Hypot.compute(x, y);
  75     }
  76 
  77     /**
  78      * cbrt(x)
  79      * Return cube root of x
  80      */
  81     public static class Cbrt {
  82         // unsigned
  83         private static final int B1 = 715094163; /* B1 = (682-0.03306235651)*2**20 */
  84         private static final int B2 = 696219795; /* B2 = (664-0.03306235651)*2**20 */
  85 
  86         private static final double C =  5.42857142857142815906e-01; /* 19/35     = 0x3FE15F15, 0xF15F15F1 */
  87         private static final double D = -7.05306122448979611050e-01; /* -864/1225 = 0xBFE691DE, 0x2532C834 */
  88         private static final double E =  1.41428571428571436819e+00; /* 99/70     = 0x3FF6A0EA, 0x0EA0EA0F */
  89         private static final double F =  1.60714285714285720630e+00; /* 45/28     = 0x3FF9B6DB, 0x6DB6DB6E */
  90         private static final double G =  3.57142857142857150787e-01; /* 5/14      = 0x3FD6DB6D, 0xB6DB6DB7 */


 233                 t2 = a - t1;
 234                 w  = Math.sqrt(t1*t1 - (b*(-b) - t2 * (a + t1)));
 235             } else {
 236                 a  = a + a;
 237                 y1 = 0;
 238                 y1 = __HI(y1, hb);
 239                 y2 = b - y1;
 240                 t1 = 0;
 241                 t1 = __HI(t1, ha + 0x00100000);
 242                 t2 = a - t1;
 243                 w  = Math.sqrt(t1*y1 - (w*(-w) - (t1*y2 + t2*b)));
 244             }
 245             if (k != 0) {
 246                 t1 = 1.0;
 247                 int t1_hi = __HI(t1);
 248                 t1_hi += (k << 20);
 249                 t1 = __HI(t1, t1_hi);
 250                 return t1 * w;
 251             } else
 252                 return w;
 253         }
 254     }
 255 
 256     /**
 257      * Returns the exponential of x.
 258      *
 259      * Method
 260      *   1. Argument reduction:
 261      *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
 262      *      Given x, find r and integer k such that
 263      *
 264      *               x = k*ln2 + r,  |r| <= 0.5*ln2.
 265      *
 266      *      Here r will be represented as r = hi-lo for better
 267      *      accuracy.
 268      *
 269      *   2. Approximation of exp(r) by a special rational function on
 270      *      the interval [0,0.34658]:
 271      *      Write
 272      *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
 273      *      We use a special Reme algorithm on [0,0.34658] to generate
 274      *      a polynomial of degree 5 to approximate R. The maximum error
 275      *      of this polynomial approximation is bounded by 2**-59. In
 276      *      other words,
 277      *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
 278      *      (where z=r*r, and the values of P1 to P5 are listed below)
 279      *      and
 280      *          |                  5          |     -59
 281      *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
 282      *          |                             |
 283      *      The computation of exp(r) thus becomes
 284      *                             2*r
 285      *              exp(r) = 1 + -------
 286      *                            R - r
 287      *                                 r*R1(r)
 288      *                     = 1 + r + ----------- (for better accuracy)
 289      *                                2 - R1(r)
 290      *      where
 291      *                               2       4             10
 292      *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
 293      *
 294      *   3. Scale back to obtain exp(x):
 295      *      From step 1, we have
 296      *         exp(x) = 2^k * exp(r)
 297      *
 298      * Special cases:
 299      *      exp(INF) is INF, exp(NaN) is NaN;
 300      *      exp(-INF) is 0, and
 301      *      for finite argument, only exp(0)=1 is exact.
 302      *
 303      * Accuracy:
 304      *      according to an error analysis, the error is always less than
 305      *      1 ulp (unit in the last place).
 306      *
 307      * Misc. info.
 308      *      For IEEE double
 309      *          if x >  7.09782712893383973096e+02 then exp(x) overflow
 310      *          if x < -7.45133219101941108420e+02 then exp(x) underflow
 311      *
 312      * Constants:
 313      * The hexadecimal values are the intended ones for the following
 314      * constants. The decimal values may be used, provided that the
 315      * compiler will convert from decimal to binary accurately enough
 316      * to produce the hexadecimal values shown.
 317      */
 318     static class Exp {
 319         private static final double one     = 1.0;
 320         private static final double[] halF = {0.5,-0.5,};
 321         private static final double huge    = 1.0e+300;
 322         private static final double twom1000= 9.33263618503218878990e-302;      /* 2**-1000=0x01700000,0*/
 323         private static final double o_threshold=  7.09782712893383973096e+02;   /* 0x40862E42, 0xFEFA39EF */
 324         private static final double u_threshold= -7.45133219101941108420e+02;   /* 0xc0874910, 0xD52D3051 */
 325         private static final double[] ln2HI   ={ 6.93147180369123816490e-01,    /* 0x3fe62e42, 0xfee00000 */
 326                                                  -6.93147180369123816490e-01};  /* 0xbfe62e42, 0xfee00000 */
 327         private static final double[] ln2LO   ={ 1.90821492927058770002e-10,    /* 0x3dea39ef, 0x35793c76 */
 328                                                  -1.90821492927058770002e-10,}; /* 0xbdea39ef, 0x35793c76 */
 329         private static final double invln2 =  1.44269504088896338700e+00;       /* 0x3ff71547, 0x652b82fe */
 330         private static final double P1   =  1.66666666666666019037e-01;         /* 0x3FC55555, 0x5555553E */
 331         private static final double P2   = -2.77777777770155933842e-03;         /* 0xBF66C16C, 0x16BEBD93 */
 332         private static final double P3   =  6.61375632143793436117e-05;         /* 0x3F11566A, 0xAF25DE2C */
 333         private static final double P4   = -1.65339022054652515390e-06;         /* 0xBEBBBD41, 0xC5D26BF1 */
 334         private static final double P5   =  4.13813679705723846039e-08;         /* 0x3E663769, 0x72BEA4D0 */
 335 
 336         public static strictfp double compute(double x) {
 337             double y,hi=0,lo=0,c,t;
 338             int k=0,xsb;
 339             /*unsigned*/ int hx;
 340 
 341             hx  = __HI(x);  /* high word of x */
 342             xsb = (hx>>31)&1;               /* sign bit of x */
 343             hx &= 0x7fffffff;               /* high word of |x| */
 344 
 345             /* filter out non-finite argument */
 346             if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
 347                 if(hx>=0x7ff00000) {
 348                     if(((hx&0xfffff)|__LO(x))!=0)
 349                         return x+x;                /* NaN */
 350                     else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
 351                 }
 352                 if(x > o_threshold) return huge*huge; /* overflow */
 353                 if(x < u_threshold) return twom1000*twom1000; /* underflow */
 354             }
 355 
 356             /* argument reduction */
 357             if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
 358                 if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
 359                     hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
 360                 } else {
 361                     k  = (int)(invln2*x+halF[xsb]);
 362                     t  = k;
 363                     hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
 364                     lo = t*ln2LO[0];
 365                 }
 366                 x  = hi - lo;
 367             }
 368             else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
 369                 if(huge+x>one) return one+x;/* trigger inexact */
 370             }
 371             else k = 0;
 372 
 373             /* x is now in primary range */
 374             t  = x*x;
 375             c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 376             if(k==0)        return one-((x*c)/(c-2.0)-x);
 377             else            y = one-((lo-(x*c)/(2.0-c))-hi);
 378             if(k >= -1021) {
 379                 y = __HI(y, __HI(y) + (k<<20)); /* add k to y's exponent */
 380                 return y;
 381             } else {
 382                 y = __HI(y, __HI(y) + ((k+1000)<<20));/* add k to y's exponent */
 383                 return y*twom1000;
 384             }
 385         }
 386     }
 387 }
< prev index next >