1 /*
   2  * Copyright (c) 1998, 2001, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /* __ieee754_exp(x)
  27  * Returns the exponential of x.
  28  *
  29  * Method
  30  *   1. Argument reduction:
  31  *      Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
  32  *      Given x, find r and integer k such that
  33  *
  34  *               x = k*ln2 + r,  |r| <= 0.5*ln2.
  35  *
  36  *      Here r will be represented as r = hi-lo for better
  37  *      accuracy.
  38  *
  39  *   2. Approximation of exp(r) by a special rational function on
  40  *      the interval [0,0.34658]:
  41  *      Write
  42  *          R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
  43  *      We use a special Reme algorithm on [0,0.34658] to generate
  44  *      a polynomial of degree 5 to approximate R. The maximum error
  45  *      of this polynomial approximation is bounded by 2**-59. In
  46  *      other words,
  47  *          R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
  48  *      (where z=r*r, and the values of P1 to P5 are listed below)
  49  *      and
  50  *          |                  5          |     -59
  51  *          | 2.0+P1*z+...+P5*z   -  R(z) | <= 2
  52  *          |                             |
  53  *      The computation of exp(r) thus becomes
  54  *                             2*r
  55  *              exp(r) = 1 + -------
  56  *                            R - r
  57  *                                 r*R1(r)
  58  *                     = 1 + r + ----------- (for better accuracy)
  59  *                                2 - R1(r)
  60  *      where
  61  *                               2       4             10
  62  *              R1(r) = r - (P1*r  + P2*r  + ... + P5*r   ).
  63  *
  64  *   3. Scale back to obtain exp(x):
  65  *      From step 1, we have
  66  *         exp(x) = 2^k * exp(r)
  67  *
  68  * Special cases:
  69  *      exp(INF) is INF, exp(NaN) is NaN;
  70  *      exp(-INF) is 0, and
  71  *      for finite argument, only exp(0)=1 is exact.
  72  *
  73  * Accuracy:
  74  *      according to an error analysis, the error is always less than
  75  *      1 ulp (unit in the last place).
  76  *
  77  * Misc. info.
  78  *      For IEEE double
  79  *          if x >  7.09782712893383973096e+02 then exp(x) overflow
  80  *          if x < -7.45133219101941108420e+02 then exp(x) underflow
  81  *
  82  * Constants:
  83  * The hexadecimal values are the intended ones for the following
  84  * constants. The decimal values may be used, provided that the
  85  * compiler will convert from decimal to binary accurately enough
  86  * to produce the hexadecimal values shown.
  87  */
  88 
  89 #include "fdlibm.h"
  90 
  91 #ifdef __STDC__
  92 static const double
  93 #else
  94 static double
  95 #endif
  96 one     = 1.0,
  97 halF[2] = {0.5,-0.5,},
  98 huge    = 1.0e+300,
  99 twom1000= 9.33263618503218878990e-302,     /* 2**-1000=0x01700000,0*/
 100 o_threshold=  7.09782712893383973096e+02,  /* 0x40862E42, 0xFEFA39EF */
 101 u_threshold= -7.45133219101941108420e+02,  /* 0xc0874910, 0xD52D3051 */
 102 ln2HI[2]   ={ 6.93147180369123816490e-01,  /* 0x3fe62e42, 0xfee00000 */
 103              -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
 104 ln2LO[2]   ={ 1.90821492927058770002e-10,  /* 0x3dea39ef, 0x35793c76 */
 105              -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
 106 invln2 =  1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
 107 P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
 108 P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
 109 P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
 110 P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
 111 P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
 112 
 113 
 114 #ifdef __STDC__
 115         double __ieee754_exp(double x)  /* default IEEE double exp */
 116 #else
 117         double __ieee754_exp(x) /* default IEEE double exp */
 118         double x;
 119 #endif
 120 {
 121         double y,hi=0,lo=0,c,t;
 122         int k=0,xsb;
 123         unsigned hx;
 124 
 125         hx  = __HI(x);  /* high word of x */
 126         xsb = (hx>>31)&1;               /* sign bit of x */
 127         hx &= 0x7fffffff;               /* high word of |x| */
 128 
 129     /* filter out non-finite argument */
 130         if(hx >= 0x40862E42) {                  /* if |x|>=709.78... */
 131             if(hx>=0x7ff00000) {
 132                 if(((hx&0xfffff)|__LO(x))!=0)
 133                      return x+x;                /* NaN */
 134                 else return (xsb==0)? x:0.0;    /* exp(+-inf)={inf,0} */
 135             }
 136             if(x > o_threshold) return huge*huge; /* overflow */
 137             if(x < u_threshold) return twom1000*twom1000; /* underflow */
 138         }
 139 
 140     /* argument reduction */
 141         if(hx > 0x3fd62e42) {           /* if  |x| > 0.5 ln2 */
 142             if(hx < 0x3FF0A2B2) {       /* and |x| < 1.5 ln2 */
 143                 hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
 144             } else {
 145                 k  = invln2*x+halF[xsb];
 146                 t  = k;
 147                 hi = x - t*ln2HI[0];    /* t*ln2HI is exact here */
 148                 lo = t*ln2LO[0];
 149             }
 150             x  = hi - lo;
 151         }
 152         else if(hx < 0x3e300000)  {     /* when |x|<2**-28 */
 153             if(huge+x>one) return one+x;/* trigger inexact */
 154         }
 155         else k = 0;
 156 
 157     /* x is now in primary range */
 158         t  = x*x;
 159         c  = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
 160         if(k==0)        return one-((x*c)/(c-2.0)-x);
 161         else            y = one-((lo-(x*c)/(2.0-c))-hi);
 162         if(k >= -1021) {
 163             __HI(y) += (k<<20); /* add k to y's exponent */
 164             return y;
 165         } else {
 166             __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
 167             return y*twom1000;
 168         }
 169 }