1 /*
   2  * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.ObjectInputStream;
  30 import java.io.StreamCorruptedException;
  31 import java.util.function.Consumer;
  32 import java.util.function.Predicate;
  33 import java.util.function.UnaryOperator;
  34 
  35 import jdk.internal.util.ArraysSupport;
  36 
  37 /**
  38  * The {@code Vector} class implements a growable array of
  39  * objects. Like an array, it contains components that can be
  40  * accessed using an integer index. However, the size of a
  41  * {@code Vector} can grow or shrink as needed to accommodate
  42  * adding and removing items after the {@code Vector} has been created.
  43  *
  44  * <p>Each vector tries to optimize storage management by maintaining a
  45  * {@code capacity} and a {@code capacityIncrement}. The
  46  * {@code capacity} is always at least as large as the vector
  47  * size; it is usually larger because as components are added to the
  48  * vector, the vector's storage increases in chunks the size of
  49  * {@code capacityIncrement}. An application can increase the
  50  * capacity of a vector before inserting a large number of
  51  * components; this reduces the amount of incremental reallocation.
  52  *
  53  * <p id="fail-fast">
  54  * The iterators returned by this class's {@link #iterator() iterator} and
  55  * {@link #listIterator(int) listIterator} methods are <em>fail-fast</em>:
  56  * if the vector is structurally modified at any time after the iterator is
  57  * created, in any way except through the iterator's own
  58  * {@link ListIterator#remove() remove} or
  59  * {@link ListIterator#add(Object) add} methods, the iterator will throw a
  60  * {@link ConcurrentModificationException}.  Thus, in the face of
  61  * concurrent modification, the iterator fails quickly and cleanly, rather
  62  * than risking arbitrary, non-deterministic behavior at an undetermined
  63  * time in the future.  The {@link Enumeration Enumerations} returned by
  64  * the {@link #elements() elements} method are <em>not</em> fail-fast; if the
  65  * Vector is structurally modified at any time after the enumeration is
  66  * created then the results of enumerating are undefined.
  67  *
  68  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  69  * as it is, generally speaking, impossible to make any hard guarantees in the
  70  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  71  * throw {@code ConcurrentModificationException} on a best-effort basis.
  72  * Therefore, it would be wrong to write a program that depended on this
  73  * exception for its correctness:  <i>the fail-fast behavior of iterators
  74  * should be used only to detect bugs.</i>
  75  *
  76  * <p>As of the Java 2 platform v1.2, this class was retrofitted to
  77  * implement the {@link List} interface, making it a member of the
  78  * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
  79  * Java Collections Framework</a>.  Unlike the new collection
  80  * implementations, {@code Vector} is synchronized.  If a thread-safe
  81  * implementation is not needed, it is recommended to use {@link
  82  * ArrayList} in place of {@code Vector}.
  83  *
  84  * @param <E> Type of component elements
  85  *
  86  * @author  Lee Boynton
  87  * @author  Jonathan Payne
  88  * @see Collection
  89  * @see LinkedList
  90  * @since   1.0
  91  */
  92 public class Vector<E>
  93     extends AbstractList<E>
  94     implements List<E>, RandomAccess, Cloneable, java.io.Serializable
  95 {
  96     /**
  97      * The array buffer into which the components of the vector are
  98      * stored. The capacity of the vector is the length of this array buffer,
  99      * and is at least large enough to contain all the vector's elements.
 100      *
 101      * <p>Any array elements following the last element in the Vector are null.
 102      *
 103      * @serial
 104      */
 105     protected Object[] elementData;
 106 
 107     /**
 108      * The number of valid components in this {@code Vector} object.
 109      * Components {@code elementData[0]} through
 110      * {@code elementData[elementCount-1]} are the actual items.
 111      *
 112      * @serial
 113      */
 114     protected int elementCount;
 115 
 116     /**
 117      * The amount by which the capacity of the vector is automatically
 118      * incremented when its size becomes greater than its capacity.  If
 119      * the capacity increment is less than or equal to zero, the capacity
 120      * of the vector is doubled each time it needs to grow.
 121      *
 122      * @serial
 123      */
 124     protected int capacityIncrement;
 125 
 126     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 127     @java.io.Serial
 128     private static final long serialVersionUID = -2767605614048989439L;
 129 
 130     /**
 131      * Constructs an empty vector with the specified initial capacity and
 132      * capacity increment.
 133      *
 134      * @param   initialCapacity     the initial capacity of the vector
 135      * @param   capacityIncrement   the amount by which the capacity is
 136      *                              increased when the vector overflows
 137      * @throws IllegalArgumentException if the specified initial capacity
 138      *         is negative
 139      */
 140     public Vector(int initialCapacity, int capacityIncrement) {
 141         super();
 142         if (initialCapacity < 0)
 143             throw new IllegalArgumentException("Illegal Capacity: "+
 144                                                initialCapacity);
 145         this.elementData = new Object[initialCapacity];
 146         this.capacityIncrement = capacityIncrement;
 147     }
 148 
 149     /**
 150      * Constructs an empty vector with the specified initial capacity and
 151      * with its capacity increment equal to zero.
 152      *
 153      * @param   initialCapacity   the initial capacity of the vector
 154      * @throws IllegalArgumentException if the specified initial capacity
 155      *         is negative
 156      */
 157     public Vector(int initialCapacity) {
 158         this(initialCapacity, 0);
 159     }
 160 
 161     /**
 162      * Constructs an empty vector so that its internal data array
 163      * has size {@code 10} and its standard capacity increment is
 164      * zero.
 165      */
 166     public Vector() {
 167         this(10);
 168     }
 169 
 170     /**
 171      * Constructs a vector containing the elements of the specified
 172      * collection, in the order they are returned by the collection's
 173      * iterator.
 174      *
 175      * @param c the collection whose elements are to be placed into this
 176      *       vector
 177      * @throws NullPointerException if the specified collection is null
 178      * @since   1.2
 179      */
 180     public Vector(Collection<? extends E> c) {
 181         elementData = c.toArray();
 182         elementCount = elementData.length;
 183         // defend against c.toArray (incorrectly) not returning Object[]
 184         // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
 185         if (elementData.getClass() != Object[].class)
 186             elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
 187     }
 188 
 189     /**
 190      * Copies the components of this vector into the specified array.
 191      * The item at index {@code k} in this vector is copied into
 192      * component {@code k} of {@code anArray}.
 193      *
 194      * @param  anArray the array into which the components get copied
 195      * @throws NullPointerException if the given array is null
 196      * @throws IndexOutOfBoundsException if the specified array is not
 197      *         large enough to hold all the components of this vector
 198      * @throws ArrayStoreException if a component of this vector is not of
 199      *         a runtime type that can be stored in the specified array
 200      * @see #toArray(Object[])
 201      */
 202     public synchronized void copyInto(Object[] anArray) {
 203         System.arraycopy(elementData, 0, anArray, 0, elementCount);
 204     }
 205 
 206     /**
 207      * Trims the capacity of this vector to be the vector's current
 208      * size. If the capacity of this vector is larger than its current
 209      * size, then the capacity is changed to equal the size by replacing
 210      * its internal data array, kept in the field {@code elementData},
 211      * with a smaller one. An application can use this operation to
 212      * minimize the storage of a vector.
 213      */
 214     public synchronized void trimToSize() {
 215         modCount++;
 216         int oldCapacity = elementData.length;
 217         if (elementCount < oldCapacity) {
 218             elementData = Arrays.copyOf(elementData, elementCount);
 219         }
 220     }
 221 
 222     /**
 223      * Increases the capacity of this vector, if necessary, to ensure
 224      * that it can hold at least the number of components specified by
 225      * the minimum capacity argument.
 226      *
 227      * <p>If the current capacity of this vector is less than
 228      * {@code minCapacity}, then its capacity is increased by replacing its
 229      * internal data array, kept in the field {@code elementData}, with a
 230      * larger one.  The size of the new data array will be the old size plus
 231      * {@code capacityIncrement}, unless the value of
 232      * {@code capacityIncrement} is less than or equal to zero, in which case
 233      * the new capacity will be twice the old capacity; but if this new size
 234      * is still smaller than {@code minCapacity}, then the new capacity will
 235      * be {@code minCapacity}.
 236      *
 237      * @param minCapacity the desired minimum capacity
 238      */
 239     public synchronized void ensureCapacity(int minCapacity) {
 240         if (minCapacity > 0) {
 241             modCount++;
 242             if (minCapacity > elementData.length)
 243                 grow(minCapacity);
 244         }
 245     }
 246 
 247     /**
 248      * Increases the capacity to ensure that it can hold at least the
 249      * number of elements specified by the minimum capacity argument.
 250      *
 251      * @param minCapacity the desired minimum capacity
 252      * @throws OutOfMemoryError if minCapacity is less than zero
 253      */
 254     private Object[] grow(int minCapacity) {
 255         int oldCapacity = elementData.length;
 256         int newCapacity = ArraysSupport.newLength(oldCapacity,
 257                 minCapacity - oldCapacity, /* minimum growth */
 258                 capacityIncrement > 0 ? capacityIncrement : oldCapacity
 259                                            /* preferred growth */);
 260         return elementData = Arrays.copyOf(elementData, newCapacity);
 261     }
 262 
 263     private Object[] grow() {
 264         return grow(elementCount + 1);
 265     }
 266 
 267     /**
 268      * Sets the size of this vector. If the new size is greater than the
 269      * current size, new {@code null} items are added to the end of
 270      * the vector. If the new size is less than the current size, all
 271      * components at index {@code newSize} and greater are discarded.
 272      *
 273      * @param  newSize   the new size of this vector
 274      * @throws ArrayIndexOutOfBoundsException if the new size is negative
 275      */
 276     public synchronized void setSize(int newSize) {
 277         modCount++;
 278         if (newSize > elementData.length)
 279             grow(newSize);
 280         final Object[] es = elementData;
 281         for (int to = elementCount, i = newSize; i < to; i++)
 282             es[i] = null;
 283         elementCount = newSize;
 284     }
 285 
 286     /**
 287      * Returns the current capacity of this vector.
 288      *
 289      * @return  the current capacity (the length of its internal
 290      *          data array, kept in the field {@code elementData}
 291      *          of this vector)
 292      */
 293     public synchronized int capacity() {
 294         return elementData.length;
 295     }
 296 
 297     /**
 298      * Returns the number of components in this vector.
 299      *
 300      * @return  the number of components in this vector
 301      */
 302     public synchronized int size() {
 303         return elementCount;
 304     }
 305 
 306     /**
 307      * Tests if this vector has no components.
 308      *
 309      * @return  {@code true} if and only if this vector has
 310      *          no components, that is, its size is zero;
 311      *          {@code false} otherwise.
 312      */
 313     public synchronized boolean isEmpty() {
 314         return elementCount == 0;
 315     }
 316 
 317     /**
 318      * Returns an enumeration of the components of this vector. The
 319      * returned {@code Enumeration} object will generate all items in
 320      * this vector. The first item generated is the item at index {@code 0},
 321      * then the item at index {@code 1}, and so on. If the vector is
 322      * structurally modified while enumerating over the elements then the
 323      * results of enumerating are undefined.
 324      *
 325      * @return  an enumeration of the components of this vector
 326      * @see     Iterator
 327      */
 328     public Enumeration<E> elements() {
 329         return new Enumeration<E>() {
 330             int count = 0;
 331 
 332             public boolean hasMoreElements() {
 333                 return count < elementCount;
 334             }
 335 
 336             public E nextElement() {
 337                 synchronized (Vector.this) {
 338                     if (count < elementCount) {
 339                         return elementData(count++);
 340                     }
 341                 }
 342                 throw new NoSuchElementException("Vector Enumeration");
 343             }
 344         };
 345     }
 346 
 347     /**
 348      * Returns {@code true} if this vector contains the specified element.
 349      * More formally, returns {@code true} if and only if this vector
 350      * contains at least one element {@code e} such that
 351      * {@code Objects.equals(o, e)}.
 352      *
 353      * @param o element whose presence in this vector is to be tested
 354      * @return {@code true} if this vector contains the specified element
 355      */
 356     public boolean contains(Object o) {
 357         return indexOf(o, 0) >= 0;
 358     }
 359 
 360     /**
 361      * Returns the index of the first occurrence of the specified element
 362      * in this vector, or -1 if this vector does not contain the element.
 363      * More formally, returns the lowest index {@code i} such that
 364      * {@code Objects.equals(o, get(i))},
 365      * or -1 if there is no such index.
 366      *
 367      * @param o element to search for
 368      * @return the index of the first occurrence of the specified element in
 369      *         this vector, or -1 if this vector does not contain the element
 370      */
 371     public int indexOf(Object o) {
 372         return indexOf(o, 0);
 373     }
 374 
 375     /**
 376      * Returns the index of the first occurrence of the specified element in
 377      * this vector, searching forwards from {@code index}, or returns -1 if
 378      * the element is not found.
 379      * More formally, returns the lowest index {@code i} such that
 380      * {@code (i >= index && Objects.equals(o, get(i)))},
 381      * or -1 if there is no such index.
 382      *
 383      * @param o element to search for
 384      * @param index index to start searching from
 385      * @return the index of the first occurrence of the element in
 386      *         this vector at position {@code index} or later in the vector;
 387      *         {@code -1} if the element is not found.
 388      * @throws IndexOutOfBoundsException if the specified index is negative
 389      * @see     Object#equals(Object)
 390      */
 391     public synchronized int indexOf(Object o, int index) {
 392         if (o == null) {
 393             for (int i = index ; i < elementCount ; i++)
 394                 if (elementData[i]==null)
 395                     return i;
 396         } else {
 397             for (int i = index ; i < elementCount ; i++)
 398                 if (o.equals(elementData[i]))
 399                     return i;
 400         }
 401         return -1;
 402     }
 403 
 404     /**
 405      * Returns the index of the last occurrence of the specified element
 406      * in this vector, or -1 if this vector does not contain the element.
 407      * More formally, returns the highest index {@code i} such that
 408      * {@code Objects.equals(o, get(i))},
 409      * or -1 if there is no such index.
 410      *
 411      * @param o element to search for
 412      * @return the index of the last occurrence of the specified element in
 413      *         this vector, or -1 if this vector does not contain the element
 414      */
 415     public synchronized int lastIndexOf(Object o) {
 416         return lastIndexOf(o, elementCount-1);
 417     }
 418 
 419     /**
 420      * Returns the index of the last occurrence of the specified element in
 421      * this vector, searching backwards from {@code index}, or returns -1 if
 422      * the element is not found.
 423      * More formally, returns the highest index {@code i} such that
 424      * {@code (i <= index && Objects.equals(o, get(i)))},
 425      * or -1 if there is no such index.
 426      *
 427      * @param o element to search for
 428      * @param index index to start searching backwards from
 429      * @return the index of the last occurrence of the element at position
 430      *         less than or equal to {@code index} in this vector;
 431      *         -1 if the element is not found.
 432      * @throws IndexOutOfBoundsException if the specified index is greater
 433      *         than or equal to the current size of this vector
 434      */
 435     public synchronized int lastIndexOf(Object o, int index) {
 436         if (index >= elementCount)
 437             throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
 438 
 439         if (o == null) {
 440             for (int i = index; i >= 0; i--)
 441                 if (elementData[i]==null)
 442                     return i;
 443         } else {
 444             for (int i = index; i >= 0; i--)
 445                 if (o.equals(elementData[i]))
 446                     return i;
 447         }
 448         return -1;
 449     }
 450 
 451     /**
 452      * Returns the component at the specified index.
 453      *
 454      * <p>This method is identical in functionality to the {@link #get(int)}
 455      * method (which is part of the {@link List} interface).
 456      *
 457      * @param      index   an index into this vector
 458      * @return     the component at the specified index
 459      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 460      *         ({@code index < 0 || index >= size()})
 461      */
 462     public synchronized E elementAt(int index) {
 463         if (index >= elementCount) {
 464             throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
 465         }
 466 
 467         return elementData(index);
 468     }
 469 
 470     /**
 471      * Returns the first component (the item at index {@code 0}) of
 472      * this vector.
 473      *
 474      * @return     the first component of this vector
 475      * @throws NoSuchElementException if this vector has no components
 476      */
 477     public synchronized E firstElement() {
 478         if (elementCount == 0) {
 479             throw new NoSuchElementException();
 480         }
 481         return elementData(0);
 482     }
 483 
 484     /**
 485      * Returns the last component of the vector.
 486      *
 487      * @return  the last component of the vector, i.e., the component at index
 488      *          {@code size() - 1}
 489      * @throws NoSuchElementException if this vector is empty
 490      */
 491     public synchronized E lastElement() {
 492         if (elementCount == 0) {
 493             throw new NoSuchElementException();
 494         }
 495         return elementData(elementCount - 1);
 496     }
 497 
 498     /**
 499      * Sets the component at the specified {@code index} of this
 500      * vector to be the specified object. The previous component at that
 501      * position is discarded.
 502      *
 503      * <p>The index must be a value greater than or equal to {@code 0}
 504      * and less than the current size of the vector.
 505      *
 506      * <p>This method is identical in functionality to the
 507      * {@link #set(int, Object) set(int, E)}
 508      * method (which is part of the {@link List} interface). Note that the
 509      * {@code set} method reverses the order of the parameters, to more closely
 510      * match array usage.  Note also that the {@code set} method returns the
 511      * old value that was stored at the specified position.
 512      *
 513      * @param      obj     what the component is to be set to
 514      * @param      index   the specified index
 515      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 516      *         ({@code index < 0 || index >= size()})
 517      */
 518     public synchronized void setElementAt(E obj, int index) {
 519         if (index >= elementCount) {
 520             throw new ArrayIndexOutOfBoundsException(index + " >= " +
 521                                                      elementCount);
 522         }
 523         elementData[index] = obj;
 524     }
 525 
 526     /**
 527      * Deletes the component at the specified index. Each component in
 528      * this vector with an index greater or equal to the specified
 529      * {@code index} is shifted downward to have an index one
 530      * smaller than the value it had previously. The size of this vector
 531      * is decreased by {@code 1}.
 532      *
 533      * <p>The index must be a value greater than or equal to {@code 0}
 534      * and less than the current size of the vector.
 535      *
 536      * <p>This method is identical in functionality to the {@link #remove(int)}
 537      * method (which is part of the {@link List} interface).  Note that the
 538      * {@code remove} method returns the old value that was stored at the
 539      * specified position.
 540      *
 541      * @param      index   the index of the object to remove
 542      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 543      *         ({@code index < 0 || index >= size()})
 544      */
 545     public synchronized void removeElementAt(int index) {
 546         if (index >= elementCount) {
 547             throw new ArrayIndexOutOfBoundsException(index + " >= " +
 548                                                      elementCount);
 549         }
 550         else if (index < 0) {
 551             throw new ArrayIndexOutOfBoundsException(index);
 552         }
 553         int j = elementCount - index - 1;
 554         if (j > 0) {
 555             System.arraycopy(elementData, index + 1, elementData, index, j);
 556         }
 557         modCount++;
 558         elementCount--;
 559         elementData[elementCount] = null; /* to let gc do its work */
 560     }
 561 
 562     /**
 563      * Inserts the specified object as a component in this vector at the
 564      * specified {@code index}. Each component in this vector with
 565      * an index greater or equal to the specified {@code index} is
 566      * shifted upward to have an index one greater than the value it had
 567      * previously.
 568      *
 569      * <p>The index must be a value greater than or equal to {@code 0}
 570      * and less than or equal to the current size of the vector. (If the
 571      * index is equal to the current size of the vector, the new element
 572      * is appended to the Vector.)
 573      *
 574      * <p>This method is identical in functionality to the
 575      * {@link #add(int, Object) add(int, E)}
 576      * method (which is part of the {@link List} interface).  Note that the
 577      * {@code add} method reverses the order of the parameters, to more closely
 578      * match array usage.
 579      *
 580      * @param      obj     the component to insert
 581      * @param      index   where to insert the new component
 582      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 583      *         ({@code index < 0 || index > size()})
 584      */
 585     public synchronized void insertElementAt(E obj, int index) {
 586         if (index > elementCount) {
 587             throw new ArrayIndexOutOfBoundsException(index
 588                                                      + " > " + elementCount);
 589         }
 590         modCount++;
 591         final int s = elementCount;
 592         Object[] elementData = this.elementData;
 593         if (s == elementData.length)
 594             elementData = grow();
 595         System.arraycopy(elementData, index,
 596                          elementData, index + 1,
 597                          s - index);
 598         elementData[index] = obj;
 599         elementCount = s + 1;
 600     }
 601 
 602     /**
 603      * Adds the specified component to the end of this vector,
 604      * increasing its size by one. The capacity of this vector is
 605      * increased if its size becomes greater than its capacity.
 606      *
 607      * <p>This method is identical in functionality to the
 608      * {@link #add(Object) add(E)}
 609      * method (which is part of the {@link List} interface).
 610      *
 611      * @param   obj   the component to be added
 612      */
 613     public synchronized void addElement(E obj) {
 614         modCount++;
 615         add(obj, elementData, elementCount);
 616     }
 617 
 618     /**
 619      * Removes the first (lowest-indexed) occurrence of the argument
 620      * from this vector. If the object is found in this vector, each
 621      * component in the vector with an index greater or equal to the
 622      * object's index is shifted downward to have an index one smaller
 623      * than the value it had previously.
 624      *
 625      * <p>This method is identical in functionality to the
 626      * {@link #remove(Object)} method (which is part of the
 627      * {@link List} interface).
 628      *
 629      * @param   obj   the component to be removed
 630      * @return  {@code true} if the argument was a component of this
 631      *          vector; {@code false} otherwise.
 632      */
 633     public synchronized boolean removeElement(Object obj) {
 634         modCount++;
 635         int i = indexOf(obj);
 636         if (i >= 0) {
 637             removeElementAt(i);
 638             return true;
 639         }
 640         return false;
 641     }
 642 
 643     /**
 644      * Removes all components from this vector and sets its size to zero.
 645      *
 646      * <p>This method is identical in functionality to the {@link #clear}
 647      * method (which is part of the {@link List} interface).
 648      */
 649     public synchronized void removeAllElements() {
 650         final Object[] es = elementData;
 651         for (int to = elementCount, i = elementCount = 0; i < to; i++)
 652             es[i] = null;
 653         modCount++;
 654     }
 655 
 656     /**
 657      * Returns a clone of this vector. The copy will contain a
 658      * reference to a clone of the internal data array, not a reference
 659      * to the original internal data array of this {@code Vector} object.
 660      *
 661      * @return  a clone of this vector
 662      */
 663     public synchronized Object clone() {
 664         try {
 665             @SuppressWarnings("unchecked")
 666             Vector<E> v = (Vector<E>) super.clone();
 667             v.elementData = Arrays.copyOf(elementData, elementCount);
 668             v.modCount = 0;
 669             return v;
 670         } catch (CloneNotSupportedException e) {
 671             // this shouldn't happen, since we are Cloneable
 672             throw new InternalError(e);
 673         }
 674     }
 675 
 676     /**
 677      * Returns an array containing all of the elements in this Vector
 678      * in the correct order.
 679      *
 680      * @since 1.2
 681      */
 682     public synchronized Object[] toArray() {
 683         return Arrays.copyOf(elementData, elementCount);
 684     }
 685 
 686     /**
 687      * Returns an array containing all of the elements in this Vector in the
 688      * correct order; the runtime type of the returned array is that of the
 689      * specified array.  If the Vector fits in the specified array, it is
 690      * returned therein.  Otherwise, a new array is allocated with the runtime
 691      * type of the specified array and the size of this Vector.
 692      *
 693      * <p>If the Vector fits in the specified array with room to spare
 694      * (i.e., the array has more elements than the Vector),
 695      * the element in the array immediately following the end of the
 696      * Vector is set to null.  (This is useful in determining the length
 697      * of the Vector <em>only</em> if the caller knows that the Vector
 698      * does not contain any null elements.)
 699      *
 700      * @param <T> type of array elements. The same type as {@code <E>} or a
 701      * supertype of {@code <E>}.
 702      * @param a the array into which the elements of the Vector are to
 703      *          be stored, if it is big enough; otherwise, a new array of the
 704      *          same runtime type is allocated for this purpose.
 705      * @return an array containing the elements of the Vector
 706      * @throws ArrayStoreException if the runtime type of a, {@code <T>}, is not
 707      * a supertype of the runtime type, {@code <E>}, of every element in this
 708      * Vector
 709      * @throws NullPointerException if the given array is null
 710      * @since 1.2
 711      */
 712     @SuppressWarnings("unchecked")
 713     public synchronized <T> T[] toArray(T[] a) {
 714         if (a.length < elementCount)
 715             return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
 716 
 717         System.arraycopy(elementData, 0, a, 0, elementCount);
 718 
 719         if (a.length > elementCount)
 720             a[elementCount] = null;
 721 
 722         return a;
 723     }
 724 
 725     // Positional Access Operations
 726 
 727     @SuppressWarnings("unchecked")
 728     E elementData(int index) {
 729         return (E) elementData[index];
 730     }
 731 
 732     @SuppressWarnings("unchecked")
 733     static <E> E elementAt(Object[] es, int index) {
 734         return (E) es[index];
 735     }
 736 
 737     /**
 738      * Returns the element at the specified position in this Vector.
 739      *
 740      * @param index index of the element to return
 741      * @return object at the specified index
 742      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 743      *            ({@code index < 0 || index >= size()})
 744      * @since 1.2
 745      */
 746     public synchronized E get(int index) {
 747         if (index >= elementCount)
 748             throw new ArrayIndexOutOfBoundsException(index);
 749 
 750         return elementData(index);
 751     }
 752 
 753     /**
 754      * Replaces the element at the specified position in this Vector with the
 755      * specified element.
 756      *
 757      * @param index index of the element to replace
 758      * @param element element to be stored at the specified position
 759      * @return the element previously at the specified position
 760      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 761      *         ({@code index < 0 || index >= size()})
 762      * @since 1.2
 763      */
 764     public synchronized E set(int index, E element) {
 765         if (index >= elementCount)
 766             throw new ArrayIndexOutOfBoundsException(index);
 767 
 768         E oldValue = elementData(index);
 769         elementData[index] = element;
 770         return oldValue;
 771     }
 772 
 773     /**
 774      * This helper method split out from add(E) to keep method
 775      * bytecode size under 35 (the -XX:MaxInlineSize default value),
 776      * which helps when add(E) is called in a C1-compiled loop.
 777      */
 778     private void add(E e, Object[] elementData, int s) {
 779         if (s == elementData.length)
 780             elementData = grow();
 781         elementData[s] = e;
 782         elementCount = s + 1;
 783     }
 784 
 785     /**
 786      * Appends the specified element to the end of this Vector.
 787      *
 788      * @param e element to be appended to this Vector
 789      * @return {@code true} (as specified by {@link Collection#add})
 790      * @since 1.2
 791      */
 792     public synchronized boolean add(E e) {
 793         modCount++;
 794         add(e, elementData, elementCount);
 795         return true;
 796     }
 797 
 798     /**
 799      * Removes the first occurrence of the specified element in this Vector
 800      * If the Vector does not contain the element, it is unchanged.  More
 801      * formally, removes the element with the lowest index i such that
 802      * {@code Objects.equals(o, get(i))} (if such
 803      * an element exists).
 804      *
 805      * @param o element to be removed from this Vector, if present
 806      * @return true if the Vector contained the specified element
 807      * @since 1.2
 808      */
 809     public boolean remove(Object o) {
 810         return removeElement(o);
 811     }
 812 
 813     /**
 814      * Inserts the specified element at the specified position in this Vector.
 815      * Shifts the element currently at that position (if any) and any
 816      * subsequent elements to the right (adds one to their indices).
 817      *
 818      * @param index index at which the specified element is to be inserted
 819      * @param element element to be inserted
 820      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 821      *         ({@code index < 0 || index > size()})
 822      * @since 1.2
 823      */
 824     public void add(int index, E element) {
 825         insertElementAt(element, index);
 826     }
 827 
 828     /**
 829      * Removes the element at the specified position in this Vector.
 830      * Shifts any subsequent elements to the left (subtracts one from their
 831      * indices).  Returns the element that was removed from the Vector.
 832      *
 833      * @param index the index of the element to be removed
 834      * @return element that was removed
 835      * @throws ArrayIndexOutOfBoundsException if the index is out of range
 836      *         ({@code index < 0 || index >= size()})
 837      * @since 1.2
 838      */
 839     public synchronized E remove(int index) {
 840         modCount++;
 841         if (index >= elementCount)
 842             throw new ArrayIndexOutOfBoundsException(index);
 843         E oldValue = elementData(index);
 844 
 845         int numMoved = elementCount - index - 1;
 846         if (numMoved > 0)
 847             System.arraycopy(elementData, index+1, elementData, index,
 848                              numMoved);
 849         elementData[--elementCount] = null; // Let gc do its work
 850 
 851         return oldValue;
 852     }
 853 
 854     /**
 855      * Removes all of the elements from this Vector.  The Vector will
 856      * be empty after this call returns (unless it throws an exception).
 857      *
 858      * @since 1.2
 859      */
 860     public void clear() {
 861         removeAllElements();
 862     }
 863 
 864     // Bulk Operations
 865 
 866     /**
 867      * Returns true if this Vector contains all of the elements in the
 868      * specified Collection.
 869      *
 870      * @param   c a collection whose elements will be tested for containment
 871      *          in this Vector
 872      * @return true if this Vector contains all of the elements in the
 873      *         specified collection
 874      * @throws NullPointerException if the specified collection is null
 875      */
 876     public synchronized boolean containsAll(Collection<?> c) {
 877         return super.containsAll(c);
 878     }
 879 
 880     /**
 881      * Appends all of the elements in the specified Collection to the end of
 882      * this Vector, in the order that they are returned by the specified
 883      * Collection's Iterator.  The behavior of this operation is undefined if
 884      * the specified Collection is modified while the operation is in progress.
 885      * (This implies that the behavior of this call is undefined if the
 886      * specified Collection is this Vector, and this Vector is nonempty.)
 887      *
 888      * @param c elements to be inserted into this Vector
 889      * @return {@code true} if this Vector changed as a result of the call
 890      * @throws NullPointerException if the specified collection is null
 891      * @since 1.2
 892      */
 893     public boolean addAll(Collection<? extends E> c) {
 894         Object[] a = c.toArray();
 895         modCount++;
 896         int numNew = a.length;
 897         if (numNew == 0)
 898             return false;
 899         synchronized (this) {
 900             Object[] elementData = this.elementData;
 901             final int s = elementCount;
 902             if (numNew > elementData.length - s)
 903                 elementData = grow(s + numNew);
 904             System.arraycopy(a, 0, elementData, s, numNew);
 905             elementCount = s + numNew;
 906             return true;
 907         }
 908     }
 909 
 910     /**
 911      * Removes from this Vector all of its elements that are contained in the
 912      * specified Collection.
 913      *
 914      * @param c a collection of elements to be removed from the Vector
 915      * @return true if this Vector changed as a result of the call
 916      * @throws ClassCastException if the types of one or more elements
 917      *         in this vector are incompatible with the specified
 918      *         collection
 919      * (<a href="Collection.html#optional-restrictions">optional</a>)
 920      * @throws NullPointerException if this vector contains one or more null
 921      *         elements and the specified collection does not support null
 922      *         elements
 923      * (<a href="Collection.html#optional-restrictions">optional</a>),
 924      *         or if the specified collection is null
 925      * @since 1.2
 926      */
 927     public boolean removeAll(Collection<?> c) {
 928         Objects.requireNonNull(c);
 929         return bulkRemove(e -> c.contains(e));
 930     }
 931 
 932     /**
 933      * Retains only the elements in this Vector that are contained in the
 934      * specified Collection.  In other words, removes from this Vector all
 935      * of its elements that are not contained in the specified Collection.
 936      *
 937      * @param c a collection of elements to be retained in this Vector
 938      *          (all other elements are removed)
 939      * @return true if this Vector changed as a result of the call
 940      * @throws ClassCastException if the types of one or more elements
 941      *         in this vector are incompatible with the specified
 942      *         collection
 943      * (<a href="Collection.html#optional-restrictions">optional</a>)
 944      * @throws NullPointerException if this vector contains one or more null
 945      *         elements and the specified collection does not support null
 946      *         elements
 947      *         (<a href="Collection.html#optional-restrictions">optional</a>),
 948      *         or if the specified collection is null
 949      * @since 1.2
 950      */
 951     public boolean retainAll(Collection<?> c) {
 952         Objects.requireNonNull(c);
 953         return bulkRemove(e -> !c.contains(e));
 954     }
 955 
 956     /**
 957      * @throws NullPointerException {@inheritDoc}
 958      */
 959     @Override
 960     public boolean removeIf(Predicate<? super E> filter) {
 961         Objects.requireNonNull(filter);
 962         return bulkRemove(filter);
 963     }
 964 
 965     // A tiny bit set implementation
 966 
 967     private static long[] nBits(int n) {
 968         return new long[((n - 1) >> 6) + 1];
 969     }
 970     private static void setBit(long[] bits, int i) {
 971         bits[i >> 6] |= 1L << i;
 972     }
 973     private static boolean isClear(long[] bits, int i) {
 974         return (bits[i >> 6] & (1L << i)) == 0;
 975     }
 976 
 977     private synchronized boolean bulkRemove(Predicate<? super E> filter) {
 978         int expectedModCount = modCount;
 979         final Object[] es = elementData;
 980         final int end = elementCount;
 981         int i;
 982         // Optimize for initial run of survivors
 983         for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
 984             ;
 985         // Tolerate predicates that reentrantly access the collection for
 986         // read (but writers still get CME), so traverse once to find
 987         // elements to delete, a second pass to physically expunge.
 988         if (i < end) {
 989             final int beg = i;
 990             final long[] deathRow = nBits(end - beg);
 991             deathRow[0] = 1L;   // set bit 0
 992             for (i = beg + 1; i < end; i++)
 993                 if (filter.test(elementAt(es, i)))
 994                     setBit(deathRow, i - beg);
 995             if (modCount != expectedModCount)
 996                 throw new ConcurrentModificationException();
 997             modCount++;
 998             int w = beg;
 999             for (i = beg; i < end; i++)
1000                 if (isClear(deathRow, i - beg))
1001                     es[w++] = es[i];
1002             for (i = elementCount = w; i < end; i++)
1003                 es[i] = null;
1004             return true;
1005         } else {
1006             if (modCount != expectedModCount)
1007                 throw new ConcurrentModificationException();
1008             return false;
1009         }
1010     }
1011 
1012     /**
1013      * Inserts all of the elements in the specified Collection into this
1014      * Vector at the specified position.  Shifts the element currently at
1015      * that position (if any) and any subsequent elements to the right
1016      * (increases their indices).  The new elements will appear in the Vector
1017      * in the order that they are returned by the specified Collection's
1018      * iterator.
1019      *
1020      * @param index index at which to insert the first element from the
1021      *              specified collection
1022      * @param c elements to be inserted into this Vector
1023      * @return {@code true} if this Vector changed as a result of the call
1024      * @throws ArrayIndexOutOfBoundsException if the index is out of range
1025      *         ({@code index < 0 || index > size()})
1026      * @throws NullPointerException if the specified collection is null
1027      * @since 1.2
1028      */
1029     public synchronized boolean addAll(int index, Collection<? extends E> c) {
1030         if (index < 0 || index > elementCount)
1031             throw new ArrayIndexOutOfBoundsException(index);
1032 
1033         Object[] a = c.toArray();
1034         modCount++;
1035         int numNew = a.length;
1036         if (numNew == 0)
1037             return false;
1038         Object[] elementData = this.elementData;
1039         final int s = elementCount;
1040         if (numNew > elementData.length - s)
1041             elementData = grow(s + numNew);
1042 
1043         int numMoved = s - index;
1044         if (numMoved > 0)
1045             System.arraycopy(elementData, index,
1046                              elementData, index + numNew,
1047                              numMoved);
1048         System.arraycopy(a, 0, elementData, index, numNew);
1049         elementCount = s + numNew;
1050         return true;
1051     }
1052 
1053     /**
1054      * Compares the specified Object with this Vector for equality.  Returns
1055      * true if and only if the specified Object is also a List, both Lists
1056      * have the same size, and all corresponding pairs of elements in the two
1057      * Lists are <em>equal</em>.  (Two elements {@code e1} and
1058      * {@code e2} are <em>equal</em> if {@code Objects.equals(e1, e2)}.)
1059      * In other words, two Lists are defined to be
1060      * equal if they contain the same elements in the same order.
1061      *
1062      * @param o the Object to be compared for equality with this Vector
1063      * @return true if the specified Object is equal to this Vector
1064      */
1065     public synchronized boolean equals(Object o) {
1066         return super.equals(o);
1067     }
1068 
1069     /**
1070      * Returns the hash code value for this Vector.
1071      */
1072     public synchronized int hashCode() {
1073         return super.hashCode();
1074     }
1075 
1076     /**
1077      * Returns a string representation of this Vector, containing
1078      * the String representation of each element.
1079      */
1080     public synchronized String toString() {
1081         return super.toString();
1082     }
1083 
1084     /**
1085      * Returns a view of the portion of this List between fromIndex,
1086      * inclusive, and toIndex, exclusive.  (If fromIndex and toIndex are
1087      * equal, the returned List is empty.)  The returned List is backed by this
1088      * List, so changes in the returned List are reflected in this List, and
1089      * vice-versa.  The returned List supports all of the optional List
1090      * operations supported by this List.
1091      *
1092      * <p>This method eliminates the need for explicit range operations (of
1093      * the sort that commonly exist for arrays).  Any operation that expects
1094      * a List can be used as a range operation by operating on a subList view
1095      * instead of a whole List.  For example, the following idiom
1096      * removes a range of elements from a List:
1097      * <pre>
1098      *      list.subList(from, to).clear();
1099      * </pre>
1100      * Similar idioms may be constructed for indexOf and lastIndexOf,
1101      * and all of the algorithms in the Collections class can be applied to
1102      * a subList.
1103      *
1104      * <p>The semantics of the List returned by this method become undefined if
1105      * the backing list (i.e., this List) is <i>structurally modified</i> in
1106      * any way other than via the returned List.  (Structural modifications are
1107      * those that change the size of the List, or otherwise perturb it in such
1108      * a fashion that iterations in progress may yield incorrect results.)
1109      *
1110      * @param fromIndex low endpoint (inclusive) of the subList
1111      * @param toIndex high endpoint (exclusive) of the subList
1112      * @return a view of the specified range within this List
1113      * @throws IndexOutOfBoundsException if an endpoint index value is out of range
1114      *         {@code (fromIndex < 0 || toIndex > size)}
1115      * @throws IllegalArgumentException if the endpoint indices are out of order
1116      *         {@code (fromIndex > toIndex)}
1117      */
1118     public synchronized List<E> subList(int fromIndex, int toIndex) {
1119         return Collections.synchronizedList(super.subList(fromIndex, toIndex),
1120                                             this);
1121     }
1122 
1123     /**
1124      * Removes from this list all of the elements whose index is between
1125      * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
1126      * Shifts any succeeding elements to the left (reduces their index).
1127      * This call shortens the list by {@code (toIndex - fromIndex)} elements.
1128      * (If {@code toIndex==fromIndex}, this operation has no effect.)
1129      */
1130     protected synchronized void removeRange(int fromIndex, int toIndex) {
1131         modCount++;
1132         shiftTailOverGap(elementData, fromIndex, toIndex);
1133     }
1134 
1135     /** Erases the gap from lo to hi, by sliding down following elements. */
1136     private void shiftTailOverGap(Object[] es, int lo, int hi) {
1137         System.arraycopy(es, hi, es, lo, elementCount - hi);
1138         for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
1139             es[i] = null;
1140     }
1141 
1142     /**
1143      * Loads a {@code Vector} instance from a stream
1144      * (that is, deserializes it).
1145      * This method performs checks to ensure the consistency
1146      * of the fields.
1147      *
1148      * @param in the stream
1149      * @throws java.io.IOException if an I/O error occurs
1150      * @throws ClassNotFoundException if the stream contains data
1151      *         of a non-existing class
1152      */
1153     @java.io.Serial
1154     private void readObject(ObjectInputStream in)
1155             throws IOException, ClassNotFoundException {
1156         ObjectInputStream.GetField gfields = in.readFields();
1157         int count = gfields.get("elementCount", 0);
1158         Object[] data = (Object[])gfields.get("elementData", null);
1159         if (count < 0 || data == null || count > data.length) {
1160             throw new StreamCorruptedException("Inconsistent vector internals");
1161         }
1162         elementCount = count;
1163         elementData = data.clone();
1164     }
1165 
1166     /**
1167      * Saves the state of the {@code Vector} instance to a stream
1168      * (that is, serializes it).
1169      * This method performs synchronization to ensure the consistency
1170      * of the serialized data.
1171      *
1172      * @param s the stream
1173      * @throws java.io.IOException if an I/O error occurs
1174      */
1175     @java.io.Serial
1176     private void writeObject(java.io.ObjectOutputStream s)
1177             throws java.io.IOException {
1178         final java.io.ObjectOutputStream.PutField fields = s.putFields();
1179         final Object[] data;
1180         synchronized (this) {
1181             fields.put("capacityIncrement", capacityIncrement);
1182             fields.put("elementCount", elementCount);
1183             data = elementData.clone();
1184         }
1185         fields.put("elementData", data);
1186         s.writeFields();
1187     }
1188 
1189     /**
1190      * Returns a list iterator over the elements in this list (in proper
1191      * sequence), starting at the specified position in the list.
1192      * The specified index indicates the first element that would be
1193      * returned by an initial call to {@link ListIterator#next next}.
1194      * An initial call to {@link ListIterator#previous previous} would
1195      * return the element with the specified index minus one.
1196      *
1197      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1198      *
1199      * @throws IndexOutOfBoundsException {@inheritDoc}
1200      */
1201     public synchronized ListIterator<E> listIterator(int index) {
1202         if (index < 0 || index > elementCount)
1203             throw new IndexOutOfBoundsException("Index: "+index);
1204         return new ListItr(index);
1205     }
1206 
1207     /**
1208      * Returns a list iterator over the elements in this list (in proper
1209      * sequence).
1210      *
1211      * <p>The returned list iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1212      *
1213      * @see #listIterator(int)
1214      */
1215     public synchronized ListIterator<E> listIterator() {
1216         return new ListItr(0);
1217     }
1218 
1219     /**
1220      * Returns an iterator over the elements in this list in proper sequence.
1221      *
1222      * <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
1223      *
1224      * @return an iterator over the elements in this list in proper sequence
1225      */
1226     public synchronized Iterator<E> iterator() {
1227         return new Itr();
1228     }
1229 
1230     /**
1231      * An optimized version of AbstractList.Itr
1232      */
1233     private class Itr implements Iterator<E> {
1234         int cursor;       // index of next element to return
1235         int lastRet = -1; // index of last element returned; -1 if no such
1236         int expectedModCount = modCount;
1237 
1238         public boolean hasNext() {
1239             // Racy but within spec, since modifications are checked
1240             // within or after synchronization in next/previous
1241             return cursor != elementCount;
1242         }
1243 
1244         public E next() {
1245             synchronized (Vector.this) {
1246                 checkForComodification();
1247                 int i = cursor;
1248                 if (i >= elementCount)
1249                     throw new NoSuchElementException();
1250                 cursor = i + 1;
1251                 return elementData(lastRet = i);
1252             }
1253         }
1254 
1255         public void remove() {
1256             if (lastRet == -1)
1257                 throw new IllegalStateException();
1258             synchronized (Vector.this) {
1259                 checkForComodification();
1260                 Vector.this.remove(lastRet);
1261                 expectedModCount = modCount;
1262             }
1263             cursor = lastRet;
1264             lastRet = -1;
1265         }
1266 
1267         @Override
1268         public void forEachRemaining(Consumer<? super E> action) {
1269             Objects.requireNonNull(action);
1270             synchronized (Vector.this) {
1271                 final int size = elementCount;
1272                 int i = cursor;
1273                 if (i >= size) {
1274                     return;
1275                 }
1276                 final Object[] es = elementData;
1277                 if (i >= es.length)
1278                     throw new ConcurrentModificationException();
1279                 while (i < size && modCount == expectedModCount)
1280                     action.accept(elementAt(es, i++));
1281                 // update once at end of iteration to reduce heap write traffic
1282                 cursor = i;
1283                 lastRet = i - 1;
1284                 checkForComodification();
1285             }
1286         }
1287 
1288         final void checkForComodification() {
1289             if (modCount != expectedModCount)
1290                 throw new ConcurrentModificationException();
1291         }
1292     }
1293 
1294     /**
1295      * An optimized version of AbstractList.ListItr
1296      */
1297     final class ListItr extends Itr implements ListIterator<E> {
1298         ListItr(int index) {
1299             super();
1300             cursor = index;
1301         }
1302 
1303         public boolean hasPrevious() {
1304             return cursor != 0;
1305         }
1306 
1307         public int nextIndex() {
1308             return cursor;
1309         }
1310 
1311         public int previousIndex() {
1312             return cursor - 1;
1313         }
1314 
1315         public E previous() {
1316             synchronized (Vector.this) {
1317                 checkForComodification();
1318                 int i = cursor - 1;
1319                 if (i < 0)
1320                     throw new NoSuchElementException();
1321                 cursor = i;
1322                 return elementData(lastRet = i);
1323             }
1324         }
1325 
1326         public void set(E e) {
1327             if (lastRet == -1)
1328                 throw new IllegalStateException();
1329             synchronized (Vector.this) {
1330                 checkForComodification();
1331                 Vector.this.set(lastRet, e);
1332             }
1333         }
1334 
1335         public void add(E e) {
1336             int i = cursor;
1337             synchronized (Vector.this) {
1338                 checkForComodification();
1339                 Vector.this.add(i, e);
1340                 expectedModCount = modCount;
1341             }
1342             cursor = i + 1;
1343             lastRet = -1;
1344         }
1345     }
1346 
1347     /**
1348      * @throws NullPointerException {@inheritDoc}
1349      */
1350     @Override
1351     public synchronized void forEach(Consumer<? super E> action) {
1352         Objects.requireNonNull(action);
1353         final int expectedModCount = modCount;
1354         final Object[] es = elementData;
1355         final int size = elementCount;
1356         for (int i = 0; modCount == expectedModCount && i < size; i++)
1357             action.accept(elementAt(es, i));
1358         if (modCount != expectedModCount)
1359             throw new ConcurrentModificationException();
1360     }
1361 
1362     /**
1363      * @throws NullPointerException {@inheritDoc}
1364      */
1365     @Override
1366     public synchronized void replaceAll(UnaryOperator<E> operator) {
1367         Objects.requireNonNull(operator);
1368         final int expectedModCount = modCount;
1369         final Object[] es = elementData;
1370         final int size = elementCount;
1371         for (int i = 0; modCount == expectedModCount && i < size; i++)
1372             es[i] = operator.apply(elementAt(es, i));
1373         if (modCount != expectedModCount)
1374             throw new ConcurrentModificationException();
1375         // TODO(8203662): remove increment of modCount from ...
1376         modCount++;
1377     }
1378 
1379     @SuppressWarnings("unchecked")
1380     @Override
1381     public synchronized void sort(Comparator<? super E> c) {
1382         final int expectedModCount = modCount;
1383         Arrays.sort((E[]) elementData, 0, elementCount, c);
1384         if (modCount != expectedModCount)
1385             throw new ConcurrentModificationException();
1386         modCount++;
1387     }
1388 
1389     /**
1390      * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1391      * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1392      * list.
1393      *
1394      * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1395      * {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
1396      * Overriding implementations should document the reporting of additional
1397      * characteristic values.
1398      *
1399      * @return a {@code Spliterator} over the elements in this list
1400      * @since 1.8
1401      */
1402     @Override
1403     public Spliterator<E> spliterator() {
1404         return new VectorSpliterator(null, 0, -1, 0);
1405     }
1406 
1407     /** Similar to ArrayList Spliterator */
1408     final class VectorSpliterator implements Spliterator<E> {
1409         private Object[] array;
1410         private int index; // current index, modified on advance/split
1411         private int fence; // -1 until used; then one past last index
1412         private int expectedModCount; // initialized when fence set
1413 
1414         /** Creates new spliterator covering the given range. */
1415         VectorSpliterator(Object[] array, int origin, int fence,
1416                           int expectedModCount) {
1417             this.array = array;
1418             this.index = origin;
1419             this.fence = fence;
1420             this.expectedModCount = expectedModCount;
1421         }
1422 
1423         private int getFence() { // initialize on first use
1424             int hi;
1425             if ((hi = fence) < 0) {
1426                 synchronized (Vector.this) {
1427                     array = elementData;
1428                     expectedModCount = modCount;
1429                     hi = fence = elementCount;
1430                 }
1431             }
1432             return hi;
1433         }
1434 
1435         public Spliterator<E> trySplit() {
1436             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1437             return (lo >= mid) ? null :
1438                 new VectorSpliterator(array, lo, index = mid, expectedModCount);
1439         }
1440 
1441         @SuppressWarnings("unchecked")
1442         public boolean tryAdvance(Consumer<? super E> action) {
1443             Objects.requireNonNull(action);
1444             int i;
1445             if (getFence() > (i = index)) {
1446                 index = i + 1;
1447                 action.accept((E)array[i]);
1448                 if (modCount != expectedModCount)
1449                     throw new ConcurrentModificationException();
1450                 return true;
1451             }
1452             return false;
1453         }
1454 
1455         @SuppressWarnings("unchecked")
1456         public void forEachRemaining(Consumer<? super E> action) {
1457             Objects.requireNonNull(action);
1458             final int hi = getFence();
1459             final Object[] a = array;
1460             int i;
1461             for (i = index, index = hi; i < hi; i++)
1462                 action.accept((E) a[i]);
1463             if (modCount != expectedModCount)
1464                 throw new ConcurrentModificationException();
1465         }
1466 
1467         public long estimateSize() {
1468             return getFence() - index;
1469         }
1470 
1471         public int characteristics() {
1472             return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
1473         }
1474     }
1475 
1476     void checkInvariants() {
1477         // assert elementCount >= 0;
1478         // assert elementCount == elementData.length || elementData[elementCount] == null;
1479     }
1480 }