1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 
  29 import jdk.internal.HotSpotIntrinsicCandidate;
  30 
  31 import java.lang.constant.ClassDesc;
  32 import java.lang.constant.Constable;
  33 import java.lang.constant.ConstantDesc;
  34 import java.lang.constant.DirectMethodHandleDesc;
  35 import java.lang.constant.MethodHandleDesc;
  36 import java.lang.constant.MethodTypeDesc;
  37 import java.util.Arrays;
  38 import java.util.Objects;
  39 import java.util.Optional;
  40 
  41 import static java.lang.invoke.MethodHandleInfo.*;
  42 import static java.lang.invoke.MethodHandleStatics.*;
  43 import static java.lang.invoke.MethodHandles.Lookup.IMPL_LOOKUP;
  44 
  45 /**
  46  * A method handle is a typed, directly executable reference to an underlying method,
  47  * constructor, field, or similar low-level operation, with optional
  48  * transformations of arguments or return values.
  49  * These transformations are quite general, and include such patterns as
  50  * {@linkplain #asType conversion},
  51  * {@linkplain #bindTo insertion},
  52  * {@linkplain java.lang.invoke.MethodHandles#dropArguments deletion},
  53  * and {@linkplain java.lang.invoke.MethodHandles#filterArguments substitution}.
  54  *
  55  * <h2>Method handle contents</h2>
  56  * Method handles are dynamically and strongly typed according to their parameter and return types.
  57  * They are not distinguished by the name or the defining class of their underlying methods.
  58  * A method handle must be invoked using a symbolic type descriptor which matches
  59  * the method handle's own {@linkplain #type() type descriptor}.
  60  * <p>
  61  * Every method handle reports its type descriptor via the {@link #type() type} accessor.
  62  * This type descriptor is a {@link java.lang.invoke.MethodType MethodType} object,
  63  * whose structure is a series of classes, one of which is
  64  * the return type of the method (or {@code void.class} if none).
  65  * <p>
  66  * A method handle's type controls the types of invocations it accepts,
  67  * and the kinds of transformations that apply to it.
  68  * <p>
  69  * A method handle contains a pair of special invoker methods
  70  * called {@link #invokeExact invokeExact} and {@link #invoke invoke}.
  71  * Both invoker methods provide direct access to the method handle's
  72  * underlying method, constructor, field, or other operation,
  73  * as modified by transformations of arguments and return values.
  74  * Both invokers accept calls which exactly match the method handle's own type.
  75  * The plain, inexact invoker also accepts a range of other call types.
  76  * <p>
  77  * Method handles are immutable and have no visible state.
  78  * Of course, they can be bound to underlying methods or data which exhibit state.
  79  * With respect to the Java Memory Model, any method handle will behave
  80  * as if all of its (internal) fields are final variables.  This means that any method
  81  * handle made visible to the application will always be fully formed.
  82  * This is true even if the method handle is published through a shared
  83  * variable in a data race.
  84  * <p>
  85  * Method handles cannot be subclassed by the user.
  86  * Implementations may (or may not) create internal subclasses of {@code MethodHandle}
  87  * which may be visible via the {@link java.lang.Object#getClass Object.getClass}
  88  * operation.  The programmer should not draw conclusions about a method handle
  89  * from its specific class, as the method handle class hierarchy (if any)
  90  * may change from time to time or across implementations from different vendors.
  91  *
  92  * <h2>Method handle compilation</h2>
  93  * A Java method call expression naming {@code invokeExact} or {@code invoke}
  94  * can invoke a method handle from Java source code.
  95  * From the viewpoint of source code, these methods can take any arguments
  96  * and their result can be cast to any return type.
  97  * Formally this is accomplished by giving the invoker methods
  98  * {@code Object} return types and variable arity {@code Object} arguments,
  99  * but they have an additional quality called <em>signature polymorphism</em>
 100  * which connects this freedom of invocation directly to the JVM execution stack.
 101  * <p>
 102  * As is usual with virtual methods, source-level calls to {@code invokeExact}
 103  * and {@code invoke} compile to an {@code invokevirtual} instruction.
 104  * More unusually, the compiler must record the actual argument types,
 105  * and may not perform method invocation conversions on the arguments.
 106  * Instead, it must generate instructions that push them on the stack according
 107  * to their own unconverted types.  The method handle object itself is pushed on
 108  * the stack before the arguments.
 109  * The compiler then generates an {@code invokevirtual} instruction that invokes
 110  * the method handle with a symbolic type descriptor which describes the argument
 111  * and return types.
 112  * <p>
 113  * To issue a complete symbolic type descriptor, the compiler must also determine
 114  * the return type.  This is based on a cast on the method invocation expression,
 115  * if there is one, or else {@code Object} if the invocation is an expression,
 116  * or else {@code void} if the invocation is a statement.
 117  * The cast may be to a primitive type (but not {@code void}).
 118  * <p>
 119  * As a corner case, an uncasted {@code null} argument is given
 120  * a symbolic type descriptor of {@code java.lang.Void}.
 121  * The ambiguity with the type {@code Void} is harmless, since there are no references of type
 122  * {@code Void} except the null reference.
 123  *
 124  * <h2>Method handle invocation</h2>
 125  * The first time an {@code invokevirtual} instruction is executed
 126  * it is linked by symbolically resolving the names in the instruction
 127  * and verifying that the method call is statically legal.
 128  * This also holds for calls to {@code invokeExact} and {@code invoke}.
 129  * In this case, the symbolic type descriptor emitted by the compiler is checked for
 130  * correct syntax, and names it contains are resolved.
 131  * Thus, an {@code invokevirtual} instruction which invokes
 132  * a method handle will always link, as long
 133  * as the symbolic type descriptor is syntactically well-formed
 134  * and the types exist.
 135  * <p>
 136  * When the {@code invokevirtual} is executed after linking,
 137  * the receiving method handle's type is first checked by the JVM
 138  * to ensure that it matches the symbolic type descriptor.
 139  * If the type match fails, it means that the method which the
 140  * caller is invoking is not present on the individual
 141  * method handle being invoked.
 142  * <p>
 143  * In the case of {@code invokeExact}, the type descriptor of the invocation
 144  * (after resolving symbolic type names) must exactly match the method type
 145  * of the receiving method handle.
 146  * In the case of plain, inexact {@code invoke}, the resolved type descriptor
 147  * must be a valid argument to the receiver's {@link #asType asType} method.
 148  * Thus, plain {@code invoke} is more permissive than {@code invokeExact}.
 149  * <p>
 150  * After type matching, a call to {@code invokeExact} directly
 151  * and immediately invoke the method handle's underlying method
 152  * (or other behavior, as the case may be).
 153  * <p>
 154  * A call to plain {@code invoke} works the same as a call to
 155  * {@code invokeExact}, if the symbolic type descriptor specified by the caller
 156  * exactly matches the method handle's own type.
 157  * If there is a type mismatch, {@code invoke} attempts
 158  * to adjust the type of the receiving method handle,
 159  * as if by a call to {@link #asType asType},
 160  * to obtain an exactly invokable method handle {@code M2}.
 161  * This allows a more powerful negotiation of method type
 162  * between caller and callee.
 163  * <p>
 164  * (<em>Note:</em> The adjusted method handle {@code M2} is not directly observable,
 165  * and implementations are therefore not required to materialize it.)
 166  *
 167  * <h2>Invocation checking</h2>
 168  * In typical programs, method handle type matching will usually succeed.
 169  * But if a match fails, the JVM will throw a {@link WrongMethodTypeException},
 170  * either directly (in the case of {@code invokeExact}) or indirectly as if
 171  * by a failed call to {@code asType} (in the case of {@code invoke}).
 172  * <p>
 173  * Thus, a method type mismatch which might show up as a linkage error
 174  * in a statically typed program can show up as
 175  * a dynamic {@code WrongMethodTypeException}
 176  * in a program which uses method handles.
 177  * <p>
 178  * Because method types contain "live" {@code Class} objects,
 179  * method type matching takes into account both type names and class loaders.
 180  * Thus, even if a method handle {@code M} is created in one
 181  * class loader {@code L1} and used in another {@code L2},
 182  * method handle calls are type-safe, because the caller's symbolic type
 183  * descriptor, as resolved in {@code L2},
 184  * is matched against the original callee method's symbolic type descriptor,
 185  * as resolved in {@code L1}.
 186  * The resolution in {@code L1} happens when {@code M} is created
 187  * and its type is assigned, while the resolution in {@code L2} happens
 188  * when the {@code invokevirtual} instruction is linked.
 189  * <p>
 190  * Apart from type descriptor checks,
 191  * a method handle's capability to call its underlying method is unrestricted.
 192  * If a method handle is formed on a non-public method by a class
 193  * that has access to that method, the resulting handle can be used
 194  * in any place by any caller who receives a reference to it.
 195  * <p>
 196  * Unlike with the Core Reflection API, where access is checked every time
 197  * a reflective method is invoked,
 198  * method handle access checking is performed
 199  * <a href="MethodHandles.Lookup.html#access">when the method handle is created</a>.
 200  * In the case of {@code ldc} (see below), access checking is performed as part of linking
 201  * the constant pool entry underlying the constant method handle.
 202  * <p>
 203  * Thus, handles to non-public methods, or to methods in non-public classes,
 204  * should generally be kept secret.
 205  * They should not be passed to untrusted code unless their use from
 206  * the untrusted code would be harmless.
 207  *
 208  * <h2>Method handle creation</h2>
 209  * Java code can create a method handle that directly accesses
 210  * any method, constructor, or field that is accessible to that code.
 211  * This is done via a reflective, capability-based API called
 212  * {@link java.lang.invoke.MethodHandles.Lookup MethodHandles.Lookup}.
 213  * For example, a static method handle can be obtained
 214  * from {@link java.lang.invoke.MethodHandles.Lookup#findStatic Lookup.findStatic}.
 215  * There are also conversion methods from Core Reflection API objects,
 216  * such as {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 217  * <p>
 218  * Like classes and strings, method handles that correspond to accessible
 219  * fields, methods, and constructors can also be represented directly
 220  * in a class file's constant pool as constants to be loaded by {@code ldc} bytecodes.
 221  * A new type of constant pool entry, {@code CONSTANT_MethodHandle},
 222  * refers directly to an associated {@code CONSTANT_Methodref},
 223  * {@code CONSTANT_InterfaceMethodref}, or {@code CONSTANT_Fieldref}
 224  * constant pool entry.
 225  * (For full details on method handle constants,
 226  * see sections {@jvms 4.4.8} and {@jvms 5.4.3.5} of the Java Virtual Machine Specification.)
 227  * <p>
 228  * Method handles produced by lookups or constant loads from methods or
 229  * constructors with the variable arity modifier bit ({@code 0x0080})
 230  * have a corresponding variable arity, as if they were defined with
 231  * the help of {@link #asVarargsCollector asVarargsCollector}
 232  * or {@link #withVarargs withVarargs}.
 233  * <p>
 234  * A method reference may refer either to a static or non-static method.
 235  * In the non-static case, the method handle type includes an explicit
 236  * receiver argument, prepended before any other arguments.
 237  * In the method handle's type, the initial receiver argument is typed
 238  * according to the class under which the method was initially requested.
 239  * (E.g., if a non-static method handle is obtained via {@code ldc},
 240  * the type of the receiver is the class named in the constant pool entry.)
 241  * <p>
 242  * Method handle constants are subject to the same link-time access checks
 243  * their corresponding bytecode instructions, and the {@code ldc} instruction
 244  * will throw corresponding linkage errors if the bytecode behaviors would
 245  * throw such errors.
 246  * <p>
 247  * As a corollary of this, access to protected members is restricted
 248  * to receivers only of the accessing class, or one of its subclasses,
 249  * and the accessing class must in turn be a subclass (or package sibling)
 250  * of the protected member's defining class.
 251  * If a method reference refers to a protected non-static method or field
 252  * of a class outside the current package, the receiver argument will
 253  * be narrowed to the type of the accessing class.
 254  * <p>
 255  * When a method handle to a virtual method is invoked, the method is
 256  * always looked up in the receiver (that is, the first argument).
 257  * <p>
 258  * A non-virtual method handle to a specific virtual method implementation
 259  * can also be created.  These do not perform virtual lookup based on
 260  * receiver type.  Such a method handle simulates the effect of
 261  * an {@code invokespecial} instruction to the same method.
 262  * A non-virtual method handle can also be created to simulate the effect
 263  * of an {@code invokevirtual} or {@code invokeinterface} instruction on
 264  * a private method (as applicable).
 265  *
 266  * <h2>Usage examples</h2>
 267  * Here are some examples of usage:
 268  * <blockquote><pre>{@code
 269 Object x, y; String s; int i;
 270 MethodType mt; MethodHandle mh;
 271 MethodHandles.Lookup lookup = MethodHandles.lookup();
 272 // mt is (char,char)String
 273 mt = MethodType.methodType(String.class, char.class, char.class);
 274 mh = lookup.findVirtual(String.class, "replace", mt);
 275 s = (String) mh.invokeExact("daddy",'d','n');
 276 // invokeExact(Ljava/lang/String;CC)Ljava/lang/String;
 277 assertEquals(s, "nanny");
 278 // weakly typed invocation (using MHs.invoke)
 279 s = (String) mh.invokeWithArguments("sappy", 'p', 'v');
 280 assertEquals(s, "savvy");
 281 // mt is (Object[])List
 282 mt = MethodType.methodType(java.util.List.class, Object[].class);
 283 mh = lookup.findStatic(java.util.Arrays.class, "asList", mt);
 284 assert(mh.isVarargsCollector());
 285 x = mh.invoke("one", "two");
 286 // invoke(Ljava/lang/String;Ljava/lang/String;)Ljava/lang/Object;
 287 assertEquals(x, java.util.Arrays.asList("one","two"));
 288 // mt is (Object,Object,Object)Object
 289 mt = MethodType.genericMethodType(3);
 290 mh = mh.asType(mt);
 291 x = mh.invokeExact((Object)1, (Object)2, (Object)3);
 292 // invokeExact(Ljava/lang/Object;Ljava/lang/Object;Ljava/lang/Object;)Ljava/lang/Object;
 293 assertEquals(x, java.util.Arrays.asList(1,2,3));
 294 // mt is ()int
 295 mt = MethodType.methodType(int.class);
 296 mh = lookup.findVirtual(java.util.List.class, "size", mt);
 297 i = (int) mh.invokeExact(java.util.Arrays.asList(1,2,3));
 298 // invokeExact(Ljava/util/List;)I
 299 assert(i == 3);
 300 mt = MethodType.methodType(void.class, String.class);
 301 mh = lookup.findVirtual(java.io.PrintStream.class, "println", mt);
 302 mh.invokeExact(System.out, "Hello, world.");
 303 // invokeExact(Ljava/io/PrintStream;Ljava/lang/String;)V
 304  * }</pre></blockquote>
 305  * Each of the above calls to {@code invokeExact} or plain {@code invoke}
 306  * generates a single invokevirtual instruction with
 307  * the symbolic type descriptor indicated in the following comment.
 308  * In these examples, the helper method {@code assertEquals} is assumed to
 309  * be a method which calls {@link java.util.Objects#equals(Object,Object) Objects.equals}
 310  * on its arguments, and asserts that the result is true.
 311  *
 312  * <h2>Exceptions</h2>
 313  * The methods {@code invokeExact} and {@code invoke} are declared
 314  * to throw {@link java.lang.Throwable Throwable},
 315  * which is to say that there is no static restriction on what a method handle
 316  * can throw.  Since the JVM does not distinguish between checked
 317  * and unchecked exceptions (other than by their class, of course),
 318  * there is no particular effect on bytecode shape from ascribing
 319  * checked exceptions to method handle invocations.  But in Java source
 320  * code, methods which perform method handle calls must either explicitly
 321  * throw {@code Throwable}, or else must catch all
 322  * throwables locally, rethrowing only those which are legal in the context,
 323  * and wrapping ones which are illegal.
 324  *
 325  * <h2><a id="sigpoly"></a>Signature polymorphism</h2>
 326  * The unusual compilation and linkage behavior of
 327  * {@code invokeExact} and plain {@code invoke}
 328  * is referenced by the term <em>signature polymorphism</em>.
 329  * As defined in the Java Language Specification,
 330  * a signature polymorphic method is one which can operate with
 331  * any of a wide range of call signatures and return types.
 332  * <p>
 333  * In source code, a call to a signature polymorphic method will
 334  * compile, regardless of the requested symbolic type descriptor.
 335  * As usual, the Java compiler emits an {@code invokevirtual}
 336  * instruction with the given symbolic type descriptor against the named method.
 337  * The unusual part is that the symbolic type descriptor is derived from
 338  * the actual argument and return types, not from the method declaration.
 339  * <p>
 340  * When the JVM processes bytecode containing signature polymorphic calls,
 341  * it will successfully link any such call, regardless of its symbolic type descriptor.
 342  * (In order to retain type safety, the JVM will guard such calls with suitable
 343  * dynamic type checks, as described elsewhere.)
 344  * <p>
 345  * Bytecode generators, including the compiler back end, are required to emit
 346  * untransformed symbolic type descriptors for these methods.
 347  * Tools which determine symbolic linkage are required to accept such
 348  * untransformed descriptors, without reporting linkage errors.
 349  *
 350  * <h2>Interoperation between method handles and the Core Reflection API</h2>
 351  * Using factory methods in the {@link java.lang.invoke.MethodHandles.Lookup Lookup} API,
 352  * any class member represented by a Core Reflection API object
 353  * can be converted to a behaviorally equivalent method handle.
 354  * For example, a reflective {@link java.lang.reflect.Method Method} can
 355  * be converted to a method handle using
 356  * {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect}.
 357  * The resulting method handles generally provide more direct and efficient
 358  * access to the underlying class members.
 359  * <p>
 360  * As a special case,
 361  * when the Core Reflection API is used to view the signature polymorphic
 362  * methods {@code invokeExact} or plain {@code invoke} in this class,
 363  * they appear as ordinary non-polymorphic methods.
 364  * Their reflective appearance, as viewed by
 365  * {@link java.lang.Class#getDeclaredMethod Class.getDeclaredMethod},
 366  * is unaffected by their special status in this API.
 367  * For example, {@link java.lang.reflect.Method#getModifiers Method.getModifiers}
 368  * will report exactly those modifier bits required for any similarly
 369  * declared method, including in this case {@code native} and {@code varargs} bits.
 370  * <p>
 371  * As with any reflected method, these methods (when reflected) may be
 372  * invoked via {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.
 373  * However, such reflective calls do not result in method handle invocations.
 374  * Such a call, if passed the required argument
 375  * (a single one, of type {@code Object[]}), will ignore the argument and
 376  * will throw an {@code UnsupportedOperationException}.
 377  * <p>
 378  * Since {@code invokevirtual} instructions can natively
 379  * invoke method handles under any symbolic type descriptor, this reflective view conflicts
 380  * with the normal presentation of these methods via bytecodes.
 381  * Thus, these two native methods, when reflectively viewed by
 382  * {@code Class.getDeclaredMethod}, may be regarded as placeholders only.
 383  * <p>
 384  * In order to obtain an invoker method for a particular type descriptor,
 385  * use {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker},
 386  * or {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}.
 387  * The {@link java.lang.invoke.MethodHandles.Lookup#findVirtual Lookup.findVirtual}
 388  * API is also able to return a method handle
 389  * to call {@code invokeExact} or plain {@code invoke},
 390  * for any specified type descriptor .
 391  *
 392  * <h2>Interoperation between method handles and Java generics</h2>
 393  * A method handle can be obtained on a method, constructor, or field
 394  * which is declared with Java generic types.
 395  * As with the Core Reflection API, the type of the method handle
 396  * will be constructed from the erasure of the source-level type.
 397  * When a method handle is invoked, the types of its arguments
 398  * or the return value cast type may be generic types or type instances.
 399  * If this occurs, the compiler will replace those
 400  * types by their erasures when it constructs the symbolic type descriptor
 401  * for the {@code invokevirtual} instruction.
 402  * <p>
 403  * Method handles do not represent
 404  * their function-like types in terms of Java parameterized (generic) types,
 405  * because there are three mismatches between function-like types and parameterized
 406  * Java types.
 407  * <ul>
 408  * <li>Method types range over all possible arities,
 409  * from no arguments to up to the  <a href="MethodHandle.html#maxarity">maximum number</a> of allowed arguments.
 410  * Generics are not variadic, and so cannot represent this.</li>
 411  * <li>Method types can specify arguments of primitive types,
 412  * which Java generic types cannot range over.</li>
 413  * <li>Higher order functions over method handles (combinators) are
 414  * often generic across a wide range of function types, including
 415  * those of multiple arities.  It is impossible to represent such
 416  * genericity with a Java type parameter.</li>
 417  * </ul>
 418  *
 419  * <h2><a id="maxarity"></a>Arity limits</h2>
 420  * The JVM imposes on all methods and constructors of any kind an absolute
 421  * limit of 255 stacked arguments.  This limit can appear more restrictive
 422  * in certain cases:
 423  * <ul>
 424  * <li>A {@code long} or {@code double} argument counts (for purposes of arity limits) as two argument slots.
 425  * <li>A non-static method consumes an extra argument for the object on which the method is called.
 426  * <li>A constructor consumes an extra argument for the object which is being constructed.
 427  * <li>Since a method handle&rsquo;s {@code invoke} method (or other signature-polymorphic method) is non-virtual,
 428  *     it consumes an extra argument for the method handle itself, in addition to any non-virtual receiver object.
 429  * </ul>
 430  * These limits imply that certain method handles cannot be created, solely because of the JVM limit on stacked arguments.
 431  * For example, if a static JVM method accepts exactly 255 arguments, a method handle cannot be created for it.
 432  * Attempts to create method handles with impossible method types lead to an {@link IllegalArgumentException}.
 433  * In particular, a method handle&rsquo;s type must not have an arity of the exact maximum 255.
 434  *
 435  * @see MethodType
 436  * @see MethodHandles
 437  * @author John Rose, JSR 292 EG
 438  * @since 1.7
 439  */
 440 public abstract class MethodHandle implements Constable {
 441 
 442     /**
 443      * Internal marker interface which distinguishes (to the Java compiler)
 444      * those methods which are <a href="MethodHandle.html#sigpoly">signature polymorphic</a>.
 445      */
 446     @java.lang.annotation.Target({java.lang.annotation.ElementType.METHOD})
 447     @java.lang.annotation.Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
 448     @interface PolymorphicSignature { }
 449 
 450     private final MethodType type;
 451     /*private*/
 452     final LambdaForm form;
 453     // form is not private so that invokers can easily fetch it
 454     /*private*/
 455     MethodHandle asTypeCache;
 456     // asTypeCache is not private so that invokers can easily fetch it
 457     /*non-public*/
 458     byte customizationCount;
 459     // customizationCount should be accessible from invokers
 460 
 461     /**
 462      * Reports the type of this method handle.
 463      * Every invocation of this method handle via {@code invokeExact} must exactly match this type.
 464      * @return the method handle type
 465      */
 466     public MethodType type() {
 467         return type;
 468     }
 469 
 470     /**
 471      * Package-private constructor for the method handle implementation hierarchy.
 472      * Method handle inheritance will be contained completely within
 473      * the {@code java.lang.invoke} package.
 474      */
 475     // @param type type (permanently assigned) of the new method handle
 476     /*non-public*/
 477     MethodHandle(MethodType type, LambdaForm form) {
 478         this.type = Objects.requireNonNull(type);
 479         this.form = Objects.requireNonNull(form).uncustomize();
 480 
 481         this.form.prepare();  // TO DO:  Try to delay this step until just before invocation.
 482     }
 483 
 484     /**
 485      * Invokes the method handle, allowing any caller type descriptor, but requiring an exact type match.
 486      * The symbolic type descriptor at the call site of {@code invokeExact} must
 487      * exactly match this method handle's {@link #type() type}.
 488      * No conversions are allowed on arguments or return values.
 489      * <p>
 490      * When this method is observed via the Core Reflection API,
 491      * it will appear as a single native method, taking an object array and returning an object.
 492      * If this native method is invoked directly via
 493      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 494      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 495      * it will throw an {@code UnsupportedOperationException}.
 496      * @param args the signature-polymorphic parameter list, statically represented using varargs
 497      * @return the signature-polymorphic result, statically represented using {@code Object}
 498      * @throws WrongMethodTypeException if the target's type is not identical with the caller's symbolic type descriptor
 499      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 500      */
 501     @HotSpotIntrinsicCandidate
 502     public final native @PolymorphicSignature Object invokeExact(Object... args) throws Throwable;
 503 
 504     /**
 505      * Invokes the method handle, allowing any caller type descriptor,
 506      * and optionally performing conversions on arguments and return values.
 507      * <p>
 508      * If the call site's symbolic type descriptor exactly matches this method handle's {@link #type() type},
 509      * the call proceeds as if by {@link #invokeExact invokeExact}.
 510      * <p>
 511      * Otherwise, the call proceeds as if this method handle were first
 512      * adjusted by calling {@link #asType asType} to adjust this method handle
 513      * to the required type, and then the call proceeds as if by
 514      * {@link #invokeExact invokeExact} on the adjusted method handle.
 515      * <p>
 516      * There is no guarantee that the {@code asType} call is actually made.
 517      * If the JVM can predict the results of making the call, it may perform
 518      * adaptations directly on the caller's arguments,
 519      * and call the target method handle according to its own exact type.
 520      * <p>
 521      * The resolved type descriptor at the call site of {@code invoke} must
 522      * be a valid argument to the receivers {@code asType} method.
 523      * In particular, the caller must specify the same argument arity
 524      * as the callee's type,
 525      * if the callee is not a {@linkplain #asVarargsCollector variable arity collector}.
 526      * <p>
 527      * When this method is observed via the Core Reflection API,
 528      * it will appear as a single native method, taking an object array and returning an object.
 529      * If this native method is invoked directly via
 530      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}, via JNI,
 531      * or indirectly via {@link java.lang.invoke.MethodHandles.Lookup#unreflect Lookup.unreflect},
 532      * it will throw an {@code UnsupportedOperationException}.
 533      * @param args the signature-polymorphic parameter list, statically represented using varargs
 534      * @return the signature-polymorphic result, statically represented using {@code Object}
 535      * @throws WrongMethodTypeException if the target's type cannot be adjusted to the caller's symbolic type descriptor
 536      * @throws ClassCastException if the target's type can be adjusted to the caller, but a reference cast fails
 537      * @throws Throwable anything thrown by the underlying method propagates unchanged through the method handle call
 538      */
 539     @HotSpotIntrinsicCandidate
 540     public final native @PolymorphicSignature Object invoke(Object... args) throws Throwable;
 541 
 542     /**
 543      * Private method for trusted invocation of a method handle respecting simplified signatures.
 544      * Type mismatches will not throw {@code WrongMethodTypeException}, but could crash the JVM.
 545      * <p>
 546      * The caller signature is restricted to the following basic types:
 547      * Object, int, long, float, double, and void return.
 548      * <p>
 549      * The caller is responsible for maintaining type correctness by ensuring
 550      * that the each outgoing argument value is a member of the range of the corresponding
 551      * callee argument type.
 552      * (The caller should therefore issue appropriate casts and integer narrowing
 553      * operations on outgoing argument values.)
 554      * The caller can assume that the incoming result value is part of the range
 555      * of the callee's return type.
 556      * @param args the signature-polymorphic parameter list, statically represented using varargs
 557      * @return the signature-polymorphic result, statically represented using {@code Object}
 558      */
 559     @HotSpotIntrinsicCandidate
 560     /*non-public*/
 561     final native @PolymorphicSignature Object invokeBasic(Object... args) throws Throwable;
 562 
 563     /**
 564      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeVirtual}.
 565      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 566      * The trailing (not leading) argument must be a MemberName.
 567      * @param args the signature-polymorphic parameter list, statically represented using varargs
 568      * @return the signature-polymorphic result, statically represented using {@code Object}
 569      */
 570     @HotSpotIntrinsicCandidate
 571     /*non-public*/
 572     static native @PolymorphicSignature Object linkToVirtual(Object... args) throws Throwable;
 573 
 574     /**
 575      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeStatic}.
 576      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 577      * The trailing (not leading) argument must be a MemberName.
 578      * @param args the signature-polymorphic parameter list, statically represented using varargs
 579      * @return the signature-polymorphic result, statically represented using {@code Object}
 580      */
 581     @HotSpotIntrinsicCandidate
 582     /*non-public*/
 583     static native @PolymorphicSignature Object linkToStatic(Object... args) throws Throwable;
 584 
 585     /**
 586      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeSpecial}.
 587      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 588      * The trailing (not leading) argument must be a MemberName.
 589      * @param args the signature-polymorphic parameter list, statically represented using varargs
 590      * @return the signature-polymorphic result, statically represented using {@code Object}
 591      */
 592     @HotSpotIntrinsicCandidate
 593     /*non-public*/
 594     static native @PolymorphicSignature Object linkToSpecial(Object... args) throws Throwable;
 595 
 596     /**
 597      * Private method for trusted invocation of a MemberName of kind {@code REF_invokeInterface}.
 598      * The caller signature is restricted to basic types as with {@code invokeBasic}.
 599      * The trailing (not leading) argument must be a MemberName.
 600      * @param args the signature-polymorphic parameter list, statically represented using varargs
 601      * @return the signature-polymorphic result, statically represented using {@code Object}
 602      */
 603     @HotSpotIntrinsicCandidate
 604     /*non-public*/
 605     static native @PolymorphicSignature Object linkToInterface(Object... args) throws Throwable;
 606 
 607     /**
 608      * Performs a variable arity invocation, passing the arguments in the given array
 609      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 610      * which mentions only the type {@code Object}, and whose actual argument count is the length
 611      * of the argument array.
 612      * <p>
 613      * Specifically, execution proceeds as if by the following steps,
 614      * although the methods are not guaranteed to be called if the JVM
 615      * can predict their effects.
 616      * <ul>
 617      * <li>Determine the length of the argument array as {@code N}.
 618      *     For a null reference, {@code N=0}. </li>
 619      * <li>Collect the {@code N} elements of the array as a logical
 620      *     argument list, each argument statically typed as an {@code Object}. </li>
 621      * <li>Determine, as {@code M}, the parameter count of the type of this
 622      *     method handle. </li>
 623      * <li>Determine the general type {@code TN} of {@code N} arguments or
 624      *     {@code M} arguments, if smaller than {@code N}, as
 625      *     {@code TN=MethodType.genericMethodType(Math.min(N, M))}.</li>
 626      * <li>If {@code N} is greater than {@code M}, perform the following
 627      *     checks and actions to shorten the logical argument list: <ul>
 628      *     <li>Check that this method handle has variable arity with a
 629      *         {@linkplain MethodType#lastParameterType trailing parameter}
 630      *         of some array type {@code A[]}.  If not, fail with a
 631      *         {@code WrongMethodTypeException}. </li>
 632      *     <li>Collect the trailing elements (there are {@code N-M+1} of them)
 633      *         from the logical argument list into a single array of
 634      *         type {@code A[]}, using {@code asType} conversions to
 635      *         convert each trailing argument to type {@code A}. </li>
 636      *     <li>If any of these conversions proves impossible, fail with either
 637      *         a {@code ClassCastException} if any trailing element cannot be
 638      *         cast to {@code A} or a {@code NullPointerException} if any
 639      *         trailing element is {@code null} and {@code A} is not a reference
 640      *         type. </li>
 641      *     <li>Replace the logical arguments gathered into the array of
 642      *         type {@code A[]} with the array itself, thus shortening
 643      *         the argument list to length {@code M}. This final argument
 644      *         retains the static type {@code A[]}.</li>
 645      *     <li>Adjust the type {@code TN} by changing the {@code N}th
 646      *         parameter type from {@code Object} to {@code A[]}.
 647      *     </ul>
 648      * <li>Force the original target method handle {@code MH0} to the
 649      *     required type, as {@code MH1 = MH0.asType(TN)}. </li>
 650      * <li>Spread the argument list into {@code N} separate arguments {@code A0, ...}. </li>
 651      * <li>Invoke the type-adjusted method handle on the unpacked arguments:
 652      *     MH1.invokeExact(A0, ...). </li>
 653      * <li>Take the return value as an {@code Object} reference. </li>
 654      * </ul>
 655      * <p>
 656      * If the target method handle has variable arity, and the argument list is longer
 657      * than that arity, the excess arguments, starting at the position of the trailing
 658      * array argument, will be gathered (if possible, as if by {@code asType} conversions)
 659      * into an array of the appropriate type, and invocation will proceed on the
 660      * shortened argument list.
 661      * In this way, <em>jumbo argument lists</em> which would spread into more
 662      * than 254 slots can still be processed uniformly.
 663      * <p>
 664      * Unlike the {@link #invoke(Object...) generic} invocation mode, which can
 665      * "recycle" an array argument, passing it directly to the target method,
 666      * this invocation mode <em>always</em> creates a new array parameter, even
 667      * if the original array passed to {@code invokeWithArguments} would have
 668      * been acceptable as a direct argument to the target method.
 669      * Even if the number {@code M} of actual arguments is the arity {@code N},
 670      * and the last argument is dynamically a suitable array of type {@code A[]},
 671      * it will still be boxed into a new one-element array, since the call
 672      * site statically types the argument as {@code Object}, not an array type.
 673      * This is not a special rule for this method, but rather a regular effect
 674      * of the {@linkplain #asVarargsCollector rules for variable-arity invocation}.
 675      * <p>
 676      * Because of the action of the {@code asType} step, the following argument
 677      * conversions are applied as necessary:
 678      * <ul>
 679      * <li>reference casting
 680      * <li>unboxing
 681      * <li>widening primitive conversions
 682      * <li>variable arity conversion
 683      * </ul>
 684      * <p>
 685      * The result returned by the call is boxed if it is a primitive,
 686      * or forced to null if the return type is void.
 687      * <p>
 688      * Unlike the signature polymorphic methods {@code invokeExact} and {@code invoke},
 689      * {@code invokeWithArguments} can be accessed normally via the Core Reflection API and JNI.
 690      * It can therefore be used as a bridge between native or reflective code and method handles.
 691      * @apiNote
 692      * This call is approximately equivalent to the following code:
 693      * <blockquote><pre>{@code
 694      * // for jumbo argument lists, adapt varargs explicitly:
 695      * int N = (arguments == null? 0: arguments.length);
 696      * int M = this.type.parameterCount();
 697      * int MAX_SAFE = 127;  // 127 longs require 254 slots, which is OK
 698      * if (N > MAX_SAFE && N > M && this.isVarargsCollector()) {
 699      *   Class<?> arrayType = this.type().lastParameterType();
 700      *   Class<?> elemType = arrayType.getComponentType();
 701      *   if (elemType != null) {
 702      *     Object args2 = Array.newInstance(elemType, M);
 703      *     MethodHandle arraySetter = MethodHandles.arrayElementSetter(arrayType);
 704      *     for (int i = 0; i < M; i++) {
 705      *       arraySetter.invoke(args2, i, arguments[M-1 + i]);
 706      *     }
 707      *     arguments = Arrays.copyOf(arguments, M);
 708      *     arguments[M-1] = args2;
 709      *     return this.asFixedArity().invokeWithArguments(arguments);
 710      *   }
 711      * } // done with explicit varargs processing
 712      *
 713      * // Handle fixed arity and non-jumbo variable arity invocation.
 714      * MethodHandle invoker = MethodHandles.spreadInvoker(this.type(), 0);
 715      * Object result = invoker.invokeExact(this, arguments);
 716      * }</pre></blockquote>
 717      *
 718      * @param arguments the arguments to pass to the target
 719      * @return the result returned by the target
 720      * @throws ClassCastException if an argument cannot be converted by reference casting
 721      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 722      * @throws Throwable anything thrown by the target method invocation
 723      * @see MethodHandles#spreadInvoker
 724      */
 725     public Object invokeWithArguments(Object... arguments) throws Throwable {
 726         // Note: Jumbo argument lists are handled in the variable-arity subclass.
 727         MethodType invocationType = MethodType.genericMethodType(arguments == null ? 0 : arguments.length);
 728         return invocationType.invokers().spreadInvoker(0).invokeExact(asType(invocationType), arguments);
 729     }
 730 
 731     /**
 732      * Performs a variable arity invocation, passing the arguments in the given list
 733      * to the method handle, as if via an inexact {@link #invoke invoke} from a call site
 734      * which mentions only the type {@code Object}, and whose actual argument count is the length
 735      * of the argument list.
 736      * <p>
 737      * This method is also equivalent to the following code:
 738      * <blockquote><pre>{@code
 739      *   invokeWithArguments(arguments.toArray())
 740      * }</pre></blockquote>
 741      * <p>
 742      * Jumbo-sized lists are acceptable if this method handle has variable arity.
 743      * See {@link #invokeWithArguments(Object[])} for details.
 744      *
 745      * @param arguments the arguments to pass to the target
 746      * @return the result returned by the target
 747      * @throws NullPointerException if {@code arguments} is a null reference
 748      * @throws ClassCastException if an argument cannot be converted by reference casting
 749      * @throws WrongMethodTypeException if the target's type cannot be adjusted to take the given number of {@code Object} arguments
 750      * @throws Throwable anything thrown by the target method invocation
 751      */
 752     public Object invokeWithArguments(java.util.List<?> arguments) throws Throwable {
 753         return invokeWithArguments(arguments.toArray());
 754     }
 755 
 756     /**
 757      * Produces an adapter method handle which adapts the type of the
 758      * current method handle to a new type.
 759      * The resulting method handle is guaranteed to report a type
 760      * which is equal to the desired new type.
 761      * <p>
 762      * If the original type and new type are equal, returns {@code this}.
 763      * <p>
 764      * The new method handle, when invoked, will perform the following
 765      * steps:
 766      * <ul>
 767      * <li>Convert the incoming argument list to match the original
 768      *     method handle's argument list.
 769      * <li>Invoke the original method handle on the converted argument list.
 770      * <li>Convert any result returned by the original method handle
 771      *     to the return type of new method handle.
 772      * </ul>
 773      * <p>
 774      * This method provides the crucial behavioral difference between
 775      * {@link #invokeExact invokeExact} and plain, inexact {@link #invoke invoke}.
 776      * The two methods
 777      * perform the same steps when the caller's type descriptor exactly matches
 778      * the callee's, but when the types differ, plain {@link #invoke invoke}
 779      * also calls {@code asType} (or some internal equivalent) in order
 780      * to match up the caller's and callee's types.
 781      * <p>
 782      * If the current method is a variable arity method handle
 783      * argument list conversion may involve the conversion and collection
 784      * of several arguments into an array, as
 785      * {@linkplain #asVarargsCollector described elsewhere}.
 786      * In every other case, all conversions are applied <em>pairwise</em>,
 787      * which means that each argument or return value is converted to
 788      * exactly one argument or return value (or no return value).
 789      * The applied conversions are defined by consulting
 790      * the corresponding component types of the old and new
 791      * method handle types.
 792      * <p>
 793      * Let <em>T0</em> and <em>T1</em> be corresponding new and old parameter types,
 794      * or old and new return types.  Specifically, for some valid index {@code i}, let
 795      * <em>T0</em>{@code =newType.parameterType(i)} and <em>T1</em>{@code =this.type().parameterType(i)}.
 796      * Or else, going the other way for return values, let
 797      * <em>T0</em>{@code =this.type().returnType()} and <em>T1</em>{@code =newType.returnType()}.
 798      * If the types are the same, the new method handle makes no change
 799      * to the corresponding argument or return value (if any).
 800      * Otherwise, one of the following conversions is applied
 801      * if possible:
 802      * <ul>
 803      * <li>If <em>T0</em> and <em>T1</em> are references, then a cast to <em>T1</em> is applied.
 804      *     (The types do not need to be related in any particular way.
 805      *     This is because a dynamic value of null can convert to any reference type.)
 806      * <li>If <em>T0</em> and <em>T1</em> are primitives, then a Java method invocation
 807      *     conversion (JLS 5.3) is applied, if one exists.
 808      *     (Specifically, <em>T0</em> must convert to <em>T1</em> by a widening primitive conversion.)
 809      * <li>If <em>T0</em> is a primitive and <em>T1</em> a reference,
 810      *     a Java casting conversion (JLS 5.5) is applied if one exists.
 811      *     (Specifically, the value is boxed from <em>T0</em> to its wrapper class,
 812      *     which is then widened as needed to <em>T1</em>.)
 813      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
 814      *     conversion will be applied at runtime, possibly followed
 815      *     by a Java method invocation conversion (JLS 5.3)
 816      *     on the primitive value.  (These are the primitive widening conversions.)
 817      *     <em>T0</em> must be a wrapper class or a supertype of one.
 818      *     (In the case where <em>T0</em> is Object, these are the conversions
 819      *     allowed by {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}.)
 820      *     The unboxing conversion must have a possibility of success, which means that
 821      *     if <em>T0</em> is not itself a wrapper class, there must exist at least one
 822      *     wrapper class <em>TW</em> which is a subtype of <em>T0</em> and whose unboxed
 823      *     primitive value can be widened to <em>T1</em>.
 824      * <li>If the return type <em>T1</em> is marked as void, any returned value is discarded
 825      * <li>If the return type <em>T0</em> is void and <em>T1</em> a reference, a null value is introduced.
 826      * <li>If the return type <em>T0</em> is void and <em>T1</em> a primitive,
 827      *     a zero value is introduced.
 828      * </ul>
 829      * (<em>Note:</em> Both <em>T0</em> and <em>T1</em> may be regarded as static types,
 830      * because neither corresponds specifically to the <em>dynamic type</em> of any
 831      * actual argument or return value.)
 832      * <p>
 833      * The method handle conversion cannot be made if any one of the required
 834      * pairwise conversions cannot be made.
 835      * <p>
 836      * At runtime, the conversions applied to reference arguments
 837      * or return values may require additional runtime checks which can fail.
 838      * An unboxing operation may fail because the original reference is null,
 839      * causing a {@link java.lang.NullPointerException NullPointerException}.
 840      * An unboxing operation or a reference cast may also fail on a reference
 841      * to an object of the wrong type,
 842      * causing a {@link java.lang.ClassCastException ClassCastException}.
 843      * Although an unboxing operation may accept several kinds of wrappers,
 844      * if none are available, a {@code ClassCastException} will be thrown.
 845      *
 846      * @param newType the expected type of the new method handle
 847      * @return a method handle which delegates to {@code this} after performing
 848      *           any necessary argument conversions, and arranges for any
 849      *           necessary return value conversions
 850      * @throws NullPointerException if {@code newType} is a null reference
 851      * @throws WrongMethodTypeException if the conversion cannot be made
 852      * @see MethodHandles#explicitCastArguments
 853      */
 854     public MethodHandle asType(MethodType newType) {
 855         // Fast path alternative to a heavyweight {@code asType} call.
 856         // Return 'this' if the conversion will be a no-op.
 857         if (newType == type) {
 858             return this;
 859         }
 860         // Return 'this.asTypeCache' if the conversion is already memoized.
 861         MethodHandle atc = asTypeCached(newType);
 862         if (atc != null) {
 863             return atc;
 864         }
 865         return asTypeUncached(newType);
 866     }
 867 
 868     private MethodHandle asTypeCached(MethodType newType) {
 869         MethodHandle atc = asTypeCache;
 870         if (atc != null && newType == atc.type) {
 871             return atc;
 872         }
 873         return null;
 874     }
 875 
 876     /** Override this to change asType behavior. */
 877     /*non-public*/
 878     MethodHandle asTypeUncached(MethodType newType) {
 879         if (!type.isConvertibleTo(newType))
 880             throw new WrongMethodTypeException("cannot convert "+this+" to "+newType);
 881         return asTypeCache = MethodHandleImpl.makePairwiseConvert(this, newType, true);
 882     }
 883 
 884     /**
 885      * Makes an <em>array-spreading</em> method handle, which accepts a trailing array argument
 886      * and spreads its elements as positional arguments.
 887      * The new method handle adapts, as its <i>target</i>,
 888      * the current method handle.  The type of the adapter will be
 889      * the same as the type of the target, except that the final
 890      * {@code arrayLength} parameters of the target's type are replaced
 891      * by a single array parameter of type {@code arrayType}.
 892      * <p>
 893      * If the array element type differs from any of the corresponding
 894      * argument types on the original target,
 895      * the original target is adapted to take the array elements directly,
 896      * as if by a call to {@link #asType asType}.
 897      * <p>
 898      * When called, the adapter replaces a trailing array argument
 899      * by the array's elements, each as its own argument to the target.
 900      * (The order of the arguments is preserved.)
 901      * They are converted pairwise by casting and/or unboxing
 902      * to the types of the trailing parameters of the target.
 903      * Finally the target is called.
 904      * What the target eventually returns is returned unchanged by the adapter.
 905      * <p>
 906      * Before calling the target, the adapter verifies that the array
 907      * contains exactly enough elements to provide a correct argument count
 908      * to the target method handle.
 909      * (The array may also be null when zero elements are required.)
 910      * <p>
 911      * When the adapter is called, the length of the supplied {@code array}
 912      * argument is queried as if by {@code array.length} or {@code arraylength}
 913      * bytecode. If the adapter accepts a zero-length trailing array argument,
 914      * the supplied {@code array} argument can either be a zero-length array or
 915      * {@code null}; otherwise, the adapter will throw a {@code NullPointerException}
 916      * if the array is {@code null} and throw an {@link IllegalArgumentException}
 917      * if the array does not have the correct number of elements.
 918      * <p>
 919      * Here are some simple examples of array-spreading method handles:
 920      * <blockquote><pre>{@code
 921 MethodHandle equals = publicLookup()
 922   .findVirtual(String.class, "equals", methodType(boolean.class, Object.class));
 923 assert( (boolean) equals.invokeExact("me", (Object)"me"));
 924 assert(!(boolean) equals.invokeExact("me", (Object)"thee"));
 925 // spread both arguments from a 2-array:
 926 MethodHandle eq2 = equals.asSpreader(Object[].class, 2);
 927 assert( (boolean) eq2.invokeExact(new Object[]{ "me", "me" }));
 928 assert(!(boolean) eq2.invokeExact(new Object[]{ "me", "thee" }));
 929 // try to spread from anything but a 2-array:
 930 for (int n = 0; n <= 10; n++) {
 931   Object[] badArityArgs = (n == 2 ? new Object[0] : new Object[n]);
 932   try { assert((boolean) eq2.invokeExact(badArityArgs) && false); }
 933   catch (IllegalArgumentException ex) { } // OK
 934 }
 935 // spread both arguments from a String array:
 936 MethodHandle eq2s = equals.asSpreader(String[].class, 2);
 937 assert( (boolean) eq2s.invokeExact(new String[]{ "me", "me" }));
 938 assert(!(boolean) eq2s.invokeExact(new String[]{ "me", "thee" }));
 939 // spread second arguments from a 1-array:
 940 MethodHandle eq1 = equals.asSpreader(Object[].class, 1);
 941 assert( (boolean) eq1.invokeExact("me", new Object[]{ "me" }));
 942 assert(!(boolean) eq1.invokeExact("me", new Object[]{ "thee" }));
 943 // spread no arguments from a 0-array or null:
 944 MethodHandle eq0 = equals.asSpreader(Object[].class, 0);
 945 assert( (boolean) eq0.invokeExact("me", (Object)"me", new Object[0]));
 946 assert(!(boolean) eq0.invokeExact("me", (Object)"thee", (Object[])null));
 947 // asSpreader and asCollector are approximate inverses:
 948 for (int n = 0; n <= 2; n++) {
 949     for (Class<?> a : new Class<?>[]{Object[].class, String[].class, CharSequence[].class}) {
 950         MethodHandle equals2 = equals.asSpreader(a, n).asCollector(a, n);
 951         assert( (boolean) equals2.invokeWithArguments("me", "me"));
 952         assert(!(boolean) equals2.invokeWithArguments("me", "thee"));
 953     }
 954 }
 955 MethodHandle caToString = publicLookup()
 956   .findStatic(Arrays.class, "toString", methodType(String.class, char[].class));
 957 assertEquals("[A, B, C]", (String) caToString.invokeExact("ABC".toCharArray()));
 958 MethodHandle caString3 = caToString.asCollector(char[].class, 3);
 959 assertEquals("[A, B, C]", (String) caString3.invokeExact('A', 'B', 'C'));
 960 MethodHandle caToString2 = caString3.asSpreader(char[].class, 2);
 961 assertEquals("[A, B, C]", (String) caToString2.invokeExact('A', "BC".toCharArray()));
 962      * }</pre></blockquote>
 963      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
 964      * @param arrayLength the number of arguments to spread from an incoming array argument
 965      * @return a new method handle which spreads its final array argument,
 966      *         before calling the original method handle
 967      * @throws NullPointerException if {@code arrayType} is a null reference
 968      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
 969      *         or if target does not have at least
 970      *         {@code arrayLength} parameter types,
 971      *         or if {@code arrayLength} is negative,
 972      *         or if the resulting method handle's type would have
 973      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
 974      * @throws WrongMethodTypeException if the implied {@code asType} call fails
 975      * @see #asCollector
 976      */
 977     public MethodHandle asSpreader(Class<?> arrayType, int arrayLength) {
 978         return asSpreader(type().parameterCount() - arrayLength, arrayType, arrayLength);
 979     }
 980 
 981     /**
 982      * Makes an <em>array-spreading</em> method handle, which accepts an array argument at a given position and spreads
 983      * its elements as positional arguments in place of the array. The new method handle adapts, as its <i>target</i>,
 984      * the current method handle. The type of the adapter will be the same as the type of the target, except that the
 985      * {@code arrayLength} parameters of the target's type, starting at the zero-based position {@code spreadArgPos},
 986      * are replaced by a single array parameter of type {@code arrayType}.
 987      * <p>
 988      * This method behaves very much like {@link #asSpreader(Class, int)}, but accepts an additional {@code spreadArgPos}
 989      * argument to indicate at which position in the parameter list the spreading should take place.
 990      *
 991      * @apiNote Example:
 992      * <blockquote><pre>{@code
 993     MethodHandle compare = LOOKUP.findStatic(Objects.class, "compare", methodType(int.class, Object.class, Object.class, Comparator.class));
 994     MethodHandle compare2FromArray = compare.asSpreader(0, Object[].class, 2);
 995     Object[] ints = new Object[]{3, 9, 7, 7};
 996     Comparator<Integer> cmp = (a, b) -> a - b;
 997     assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 0, 2), cmp) < 0);
 998     assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 1, 3), cmp) > 0);
 999     assertTrue((int) compare2FromArray.invoke(Arrays.copyOfRange(ints, 2, 4), cmp) == 0);
1000      * }</pre></blockquote>
1001      * @param spreadArgPos the position (zero-based index) in the argument list at which spreading should start.
1002      * @param arrayType usually {@code Object[]}, the type of the array argument from which to extract the spread arguments
1003      * @param arrayLength the number of arguments to spread from an incoming array argument
1004      * @return a new method handle which spreads an array argument at a given position,
1005      *         before calling the original method handle
1006      * @throws NullPointerException if {@code arrayType} is a null reference
1007      * @throws IllegalArgumentException if {@code arrayType} is not an array type,
1008      *         or if target does not have at least
1009      *         {@code arrayLength} parameter types,
1010      *         or if {@code arrayLength} is negative,
1011      *         or if {@code spreadArgPos} has an illegal value (negative, or together with arrayLength exceeding the
1012      *         number of arguments),
1013      *         or if the resulting method handle's type would have
1014      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1015      * @throws WrongMethodTypeException if the implied {@code asType} call fails
1016      *
1017      * @see #asSpreader(Class, int)
1018      * @since 9
1019      */
1020     public MethodHandle asSpreader(int spreadArgPos, Class<?> arrayType, int arrayLength) {
1021         MethodType postSpreadType = asSpreaderChecks(arrayType, spreadArgPos, arrayLength);
1022         MethodHandle afterSpread = this.asType(postSpreadType);
1023         BoundMethodHandle mh = afterSpread.rebind();
1024         LambdaForm lform = mh.editor().spreadArgumentsForm(1 + spreadArgPos, arrayType, arrayLength);
1025         MethodType preSpreadType = postSpreadType.replaceParameterTypes(spreadArgPos, spreadArgPos + arrayLength, arrayType);
1026         return mh.copyWith(preSpreadType, lform);
1027     }
1028 
1029     /**
1030      * See if {@code asSpreader} can be validly called with the given arguments.
1031      * Return the type of the method handle call after spreading but before conversions.
1032      */
1033     private MethodType asSpreaderChecks(Class<?> arrayType, int pos, int arrayLength) {
1034         spreadArrayChecks(arrayType, arrayLength);
1035         int nargs = type().parameterCount();
1036         if (nargs < arrayLength || arrayLength < 0)
1037             throw newIllegalArgumentException("bad spread array length");
1038         if (pos < 0 || pos + arrayLength > nargs) {
1039             throw newIllegalArgumentException("bad spread position");
1040         }
1041         Class<?> arrayElement = arrayType.getComponentType();
1042         MethodType mtype = type();
1043         boolean match = true, fail = false;
1044         for (int i = pos; i < pos + arrayLength; i++) {
1045             Class<?> ptype = mtype.parameterType(i);
1046             if (ptype != arrayElement) {
1047                 match = false;
1048                 if (!MethodType.canConvert(arrayElement, ptype)) {
1049                     fail = true;
1050                     break;
1051                 }
1052             }
1053         }
1054         if (match)  return mtype;
1055         MethodType needType = mtype.asSpreaderType(arrayType, pos, arrayLength);
1056         if (!fail)  return needType;
1057         // elicit an error:
1058         this.asType(needType);
1059         throw newInternalError("should not return");
1060     }
1061 
1062     private void spreadArrayChecks(Class<?> arrayType, int arrayLength) {
1063         Class<?> arrayElement = arrayType.getComponentType();
1064         if (arrayElement == null)
1065             throw newIllegalArgumentException("not an array type", arrayType);
1066         if ((arrayLength & 0x7F) != arrayLength) {
1067             if ((arrayLength & 0xFF) != arrayLength)
1068                 throw newIllegalArgumentException("array length is not legal", arrayLength);
1069             assert(arrayLength >= 128);
1070             if (arrayElement == long.class ||
1071                 arrayElement == double.class)
1072                 throw newIllegalArgumentException("array length is not legal for long[] or double[]", arrayLength);
1073         }
1074     }
1075     /**
1076       * Adapts this method handle to be {@linkplain #asVarargsCollector variable arity}
1077       * if the boolean flag is true, else {@linkplain #asFixedArity fixed arity}.
1078       * If the method handle is already of the proper arity mode, it is returned
1079       * unchanged.
1080       * @apiNote
1081       * <p>This method is sometimes useful when adapting a method handle that
1082       * may be variable arity, to ensure that the resulting adapter is also
1083       * variable arity if and only if the original handle was.  For example,
1084       * this code changes the first argument of a handle {@code mh} to {@code int} without
1085       * disturbing its variable arity property:
1086       * {@code mh.asType(mh.type().changeParameterType(0,int.class))
1087       *     .withVarargs(mh.isVarargsCollector())}
1088       * <p>
1089       * This call is approximately equivalent to the following code:
1090       * <blockquote><pre>{@code
1091       * if (makeVarargs == isVarargsCollector())
1092       *   return this;
1093       * else if (makeVarargs)
1094       *   return asVarargsCollector(type().lastParameterType());
1095       * else
1096       *   return asFixedArity();
1097       * }</pre></blockquote>
1098       * @param makeVarargs true if the return method handle should have variable arity behavior
1099       * @return a method handle of the same type, with possibly adjusted variable arity behavior
1100       * @throws IllegalArgumentException if {@code makeVarargs} is true and
1101       *         this method handle does not have a trailing array parameter
1102       * @since 9
1103       * @see #asVarargsCollector
1104       * @see #asFixedArity
1105      */
1106     public MethodHandle withVarargs(boolean makeVarargs) {
1107         assert(!isVarargsCollector());  // subclass responsibility
1108         if (makeVarargs) {
1109            return asVarargsCollector(type().lastParameterType());
1110         } else {
1111             return this;
1112         }
1113     }
1114 
1115     /**
1116      * Makes an <em>array-collecting</em> method handle, which accepts a given number of trailing
1117      * positional arguments and collects them into an array argument.
1118      * The new method handle adapts, as its <i>target</i>,
1119      * the current method handle.  The type of the adapter will be
1120      * the same as the type of the target, except that a single trailing
1121      * parameter (usually of type {@code arrayType}) is replaced by
1122      * {@code arrayLength} parameters whose type is element type of {@code arrayType}.
1123      * <p>
1124      * If the array type differs from the final argument type on the original target,
1125      * the original target is adapted to take the array type directly,
1126      * as if by a call to {@link #asType asType}.
1127      * <p>
1128      * When called, the adapter replaces its trailing {@code arrayLength}
1129      * arguments by a single new array of type {@code arrayType}, whose elements
1130      * comprise (in order) the replaced arguments.
1131      * Finally the target is called.
1132      * What the target eventually returns is returned unchanged by the adapter.
1133      * <p>
1134      * (The array may also be a shared constant when {@code arrayLength} is zero.)
1135      * <p>
1136      * (<em>Note:</em> The {@code arrayType} is often identical to the
1137      * {@linkplain MethodType#lastParameterType last parameter type}
1138      * of the original target.
1139      * It is an explicit argument for symmetry with {@code asSpreader}, and also
1140      * to allow the target to use a simple {@code Object} as its last parameter type.)
1141      * <p>
1142      * In order to create a collecting adapter which is not restricted to a particular
1143      * number of collected arguments, use {@link #asVarargsCollector asVarargsCollector}
1144      * or {@link #withVarargs withVarargs} instead.
1145      * <p>
1146      * Here are some examples of array-collecting method handles:
1147      * <blockquote><pre>{@code
1148 MethodHandle deepToString = publicLookup()
1149   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1150 assertEquals("[won]",   (String) deepToString.invokeExact(new Object[]{"won"}));
1151 MethodHandle ts1 = deepToString.asCollector(Object[].class, 1);
1152 assertEquals(methodType(String.class, Object.class), ts1.type());
1153 //assertEquals("[won]", (String) ts1.invokeExact(         new Object[]{"won"})); //FAIL
1154 assertEquals("[[won]]", (String) ts1.invokeExact((Object) new Object[]{"won"}));
1155 // arrayType can be a subtype of Object[]
1156 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
1157 assertEquals(methodType(String.class, String.class, String.class), ts2.type());
1158 assertEquals("[two, too]", (String) ts2.invokeExact("two", "too"));
1159 MethodHandle ts0 = deepToString.asCollector(Object[].class, 0);
1160 assertEquals("[]", (String) ts0.invokeExact());
1161 // collectors can be nested, Lisp-style
1162 MethodHandle ts22 = deepToString.asCollector(Object[].class, 3).asCollector(String[].class, 2);
1163 assertEquals("[A, B, [C, D]]", ((String) ts22.invokeExact((Object)'A', (Object)"B", "C", "D")));
1164 // arrayType can be any primitive array type
1165 MethodHandle bytesToString = publicLookup()
1166   .findStatic(Arrays.class, "toString", methodType(String.class, byte[].class))
1167   .asCollector(byte[].class, 3);
1168 assertEquals("[1, 2, 3]", (String) bytesToString.invokeExact((byte)1, (byte)2, (byte)3));
1169 MethodHandle longsToString = publicLookup()
1170   .findStatic(Arrays.class, "toString", methodType(String.class, long[].class))
1171   .asCollector(long[].class, 1);
1172 assertEquals("[123]", (String) longsToString.invokeExact((long)123));
1173      * }</pre></blockquote>
1174      * <p>
1175      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1176      * variable-arity method handle}, even if the original target method handle was.
1177      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1178      * @param arrayLength the number of arguments to collect into a new array argument
1179      * @return a new method handle which collects some trailing argument
1180      *         into an array, before calling the original method handle
1181      * @throws NullPointerException if {@code arrayType} is a null reference
1182      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1183      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type,
1184      *         or {@code arrayLength} is not a legal array size,
1185      *         or the resulting method handle's type would have
1186      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1187      * @throws WrongMethodTypeException if the implied {@code asType} call fails
1188      * @see #asSpreader
1189      * @see #asVarargsCollector
1190      */
1191     public MethodHandle asCollector(Class<?> arrayType, int arrayLength) {
1192         return asCollector(type().parameterCount() - 1, arrayType, arrayLength);
1193     }
1194 
1195     /**
1196      * Makes an <em>array-collecting</em> method handle, which accepts a given number of positional arguments starting
1197      * at a given position, and collects them into an array argument. The new method handle adapts, as its
1198      * <i>target</i>, the current method handle. The type of the adapter will be the same as the type of the target,
1199      * except that the parameter at the position indicated by {@code collectArgPos} (usually of type {@code arrayType})
1200      * is replaced by {@code arrayLength} parameters whose type is element type of {@code arrayType}.
1201      * <p>
1202      * This method behaves very much like {@link #asCollector(Class, int)}, but differs in that its {@code
1203      * collectArgPos} argument indicates at which position in the parameter list arguments should be collected. This
1204      * index is zero-based.
1205      *
1206      * @apiNote Examples:
1207      * <blockquote><pre>{@code
1208     StringWriter swr = new StringWriter();
1209     MethodHandle swWrite = LOOKUP.findVirtual(StringWriter.class, "write", methodType(void.class, char[].class, int.class, int.class)).bindTo(swr);
1210     MethodHandle swWrite4 = swWrite.asCollector(0, char[].class, 4);
1211     swWrite4.invoke('A', 'B', 'C', 'D', 1, 2);
1212     assertEquals("BC", swr.toString());
1213     swWrite4.invoke('P', 'Q', 'R', 'S', 0, 4);
1214     assertEquals("BCPQRS", swr.toString());
1215     swWrite4.invoke('W', 'X', 'Y', 'Z', 3, 1);
1216     assertEquals("BCPQRSZ", swr.toString());
1217      * }</pre></blockquote>
1218      * <p>
1219      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1220      * variable-arity method handle}, even if the original target method handle was.
1221      * @param collectArgPos the zero-based position in the parameter list at which to start collecting.
1222      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1223      * @param arrayLength the number of arguments to collect into a new array argument
1224      * @return a new method handle which collects some arguments
1225      *         into an array, before calling the original method handle
1226      * @throws NullPointerException if {@code arrayType} is a null reference
1227      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1228      *         or {@code arrayType} is not assignable to this method handle's array parameter type,
1229      *         or {@code arrayLength} is not a legal array size,
1230      *         or {@code collectArgPos} has an illegal value (negative, or greater than the number of arguments),
1231      *         or the resulting method handle's type would have
1232      *         <a href="MethodHandle.html#maxarity">too many parameters</a>
1233      * @throws WrongMethodTypeException if the implied {@code asType} call fails
1234      *
1235      * @see #asCollector(Class, int)
1236      * @since 9
1237      */
1238     public MethodHandle asCollector(int collectArgPos, Class<?> arrayType, int arrayLength) {
1239         asCollectorChecks(arrayType, collectArgPos, arrayLength);
1240         BoundMethodHandle mh = rebind();
1241         MethodType resultType = type().asCollectorType(arrayType, collectArgPos, arrayLength);
1242         MethodHandle newArray = MethodHandleImpl.varargsArray(arrayType, arrayLength);
1243         LambdaForm lform = mh.editor().collectArgumentArrayForm(1 + collectArgPos, newArray);
1244         if (lform != null) {
1245             return mh.copyWith(resultType, lform);
1246         }
1247         lform = mh.editor().collectArgumentsForm(1 + collectArgPos, newArray.type().basicType());
1248         return mh.copyWithExtendL(resultType, lform, newArray);
1249     }
1250 
1251     /**
1252      * See if {@code asCollector} can be validly called with the given arguments.
1253      * Return false if the last parameter is not an exact match to arrayType.
1254      */
1255     /*non-public*/
1256     boolean asCollectorChecks(Class<?> arrayType, int pos, int arrayLength) {
1257         spreadArrayChecks(arrayType, arrayLength);
1258         int nargs = type().parameterCount();
1259         if (pos < 0 || pos >= nargs) {
1260             throw newIllegalArgumentException("bad collect position");
1261         }
1262         if (nargs != 0) {
1263             Class<?> param = type().parameterType(pos);
1264             if (param == arrayType)  return true;
1265             if (param.isAssignableFrom(arrayType))  return false;
1266         }
1267         throw newIllegalArgumentException("array type not assignable to argument", this, arrayType);
1268     }
1269 
1270     /**
1271      * Makes a <em>variable arity</em> adapter which is able to accept
1272      * any number of trailing positional arguments and collect them
1273      * into an array argument.
1274      * <p>
1275      * The type and behavior of the adapter will be the same as
1276      * the type and behavior of the target, except that certain
1277      * {@code invoke} and {@code asType} requests can lead to
1278      * trailing positional arguments being collected into target's
1279      * trailing parameter.
1280      * Also, the
1281      * {@linkplain MethodType#lastParameterType last parameter type}
1282      * of the adapter will be
1283      * {@code arrayType}, even if the target has a different
1284      * last parameter type.
1285      * <p>
1286      * This transformation may return {@code this} if the method handle is
1287      * already of variable arity and its trailing parameter type
1288      * is identical to {@code arrayType}.
1289      * <p>
1290      * When called with {@link #invokeExact invokeExact}, the adapter invokes
1291      * the target with no argument changes.
1292      * (<em>Note:</em> This behavior is different from a
1293      * {@linkplain #asCollector fixed arity collector},
1294      * since it accepts a whole array of indeterminate length,
1295      * rather than a fixed number of arguments.)
1296      * <p>
1297      * When called with plain, inexact {@link #invoke invoke}, if the caller
1298      * type is the same as the adapter, the adapter invokes the target as with
1299      * {@code invokeExact}.
1300      * (This is the normal behavior for {@code invoke} when types match.)
1301      * <p>
1302      * Otherwise, if the caller and adapter arity are the same, and the
1303      * trailing parameter type of the caller is a reference type identical to
1304      * or assignable to the trailing parameter type of the adapter,
1305      * the arguments and return values are converted pairwise,
1306      * as if by {@link #asType asType} on a fixed arity
1307      * method handle.
1308      * <p>
1309      * Otherwise, the arities differ, or the adapter's trailing parameter
1310      * type is not assignable from the corresponding caller type.
1311      * In this case, the adapter replaces all trailing arguments from
1312      * the original trailing argument position onward, by
1313      * a new array of type {@code arrayType}, whose elements
1314      * comprise (in order) the replaced arguments.
1315      * <p>
1316      * The caller type must provides as least enough arguments,
1317      * and of the correct type, to satisfy the target's requirement for
1318      * positional arguments before the trailing array argument.
1319      * Thus, the caller must supply, at a minimum, {@code N-1} arguments,
1320      * where {@code N} is the arity of the target.
1321      * Also, there must exist conversions from the incoming arguments
1322      * to the target's arguments.
1323      * As with other uses of plain {@code invoke}, if these basic
1324      * requirements are not fulfilled, a {@code WrongMethodTypeException}
1325      * may be thrown.
1326      * <p>
1327      * In all cases, what the target eventually returns is returned unchanged by the adapter.
1328      * <p>
1329      * In the final case, it is exactly as if the target method handle were
1330      * temporarily adapted with a {@linkplain #asCollector fixed arity collector}
1331      * to the arity required by the caller type.
1332      * (As with {@code asCollector}, if the array length is zero,
1333      * a shared constant may be used instead of a new array.
1334      * If the implied call to {@code asCollector} would throw
1335      * an {@code IllegalArgumentException} or {@code WrongMethodTypeException},
1336      * the call to the variable arity adapter must throw
1337      * {@code WrongMethodTypeException}.)
1338      * <p>
1339      * The behavior of {@link #asType asType} is also specialized for
1340      * variable arity adapters, to maintain the invariant that
1341      * plain, inexact {@code invoke} is always equivalent to an {@code asType}
1342      * call to adjust the target type, followed by {@code invokeExact}.
1343      * Therefore, a variable arity adapter responds
1344      * to an {@code asType} request by building a fixed arity collector,
1345      * if and only if the adapter and requested type differ either
1346      * in arity or trailing argument type.
1347      * The resulting fixed arity collector has its type further adjusted
1348      * (if necessary) to the requested type by pairwise conversion,
1349      * as if by another application of {@code asType}.
1350      * <p>
1351      * When a method handle is obtained by executing an {@code ldc} instruction
1352      * of a {@code CONSTANT_MethodHandle} constant, and the target method is marked
1353      * as a variable arity method (with the modifier bit {@code 0x0080}),
1354      * the method handle will accept multiple arities, as if the method handle
1355      * constant were created by means of a call to {@code asVarargsCollector}.
1356      * <p>
1357      * In order to create a collecting adapter which collects a predetermined
1358      * number of arguments, and whose type reflects this predetermined number,
1359      * use {@link #asCollector asCollector} instead.
1360      * <p>
1361      * No method handle transformations produce new method handles with
1362      * variable arity, unless they are documented as doing so.
1363      * Therefore, besides {@code asVarargsCollector} and {@code withVarargs},
1364      * all methods in {@code MethodHandle} and {@code MethodHandles}
1365      * will return a method handle with fixed arity,
1366      * except in the cases where they are specified to return their original
1367      * operand (e.g., {@code asType} of the method handle's own type).
1368      * <p>
1369      * Calling {@code asVarargsCollector} on a method handle which is already
1370      * of variable arity will produce a method handle with the same type and behavior.
1371      * It may (or may not) return the original variable arity method handle.
1372      * <p>
1373      * Here is an example, of a list-making variable arity method handle:
1374      * <blockquote><pre>{@code
1375 MethodHandle deepToString = publicLookup()
1376   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
1377 MethodHandle ts1 = deepToString.asVarargsCollector(Object[].class);
1378 assertEquals("[won]",   (String) ts1.invokeExact(    new Object[]{"won"}));
1379 assertEquals("[won]",   (String) ts1.invoke(         new Object[]{"won"}));
1380 assertEquals("[won]",   (String) ts1.invoke(                      "won" ));
1381 assertEquals("[[won]]", (String) ts1.invoke((Object) new Object[]{"won"}));
1382 // findStatic of Arrays.asList(...) produces a variable arity method handle:
1383 MethodHandle asList = publicLookup()
1384   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class));
1385 assertEquals(methodType(List.class, Object[].class), asList.type());
1386 assert(asList.isVarargsCollector());
1387 assertEquals("[]", asList.invoke().toString());
1388 assertEquals("[1]", asList.invoke(1).toString());
1389 assertEquals("[two, too]", asList.invoke("two", "too").toString());
1390 String[] argv = { "three", "thee", "tee" };
1391 assertEquals("[three, thee, tee]", asList.invoke(argv).toString());
1392 assertEquals("[three, thee, tee]", asList.invoke((Object[])argv).toString());
1393 List ls = (List) asList.invoke((Object)argv);
1394 assertEquals(1, ls.size());
1395 assertEquals("[three, thee, tee]", Arrays.toString((Object[])ls.get(0)));
1396      * }</pre></blockquote>
1397      * <p style="font-size:smaller;">
1398      * <em>Discussion:</em>
1399      * These rules are designed as a dynamically-typed variation
1400      * of the Java rules for variable arity methods.
1401      * In both cases, callers to a variable arity method or method handle
1402      * can either pass zero or more positional arguments, or else pass
1403      * pre-collected arrays of any length.  Users should be aware of the
1404      * special role of the final argument, and of the effect of a
1405      * type match on that final argument, which determines whether
1406      * or not a single trailing argument is interpreted as a whole
1407      * array or a single element of an array to be collected.
1408      * Note that the dynamic type of the trailing argument has no
1409      * effect on this decision, only a comparison between the symbolic
1410      * type descriptor of the call site and the type descriptor of the method handle.)
1411      *
1412      * @param arrayType often {@code Object[]}, the type of the array argument which will collect the arguments
1413      * @return a new method handle which can collect any number of trailing arguments
1414      *         into an array, before calling the original method handle
1415      * @throws NullPointerException if {@code arrayType} is a null reference
1416      * @throws IllegalArgumentException if {@code arrayType} is not an array type
1417      *         or {@code arrayType} is not assignable to this method handle's trailing parameter type
1418      * @see #asCollector
1419      * @see #isVarargsCollector
1420      * @see #withVarargs
1421      * @see #asFixedArity
1422      */
1423     public MethodHandle asVarargsCollector(Class<?> arrayType) {
1424         Objects.requireNonNull(arrayType);
1425         boolean lastMatch = asCollectorChecks(arrayType, type().parameterCount() - 1, 0);
1426         if (isVarargsCollector() && lastMatch)
1427             return this;
1428         return MethodHandleImpl.makeVarargsCollector(this, arrayType);
1429     }
1430 
1431     /**
1432      * Determines if this method handle
1433      * supports {@linkplain #asVarargsCollector variable arity} calls.
1434      * Such method handles arise from the following sources:
1435      * <ul>
1436      * <li>a call to {@linkplain #asVarargsCollector asVarargsCollector}
1437      * <li>a call to a {@linkplain java.lang.invoke.MethodHandles.Lookup lookup method}
1438      *     which resolves to a variable arity Java method or constructor
1439      * <li>an {@code ldc} instruction of a {@code CONSTANT_MethodHandle}
1440      *     which resolves to a variable arity Java method or constructor
1441      * </ul>
1442      * @return true if this method handle accepts more than one arity of plain, inexact {@code invoke} calls
1443      * @see #asVarargsCollector
1444      * @see #asFixedArity
1445      */
1446     public boolean isVarargsCollector() {
1447         return false;
1448     }
1449 
1450     /**
1451      * Makes a <em>fixed arity</em> method handle which is otherwise
1452      * equivalent to the current method handle.
1453      * <p>
1454      * If the current method handle is not of
1455      * {@linkplain #asVarargsCollector variable arity},
1456      * the current method handle is returned.
1457      * This is true even if the current method handle
1458      * could not be a valid input to {@code asVarargsCollector}.
1459      * <p>
1460      * Otherwise, the resulting fixed-arity method handle has the same
1461      * type and behavior of the current method handle,
1462      * except that {@link #isVarargsCollector isVarargsCollector}
1463      * will be false.
1464      * The fixed-arity method handle may (or may not) be the
1465      * a previous argument to {@code asVarargsCollector}.
1466      * <p>
1467      * Here is an example, of a list-making variable arity method handle:
1468      * <blockquote><pre>{@code
1469 MethodHandle asListVar = publicLookup()
1470   .findStatic(Arrays.class, "asList", methodType(List.class, Object[].class))
1471   .asVarargsCollector(Object[].class);
1472 MethodHandle asListFix = asListVar.asFixedArity();
1473 assertEquals("[1]", asListVar.invoke(1).toString());
1474 Exception caught = null;
1475 try { asListFix.invoke((Object)1); }
1476 catch (Exception ex) { caught = ex; }
1477 assert(caught instanceof ClassCastException);
1478 assertEquals("[two, too]", asListVar.invoke("two", "too").toString());
1479 try { asListFix.invoke("two", "too"); }
1480 catch (Exception ex) { caught = ex; }
1481 assert(caught instanceof WrongMethodTypeException);
1482 Object[] argv = { "three", "thee", "tee" };
1483 assertEquals("[three, thee, tee]", asListVar.invoke(argv).toString());
1484 assertEquals("[three, thee, tee]", asListFix.invoke(argv).toString());
1485 assertEquals(1, ((List) asListVar.invoke((Object)argv)).size());
1486 assertEquals("[three, thee, tee]", asListFix.invoke((Object)argv).toString());
1487      * }</pre></blockquote>
1488      *
1489      * @return a new method handle which accepts only a fixed number of arguments
1490      * @see #asVarargsCollector
1491      * @see #isVarargsCollector
1492      * @see #withVarargs
1493      */
1494     public MethodHandle asFixedArity() {
1495         assert(!isVarargsCollector());
1496         return this;
1497     }
1498 
1499     /**
1500      * Binds a value {@code x} to the first argument of a method handle, without invoking it.
1501      * The new method handle adapts, as its <i>target</i>,
1502      * the current method handle by binding it to the given argument.
1503      * The type of the bound handle will be
1504      * the same as the type of the target, except that a single leading
1505      * reference parameter will be omitted.
1506      * <p>
1507      * When called, the bound handle inserts the given value {@code x}
1508      * as a new leading argument to the target.  The other arguments are
1509      * also passed unchanged.
1510      * What the target eventually returns is returned unchanged by the bound handle.
1511      * <p>
1512      * The reference {@code x} must be convertible to the first parameter
1513      * type of the target.
1514      * <p>
1515      * <em>Note:</em>  Because method handles are immutable, the target method handle
1516      * retains its original type and behavior.
1517      * <p>
1518      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
1519      * variable-arity method handle}, even if the original target method handle was.
1520      * @param x  the value to bind to the first argument of the target
1521      * @return a new method handle which prepends the given value to the incoming
1522      *         argument list, before calling the original method handle
1523      * @throws IllegalArgumentException if the target does not have a
1524      *         leading parameter type that is a reference type
1525      * @throws ClassCastException if {@code x} cannot be converted
1526      *         to the leading parameter type of the target
1527      * @see MethodHandles#insertArguments
1528      */
1529     public MethodHandle bindTo(Object x) {
1530         x = type.leadingReferenceParameter().cast(x);  // throw CCE if needed
1531         return bindArgumentL(0, x);
1532     }
1533 
1534     /**
1535      * Return a nominal descriptor for this instance, if one can be
1536      * constructed, or an empty {@link Optional} if one cannot be.
1537      *
1538      * @return An {@link Optional} containing the resulting nominal descriptor,
1539      * or an empty {@link Optional} if one cannot be constructed.
1540      * @since 12
1541      */
1542     @Override
1543     public Optional<MethodHandleDesc> describeConstable() {
1544         MethodHandleInfo info;
1545         ClassDesc owner;
1546         String name;
1547         MethodTypeDesc type;
1548         boolean isInterface;
1549         try {
1550             info = IMPL_LOOKUP.revealDirect(this);
1551             isInterface = info.getDeclaringClass().isInterface();
1552             owner = info.getDeclaringClass().describeConstable().orElseThrow();
1553             type = info.getMethodType().describeConstable().orElseThrow();
1554             name = info.getName();
1555         }
1556         catch (Exception e) {
1557             return Optional.empty();
1558         }
1559 
1560         switch (info.getReferenceKind()) {
1561             case REF_getField:
1562                 return Optional.of(MethodHandleDesc.ofField(DirectMethodHandleDesc.Kind.GETTER, owner, name, type.returnType()));
1563             case REF_putField:
1564                 return Optional.of(MethodHandleDesc.ofField(DirectMethodHandleDesc.Kind.SETTER, owner, name, type.parameterType(0)));
1565             case REF_getStatic:
1566                 return Optional.of(MethodHandleDesc.ofField(DirectMethodHandleDesc.Kind.STATIC_GETTER, owner, name, type.returnType()));
1567             case REF_putStatic:
1568                 return Optional.of(MethodHandleDesc.ofField(DirectMethodHandleDesc.Kind.STATIC_SETTER, owner, name, type.parameterType(0)));
1569             case REF_invokeVirtual:
1570                 return Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.VIRTUAL, owner, name, type));
1571             case REF_invokeStatic:
1572                 return isInterface ?
1573                         Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.INTERFACE_STATIC, owner, name, type)) :
1574                         Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.STATIC, owner, name, type));
1575             case REF_invokeSpecial:
1576                 return isInterface ?
1577                         Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.INTERFACE_SPECIAL, owner, name, type)) :
1578                         Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.SPECIAL, owner, name, type));
1579             case REF_invokeInterface:
1580                 return Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.INTERFACE_VIRTUAL, owner, name, type));
1581             case REF_newInvokeSpecial:
1582                 return Optional.of(MethodHandleDesc.ofMethod(DirectMethodHandleDesc.Kind.CONSTRUCTOR, owner, name, type));
1583             default:
1584                 return Optional.empty();
1585         }
1586     }
1587 
1588     /**
1589      * Returns a string representation of the method handle,
1590      * starting with the string {@code "MethodHandle"} and
1591      * ending with the string representation of the method handle's type.
1592      * In other words, this method returns a string equal to the value of:
1593      * <blockquote><pre>{@code
1594      * "MethodHandle" + type().toString()
1595      * }</pre></blockquote>
1596      * <p>
1597      * (<em>Note:</em>  Future releases of this API may add further information
1598      * to the string representation.
1599      * Therefore, the present syntax should not be parsed by applications.)
1600      *
1601      * @return a string representation of the method handle
1602      */
1603     @Override
1604     public String toString() {
1605         if (DEBUG_METHOD_HANDLE_NAMES)  return "MethodHandle"+debugString();
1606         return standardString();
1607     }
1608     String standardString() {
1609         return "MethodHandle"+type;
1610     }
1611     /** Return a string with a several lines describing the method handle structure.
1612      *  This string would be suitable for display in an IDE debugger.
1613      */
1614     String debugString() {
1615         return type+" : "+internalForm()+internalProperties();
1616     }
1617 
1618     //// Implementation methods.
1619     //// Sub-classes can override these default implementations.
1620     //// All these methods assume arguments are already validated.
1621 
1622     // Other transforms to do:  convert, explicitCast, permute, drop, filter, fold, GWT, catch
1623 
1624     BoundMethodHandle bindArgumentL(int pos, Object value) {
1625         return rebind().bindArgumentL(pos, value);
1626     }
1627 
1628     /*non-public*/
1629     MethodHandle setVarargs(MemberName member) throws IllegalAccessException {
1630         if (!member.isVarargs())  return this;
1631         try {
1632             return this.withVarargs(true);
1633         } catch (IllegalArgumentException ex) {
1634             throw member.makeAccessException("cannot make variable arity", null);
1635         }
1636     }
1637 
1638     /*non-public*/
1639     MethodHandle viewAsType(MethodType newType, boolean strict) {
1640         // No actual conversions, just a new view of the same method.
1641         // Note that this operation must not produce a DirectMethodHandle,
1642         // because retyped DMHs, like any transformed MHs,
1643         // cannot be cracked into MethodHandleInfo.
1644         assert viewAsTypeChecks(newType, strict);
1645         BoundMethodHandle mh = rebind();
1646         return mh.copyWith(newType, mh.form);
1647     }
1648 
1649     /*non-public*/
1650     boolean viewAsTypeChecks(MethodType newType, boolean strict) {
1651         if (strict) {
1652             assert(type().isViewableAs(newType, true))
1653                 : Arrays.asList(this, newType);
1654         } else {
1655             assert(type().basicType().isViewableAs(newType.basicType(), true))
1656                 : Arrays.asList(this, newType);
1657         }
1658         return true;
1659     }
1660 
1661     // Decoding
1662 
1663     /*non-public*/
1664     LambdaForm internalForm() {
1665         return form;
1666     }
1667 
1668     /*non-public*/
1669     MemberName internalMemberName() {
1670         return null;  // DMH returns DMH.member
1671     }
1672 
1673     /*non-public*/
1674     Class<?> internalCallerClass() {
1675         return null;  // caller-bound MH for @CallerSensitive method returns caller
1676     }
1677 
1678     /*non-public*/
1679     MethodHandleImpl.Intrinsic intrinsicName() {
1680         // no special intrinsic meaning to most MHs
1681         return MethodHandleImpl.Intrinsic.NONE;
1682     }
1683 
1684     /*non-public*/
1685     MethodHandle withInternalMemberName(MemberName member, boolean isInvokeSpecial) {
1686         if (member != null) {
1687             return MethodHandleImpl.makeWrappedMember(this, member, isInvokeSpecial);
1688         } else if (internalMemberName() == null) {
1689             // The required internaMemberName is null, and this MH (like most) doesn't have one.
1690             return this;
1691         } else {
1692             // The following case is rare. Mask the internalMemberName by wrapping the MH in a BMH.
1693             MethodHandle result = rebind();
1694             assert (result.internalMemberName() == null);
1695             return result;
1696         }
1697     }
1698 
1699     /*non-public*/
1700     boolean isInvokeSpecial() {
1701         return false;  // DMH.Special returns true
1702     }
1703 
1704     /*non-public*/
1705     Object internalValues() {
1706         return null;
1707     }
1708 
1709     /*non-public*/
1710     Object internalProperties() {
1711         // Override to something to follow this.form, like "\n& FOO=bar"
1712         return "";
1713     }
1714 
1715     //// Method handle implementation methods.
1716     //// Sub-classes can override these default implementations.
1717     //// All these methods assume arguments are already validated.
1718 
1719     /*non-public*/
1720     abstract MethodHandle copyWith(MethodType mt, LambdaForm lf);
1721 
1722     /** Require this method handle to be a BMH, or else replace it with a "wrapper" BMH.
1723      *  Many transforms are implemented only for BMHs.
1724      *  @return a behaviorally equivalent BMH
1725      */
1726     abstract BoundMethodHandle rebind();
1727 
1728     /**
1729      * Replace the old lambda form of this method handle with a new one.
1730      * The new one must be functionally equivalent to the old one.
1731      * Threads may continue running the old form indefinitely,
1732      * but it is likely that the new one will be preferred for new executions.
1733      * Use with discretion.
1734      */
1735     /*non-public*/
1736     void updateForm(LambdaForm newForm) {
1737         assert(newForm.customized == null || newForm.customized == this);
1738         if (form == newForm)  return;
1739         newForm.prepare();  // as in MethodHandle.<init>
1740         UNSAFE.putReference(this, FORM_OFFSET, newForm);
1741         UNSAFE.fullFence();
1742     }
1743 
1744     /** Craft a LambdaForm customized for this particular MethodHandle */
1745     /*non-public*/
1746     void customize() {
1747         final LambdaForm form = this.form;
1748         if (form.customized == null) {
1749             LambdaForm newForm = form.customize(this);
1750             updateForm(newForm);
1751         } else {
1752             assert(form.customized == this);
1753         }
1754     }
1755 
1756     private static final long FORM_OFFSET
1757             = UNSAFE.objectFieldOffset(MethodHandle.class, "form");
1758 }