1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import jdk.internal.access.SharedSecrets;
  29 import jdk.internal.module.IllegalAccessLogger;
  30 import jdk.internal.org.objectweb.asm.ClassReader;
  31 import jdk.internal.reflect.CallerSensitive;
  32 import jdk.internal.reflect.Reflection;
  33 import jdk.internal.vm.annotation.ForceInline;
  34 import sun.invoke.util.ValueConversions;
  35 import sun.invoke.util.VerifyAccess;
  36 import sun.invoke.util.Wrapper;
  37 import sun.reflect.misc.ReflectUtil;
  38 import sun.security.util.SecurityConstants;
  39 
  40 import java.lang.invoke.LambdaForm.BasicType;
  41 import java.lang.reflect.Constructor;
  42 import java.lang.reflect.Field;
  43 import java.lang.reflect.Member;
  44 import java.lang.reflect.Method;
  45 import java.lang.reflect.Modifier;
  46 import java.lang.reflect.ReflectPermission;
  47 import java.nio.ByteOrder;
  48 import java.security.AccessController;
  49 import java.security.PrivilegedAction;
  50 import java.security.ProtectionDomain;
  51 import java.util.ArrayList;
  52 import java.util.Arrays;
  53 import java.util.BitSet;
  54 import java.util.Iterator;
  55 import java.util.List;
  56 import java.util.Objects;
  57 import java.util.Set;
  58 import java.util.concurrent.ConcurrentHashMap;
  59 import java.util.stream.Collectors;
  60 import java.util.stream.Stream;
  61 
  62 import static java.lang.invoke.MethodHandleImpl.Intrinsic;
  63 import static java.lang.invoke.MethodHandleNatives.Constants.*;
  64 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  65 import static java.lang.invoke.MethodType.methodType;
  66 
  67 /**
  68  * This class consists exclusively of static methods that operate on or return
  69  * method handles. They fall into several categories:
  70  * <ul>
  71  * <li>Lookup methods which help create method handles for methods and fields.
  72  * <li>Combinator methods, which combine or transform pre-existing method handles into new ones.
  73  * <li>Other factory methods to create method handles that emulate other common JVM operations or control flow patterns.
  74  * </ul>
  75  * A lookup, combinator, or factory method will fail and throw an
  76  * {@code IllegalArgumentException} if the created method handle's type
  77  * would have <a href="MethodHandle.html#maxarity">too many parameters</a>.
  78  *
  79  * @author John Rose, JSR 292 EG
  80  * @since 1.7
  81  */
  82 public class MethodHandles {
  83 
  84     private MethodHandles() { }  // do not instantiate
  85 
  86     static final MemberName.Factory IMPL_NAMES = MemberName.getFactory();
  87 
  88     // See IMPL_LOOKUP below.
  89 
  90     //// Method handle creation from ordinary methods.
  91 
  92     /**
  93      * Returns a {@link Lookup lookup object} with
  94      * full capabilities to emulate all supported bytecode behaviors of the caller.
  95      * These capabilities include {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} to the caller.
  96      * Factory methods on the lookup object can create
  97      * <a href="MethodHandleInfo.html#directmh">direct method handles</a>
  98      * for any member that the caller has access to via bytecodes,
  99      * including protected and private fields and methods.
 100      * This lookup object is a <em>capability</em> which may be delegated to trusted agents.
 101      * Do not store it in place where untrusted code can access it.
 102      * <p>
 103      * This method is caller sensitive, which means that it may return different
 104      * values to different callers.
 105      * @return a lookup object for the caller of this method, with
 106      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access}
 107      */
 108     @CallerSensitive
 109     @ForceInline // to ensure Reflection.getCallerClass optimization
 110     public static Lookup lookup() {
 111         return new Lookup(Reflection.getCallerClass());
 112     }
 113 
 114     /**
 115      * This reflected$lookup method is the alternate implementation of
 116      * the lookup method when being invoked by reflection.
 117      */
 118     @CallerSensitive
 119     private static Lookup reflected$lookup() {
 120         Class<?> caller = Reflection.getCallerClass();
 121         if (caller.getClassLoader() == null) {
 122             throw newIllegalArgumentException("illegal lookupClass: "+caller);
 123         }
 124         return new Lookup(caller);
 125     }
 126 
 127     /**
 128      * Returns a {@link Lookup lookup object} which is trusted minimally.
 129      * The lookup has the {@code UNCONDITIONAL} mode.
 130      * It can only be used to create method handles to public members of
 131      * public classes in packages that are exported unconditionally.
 132      * <p>
 133      * As a matter of pure convention, the {@linkplain Lookup#lookupClass() lookup class}
 134      * of this lookup object will be {@link java.lang.Object}.
 135      *
 136      * @apiNote The use of Object is conventional, and because the lookup modes are
 137      * limited, there is no special access provided to the internals of Object, its package
 138      * or its module.  This public lookup object or other lookup object with
 139      * {@code UNCONDITIONAL} mode assumes readability. Consequently, the lookup class
 140      * is not used to determine the lookup context.
 141      *
 142      * <p style="font-size:smaller;">
 143      * <em>Discussion:</em>
 144      * The lookup class can be changed to any other class {@code C} using an expression of the form
 145      * {@link Lookup#in publicLookup().in(C.class)}.
 146      * A public lookup object is always subject to
 147      * <a href="MethodHandles.Lookup.html#secmgr">security manager checks</a>.
 148      * Also, it cannot access
 149      * <a href="MethodHandles.Lookup.html#callsens">caller sensitive methods</a>.
 150      * @return a lookup object which is trusted minimally
 151      *
 152      * @revised 9
 153      * @spec JPMS
 154      */
 155     public static Lookup publicLookup() {
 156         return Lookup.PUBLIC_LOOKUP;
 157     }
 158 
 159     /**
 160      * Returns a {@link Lookup lookup} object on a target class to emulate all supported
 161      * bytecode behaviors, including <a href="MethodHandles.Lookup.html#privacc">private access</a>.
 162      * The returned lookup object can provide access to classes in modules and packages,
 163      * and members of those classes, outside the normal rules of Java access control,
 164      * instead conforming to the more permissive rules for modular <em>deep reflection</em>.
 165      * <p>
 166      * A caller, specified as a {@code Lookup} object, in module {@code M1} is
 167      * allowed to do deep reflection on module {@code M2} and package of the target class
 168      * if and only if all of the following conditions are {@code true}:
 169      * <ul>
 170      * <li>If there is a security manager, its {@code checkPermission} method is
 171      * called to check {@code ReflectPermission("suppressAccessChecks")} and
 172      * that must return normally.
 173      * <li>The caller lookup object must have {@linkplain Lookup#hasFullPrivilegeAccess()
 174      * full privilege access}.  Specifically:
 175      *   <ul>
 176      *     <li>The caller lookup object must have the {@link Lookup#MODULE MODULE} lookup mode.
 177      *         (This is because otherwise there would be no way to ensure the original lookup
 178      *         creator was a member of any particular module, and so any subsequent checks
 179      *         for readability and qualified exports would become ineffective.)
 180      *     <li>The caller lookup object must have {@link Lookup#PRIVATE PRIVATE} access.
 181      *         (This is because an application intending to share intra-module access
 182      *         using {@link Lookup#MODULE MODULE} alone will inadvertently also share
 183      *         deep reflection to its own module.)
 184      *   </ul>
 185      * <li>The target class must be a proper class, not a primitive or array class.
 186      * (Thus, {@code M2} is well-defined.)
 187      * <li>If the caller module {@code M1} differs from
 188      * the target module {@code M2} then both of the following must be true:
 189      *   <ul>
 190      *     <li>{@code M1} {@link Module#canRead reads} {@code M2}.</li>
 191      *     <li>{@code M2} {@link Module#isOpen(String,Module) opens} the package
 192      *         containing the target class to at least {@code M1}.</li>
 193      *   </ul>
 194      * </ul>
 195      * <p>
 196      * If any of the above checks is violated, this method fails with an
 197      * exception.
 198      * <p>
 199      * Otherwise, if {@code M1} and {@code M2} are the same module, this method
 200      * returns a {@code Lookup} on {@code targetClass} with
 201      * {@linkplain Lookup#hasFullPrivilegeAccess() full privilege access} and
 202      * {@code null} previous lookup class.
 203      * <p>
 204      * Otherwise, {@code M1} and {@code M2} are two different modules.  This method
 205      * returns a {@code Lookup} on {@code targetClass} that records
 206      * the lookup class of the caller as the new previous lookup class and
 207      * drops {@code MODULE} access from the full privilege access.
 208      *
 209      * @param targetClass the target class
 210      * @param caller the caller lookup object
 211      * @return a lookup object for the target class, with private access
 212      * @throws IllegalArgumentException if {@code targetClass} is a primitive type or void or array class
 213      * @throws NullPointerException if {@code targetClass} or {@code caller} is {@code null}
 214      * @throws SecurityException if denied by the security manager
 215      * @throws IllegalAccessException if any of the other access checks specified above fails
 216      * @since 9
 217      * @spec JPMS
 218      * @see Lookup#dropLookupMode
 219      * @see <a href="MethodHandles.Lookup.html#cross-module-lookup">Cross-module lookups</a>
 220      */
 221     public static Lookup privateLookupIn(Class<?> targetClass, Lookup caller) throws IllegalAccessException {
 222         SecurityManager sm = System.getSecurityManager();
 223         if (sm != null) sm.checkPermission(ACCESS_PERMISSION);
 224         if (targetClass.isPrimitive())
 225             throw new IllegalArgumentException(targetClass + " is a primitive class");
 226         if (targetClass.isArray())
 227             throw new IllegalArgumentException(targetClass + " is an array class");
 228         // Ensure that we can reason accurately about private and module access.
 229         if (!caller.hasFullPrivilegeAccess())
 230             throw new IllegalAccessException("caller does not have PRIVATE and MODULE lookup mode");
 231 
 232         // previous lookup class is never set if it has MODULE access
 233         assert caller.previousLookupClass() == null;
 234 
 235         Class<?> callerClass = caller.lookupClass();
 236         Module callerModule = callerClass.getModule();  // M1
 237         Module targetModule = targetClass.getModule();  // M2
 238         Class<?> newPreviousClass = null;
 239         int newModes = Lookup.FULL_POWER_MODES;
 240 
 241         if (targetModule != callerModule) {
 242             if (!callerModule.canRead(targetModule))
 243                 throw new IllegalAccessException(callerModule + " does not read " + targetModule);
 244             if (targetModule.isNamed()) {
 245                 String pn = targetClass.getPackageName();
 246                 assert !pn.isEmpty() : "unnamed package cannot be in named module";
 247                 if (!targetModule.isOpen(pn, callerModule))
 248                     throw new IllegalAccessException(targetModule + " does not open " + pn + " to " + callerModule);
 249             }
 250 
 251             // M2 != M1, set previous lookup class to M1 and drop MODULE access
 252             newPreviousClass = callerClass;
 253             newModes &= ~Lookup.MODULE;
 254         }
 255 
 256         if (!callerModule.isNamed() && targetModule.isNamed()) {
 257             IllegalAccessLogger logger = IllegalAccessLogger.illegalAccessLogger();
 258             if (logger != null) {
 259                 logger.logIfOpenedForIllegalAccess(caller, targetClass);
 260             }
 261         }
 262         return Lookup.newLookup(targetClass, newPreviousClass, newModes);
 263     }
 264 
 265     /**
 266      * Performs an unchecked "crack" of a
 267      * <a href="MethodHandleInfo.html#directmh">direct method handle</a>.
 268      * The result is as if the user had obtained a lookup object capable enough
 269      * to crack the target method handle, called
 270      * {@link java.lang.invoke.MethodHandles.Lookup#revealDirect Lookup.revealDirect}
 271      * on the target to obtain its symbolic reference, and then called
 272      * {@link java.lang.invoke.MethodHandleInfo#reflectAs MethodHandleInfo.reflectAs}
 273      * to resolve the symbolic reference to a member.
 274      * <p>
 275      * If there is a security manager, its {@code checkPermission} method
 276      * is called with a {@code ReflectPermission("suppressAccessChecks")} permission.
 277      * @param <T> the desired type of the result, either {@link Member} or a subtype
 278      * @param target a direct method handle to crack into symbolic reference components
 279      * @param expected a class object representing the desired result type {@code T}
 280      * @return a reference to the method, constructor, or field object
 281      * @throws    SecurityException if the caller is not privileged to call {@code setAccessible}
 282      * @throws    NullPointerException if either argument is {@code null}
 283      * @throws    IllegalArgumentException if the target is not a direct method handle
 284      * @throws    ClassCastException if the member is not of the expected type
 285      * @since 1.8
 286      */
 287     public static <T extends Member> T reflectAs(Class<T> expected, MethodHandle target) {
 288         SecurityManager smgr = System.getSecurityManager();
 289         if (smgr != null)  smgr.checkPermission(ACCESS_PERMISSION);
 290         Lookup lookup = Lookup.IMPL_LOOKUP;  // use maximally privileged lookup
 291         return lookup.revealDirect(target).reflectAs(expected, lookup);
 292     }
 293     // Copied from AccessibleObject, as used by Method.setAccessible, etc.:
 294     private static final java.security.Permission ACCESS_PERMISSION =
 295         new ReflectPermission("suppressAccessChecks");
 296 
 297     /**
 298      * A <em>lookup object</em> is a factory for creating method handles,
 299      * when the creation requires access checking.
 300      * Method handles do not perform
 301      * access checks when they are called, but rather when they are created.
 302      * Therefore, method handle access
 303      * restrictions must be enforced when a method handle is created.
 304      * The caller class against which those restrictions are enforced
 305      * is known as the {@linkplain #lookupClass() lookup class}.
 306      * <p>
 307      * A lookup class which needs to create method handles will call
 308      * {@link MethodHandles#lookup() MethodHandles.lookup} to create a factory for itself.
 309      * When the {@code Lookup} factory object is created, the identity of the lookup class is
 310      * determined, and securely stored in the {@code Lookup} object.
 311      * The lookup class (or its delegates) may then use factory methods
 312      * on the {@code Lookup} object to create method handles for access-checked members.
 313      * This includes all methods, constructors, and fields which are allowed to the lookup class,
 314      * even private ones.
 315      *
 316      * <h2><a id="lookups"></a>Lookup Factory Methods</h2>
 317      * The factory methods on a {@code Lookup} object correspond to all major
 318      * use cases for methods, constructors, and fields.
 319      * Each method handle created by a factory method is the functional
 320      * equivalent of a particular <em>bytecode behavior</em>.
 321      * (Bytecode behaviors are described in section {@jvms 5.4.3.5} of the Java Virtual Machine Specification.)
 322      * Here is a summary of the correspondence between these factory methods and
 323      * the behavior of the resulting method handles:
 324      * <table class="striped">
 325      * <caption style="display:none">lookup method behaviors</caption>
 326      * <thead>
 327      * <tr>
 328      *     <th scope="col"><a id="equiv"></a>lookup expression</th>
 329      *     <th scope="col">member</th>
 330      *     <th scope="col">bytecode behavior</th>
 331      * </tr>
 332      * </thead>
 333      * <tbody>
 334      * <tr>
 335      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findGetter lookup.findGetter(C.class,"f",FT.class)}</th>
 336      *     <td>{@code FT f;}</td><td>{@code (T) this.f;}</td>
 337      * </tr>
 338      * <tr>
 339      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticGetter lookup.findStaticGetter(C.class,"f",FT.class)}</th>
 340      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code (FT) C.f;}</td>
 341      * </tr>
 342      * <tr>
 343      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSetter lookup.findSetter(C.class,"f",FT.class)}</th>
 344      *     <td>{@code FT f;}</td><td>{@code this.f = x;}</td>
 345      * </tr>
 346      * <tr>
 347      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStaticSetter lookup.findStaticSetter(C.class,"f",FT.class)}</th>
 348      *     <td>{@code static}<br>{@code FT f;}</td><td>{@code C.f = arg;}</td>
 349      * </tr>
 350      * <tr>
 351      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findVirtual lookup.findVirtual(C.class,"m",MT)}</th>
 352      *     <td>{@code T m(A*);}</td><td>{@code (T) this.m(arg*);}</td>
 353      * </tr>
 354      * <tr>
 355      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findStatic lookup.findStatic(C.class,"m",MT)}</th>
 356      *     <td>{@code static}<br>{@code T m(A*);}</td><td>{@code (T) C.m(arg*);}</td>
 357      * </tr>
 358      * <tr>
 359      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findSpecial lookup.findSpecial(C.class,"m",MT,this.class)}</th>
 360      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 361      * </tr>
 362      * <tr>
 363      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findConstructor lookup.findConstructor(C.class,MT)}</th>
 364      *     <td>{@code C(A*);}</td><td>{@code new C(arg*);}</td>
 365      * </tr>
 366      * <tr>
 367      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectGetter lookup.unreflectGetter(aField)}</th>
 368      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code (FT) aField.get(thisOrNull);}</td>
 369      * </tr>
 370      * <tr>
 371      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSetter lookup.unreflectSetter(aField)}</th>
 372      *     <td>({@code static})?<br>{@code FT f;}</td><td>{@code aField.set(thisOrNull, arg);}</td>
 373      * </tr>
 374      * <tr>
 375      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflect lookup.unreflect(aMethod)}</th>
 376      *     <td>({@code static})?<br>{@code T m(A*);}</td><td>{@code (T) aMethod.invoke(thisOrNull, arg*);}</td>
 377      * </tr>
 378      * <tr>
 379      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectConstructor lookup.unreflectConstructor(aConstructor)}</th>
 380      *     <td>{@code C(A*);}</td><td>{@code (C) aConstructor.newInstance(arg*);}</td>
 381      * </tr>
 382      * <tr>
 383      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#unreflectSpecial lookup.unreflectSpecial(aMethod,this.class)}</th>
 384      *     <td>{@code T m(A*);}</td><td>{@code (T) super.m(arg*);}</td>
 385      * </tr>
 386      * <tr>
 387      *     <th scope="row">{@link java.lang.invoke.MethodHandles.Lookup#findClass lookup.findClass("C")}</th>
 388      *     <td>{@code class C { ... }}</td><td>{@code C.class;}</td>
 389      * </tr>
 390      * </tbody>
 391      * </table>
 392      *
 393      * Here, the type {@code C} is the class or interface being searched for a member,
 394      * documented as a parameter named {@code refc} in the lookup methods.
 395      * The method type {@code MT} is composed from the return type {@code T}
 396      * and the sequence of argument types {@code A*}.
 397      * The constructor also has a sequence of argument types {@code A*} and
 398      * is deemed to return the newly-created object of type {@code C}.
 399      * Both {@code MT} and the field type {@code FT} are documented as a parameter named {@code type}.
 400      * The formal parameter {@code this} stands for the self-reference of type {@code C};
 401      * if it is present, it is always the leading argument to the method handle invocation.
 402      * (In the case of some {@code protected} members, {@code this} may be
 403      * restricted in type to the lookup class; see below.)
 404      * The name {@code arg} stands for all the other method handle arguments.
 405      * In the code examples for the Core Reflection API, the name {@code thisOrNull}
 406      * stands for a null reference if the accessed method or field is static,
 407      * and {@code this} otherwise.
 408      * The names {@code aMethod}, {@code aField}, and {@code aConstructor} stand
 409      * for reflective objects corresponding to the given members declared in type {@code C}.
 410      * <p>
 411      * The bytecode behavior for a {@code findClass} operation is a load of a constant class,
 412      * as if by {@code ldc CONSTANT_Class}.
 413      * The behavior is represented, not as a method handle, but directly as a {@code Class} constant.
 414      * <p>
 415      * In cases where the given member is of variable arity (i.e., a method or constructor)
 416      * the returned method handle will also be of {@linkplain MethodHandle#asVarargsCollector variable arity}.
 417      * In all other cases, the returned method handle will be of fixed arity.
 418      * <p style="font-size:smaller;">
 419      * <em>Discussion:</em>
 420      * The equivalence between looked-up method handles and underlying
 421      * class members and bytecode behaviors
 422      * can break down in a few ways:
 423      * <ul style="font-size:smaller;">
 424      * <li>If {@code C} is not symbolically accessible from the lookup class's loader,
 425      * the lookup can still succeed, even when there is no equivalent
 426      * Java expression or bytecoded constant.
 427      * <li>Likewise, if {@code T} or {@code MT}
 428      * is not symbolically accessible from the lookup class's loader,
 429      * the lookup can still succeed.
 430      * For example, lookups for {@code MethodHandle.invokeExact} and
 431      * {@code MethodHandle.invoke} will always succeed, regardless of requested type.
 432      * <li>If there is a security manager installed, it can forbid the lookup
 433      * on various grounds (<a href="MethodHandles.Lookup.html#secmgr">see below</a>).
 434      * By contrast, the {@code ldc} instruction on a {@code CONSTANT_MethodHandle}
 435      * constant is not subject to security manager checks.
 436      * <li>If the looked-up method has a
 437      * <a href="MethodHandle.html#maxarity">very large arity</a>,
 438      * the method handle creation may fail with an
 439      * {@code IllegalArgumentException}, due to the method handle type having
 440      * <a href="MethodHandle.html#maxarity">too many parameters.</a>
 441      * </ul>
 442      *
 443      * <h2><a id="access"></a>Access checking</h2>
 444      * Access checks are applied in the factory methods of {@code Lookup},
 445      * when a method handle is created.
 446      * This is a key difference from the Core Reflection API, since
 447      * {@link java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
 448      * performs access checking against every caller, on every call.
 449      * <p>
 450      * All access checks start from a {@code Lookup} object, which
 451      * compares its recorded lookup class against all requests to
 452      * create method handles.
 453      * A single {@code Lookup} object can be used to create any number
 454      * of access-checked method handles, all checked against a single
 455      * lookup class.
 456      * <p>
 457      * A {@code Lookup} object can be shared with other trusted code,
 458      * such as a metaobject protocol.
 459      * A shared {@code Lookup} object delegates the capability
 460      * to create method handles on private members of the lookup class.
 461      * Even if privileged code uses the {@code Lookup} object,
 462      * the access checking is confined to the privileges of the
 463      * original lookup class.
 464      * <p>
 465      * A lookup can fail, because
 466      * the containing class is not accessible to the lookup class, or
 467      * because the desired class member is missing, or because the
 468      * desired class member is not accessible to the lookup class, or
 469      * because the lookup object is not trusted enough to access the member.
 470      * In the case of a field setter function on a {@code final} field,
 471      * finality enforcement is treated as a kind of access control,
 472      * and the lookup will fail, except in special cases of
 473      * {@link Lookup#unreflectSetter Lookup.unreflectSetter}.
 474      * In any of these cases, a {@code ReflectiveOperationException} will be
 475      * thrown from the attempted lookup.  The exact class will be one of
 476      * the following:
 477      * <ul>
 478      * <li>NoSuchMethodException &mdash; if a method is requested but does not exist
 479      * <li>NoSuchFieldException &mdash; if a field is requested but does not exist
 480      * <li>IllegalAccessException &mdash; if the member exists but an access check fails
 481      * </ul>
 482      * <p>
 483      * In general, the conditions under which a method handle may be
 484      * looked up for a method {@code M} are no more restrictive than the conditions
 485      * under which the lookup class could have compiled, verified, and resolved a call to {@code M}.
 486      * Where the JVM would raise exceptions like {@code NoSuchMethodError},
 487      * a method handle lookup will generally raise a corresponding
 488      * checked exception, such as {@code NoSuchMethodException}.
 489      * And the effect of invoking the method handle resulting from the lookup
 490      * is <a href="MethodHandles.Lookup.html#equiv">exactly equivalent</a>
 491      * to executing the compiled, verified, and resolved call to {@code M}.
 492      * The same point is true of fields and constructors.
 493      * <p style="font-size:smaller;">
 494      * <em>Discussion:</em>
 495      * Access checks only apply to named and reflected methods,
 496      * constructors, and fields.
 497      * Other method handle creation methods, such as
 498      * {@link MethodHandle#asType MethodHandle.asType},
 499      * do not require any access checks, and are used
 500      * independently of any {@code Lookup} object.
 501      * <p>
 502      * If the desired member is {@code protected}, the usual JVM rules apply,
 503      * including the requirement that the lookup class must either be in the
 504      * same package as the desired member, or must inherit that member.
 505      * (See the Java Virtual Machine Specification, sections {@jvms 4.9.2}, {@jvms 5.4.3.5}, and {@jvms 6.4}.)
 506      * In addition, if the desired member is a non-static field or method
 507      * in a different package, the resulting method handle may only be applied
 508      * to objects of the lookup class or one of its subclasses.
 509      * This requirement is enforced by narrowing the type of the leading
 510      * {@code this} parameter from {@code C}
 511      * (which will necessarily be a superclass of the lookup class)
 512      * to the lookup class itself.
 513      * <p>
 514      * The JVM imposes a similar requirement on {@code invokespecial} instruction,
 515      * that the receiver argument must match both the resolved method <em>and</em>
 516      * the current class.  Again, this requirement is enforced by narrowing the
 517      * type of the leading parameter to the resulting method handle.
 518      * (See the Java Virtual Machine Specification, section {@jmvs 4.10.1.9}.)
 519      * <p>
 520      * The JVM represents constructors and static initializer blocks as internal methods
 521      * with special names ({@code "<init>"} and {@code "<clinit>"}).
 522      * The internal syntax of invocation instructions allows them to refer to such internal
 523      * methods as if they were normal methods, but the JVM bytecode verifier rejects them.
 524      * A lookup of such an internal method will produce a {@code NoSuchMethodException}.
 525      * <p>
 526      * If the relationship between nested types is expressed directly through the
 527      * {@code NestHost} and {@code NestMembers} attributes
 528      * (see the Java Virtual Machine Specification, sections {@jvms 4.7.28} and {@jvms 4.7.29}),
 529      * then the associated {@code Lookup} object provides direct access to
 530      * the lookup class and all of its nestmates
 531      * (see {@link java.lang.Class#getNestHost Class.getNestHost}).
 532      * Otherwise, access between nested classes is obtained by the Java compiler creating
 533      * a wrapper method to access a private method of another class in the same nest.
 534      * For example, a nested class {@code C.D}
 535      * can access private members within other related classes such as
 536      * {@code C}, {@code C.D.E}, or {@code C.B},
 537      * but the Java compiler may need to generate wrapper methods in
 538      * those related classes.  In such cases, a {@code Lookup} object on
 539      * {@code C.E} would be unable to access those private members.
 540      * A workaround for this limitation is the {@link Lookup#in Lookup.in} method,
 541      * which can transform a lookup on {@code C.E} into one on any of those other
 542      * classes, without special elevation of privilege.
 543      * <p>
 544      * The accesses permitted to a given lookup object may be limited,
 545      * according to its set of {@link #lookupModes lookupModes},
 546      * to a subset of members normally accessible to the lookup class.
 547      * For example, the {@link MethodHandles#publicLookup publicLookup}
 548      * method produces a lookup object which is only allowed to access
 549      * public members in public classes of exported packages.
 550      * The caller sensitive method {@link MethodHandles#lookup lookup}
 551      * produces a lookup object with full capabilities relative to
 552      * its caller class, to emulate all supported bytecode behaviors.
 553      * Also, the {@link Lookup#in Lookup.in} method may produce a lookup object
 554      * with fewer access modes than the original lookup object.
 555      *
 556      * <p style="font-size:smaller;">
 557      * <a id="privacc"></a>
 558      * <em>Discussion of private and module access:</em>
 559      * We say that a lookup has <em>private access</em>
 560      * if its {@linkplain #lookupModes lookup modes}
 561      * include the possibility of accessing {@code private} members
 562      * (which includes the private members of nestmates).
 563      * As documented in the relevant methods elsewhere,
 564      * only lookups with private access possess the following capabilities:
 565      * <ul style="font-size:smaller;">
 566      * <li>access private fields, methods, and constructors of the lookup class and its nestmates
 567      * <li>create method handles which {@link Lookup#findSpecial emulate invokespecial} instructions
 568      * <li>avoid <a href="MethodHandles.Lookup.html#secmgr">package access checks</a>
 569      *     for classes accessible to the lookup class
 570      * <li>create {@link Lookup#in delegated lookup objects} which have private access to other classes
 571      *     within the same package member
 572      * </ul>
 573      * <p style="font-size:smaller;">
 574      * Similarly, a lookup with module access ensures that the original lookup creator was
 575      * a member in the same module as the lookup class.
 576      * <p style="font-size:smaller;">
 577      * Private and module access are independently determined modes; a lookup may have
 578      * either or both or neither.  A lookup which possesses both access modes is said to
 579      * possess {@linkplain #hasFullPrivilegeAccess() full privilege access}.  Such a lookup has
 580      * the following additional capability:
 581      * <ul style="font-size:smaller;">
 582      * <li>create method handles which invoke <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a> methods,
 583      *     such as {@code Class.forName}
 584      * </ul>
 585      * <p style="font-size:smaller;">
 586      * Each of these permissions is a consequence of the fact that a lookup object
 587      * with private access can be securely traced back to an originating class,
 588      * whose <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> and Java language access permissions
 589      * can be reliably determined and emulated by method handles.
 590      *
 591      * <h2><a id="cross-module-lookup"></a>Cross-module lookups</h2>
 592      * When a lookup class in one module {@code M1} accesses a class in another module
 593      * {@code M2}, extra access checking is performed beyond the access mode bits.
 594      * A {@code Lookup} with {@link #PUBLIC} mode and a lookup class in {@code M1}
 595      * can access public types in {@code M2} when {@code M2} is readable to {@code M1}
 596      * and when the type is in a package of {@code M2} that is exported to
 597      * at least {@code M1}.
 598      * <p>
 599      * A {@code Lookup} on {@code C} can also <em>teleport</em> to a target class
 600      * via {@link #in(Class) Lookup.in} and {@link MethodHandles#privateLookupIn(Class, Lookup)
 601      * MethodHandles.privateLookupIn} methods.
 602      * Teleporting across modules will always record the original lookup class as
 603      * the <em>{@linkplain #previousLookupClass() previous lookup class}</em>
 604      * and drops {@link Lookup#MODULE MODULE} access.
 605      * If the target class is in the same module as the lookup class {@code C},
 606      * then the target class becomes the new lookup class
 607      * and there is no change to the previous lookup class.
 608      * If the target class is in a different module from {@code M1} ({@code C}'s module),
 609      * {@code C} becomes the new previous lookup class
 610      * and the target class becomes the new lookup class.
 611      * In that case, if there was already a previous lookup class in {@code M0},
 612      * and it differs from {@code M1} and {@code M2}, then the resulting lookup
 613      * drops all privileges.
 614      * For example,
 615      * <blockquote><pre>
 616      * {@code
 617      * Lookup lookup = MethodHandles.lookup();   // in class C
 618      * Lookup lookup2 = lookup.in(D.class);
 619      * MethodHandle mh = lookup2.findStatic(E.class, "m", MT);
 620      * }</pre></blockquote>
 621      * <p>
 622      * The {@link #lookup()} factory method produces a {@code Lookup} object
 623      * with {@code null} previous lookup class.
 624      * {@link Lookup#in lookup.in(D.class)} transforms the {@code lookup} on class {@code C}
 625      * to class {@code D} without elevation of privileges.
 626      * If {@code C} and {@code D} are in the same module,
 627      * {@code lookup2} records {@code D} as the new lookup class and keeps the
 628      * same previous lookup class as the original {@code lookup}, or
 629      * {@code null} if not present.
 630      * <p>
 631      * When a {@code Lookup} teleports from a class
 632      * in one nest to another nest, {@code PRIVATE} access is dropped.
 633      * When a {@code Lookup} teleports from a class in one package to
 634      * another package, {@code PACKAGE} access is dropped.
 635      * When a {@code Lookup} teleports from a class in one module to another module,
 636      * {@code MODULE} access is dropped.
 637      * Teleporting across modules drops the ability to access non-exported classes
 638      * in both the module of the new lookup class and the module of the old lookup class
 639      * and the resulting {@code Lookup} remains only {@code PUBLIC} access.
 640      * A {@code Lookup} can teleport back and forth to a class in the module of
 641      * the lookup class and the module of the previous class lookup.
 642      * Teleporting across modules can only decrease access but cannot increase it.
 643      * Teleporting to some third module drops all accesses.
 644      * <p>
 645      * In the above example, if {@code C} and {@code D} are in different modules,
 646      * {@code lookup2} records {@code D} as its lookup class and
 647      * {@code C} as its previous lookup class and {@code lookup2} has only
 648      * {@code PUBLIC} access. {@code lookup2} can teleport to other class in
 649      * {@code C}'s module and {@code D}'s module.
 650      * If class {@code E} is in a third module, {@code lookup2.in(E.class)} creates
 651      * a {@code Lookup} on {@code E} with no access and {@code lookup2}'s lookup
 652      * class {@code D} is recorded as its previous lookup class.
 653      * <p>
 654      * Teleporting across modules restricts access to the public types that
 655      * both the lookup class and the previous lookup class can equally access
 656      * (see below).
 657      * <p>
 658      * {@link MethodHandles#privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn(T.class, lookup)}
 659      * can be used to teleport a {@code lookup} from class {@code C} to class {@code T}
 660      * and create a new {@code Lookup} with <a href="#privacc">private access</a>
 661      * if the lookup class is allowed to do <em>deep reflection</em> on {@code T}.
 662      * The {@code lookup} must have {@link #MODULE} and {@link #PRIVATE} access
 663      * to call {@code privateLookupIn}.
 664      * A {@code lookup} on {@code C} in module {@code M1} is allowed to do deep reflection
 665      * on all classes in {@code M1}.  If {@code T} is in {@code M1}, {@code privateLookupIn}
 666      * produces a new {@code Lookup} on {@code T} with full capabilities.
 667      * A {@code lookup} on {@code C} is also allowed
 668      * to do deep reflection on {@code T} in another module {@code M2} if
 669      * {@code M1} reads {@code M2} and {@code M2} {@link Module#isOpen(String,Module) opens}
 670      * the package containing {@code T} to at least {@code M1}.
 671      * {@code T} becomes the new lookup class and {@code C} becomes the new previous
 672      * lookup class and {@code MODULE} access is dropped from the resulting {@code Lookup}.
 673      * The resulting {@code Lookup} can be used to do member lookup or teleport
 674      * to another lookup class by calling {@link #in Lookup::in}.  But
 675      * it cannot be used to obtain another private {@code Lookup} by calling
 676      * {@link MethodHandles#privateLookupIn(Class, Lookup) privateLookupIn}
 677      * because it has no {@code MODULE} access.
 678      *
 679      * <h2><a id="module-access-check"></a>Cross-module access checks</h2>
 680      *
 681      * A {@code Lookup} with {@link #PUBLIC} or with {@link #UNCONDITIONAL} mode
 682      * allows cross-module access. The access checking is performed with respect
 683      * to both the lookup class and the previous lookup class if present.
 684      * <p>
 685      * A {@code Lookup} with {@link #UNCONDITIONAL} mode can access public type
 686      * in all modules when the type is in a package that is {@linkplain Module#isExported(String)
 687      * exported unconditionally}.
 688      * <p>
 689      * If a {@code Lookup} on {@code LC} in {@code M1} has no previous lookup class,
 690      * the lookup with {@link #PUBLIC} mode can access all public types in modules
 691      * that are readable to {@code M1} and the type is in a package that is exported
 692      * at least to {@code M1}.
 693      * <p>
 694      * If a {@code Lookup} on {@code LC} in {@code M1} has a previous lookup class
 695      * {@code PLC} on {@code M0}, the lookup with {@link #PUBLIC} mode can access
 696      * the intersection of all public types that are accessible to {@code M1}
 697      * with all public types that are accessible to {@code M0}. {@code M0}
 698      * reads {@code M1} and hence the set of accessible types includes:
 699      *
 700      * <table class="striped">
 701      * <caption style="display:none">
 702      * Public types in the following packages are accessible to the
 703      * lookup class and the previous lookup class.
 704      * </caption>
 705      * <thead>
 706      * <tr>
 707      * <th scope="col">Equally accessible types to {@code M0} and {@code M1}</th>
 708      * </tr>
 709      * </thead>
 710      * <tbody>
 711      * <tr>
 712      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M1}</th>
 713      * </tr>
 714      * <tr>
 715      * <th scope="row" style="text-align:left">unconditional-exported packages from {@code M0} if {@code M1} reads {@code M0}</th>
 716      * </tr>
 717      * <tr>
 718      * <th scope="row" style="text-align:left">unconditional-exported packages from a third module {@code M2}
 719      * if both {@code M0} and {@code M1} read {@code M2}</th>
 720      * </tr>
 721      * <tr>
 722      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M1} to {@code M0}</th>
 723      * </tr>
 724      * <tr>
 725      * <th scope="row" style="text-align:left">qualified-exported packages from {@code M0} to {@code M1}
 726      * if {@code M1} reads {@code M0}</th>
 727      * </tr>
 728      * <tr>
 729      * <th scope="row" style="text-align:left">qualified-exported packages from a third module {@code M2} to
 730      * both {@code M0} and {@code M1} if both {@code M0} and {@code M1} read {@code M2}</th>
 731      * </tr>
 732      * </tbody>
 733      * </table>
 734      *
 735      * <h2><a id="access-modes"></a>Access modes</h2>
 736      *
 737      * The table below shows the access modes of a {@code Lookup} produced by
 738      * any of the following factory or transformation methods:
 739      * <ul>
 740      * <li>{@link #lookup() MethodHandles.lookup()}</li>
 741      * <li>{@link #publicLookup() MethodHandles.publicLookup()}</li>
 742      * <li>{@link #privateLookupIn(Class, Lookup) MethodHandles.privateLookupIn}</li>
 743      * <li>{@link Lookup#in}</li>
 744      * <li>{@link Lookup#dropLookupMode(int)}</li>
 745      * </ul>
 746      *
 747      * <table class="striped">
 748      * <caption style="display:none">
 749      * Access mode summary
 750      * </caption>
 751      * <thead>
 752      * <tr>
 753      * <th scope="col">Lookup object</th>
 754      * <th style="text-align:center">protected</th>
 755      * <th style="text-align:center">private</th>
 756      * <th style="text-align:center">package</th>
 757      * <th style="text-align:center">module</th>
 758      * <th style="text-align:center">public</th>
 759      * </tr>
 760      * </thead>
 761      * <tbody>
 762      * <tr>
 763      * <th scope="row" style="text-align:left">{@code CL = MethodHandles.lookup()} in {@code C}</th>
 764      * <td style="text-align:center">PRO</td>
 765      * <td style="text-align:center">PRI</td>
 766      * <td style="text-align:center">PAC</td>
 767      * <td style="text-align:center">MOD</td>
 768      * <td style="text-align:center">1R</td>
 769      * </tr>
 770      * <tr>
 771      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same package</th>
 772      * <td></td>
 773      * <td></td>
 774      * <td style="text-align:center">PAC</td>
 775      * <td style="text-align:center">MOD</td>
 776      * <td style="text-align:center">1R</td>
 777      * </tr>
 778      * <tr>
 779      * <th scope="row" style="text-align:left">{@code CL.in(C1)} same module</th>
 780      * <td></td>
 781      * <td></td>
 782      * <td></td>
 783      * <td style="text-align:center">MOD</td>
 784      * <td style="text-align:center">1R</td>
 785      * </tr>
 786      * <tr>
 787      * <th scope="row" style="text-align:left">{@code CL.in(D)} different module</th>
 788      * <td></td>
 789      * <td></td>
 790      * <td></td>
 791      * <td></td>
 792      * <td style="text-align:center">2R</td>
 793      * </tr>
 794      * <tr>
 795      * <td>{@code CL.in(D).in(C)} hop back to module</td>
 796      * <td></td>
 797      * <td></td>
 798      * <td></td>
 799      * <td></td>
 800      * <td style="text-align:center">2R</td>
 801      * </tr>
 802      * <tr>
 803      * <td>{@code PRI1 = privateLookupIn(C1,CL)}</td>
 804      * <td style="text-align:center">PRO</td>
 805      * <td style="text-align:center">PRI</td>
 806      * <td style="text-align:center">PAC</td>
 807      * <td style="text-align:center">MOD</td>
 808      * <td style="text-align:center">1R</td>
 809      * </tr>
 810      * <tr>
 811      * <td>{@code PRI1a = privateLookupIn(C,PRI1)}</td>
 812      * <td style="text-align:center">PRO</td>
 813      * <td style="text-align:center">PRI</td>
 814      * <td style="text-align:center">PAC</td>
 815      * <td style="text-align:center">MOD</td>
 816      * <td style="text-align:center">1R</td>
 817      * </tr>
 818      * <tr>
 819      * <td>{@code PRI1.in(C1)} same package</td>
 820      * <td></td>
 821      * <td></td>
 822      * <td style="text-align:center">PAC</td>
 823      * <td style="text-align:center">MOD</td>
 824      * <td style="text-align:center">1R</td>
 825      * </tr>
 826      * <tr>
 827      * <td>{@code PRI1.in(C1)} different package</td>
 828      * <td></td>
 829      * <td></td>
 830      * <td></td>
 831      * <td style="text-align:center">MOD</td>
 832      * <td style="text-align:center">1R</td>
 833      * </tr>
 834      * <tr>
 835      * <td>{@code PRI1.in(D)} different module</td>
 836      * <td></td>
 837      * <td></td>
 838      * <td></td>
 839      * <td></td>
 840      * <td style="text-align:center">2R</td>
 841      * </tr>
 842      * <tr>
 843      * <td>{@code PRI1.dropLookupMode(PROTECTED)}</td>
 844      * <td></td>
 845      * <td style="text-align:center">PRI</td>
 846      * <td style="text-align:center">PAC</td>
 847      * <td style="text-align:center">MOD</td>
 848      * <td style="text-align:center">1R</td>
 849      * </tr>
 850      * <tr>
 851      * <td>{@code PRI1.dropLookupMode(PRIVATE)}</td>
 852      * <td></td>
 853      * <td></td>
 854      * <td style="text-align:center">PAC</td>
 855      * <td style="text-align:center">MOD</td>
 856      * <td style="text-align:center">1R</td>
 857      * </tr>
 858      * <tr>
 859      * <td>{@code PRI1.dropLookupMode(PACKAGE)}</td>
 860      * <td></td>
 861      * <td></td>
 862      * <td></td>
 863      * <td style="text-align:center">MOD</td>
 864      * <td style="text-align:center">1R</td>
 865      * </tr>
 866      * <tr>
 867      * <td>{@code PRI1.dropLookupMode(MODULE)}</td>
 868      * <td></td>
 869      * <td></td>
 870      * <td></td>
 871      * <td></td>
 872      * <td style="text-align:center">1R</td>
 873      * </tr>
 874      * <tr>
 875      * <td>{@code PRI1.dropLookupMode(PUBLIC)}</td>
 876      * <td></td>
 877      * <td></td>
 878      * <td></td>
 879      * <td></td>
 880      * <td style="text-align:center">none</td>
 881      * <tr>
 882      * <td>{@code PRI2 = privateLookupIn(D,CL)}</td>
 883      * <td style="text-align:center">PRO</td>
 884      * <td style="text-align:center">PRI</td>
 885      * <td style="text-align:center">PAC</td>
 886      * <td></td>
 887      * <td style="text-align:center">2R</td>
 888      * </tr>
 889      * <tr>
 890      * <td>{@code privateLookupIn(D,PRI1)}</td>
 891      * <td style="text-align:center">PRO</td>
 892      * <td style="text-align:center">PRI</td>
 893      * <td style="text-align:center">PAC</td>
 894      * <td></td>
 895      * <td style="text-align:center">2R</td>
 896      * </tr>
 897      * <tr>
 898      * <td>{@code privateLookupIn(C,PRI2)} fails</td>
 899      * <td></td>
 900      * <td></td>
 901      * <td></td>
 902      * <td></td>
 903      * <td style="text-align:center">IAE</td>
 904      * </tr>
 905      * <tr>
 906      * <td>{@code PRI2.in(D2)} same package</td>
 907      * <td></td>
 908      * <td></td>
 909      * <td style="text-align:center">PAC</td>
 910      * <td></td>
 911      * <td style="text-align:center">2R</td>
 912      * </tr>
 913      * <tr>
 914      * <td>{@code PRI2.in(D2)} different package</td>
 915      * <td></td>
 916      * <td></td>
 917      * <td></td>
 918      * <td></td>
 919      * <td style="text-align:center">2R</td>
 920      * </tr>
 921      * <tr>
 922      * <td>{@code PRI2.in(C1)} hop back to module</td>
 923      * <td></td>
 924      * <td></td>
 925      * <td></td>
 926      * <td></td>
 927      * <td style="text-align:center">2R</td>
 928      * </tr>
 929      * <tr>
 930      * <td>{@code PRI2.in(E)} hop to third module</td>
 931      * <td></td>
 932      * <td></td>
 933      * <td></td>
 934      * <td></td>
 935      * <td style="text-align:center">none</td>
 936      * </tr>
 937      * <tr>
 938      * <td>{@code PRI2.dropLookupMode(PROTECTED)}</td>
 939      * <td></td>
 940      * <td style="text-align:center">PRI</td>
 941      * <td style="text-align:center">PAC</td>
 942      * <td></td>
 943      * <td style="text-align:center">2R</td>
 944      * </tr>
 945      * <tr>
 946      * <td>{@code PRI2.dropLookupMode(PRIVATE)}</td>
 947      * <td></td>
 948      * <td></td>
 949      * <td style="text-align:center">PAC</td>
 950      * <td></td>
 951      * <td style="text-align:center">2R</td>
 952      * </tr>
 953      * <tr>
 954      * <td>{@code PRI2.dropLookupMode(PACKAGE)}</td>
 955      * <td></td>
 956      * <td></td>
 957      * <td></td>
 958      * <td></td>
 959      * <td style="text-align:center">2R</td>
 960      * </tr>
 961      * <tr>
 962      * <td>{@code PRI2.dropLookupMode(MODULE)}</td>
 963      * <td></td>
 964      * <td></td>
 965      * <td></td>
 966      * <td></td>
 967      * <td style="text-align:center">2R</td>
 968      * </tr>
 969      * <tr>
 970      * <td>{@code PRI2.dropLookupMode(PUBLIC)}</td>
 971      * <td></td>
 972      * <td></td>
 973      * <td></td>
 974      * <td></td>
 975      * <td style="text-align:center">none</td>
 976      * </tr>
 977      * <tr>
 978      * <td>{@code CL.dropLookupMode(PROTECTED)}</td>
 979      * <td></td>
 980      * <td style="text-align:center">PRI</td>
 981      * <td style="text-align:center">PAC</td>
 982      * <td style="text-align:center">MOD</td>
 983      * <td style="text-align:center">1R</td>
 984      * </tr>
 985      * <tr>
 986      * <td>{@code CL.dropLookupMode(PRIVATE)}</td>
 987      * <td></td>
 988      * <td></td>
 989      * <td style="text-align:center">PAC</td>
 990      * <td style="text-align:center">MOD</td>
 991      * <td style="text-align:center">1R</td>
 992      * </tr>
 993      * <tr>
 994      * <td>{@code CL.dropLookupMode(PACKAGE)}</td>
 995      * <td></td>
 996      * <td></td>
 997      * <td></td>
 998      * <td style="text-align:center">MOD</td>
 999      * <td style="text-align:center">1R</td>
1000      * </tr>
1001      * <tr>
1002      * <td>{@code CL.dropLookupMode(MODULE)}</td>
1003      * <td></td>
1004      * <td></td>
1005      * <td></td>
1006      * <td></td>
1007      * <td style="text-align:center">1R</td>
1008      * </tr>
1009      * <tr>
1010      * <td>{@code CL.dropLookupMode(PUBLIC)}</td>
1011      * <td></td>
1012      * <td></td>
1013      * <td></td>
1014      * <td></td>
1015      * <td style="text-align:center">none</td>
1016      * </tr>
1017      * <tr>
1018      * <td>{@code PUB = publicLookup()}</td>
1019      * <td></td>
1020      * <td></td>
1021      * <td></td>
1022      * <td></td>
1023      * <td style="text-align:center">U</td>
1024      * </tr>
1025      * <tr>
1026      * <td>{@code PUB.in(D)} different module</td>
1027      * <td></td>
1028      * <td></td>
1029      * <td></td>
1030      * <td></td>
1031      * <td style="text-align:center">U</td>
1032      * </tr>
1033      * <tr>
1034      * <td>{@code PUB.in(D).in(E)} third module</td>
1035      * <td></td>
1036      * <td></td>
1037      * <td></td>
1038      * <td></td>
1039      * <td style="text-align:center">U</td>
1040      * </tr>
1041      * <tr>
1042      * <td>{@code PUB.dropLookupMode(UNCONDITIONAL)}</td>
1043      * <td></td>
1044      * <td></td>
1045      * <td></td>
1046      * <td></td>
1047      * <td style="text-align:center">none</td>
1048      * </tr>
1049      * <tr>
1050      * <td>{@code privateLookupIn(C1,PUB)} fails</td>
1051      * <td></td>
1052      * <td></td>
1053      * <td></td>
1054      * <td></td>
1055      * <td style="text-align:center">IAE</td>
1056      * </tr>
1057      * <tr>
1058      * <td>{@code ANY.in(X)}, for inaccessible {@code X}</td>
1059      * <td></td>
1060      * <td></td>
1061      * <td></td>
1062      * <td></td>
1063      * <td style="text-align:center">none</td>
1064      * </tr>
1065      * </tbody>
1066      * </table>
1067      *
1068      * <p>
1069      * Notes:
1070      * <ul>
1071      * <li>Class {@code C} and class {@code C1} are in module {@code M1},
1072      *     but {@code D} and {@code D2} are in module {@code M2}, and {@code E}
1073      *     is in module {@code M3}. {@code X} stands for class which is inaccessible
1074      *     to the lookup. {@code ANY} stands for any of the example lookups.</li>
1075      * <li>{@code PRO} indicates {@link #PROTECTED} bit set,
1076      *     {@code PRI} indicates {@link #PRIVATE} bit set,
1077      *     {@code PAC} indicates {@link #PACKAGE} bit set,
1078      *     {@code MOD} indicates {@link #MODULE} bit set,
1079      *     {@code 1R} and {@code 2R} indicate {@link #PUBLIC} bit set,
1080      *     {@code U} indicates {@link #UNCONDITIONAL} bit set,
1081      *     {@code IAE} indicates {@code IllegalAccessException} thrown.</li>
1082      * <li>Public access comes in three kinds:
1083      * <ul>
1084      * <li>unconditional ({@code U}): the lookup assumes readability.
1085      *     The lookup has {@code null} previous lookup class.
1086      * <li>one-module-reads ({@code 1R}): the module access checking is
1087      *     performed with respect to the lookup class.  The lookup has {@code null}
1088      *     previous lookup class.
1089      * <li>two-module-reads ({@code 2R}): the module access checking is
1090      *     performed with respect to the lookup class and the previous lookup class.
1091      *     The lookup has a non-null previous lookup class which is in a
1092      *     different module from the current lookup class.
1093      * </ul>
1094      * <li>Any attempt to reach a third module loses all access.</li>
1095      * <li>If a target class {@code X} is not accessible to {@code Lookup::in}
1096      * all access modes are dropped.</li>
1097      * </ul>
1098      *
1099      * <h2><a id="secmgr"></a>Security manager interactions</h2>
1100      * Although bytecode instructions can only refer to classes in
1101      * a related class loader, this API can search for methods in any
1102      * class, as long as a reference to its {@code Class} object is
1103      * available.  Such cross-loader references are also possible with the
1104      * Core Reflection API, and are impossible to bytecode instructions
1105      * such as {@code invokestatic} or {@code getfield}.
1106      * There is a {@linkplain java.lang.SecurityManager security manager API}
1107      * to allow applications to check such cross-loader references.
1108      * These checks apply to both the {@code MethodHandles.Lookup} API
1109      * and the Core Reflection API
1110      * (as found on {@link java.lang.Class Class}).
1111      * <p>
1112      * If a security manager is present, member and class lookups are subject to
1113      * additional checks.
1114      * From one to three calls are made to the security manager.
1115      * Any of these calls can refuse access by throwing a
1116      * {@link java.lang.SecurityException SecurityException}.
1117      * Define {@code smgr} as the security manager,
1118      * {@code lookc} as the lookup class of the current lookup object,
1119      * {@code refc} as the containing class in which the member
1120      * is being sought, and {@code defc} as the class in which the
1121      * member is actually defined.
1122      * (If a class or other type is being accessed,
1123      * the {@code refc} and {@code defc} values are the class itself.)
1124      * The value {@code lookc} is defined as <em>not present</em>
1125      * if the current lookup object does not have
1126      * {@linkplain #hasFullPrivilegeAccess() full privilege access}.
1127      * The calls are made according to the following rules:
1128      * <ul>
1129      * <li><b>Step 1:</b>
1130      *     If {@code lookc} is not present, or if its class loader is not
1131      *     the same as or an ancestor of the class loader of {@code refc},
1132      *     then {@link SecurityManager#checkPackageAccess
1133      *     smgr.checkPackageAccess(refcPkg)} is called,
1134      *     where {@code refcPkg} is the package of {@code refc}.
1135      * <li><b>Step 2a:</b>
1136      *     If the retrieved member is not public and
1137      *     {@code lookc} is not present, then
1138      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1139      *     with {@code RuntimePermission("accessDeclaredMembers")} is called.
1140      * <li><b>Step 2b:</b>
1141      *     If the retrieved class has a {@code null} class loader,
1142      *     and {@code lookc} is not present, then
1143      *     {@link SecurityManager#checkPermission smgr.checkPermission}
1144      *     with {@code RuntimePermission("getClassLoader")} is called.
1145      * <li><b>Step 3:</b>
1146      *     If the retrieved member is not public,
1147      *     and if {@code lookc} is not present,
1148      *     and if {@code defc} and {@code refc} are different,
1149      *     then {@link SecurityManager#checkPackageAccess
1150      *     smgr.checkPackageAccess(defcPkg)} is called,
1151      *     where {@code defcPkg} is the package of {@code defc}.
1152      * </ul>
1153      * Security checks are performed after other access checks have passed.
1154      * Therefore, the above rules presuppose a member or class that is public,
1155      * or else that is being accessed from a lookup class that has
1156      * rights to access the member or class.
1157      * <p>
1158      * If a security manager is present and the current lookup object does not have
1159      * {@linkplain #hasFullPrivilegeAccess() full privilege access}, then
1160      * {@link #defineClass(byte[]) defineClass}
1161      * calls {@link SecurityManager#checkPermission smgr.checkPermission}
1162      * with {@code RuntimePermission("defineClass")}.
1163      *
1164      * <h2><a id="callsens"></a>Caller sensitive methods</h2>
1165      * A small number of Java methods have a special property called caller sensitivity.
1166      * A <em>caller-sensitive</em> method can behave differently depending on the
1167      * identity of its immediate caller.
1168      * <p>
1169      * If a method handle for a caller-sensitive method is requested,
1170      * the general rules for <a href="MethodHandles.Lookup.html#equiv">bytecode behaviors</a> apply,
1171      * but they take account of the lookup class in a special way.
1172      * The resulting method handle behaves as if it were called
1173      * from an instruction contained in the lookup class,
1174      * so that the caller-sensitive method detects the lookup class.
1175      * (By contrast, the invoker of the method handle is disregarded.)
1176      * Thus, in the case of caller-sensitive methods,
1177      * different lookup classes may give rise to
1178      * differently behaving method handles.
1179      * <p>
1180      * In cases where the lookup object is
1181      * {@link MethodHandles#publicLookup() publicLookup()},
1182      * or some other lookup object without the
1183      * {@linkplain #hasFullPrivilegeAccess() full privilege access},
1184      * the lookup class is disregarded.
1185      * In such cases, no caller-sensitive method handle can be created,
1186      * access is forbidden, and the lookup fails with an
1187      * {@code IllegalAccessException}.
1188      * <p style="font-size:smaller;">
1189      * <em>Discussion:</em>
1190      * For example, the caller-sensitive method
1191      * {@link java.lang.Class#forName(String) Class.forName(x)}
1192      * can return varying classes or throw varying exceptions,
1193      * depending on the class loader of the class that calls it.
1194      * A public lookup of {@code Class.forName} will fail, because
1195      * there is no reasonable way to determine its bytecode behavior.
1196      * <p style="font-size:smaller;">
1197      * If an application caches method handles for broad sharing,
1198      * it should use {@code publicLookup()} to create them.
1199      * If there is a lookup of {@code Class.forName}, it will fail,
1200      * and the application must take appropriate action in that case.
1201      * It may be that a later lookup, perhaps during the invocation of a
1202      * bootstrap method, can incorporate the specific identity
1203      * of the caller, making the method accessible.
1204      * <p style="font-size:smaller;">
1205      * The function {@code MethodHandles.lookup} is caller sensitive
1206      * so that there can be a secure foundation for lookups.
1207      * Nearly all other methods in the JSR 292 API rely on lookup
1208      * objects to check access requests.
1209      *
1210      * @revised 9
1211      */
1212     public static final
1213     class Lookup {
1214         /** The class on behalf of whom the lookup is being performed. */
1215         private final Class<?> lookupClass;
1216 
1217         /** previous lookup class */
1218         private final Class<?> prevLookupClass;
1219 
1220         /** The allowed sorts of members which may be looked up (PUBLIC, etc.). */
1221         private final int allowedModes;
1222 
1223         static {
1224             Reflection.registerFieldsToFilter(Lookup.class, Set.of("lookupClass", "allowedModes"));
1225         }
1226 
1227         /** A single-bit mask representing {@code public} access,
1228          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1229          *  The value, {@code 0x01}, happens to be the same as the value of the
1230          *  {@code public} {@linkplain java.lang.reflect.Modifier#PUBLIC modifier bit}.
1231          *  <p>
1232          *  A {@code Lookup} with this lookup mode performs cross-module access check
1233          *  with respect to the {@linkplain #lookupClass() lookup class} and
1234          *  {@linkplain #previousLookupClass() previous lookup class} if present.
1235          */
1236         public static final int PUBLIC = Modifier.PUBLIC;
1237 
1238         /** A single-bit mask representing {@code private} access,
1239          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1240          *  The value, {@code 0x02}, happens to be the same as the value of the
1241          *  {@code private} {@linkplain java.lang.reflect.Modifier#PRIVATE modifier bit}.
1242          */
1243         public static final int PRIVATE = Modifier.PRIVATE;
1244 
1245         /** A single-bit mask representing {@code protected} access,
1246          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1247          *  The value, {@code 0x04}, happens to be the same as the value of the
1248          *  {@code protected} {@linkplain java.lang.reflect.Modifier#PROTECTED modifier bit}.
1249          */
1250         public static final int PROTECTED = Modifier.PROTECTED;
1251 
1252         /** A single-bit mask representing {@code package} access (default access),
1253          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1254          *  The value is {@code 0x08}, which does not correspond meaningfully to
1255          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1256          */
1257         public static final int PACKAGE = Modifier.STATIC;
1258 
1259         /** A single-bit mask representing {@code module} access,
1260          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1261          *  The value is {@code 0x10}, which does not correspond meaningfully to
1262          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1263          *  In conjunction with the {@code PUBLIC} modifier bit, a {@code Lookup}
1264          *  with this lookup mode can access all public types in the module of the
1265          *  lookup class and public types in packages exported by other modules
1266          *  to the module of the lookup class.
1267          *  <p>
1268          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1269          *  previous lookup class} is always {@code null}.
1270          *
1271          *  @since 9
1272          *  @spec JPMS
1273          */
1274         public static final int MODULE = PACKAGE << 1;
1275 
1276         /** A single-bit mask representing {@code unconditional} access
1277          *  which may contribute to the result of {@link #lookupModes lookupModes}.
1278          *  The value is {@code 0x20}, which does not correspond meaningfully to
1279          *  any particular {@linkplain java.lang.reflect.Modifier modifier bit}.
1280          *  A {@code Lookup} with this lookup mode assumes {@linkplain
1281          *  java.lang.Module#canRead(java.lang.Module) readability}.
1282          *  This lookup mode can access all public members of public types
1283          *  of all modules when the type is in a package that is {@link
1284          *  java.lang.Module#isExported(String) exported unconditionally}.
1285          *
1286          *  <p>
1287          *  If this lookup mode is set, the {@linkplain #previousLookupClass()
1288          *  previous lookup class} is always {@code null}.
1289          *
1290          *  @since 9
1291          *  @spec JPMS
1292          *  @see #publicLookup()
1293          */
1294         public static final int UNCONDITIONAL = PACKAGE << 2;
1295 
1296         private static final int ALL_MODES = (PUBLIC | PRIVATE | PROTECTED | PACKAGE | MODULE | UNCONDITIONAL);
1297         private static final int FULL_POWER_MODES = (ALL_MODES & ~UNCONDITIONAL);
1298         private static final int TRUSTED   = -1;
1299 
1300         /*
1301          * Adjust PUBLIC => PUBLIC|MODULE|UNCONDITIONAL
1302          * Adjust 0 => PACKAGE
1303          */
1304         private static int fixmods(int mods) {
1305             mods &= (ALL_MODES - PACKAGE - MODULE - UNCONDITIONAL);
1306             if (Modifier.isPublic(mods))
1307                 mods |= UNCONDITIONAL;
1308             return (mods != 0) ? mods : PACKAGE;
1309         }
1310 
1311         /** Tells which class is performing the lookup.  It is this class against
1312          *  which checks are performed for visibility and access permissions.
1313          *  <p>
1314          *  If this lookup object has a {@linkplain #previousLookupClass() previous lookup class},
1315          *  access checks are performed against both the lookup class and the previous lookup class.
1316          *  <p>
1317          *  The class implies a maximum level of access permission,
1318          *  but the permissions may be additionally limited by the bitmask
1319          *  {@link #lookupModes lookupModes}, which controls whether non-public members
1320          *  can be accessed.
1321          *  @return the lookup class, on behalf of which this lookup object finds members
1322          *  @see <a href="#cross-module-lookup">Cross-module lookups</a>
1323          */
1324         public Class<?> lookupClass() {
1325             return lookupClass;
1326         }
1327 
1328         /** Reports a lookup class in another module that this lookup object
1329          * was previously teleported from, or {@code null}.
1330          * <p>
1331          * A {@code Lookup} object produced by the factory methods, such as the
1332          * {@link #lookup() lookup()} and {@link #publicLookup() publicLookup()} method,
1333          * has {@code null} previous lookup class.
1334          * A {@code Lookup} object has a non-null previous lookup class
1335          * when this lookup was teleported from an old lookup class
1336          * in one module to a new lookup class in another module.
1337          *
1338          * @return the lookup class in another module that this lookup object was
1339          *         previously teleported from, or {@code null}
1340          * @since 14
1341          * @see #in(Class)
1342          * @see MethodHandles#privateLookupIn(Class, Lookup)
1343          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1344          */
1345         public Class<?> previousLookupClass() {
1346             return prevLookupClass;
1347         }
1348 
1349         // This is just for calling out to MethodHandleImpl.
1350         private Class<?> lookupClassOrNull() {
1351             if (allowedModes == TRUSTED) {
1352                 return null;
1353             }
1354             if (allowedModes == UNCONDITIONAL) {
1355                 // use Object as the caller to pass to VM doing resolution
1356                 return Object.class;
1357             }
1358             return lookupClass;
1359         }
1360 
1361         /** Tells which access-protection classes of members this lookup object can produce.
1362          *  The result is a bit-mask of the bits
1363          *  {@linkplain #PUBLIC PUBLIC (0x01)},
1364          *  {@linkplain #PRIVATE PRIVATE (0x02)},
1365          *  {@linkplain #PROTECTED PROTECTED (0x04)},
1366          *  {@linkplain #PACKAGE PACKAGE (0x08)},
1367          *  {@linkplain #MODULE MODULE (0x10)},
1368          *  and {@linkplain #UNCONDITIONAL UNCONDITIONAL (0x20)}.
1369          *  <p>
1370          *  A freshly-created lookup object
1371          *  on the {@linkplain java.lang.invoke.MethodHandles#lookup() caller's class} has
1372          *  all possible bits set, except {@code UNCONDITIONAL}.
1373          *  A lookup object on a new lookup class
1374          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#in created from a previous lookup object}
1375          *  may have some mode bits set to zero.
1376          *  Mode bits can also be
1377          *  {@linkplain java.lang.invoke.MethodHandles.Lookup#dropLookupMode directly cleared}.
1378          *  Once cleared, mode bits cannot be restored from the downgraded lookup object.
1379          *  The purpose of this is to restrict access via the new lookup object,
1380          *  so that it can access only names which can be reached by the original
1381          *  lookup object, and also by the new lookup class.
1382          *  @return the lookup modes, which limit the kinds of access performed by this lookup object
1383          *  @see #in
1384          *  @see #dropLookupMode
1385          *
1386          *  @revised 9
1387          *  @spec JPMS
1388          */
1389         public int lookupModes() {
1390             return allowedModes & ALL_MODES;
1391         }
1392 
1393         /** Embody the current class (the lookupClass) as a lookup class
1394          * for method handle creation.
1395          * Must be called by from a method in this package,
1396          * which in turn is called by a method not in this package.
1397          */
1398         Lookup(Class<?> lookupClass) {
1399             this(lookupClass, null, FULL_POWER_MODES);
1400             // make sure we haven't accidentally picked up a privileged class:
1401             checkUnprivilegedlookupClass(lookupClass);
1402         }
1403 
1404         private Lookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1405             assert prevLookupClass == null || ((allowedModes & MODULE) == 0
1406                     && prevLookupClass.getModule() != lookupClass.getModule());
1407             assert !lookupClass.isArray() && !lookupClass.isPrimitive();
1408             this.lookupClass = lookupClass;
1409             this.prevLookupClass = prevLookupClass;
1410             this.allowedModes = allowedModes;
1411         }
1412 
1413         private static Lookup newLookup(Class<?> lookupClass, Class<?> prevLookupClass, int allowedModes) {
1414             // make sure we haven't accidentally picked up a privileged class:
1415             checkUnprivilegedlookupClass(lookupClass);
1416             return new Lookup(lookupClass, prevLookupClass, allowedModes);
1417         }
1418 
1419         /**
1420          * Creates a lookup on the specified new lookup class.
1421          * The resulting object will report the specified
1422          * class as its own {@link #lookupClass() lookupClass}.
1423          *
1424          * <p>
1425          * However, the resulting {@code Lookup} object is guaranteed
1426          * to have no more access capabilities than the original.
1427          * In particular, access capabilities can be lost as follows:<ul>
1428          * <li>If the new lookup class is in a different module from the old one,
1429          * i.e. {@link #MODULE MODULE} access is lost.
1430          * <li>If the new lookup class is in a different package
1431          * than the old one, protected and default (package) members will not be accessible,
1432          * i.e. {@link #PROTECTED PROTECTED} and {@link #PACKAGE PACKAGE} access are lost.
1433          * <li>If the new lookup class is not within the same package member
1434          * as the old one, private members will not be accessible, and protected members
1435          * will not be accessible by virtue of inheritance,
1436          * i.e. {@link #PRIVATE PRIVATE} access is lost.
1437          * (Protected members may continue to be accessible because of package sharing.)
1438          * <li>If the new lookup class is not
1439          * {@linkplain #accessClass(Class) accessible} to this lookup,
1440          * then no members, not even public members, will be accessible
1441          * i.e. all access modes are lost.
1442          * <li>If the new lookup class, the old lookup class and the previous lookup class
1443          * are all in different modules i.e. teleporting to a third module,
1444          * all access modes are lost.
1445          * </ul>
1446          * <p>
1447          * The new previous lookup class is chosen as follows:
1448          * <ul>
1449          * <li>If the new lookup object has {@link #UNCONDITIONAL UNCONDITIONAL} bit,
1450          * the new previous lookup class is {@code null}.
1451          * <li>If the new lookup class is in the same module as the old lookup class,
1452          * the new previous lookup class is the old previous lookup class.
1453          * <li>If the new lookup class is in a different module from the old lookup class,
1454          * the new previous lookup class is the old lookup class.
1455          *</ul>
1456          * <p>
1457          * The resulting lookup's capabilities for loading classes
1458          * (used during {@link #findClass} invocations)
1459          * are determined by the lookup class' loader,
1460          * which may change due to this operation.
1461          * <p>
1462          * @param requestedLookupClass the desired lookup class for the new lookup object
1463          * @return a lookup object which reports the desired lookup class, or the same object
1464          * if there is no change
1465          * @throws IllegalArgumentException if {@code requestedLookupClass} is a primitive type or void or array class
1466          * @throws NullPointerException if the argument is null
1467          *
1468          * @revised 9
1469          * @spec JPMS
1470          * @see #accessClass(Class)
1471          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
1472          */
1473         public Lookup in(Class<?> requestedLookupClass) {
1474             Objects.requireNonNull(requestedLookupClass);
1475             if (requestedLookupClass.isPrimitive())
1476                 throw new IllegalArgumentException(requestedLookupClass + " is a primitive class");
1477             if (requestedLookupClass.isArray())
1478                 throw new IllegalArgumentException(requestedLookupClass + " is an array class");
1479 
1480             if (allowedModes == TRUSTED)  // IMPL_LOOKUP can make any lookup at all
1481                 return new Lookup(requestedLookupClass, null, FULL_POWER_MODES);
1482             if (requestedLookupClass == this.lookupClass)
1483                 return this;  // keep same capabilities
1484             int newModes = (allowedModes & FULL_POWER_MODES);
1485             Module fromModule = this.lookupClass.getModule();
1486             Module targetModule = requestedLookupClass.getModule();
1487             Class<?> plc = this.previousLookupClass();
1488             if ((this.allowedModes & UNCONDITIONAL) != 0) {
1489                 assert plc == null;
1490                 newModes = UNCONDITIONAL;
1491             } else if (fromModule != targetModule) {
1492                 if (plc != null && !VerifyAccess.isSameModule(plc, requestedLookupClass)) {
1493                     // allow hopping back and forth between fromModule and plc's module
1494                     // but not the third module
1495                     newModes = 0;
1496                 }
1497                 // drop MODULE access
1498                 newModes &= ~(MODULE|PACKAGE|PRIVATE|PROTECTED);
1499                 // teleport from this lookup class
1500                 plc = this.lookupClass;
1501             }
1502             if ((newModes & PACKAGE) != 0
1503                 && !VerifyAccess.isSamePackage(this.lookupClass, requestedLookupClass)) {
1504                 newModes &= ~(PACKAGE|PRIVATE|PROTECTED);
1505             }
1506             // Allow nestmate lookups to be created without special privilege:
1507             if ((newModes & PRIVATE) != 0
1508                 && !VerifyAccess.isSamePackageMember(this.lookupClass, requestedLookupClass)) {
1509                 newModes &= ~(PRIVATE|PROTECTED);
1510             }
1511             if ((newModes & (PUBLIC|UNCONDITIONAL)) != 0
1512                 && !VerifyAccess.isClassAccessible(requestedLookupClass, this.lookupClass, this.prevLookupClass, allowedModes)) {
1513                 // The requested class it not accessible from the lookup class.
1514                 // No permissions.
1515                 newModes = 0;
1516             }
1517             return newLookup(requestedLookupClass, plc, newModes);
1518         }
1519 
1520         /**
1521          * Creates a lookup on the same lookup class which this lookup object
1522          * finds members, but with a lookup mode that has lost the given lookup mode.
1523          * The lookup mode to drop is one of {@link #PUBLIC PUBLIC}, {@link #MODULE
1524          * MODULE}, {@link #PACKAGE PACKAGE}, {@link #PROTECTED PROTECTED} or {@link #PRIVATE PRIVATE}.
1525          * {@link #PROTECTED PROTECTED} is always
1526          * dropped and so the resulting lookup mode will never have this access capability.
1527          * When dropping {@code PACKAGE} then the resulting lookup will not have {@code PACKAGE}
1528          * or {@code PRIVATE} access. When dropping {@code MODULE} then the resulting lookup will
1529          * not have {@code MODULE}, {@code PACKAGE}, or {@code PRIVATE} access. If {@code PUBLIC}
1530          * is dropped then the resulting lookup has no access. If {@code UNCONDITIONAL}
1531          * is dropped then the resulting lookup has no access.
1532          *
1533          * @apiNote
1534          * A lookup with {@code PACKAGE} but not {@code PRIVATE} mode can safely
1535          * delegate non-public access within the package of the lookup class without
1536          * conferring  <a href="MethodHandles.Lookup.html#privacc">private access</a>.
1537          * A lookup with {@code MODULE} but not
1538          * {@code PACKAGE} mode can safely delegate {@code PUBLIC} access within
1539          * the module of the lookup class without conferring package access.
1540          * A lookup with a {@linkplain #previousLookupClass() previous lookup class}
1541          * (and {@code PUBLIC} but not {@code MODULE} mode) can safely delegate access
1542          * to public classes accessible to both the module of the lookup class
1543          * and the module of the previous lookup class.
1544          *
1545          * @param modeToDrop the lookup mode to drop
1546          * @return a lookup object which lacks the indicated mode, or the same object if there is no change
1547          * @throws IllegalArgumentException if {@code modeToDrop} is not one of {@code PUBLIC},
1548          * {@code MODULE}, {@code PACKAGE}, {@code PROTECTED}, {@code PRIVATE} or {@code UNCONDITIONAL}
1549          * @see MethodHandles#privateLookupIn
1550          * @since 9
1551          */
1552         public Lookup dropLookupMode(int modeToDrop) {
1553             int oldModes = lookupModes();
1554             int newModes = oldModes & ~(modeToDrop | PROTECTED);
1555             switch (modeToDrop) {
1556                 case PUBLIC: newModes &= ~(FULL_POWER_MODES); break;
1557                 case MODULE: newModes &= ~(PACKAGE | PRIVATE); break;
1558                 case PACKAGE: newModes &= ~(PRIVATE); break;
1559                 case PROTECTED:
1560                 case PRIVATE:
1561                 case UNCONDITIONAL: break;
1562                 default: throw new IllegalArgumentException(modeToDrop + " is not a valid mode to drop");
1563             }
1564             if (newModes == oldModes) return this;  // return self if no change
1565             return newLookup(lookupClass(), previousLookupClass(), newModes);
1566         }
1567 
1568         /**
1569          * Defines a class to the same class loader and in the same runtime package and
1570          * {@linkplain java.security.ProtectionDomain protection domain} as this lookup's
1571          * {@linkplain #lookupClass() lookup class}.
1572          *
1573          * <p> The {@linkplain #lookupModes() lookup modes} for this lookup must include
1574          * {@link #PACKAGE PACKAGE} access as default (package) members will be
1575          * accessible to the class. The {@code PACKAGE} lookup mode serves to authenticate
1576          * that the lookup object was created by a caller in the runtime package (or derived
1577          * from a lookup originally created by suitably privileged code to a target class in
1578          * the runtime package). </p>
1579          *
1580          * <p> The {@code bytes} parameter is the class bytes of a valid class file (as defined
1581          * by the <em>The Java Virtual Machine Specification</em>) with a class name in the
1582          * same package as the lookup class. </p>
1583          *
1584          * <p> This method does not run the class initializer. The class initializer may
1585          * run at a later time, as detailed in section 12.4 of the <em>The Java Language
1586          * Specification</em>. </p>
1587          *
1588          * <p> If there is a security manager and this lookup does not have {@linkplain
1589          * #hasFullPrivilegeAccess() full privilege access}, its {@code checkPermission} method
1590          * is first called to check {@code RuntimePermission("defineClass")}. </p>
1591          *
1592          * @param bytes the class bytes
1593          * @return the {@code Class} object for the class
1594          * @throws IllegalArgumentException the bytes are for a class in a different package
1595          * to the lookup class
1596          * @throws IllegalAccessException if this lookup does not have {@code PACKAGE} access
1597          * @throws LinkageError if the class is malformed ({@code ClassFormatError}), cannot be
1598          * verified ({@code VerifyError}), is already defined, or another linkage error occurs
1599          * @throws SecurityException if a security manager is present and it
1600          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1601          * @throws NullPointerException if {@code bytes} is {@code null}
1602          * @since 9
1603          * @spec JPMS
1604          * @see Lookup#privateLookupIn
1605          * @see Lookup#dropLookupMode
1606          * @see ClassLoader#defineClass(String,byte[],int,int,ProtectionDomain)
1607          */
1608         public Class<?> defineClass(byte[] bytes) throws IllegalAccessException {
1609             if (!hasFullPrivilegeAccess()) {
1610                 SecurityManager sm = System.getSecurityManager();
1611                 if (sm != null)
1612                     sm.checkPermission(new RuntimePermission("defineClass"));
1613             }
1614             if ((lookupModes() & PACKAGE) == 0)
1615                 throw new IllegalAccessException("Lookup does not have PACKAGE access");
1616 
1617             // parse class bytes to get class name (in internal form)
1618             bytes = bytes.clone();
1619             String name;
1620             try {
1621                 ClassReader reader = new ClassReader(bytes);
1622                 name = reader.getClassName();
1623             } catch (RuntimeException e) {
1624                 // ASM exceptions are poorly specified
1625                 ClassFormatError cfe = new ClassFormatError();
1626                 cfe.initCause(e);
1627                 throw cfe;
1628             }
1629 
1630             // get package and class name in binary form
1631             String cn, pn;
1632             int index = name.lastIndexOf('/');
1633             if (index == -1) {
1634                 cn = name;
1635                 pn = "";
1636             } else {
1637                 cn = name.replace('/', '.');
1638                 pn = cn.substring(0, index);
1639             }
1640             if (!pn.equals(lookupClass.getPackageName())) {
1641                 throw new IllegalArgumentException("Class not in same package as lookup class");
1642             }
1643 
1644             // invoke the class loader's defineClass method
1645             ClassLoader loader = lookupClass.getClassLoader();
1646             ProtectionDomain pd = (loader != null) ? lookupClassProtectionDomain() : null;
1647             String source = "__Lookup_defineClass__";
1648             Class<?> clazz = SharedSecrets.getJavaLangAccess().defineClass(loader, cn, bytes, pd, source);
1649             return clazz;
1650         }
1651 
1652         private ProtectionDomain lookupClassProtectionDomain() {
1653             ProtectionDomain pd = cachedProtectionDomain;
1654             if (pd == null) {
1655                 cachedProtectionDomain = pd = protectionDomain(lookupClass);
1656             }
1657             return pd;
1658         }
1659 
1660         private ProtectionDomain protectionDomain(Class<?> clazz) {
1661             PrivilegedAction<ProtectionDomain> pa = clazz::getProtectionDomain;
1662             return AccessController.doPrivileged(pa);
1663         }
1664 
1665         // cached protection domain
1666         private volatile ProtectionDomain cachedProtectionDomain;
1667 
1668 
1669         // Make sure outer class is initialized first.
1670         static { IMPL_NAMES.getClass(); }
1671 
1672         /** Package-private version of lookup which is trusted. */
1673         static final Lookup IMPL_LOOKUP = new Lookup(Object.class, null, TRUSTED);
1674 
1675         /** Version of lookup which is trusted minimally.
1676          *  It can only be used to create method handles to publicly accessible
1677          *  members in packages that are exported unconditionally.
1678          */
1679         static final Lookup PUBLIC_LOOKUP = new Lookup(Object.class, null, UNCONDITIONAL);
1680 
1681         private static void checkUnprivilegedlookupClass(Class<?> lookupClass) {
1682             String name = lookupClass.getName();
1683             if (name.startsWith("java.lang.invoke."))
1684                 throw newIllegalArgumentException("illegal lookupClass: "+lookupClass);
1685         }
1686 
1687         /**
1688          * Displays the name of the class from which lookups are to be made.
1689          * followed with "/" and the name of the {@linkplain #previousLookupClass()
1690          * previous lookup class} if present.
1691          * (The name is the one reported by {@link java.lang.Class#getName() Class.getName}.)
1692          * If there are restrictions on the access permitted to this lookup,
1693          * this is indicated by adding a suffix to the class name, consisting
1694          * of a slash and a keyword.  The keyword represents the strongest
1695          * allowed access, and is chosen as follows:
1696          * <ul>
1697          * <li>If no access is allowed, the suffix is "/noaccess".
1698          * <li>If only unconditional access is allowed, the suffix is "/publicLookup".
1699          * <li>If only public access to types in exported packages is allowed, the suffix is "/public".
1700          * <li>If only public and module access are allowed, the suffix is "/module".
1701          * <li>If public and package access are allowed, the suffix is "/package".
1702          * <li>If public, package, and private access are allowed, the suffix is "/private".
1703          * </ul>
1704          * If none of the above cases apply, it is the case that full access
1705          * (public, module, package, private, and protected) is allowed.
1706          * In this case, no suffix is added.
1707          * This is true only of an object obtained originally from
1708          * {@link java.lang.invoke.MethodHandles#lookup MethodHandles.lookup}.
1709          * Objects created by {@link java.lang.invoke.MethodHandles.Lookup#in Lookup.in}
1710          * always have restricted access, and will display a suffix.
1711          * <p>
1712          * (It may seem strange that protected access should be
1713          * stronger than private access.  Viewed independently from
1714          * package access, protected access is the first to be lost,
1715          * because it requires a direct subclass relationship between
1716          * caller and callee.)
1717          * @see #in
1718          *
1719          * @revised 9
1720          * @spec JPMS
1721          */
1722         @Override
1723         public String toString() {
1724             String cname = lookupClass.getName();
1725             if (prevLookupClass != null)
1726                 cname += "/" + prevLookupClass.getName();
1727             switch (allowedModes) {
1728             case 0:  // no privileges
1729                 return cname + "/noaccess";
1730             case UNCONDITIONAL:
1731                 return cname + "/publicLookup";
1732             case PUBLIC:
1733                 return cname + "/public";
1734             case PUBLIC|MODULE:
1735                 return cname + "/module";
1736             case PUBLIC|PACKAGE:
1737             case PUBLIC|MODULE|PACKAGE:
1738                 return cname + "/package";
1739             case FULL_POWER_MODES & (~PROTECTED):
1740             case FULL_POWER_MODES & ~(PROTECTED|MODULE):
1741                     return cname + "/private";
1742             case FULL_POWER_MODES:
1743             case FULL_POWER_MODES & (~MODULE):
1744                 return cname;
1745             case TRUSTED:
1746                 return "/trusted";  // internal only; not exported
1747             default:  // Should not happen, but it's a bitfield...
1748                 cname = cname + "/" + Integer.toHexString(allowedModes);
1749                 assert(false) : cname;
1750                 return cname;
1751             }
1752         }
1753 
1754         /**
1755          * Produces a method handle for a static method.
1756          * The type of the method handle will be that of the method.
1757          * (Since static methods do not take receivers, there is no
1758          * additional receiver argument inserted into the method handle type,
1759          * as there would be with {@link #findVirtual findVirtual} or {@link #findSpecial findSpecial}.)
1760          * The method and all its argument types must be accessible to the lookup object.
1761          * <p>
1762          * The returned method handle will have
1763          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1764          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1765          * <p>
1766          * If the returned method handle is invoked, the method's class will
1767          * be initialized, if it has not already been initialized.
1768          * <p><b>Example:</b>
1769          * <blockquote><pre>{@code
1770 import static java.lang.invoke.MethodHandles.*;
1771 import static java.lang.invoke.MethodType.*;
1772 ...
1773 MethodHandle MH_asList = publicLookup().findStatic(Arrays.class,
1774   "asList", methodType(List.class, Object[].class));
1775 assertEquals("[x, y]", MH_asList.invoke("x", "y").toString());
1776          * }</pre></blockquote>
1777          * @param refc the class from which the method is accessed
1778          * @param name the name of the method
1779          * @param type the type of the method
1780          * @return the desired method handle
1781          * @throws NoSuchMethodException if the method does not exist
1782          * @throws IllegalAccessException if access checking fails,
1783          *                                or if the method is not {@code static},
1784          *                                or if the method's variable arity modifier bit
1785          *                                is set and {@code asVarargsCollector} fails
1786          * @throws    SecurityException if a security manager is present and it
1787          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1788          * @throws NullPointerException if any argument is null
1789          */
1790         public MethodHandle findStatic(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1791             MemberName method = resolveOrFail(REF_invokeStatic, refc, name, type);
1792             return getDirectMethod(REF_invokeStatic, refc, method, findBoundCallerLookup(method));
1793         }
1794 
1795         /**
1796          * Produces a method handle for a virtual method.
1797          * The type of the method handle will be that of the method,
1798          * with the receiver type (usually {@code refc}) prepended.
1799          * The method and all its argument types must be accessible to the lookup object.
1800          * <p>
1801          * When called, the handle will treat the first argument as a receiver
1802          * and, for non-private methods, dispatch on the receiver's type to determine which method
1803          * implementation to enter.
1804          * For private methods the named method in {@code refc} will be invoked on the receiver.
1805          * (The dispatching action is identical with that performed by an
1806          * {@code invokevirtual} or {@code invokeinterface} instruction.)
1807          * <p>
1808          * The first argument will be of type {@code refc} if the lookup
1809          * class has full privileges to access the member.  Otherwise
1810          * the member must be {@code protected} and the first argument
1811          * will be restricted in type to the lookup class.
1812          * <p>
1813          * The returned method handle will have
1814          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1815          * the method's variable arity modifier bit ({@code 0x0080}) is set.
1816          * <p>
1817          * Because of the general <a href="MethodHandles.Lookup.html#equiv">equivalence</a> between {@code invokevirtual}
1818          * instructions and method handles produced by {@code findVirtual},
1819          * if the class is {@code MethodHandle} and the name string is
1820          * {@code invokeExact} or {@code invoke}, the resulting
1821          * method handle is equivalent to one produced by
1822          * {@link java.lang.invoke.MethodHandles#exactInvoker MethodHandles.exactInvoker} or
1823          * {@link java.lang.invoke.MethodHandles#invoker MethodHandles.invoker}
1824          * with the same {@code type} argument.
1825          * <p>
1826          * If the class is {@code VarHandle} and the name string corresponds to
1827          * the name of a signature-polymorphic access mode method, the resulting
1828          * method handle is equivalent to one produced by
1829          * {@link java.lang.invoke.MethodHandles#varHandleInvoker} with
1830          * the access mode corresponding to the name string and with the same
1831          * {@code type} arguments.
1832          * <p>
1833          * <b>Example:</b>
1834          * <blockquote><pre>{@code
1835 import static java.lang.invoke.MethodHandles.*;
1836 import static java.lang.invoke.MethodType.*;
1837 ...
1838 MethodHandle MH_concat = publicLookup().findVirtual(String.class,
1839   "concat", methodType(String.class, String.class));
1840 MethodHandle MH_hashCode = publicLookup().findVirtual(Object.class,
1841   "hashCode", methodType(int.class));
1842 MethodHandle MH_hashCode_String = publicLookup().findVirtual(String.class,
1843   "hashCode", methodType(int.class));
1844 assertEquals("xy", (String) MH_concat.invokeExact("x", "y"));
1845 assertEquals("xy".hashCode(), (int) MH_hashCode.invokeExact((Object)"xy"));
1846 assertEquals("xy".hashCode(), (int) MH_hashCode_String.invokeExact("xy"));
1847 // interface method:
1848 MethodHandle MH_subSequence = publicLookup().findVirtual(CharSequence.class,
1849   "subSequence", methodType(CharSequence.class, int.class, int.class));
1850 assertEquals("def", MH_subSequence.invoke("abcdefghi", 3, 6).toString());
1851 // constructor "internal method" must be accessed differently:
1852 MethodType MT_newString = methodType(void.class); //()V for new String()
1853 try { assertEquals("impossible", lookup()
1854         .findVirtual(String.class, "<init>", MT_newString));
1855  } catch (NoSuchMethodException ex) { } // OK
1856 MethodHandle MH_newString = publicLookup()
1857   .findConstructor(String.class, MT_newString);
1858 assertEquals("", (String) MH_newString.invokeExact());
1859          * }</pre></blockquote>
1860          *
1861          * @param refc the class or interface from which the method is accessed
1862          * @param name the name of the method
1863          * @param type the type of the method, with the receiver argument omitted
1864          * @return the desired method handle
1865          * @throws NoSuchMethodException if the method does not exist
1866          * @throws IllegalAccessException if access checking fails,
1867          *                                or if the method is {@code static},
1868          *                                or if the method's variable arity modifier bit
1869          *                                is set and {@code asVarargsCollector} fails
1870          * @throws    SecurityException if a security manager is present and it
1871          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1872          * @throws NullPointerException if any argument is null
1873          */
1874         public MethodHandle findVirtual(Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1875             if (refc == MethodHandle.class) {
1876                 MethodHandle mh = findVirtualForMH(name, type);
1877                 if (mh != null)  return mh;
1878             } else if (refc == VarHandle.class) {
1879                 MethodHandle mh = findVirtualForVH(name, type);
1880                 if (mh != null)  return mh;
1881             }
1882             byte refKind = (refc.isInterface() ? REF_invokeInterface : REF_invokeVirtual);
1883             MemberName method = resolveOrFail(refKind, refc, name, type);
1884             return getDirectMethod(refKind, refc, method, findBoundCallerLookup(method));
1885         }
1886         private MethodHandle findVirtualForMH(String name, MethodType type) {
1887             // these names require special lookups because of the implicit MethodType argument
1888             if ("invoke".equals(name))
1889                 return invoker(type);
1890             if ("invokeExact".equals(name))
1891                 return exactInvoker(type);
1892             assert(!MemberName.isMethodHandleInvokeName(name));
1893             return null;
1894         }
1895         private MethodHandle findVirtualForVH(String name, MethodType type) {
1896             try {
1897                 return varHandleInvoker(VarHandle.AccessMode.valueFromMethodName(name), type);
1898             } catch (IllegalArgumentException e) {
1899                 return null;
1900             }
1901         }
1902 
1903         /**
1904          * Produces a method handle which creates an object and initializes it, using
1905          * the constructor of the specified type.
1906          * The parameter types of the method handle will be those of the constructor,
1907          * while the return type will be a reference to the constructor's class.
1908          * The constructor and all its argument types must be accessible to the lookup object.
1909          * <p>
1910          * The requested type must have a return type of {@code void}.
1911          * (This is consistent with the JVM's treatment of constructor type descriptors.)
1912          * <p>
1913          * The returned method handle will have
1914          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
1915          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
1916          * <p>
1917          * If the returned method handle is invoked, the constructor's class will
1918          * be initialized, if it has not already been initialized.
1919          * <p><b>Example:</b>
1920          * <blockquote><pre>{@code
1921 import static java.lang.invoke.MethodHandles.*;
1922 import static java.lang.invoke.MethodType.*;
1923 ...
1924 MethodHandle MH_newArrayList = publicLookup().findConstructor(
1925   ArrayList.class, methodType(void.class, Collection.class));
1926 Collection orig = Arrays.asList("x", "y");
1927 Collection copy = (ArrayList) MH_newArrayList.invokeExact(orig);
1928 assert(orig != copy);
1929 assertEquals(orig, copy);
1930 // a variable-arity constructor:
1931 MethodHandle MH_newProcessBuilder = publicLookup().findConstructor(
1932   ProcessBuilder.class, methodType(void.class, String[].class));
1933 ProcessBuilder pb = (ProcessBuilder)
1934   MH_newProcessBuilder.invoke("x", "y", "z");
1935 assertEquals("[x, y, z]", pb.command().toString());
1936          * }</pre></blockquote>
1937          * @param refc the class or interface from which the method is accessed
1938          * @param type the type of the method, with the receiver argument omitted, and a void return type
1939          * @return the desired method handle
1940          * @throws NoSuchMethodException if the constructor does not exist
1941          * @throws IllegalAccessException if access checking fails
1942          *                                or if the method's variable arity modifier bit
1943          *                                is set and {@code asVarargsCollector} fails
1944          * @throws    SecurityException if a security manager is present and it
1945          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1946          * @throws NullPointerException if any argument is null
1947          */
1948         public MethodHandle findConstructor(Class<?> refc, MethodType type) throws NoSuchMethodException, IllegalAccessException {
1949             if (refc.isArray()) {
1950                 throw new NoSuchMethodException("no constructor for array class: " + refc.getName());
1951             }
1952             String name = "<init>";
1953             MemberName ctor = resolveOrFail(REF_newInvokeSpecial, refc, name, type);
1954             return getDirectConstructor(refc, ctor);
1955         }
1956 
1957         /**
1958          * Looks up a class by name from the lookup context defined by this {@code Lookup} object,
1959          * <a href="MethodHandles.Lookup.html#equiv">as if resolved</a> by an {@code ldc} instruction.
1960          * Such a resolution, as specified in JVMS 5.4.3.1 section, attempts to locate and load the class,
1961          * and then determines whether the class is accessible to this lookup object.
1962          * <p>
1963          * The lookup context here is determined by the {@linkplain #lookupClass() lookup class},
1964          * its class loader, and the {@linkplain #lookupModes() lookup modes}.
1965          *
1966          * @param targetName the fully qualified name of the class to be looked up.
1967          * @return the requested class.
1968          * @throws SecurityException if a security manager is present and it
1969          *                           <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
1970          * @throws LinkageError if the linkage fails
1971          * @throws ClassNotFoundException if the class cannot be loaded by the lookup class' loader.
1972          * @throws IllegalAccessException if the class is not accessible, using the allowed access
1973          * modes.
1974          * @since 9
1975          * @jvms 5.4.3.1 Class and Interface Resolution
1976          */
1977         public Class<?> findClass(String targetName) throws ClassNotFoundException, IllegalAccessException {
1978             Class<?> targetClass = Class.forName(targetName, false, lookupClass.getClassLoader());
1979             return accessClass(targetClass);
1980         }
1981 
1982         /**
1983          * Determines if a class can be accessed from the lookup context defined by
1984          * this {@code Lookup} object. The static initializer of the class is not run.
1985          * <p>
1986          * If the {@code targetClass} is in the same module as the lookup class,
1987          * the lookup class is {@code LC} in module {@code M1} and
1988          * the previous lookup class is in module {@code M0} or
1989          * {@code null} if not present,
1990          * {@code targetClass} is accessible if and only if one of the following is true:
1991          * <ul>
1992          * <li>If this lookup has {@link #PRIVATE} access, {@code targetClass} is
1993          *     {@code LC} or other class in the same nest of {@code LC}.</li>
1994          * <li>If this lookup has {@link #PACKAGE} access, {@code targetClass} is
1995          *     in the same runtime package of {@code LC}.</li>
1996          * <li>If this lookup has {@link #MODULE} access, {@code targetClass} is
1997          *     a public type in {@code M1}.</li>
1998          * <li>If this lookup has {@link #PUBLIC} access, {@code targetClass} is
1999          *     a public type in a package exported by {@code M1} to at least  {@code M0}
2000          *     if the previous lookup class is present; otherwise, {@code targetClass}
2001          *     is a public type in a package exported by {@code M1} unconditionally.</li>
2002          * </ul>
2003          *
2004          * <p>
2005          * Otherwise, if this lookup has {@link #UNCONDITIONAL} access, this lookup
2006          * can access public types in all modules when the type is in a package
2007          * that is exported unconditionally.
2008          * <p>
2009          * Otherwise, the target class is in a different module from {@code lookupClass},
2010          * and if this lookup does not have {@code PUBLIC} access, {@code lookupClass}
2011          * is inaccessible.
2012          * <p>
2013          * Otherwise, if this lookup has no {@linkplain #previousLookupClass() previous lookup class},
2014          * {@code M1} is the module containing {@code lookupClass} and
2015          * {@code M2} is the module containing {@code targetClass},
2016          * then {@code targetClass} is accessible if and only if
2017          * <ul>
2018          * <li>{@code M1} reads {@code M2}, and
2019          * <li>{@code targetClass} is public and in a package exported by
2020          *     {@code M2} at least to {@code M1}.
2021          * </ul>
2022          * <p>
2023          * Otherwise, if this lookup has a {@linkplain #previousLookupClass() previous lookup class},
2024          * {@code M1} and {@code M2} are as before, and {@code M0} is the module
2025          * containing the previous lookup class, then {@code targetClass} is accessible
2026          * if and only if one of the following is true:
2027          * <ul>
2028          * <li>{@code targetClass} is in {@code M0} and {@code M1}
2029          *     {@linkplain Module#reads reads} {@code M0} and the type is
2030          *     in a package that is exported to at least {@code M1}.
2031          * <li>{@code targetClass} is in {@code M1} and {@code M0}
2032          *     {@linkplain Module#reads reads} {@code M1} and the type is
2033          *     in a package that is exported to at least {@code M0}.
2034          * <li>{@code targetClass} is in a third module {@code M2} and both {@code M0}
2035          *     and {@code M1} reads {@code M2} and the type is in a package
2036          *     that is exported to at least both {@code M0} and {@code M2}.
2037          * </ul>
2038          * <p>
2039          * Otherwise, {@code targetClass} is not accessible.
2040          *
2041          * @param targetClass the class to be access-checked
2042          * @return the class that has been access-checked
2043          * @throws IllegalAccessException if the class is not accessible from the lookup class
2044          * and previous lookup class, if present, using the allowed access modes.
2045          * @throws    SecurityException if a security manager is present and it
2046          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2047          * @since 9
2048          * @see <a href="#cross-module-lookup">Cross-module lookups</a>
2049          */
2050         public Class<?> accessClass(Class<?> targetClass) throws IllegalAccessException {
2051             if (!VerifyAccess.isClassAccessible(targetClass, lookupClass, prevLookupClass, allowedModes)) {
2052                 throw new MemberName(targetClass).makeAccessException("access violation", this);
2053             }
2054             checkSecurityManager(targetClass, null);
2055             return targetClass;
2056         }
2057 
2058         /**
2059          * Produces an early-bound method handle for a virtual method.
2060          * It will bypass checks for overriding methods on the receiver,
2061          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2062          * instruction from within the explicitly specified {@code specialCaller}.
2063          * The type of the method handle will be that of the method,
2064          * with a suitably restricted receiver type prepended.
2065          * (The receiver type will be {@code specialCaller} or a subtype.)
2066          * The method and all its argument types must be accessible
2067          * to the lookup object.
2068          * <p>
2069          * Before method resolution,
2070          * if the explicitly specified caller class is not identical with the
2071          * lookup class, or if this lookup object does not have
2072          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2073          * privileges, the access fails.
2074          * <p>
2075          * The returned method handle will have
2076          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2077          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2078          * <p style="font-size:smaller;">
2079          * <em>(Note:  JVM internal methods named {@code "<init>"} are not visible to this API,
2080          * even though the {@code invokespecial} instruction can refer to them
2081          * in special circumstances.  Use {@link #findConstructor findConstructor}
2082          * to access instance initialization methods in a safe manner.)</em>
2083          * <p><b>Example:</b>
2084          * <blockquote><pre>{@code
2085 import static java.lang.invoke.MethodHandles.*;
2086 import static java.lang.invoke.MethodType.*;
2087 ...
2088 static class Listie extends ArrayList {
2089   public String toString() { return "[wee Listie]"; }
2090   static Lookup lookup() { return MethodHandles.lookup(); }
2091 }
2092 ...
2093 // no access to constructor via invokeSpecial:
2094 MethodHandle MH_newListie = Listie.lookup()
2095   .findConstructor(Listie.class, methodType(void.class));
2096 Listie l = (Listie) MH_newListie.invokeExact();
2097 try { assertEquals("impossible", Listie.lookup().findSpecial(
2098         Listie.class, "<init>", methodType(void.class), Listie.class));
2099  } catch (NoSuchMethodException ex) { } // OK
2100 // access to super and self methods via invokeSpecial:
2101 MethodHandle MH_super = Listie.lookup().findSpecial(
2102   ArrayList.class, "toString" , methodType(String.class), Listie.class);
2103 MethodHandle MH_this = Listie.lookup().findSpecial(
2104   Listie.class, "toString" , methodType(String.class), Listie.class);
2105 MethodHandle MH_duper = Listie.lookup().findSpecial(
2106   Object.class, "toString" , methodType(String.class), Listie.class);
2107 assertEquals("[]", (String) MH_super.invokeExact(l));
2108 assertEquals(""+l, (String) MH_this.invokeExact(l));
2109 assertEquals("[]", (String) MH_duper.invokeExact(l)); // ArrayList method
2110 try { assertEquals("inaccessible", Listie.lookup().findSpecial(
2111         String.class, "toString", methodType(String.class), Listie.class));
2112  } catch (IllegalAccessException ex) { } // OK
2113 Listie subl = new Listie() { public String toString() { return "[subclass]"; } };
2114 assertEquals(""+l, (String) MH_this.invokeExact(subl)); // Listie method
2115          * }</pre></blockquote>
2116          *
2117          * @param refc the class or interface from which the method is accessed
2118          * @param name the name of the method (which must not be "&lt;init&gt;")
2119          * @param type the type of the method, with the receiver argument omitted
2120          * @param specialCaller the proposed calling class to perform the {@code invokespecial}
2121          * @return the desired method handle
2122          * @throws NoSuchMethodException if the method does not exist
2123          * @throws IllegalAccessException if access checking fails,
2124          *                                or if the method is {@code static},
2125          *                                or if the method's variable arity modifier bit
2126          *                                is set and {@code asVarargsCollector} fails
2127          * @throws    SecurityException if a security manager is present and it
2128          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2129          * @throws NullPointerException if any argument is null
2130          */
2131         public MethodHandle findSpecial(Class<?> refc, String name, MethodType type,
2132                                         Class<?> specialCaller) throws NoSuchMethodException, IllegalAccessException {
2133             checkSpecialCaller(specialCaller, refc);
2134             Lookup specialLookup = this.in(specialCaller);
2135             MemberName method = specialLookup.resolveOrFail(REF_invokeSpecial, refc, name, type);
2136             return specialLookup.getDirectMethod(REF_invokeSpecial, refc, method, findBoundCallerLookup(method));
2137         }
2138 
2139         /**
2140          * Produces a method handle giving read access to a non-static field.
2141          * The type of the method handle will have a return type of the field's
2142          * value type.
2143          * The method handle's single argument will be the instance containing
2144          * the field.
2145          * Access checking is performed immediately on behalf of the lookup class.
2146          * @param refc the class or interface from which the method is accessed
2147          * @param name the field's name
2148          * @param type the field's type
2149          * @return a method handle which can load values from the field
2150          * @throws NoSuchFieldException if the field does not exist
2151          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2152          * @throws    SecurityException if a security manager is present and it
2153          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2154          * @throws NullPointerException if any argument is null
2155          * @see #findVarHandle(Class, String, Class)
2156          */
2157         public MethodHandle findGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2158             MemberName field = resolveOrFail(REF_getField, refc, name, type);
2159             return getDirectField(REF_getField, refc, field);
2160         }
2161 
2162         /**
2163          * Produces a method handle giving write access to a non-static field.
2164          * The type of the method handle will have a void return type.
2165          * The method handle will take two arguments, the instance containing
2166          * the field, and the value to be stored.
2167          * The second argument will be of the field's value type.
2168          * Access checking is performed immediately on behalf of the lookup class.
2169          * @param refc the class or interface from which the method is accessed
2170          * @param name the field's name
2171          * @param type the field's type
2172          * @return a method handle which can store values into the field
2173          * @throws NoSuchFieldException if the field does not exist
2174          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2175          *                                or {@code final}
2176          * @throws    SecurityException if a security manager is present and it
2177          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2178          * @throws NullPointerException if any argument is null
2179          * @see #findVarHandle(Class, String, Class)
2180          */
2181         public MethodHandle findSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2182             MemberName field = resolveOrFail(REF_putField, refc, name, type);
2183             return getDirectField(REF_putField, refc, field);
2184         }
2185 
2186         /**
2187          * Produces a VarHandle giving access to a non-static field {@code name}
2188          * of type {@code type} declared in a class of type {@code recv}.
2189          * The VarHandle's variable type is {@code type} and it has one
2190          * coordinate type, {@code recv}.
2191          * <p>
2192          * Access checking is performed immediately on behalf of the lookup
2193          * class.
2194          * <p>
2195          * Certain access modes of the returned VarHandle are unsupported under
2196          * the following conditions:
2197          * <ul>
2198          * <li>if the field is declared {@code final}, then the write, atomic
2199          *     update, numeric atomic update, and bitwise atomic update access
2200          *     modes are unsupported.
2201          * <li>if the field type is anything other than {@code byte},
2202          *     {@code short}, {@code char}, {@code int}, {@code long},
2203          *     {@code float}, or {@code double} then numeric atomic update
2204          *     access modes are unsupported.
2205          * <li>if the field type is anything other than {@code boolean},
2206          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2207          *     {@code long} then bitwise atomic update access modes are
2208          *     unsupported.
2209          * </ul>
2210          * <p>
2211          * If the field is declared {@code volatile} then the returned VarHandle
2212          * will override access to the field (effectively ignore the
2213          * {@code volatile} declaration) in accordance to its specified
2214          * access modes.
2215          * <p>
2216          * If the field type is {@code float} or {@code double} then numeric
2217          * and atomic update access modes compare values using their bitwise
2218          * representation (see {@link Float#floatToRawIntBits} and
2219          * {@link Double#doubleToRawLongBits}, respectively).
2220          * @apiNote
2221          * Bitwise comparison of {@code float} values or {@code double} values,
2222          * as performed by the numeric and atomic update access modes, differ
2223          * from the primitive {@code ==} operator and the {@link Float#equals}
2224          * and {@link Double#equals} methods, specifically with respect to
2225          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2226          * Care should be taken when performing a compare and set or a compare
2227          * and exchange operation with such values since the operation may
2228          * unexpectedly fail.
2229          * There are many possible NaN values that are considered to be
2230          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2231          * provided by Java can distinguish between them.  Operation failure can
2232          * occur if the expected or witness value is a NaN value and it is
2233          * transformed (perhaps in a platform specific manner) into another NaN
2234          * value, and thus has a different bitwise representation (see
2235          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2236          * details).
2237          * The values {@code -0.0} and {@code +0.0} have different bitwise
2238          * representations but are considered equal when using the primitive
2239          * {@code ==} operator.  Operation failure can occur if, for example, a
2240          * numeric algorithm computes an expected value to be say {@code -0.0}
2241          * and previously computed the witness value to be say {@code +0.0}.
2242          * @param recv the receiver class, of type {@code R}, that declares the
2243          * non-static field
2244          * @param name the field's name
2245          * @param type the field's type, of type {@code T}
2246          * @return a VarHandle giving access to non-static fields.
2247          * @throws NoSuchFieldException if the field does not exist
2248          * @throws IllegalAccessException if access checking fails, or if the field is {@code static}
2249          * @throws    SecurityException if a security manager is present and it
2250          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2251          * @throws NullPointerException if any argument is null
2252          * @since 9
2253          */
2254         public VarHandle findVarHandle(Class<?> recv, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2255             MemberName getField = resolveOrFail(REF_getField, recv, name, type);
2256             MemberName putField = resolveOrFail(REF_putField, recv, name, type);
2257             return getFieldVarHandle(REF_getField, REF_putField, recv, getField, putField);
2258         }
2259 
2260         /**
2261          * Produces a method handle giving read access to a static field.
2262          * The type of the method handle will have a return type of the field's
2263          * value type.
2264          * The method handle will take no arguments.
2265          * Access checking is performed immediately on behalf of the lookup class.
2266          * <p>
2267          * If the returned method handle is invoked, the field's class will
2268          * be initialized, if it has not already been initialized.
2269          * @param refc the class or interface from which the method is accessed
2270          * @param name the field's name
2271          * @param type the field's type
2272          * @return a method handle which can load values from the field
2273          * @throws NoSuchFieldException if the field does not exist
2274          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2275          * @throws    SecurityException if a security manager is present and it
2276          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2277          * @throws NullPointerException if any argument is null
2278          */
2279         public MethodHandle findStaticGetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2280             MemberName field = resolveOrFail(REF_getStatic, refc, name, type);
2281             return getDirectField(REF_getStatic, refc, field);
2282         }
2283 
2284         /**
2285          * Produces a method handle giving write access to a static field.
2286          * The type of the method handle will have a void return type.
2287          * The method handle will take a single
2288          * argument, of the field's value type, the value to be stored.
2289          * Access checking is performed immediately on behalf of the lookup class.
2290          * <p>
2291          * If the returned method handle is invoked, the field's class will
2292          * be initialized, if it has not already been initialized.
2293          * @param refc the class or interface from which the method is accessed
2294          * @param name the field's name
2295          * @param type the field's type
2296          * @return a method handle which can store values into the field
2297          * @throws NoSuchFieldException if the field does not exist
2298          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2299          *                                or is {@code final}
2300          * @throws    SecurityException if a security manager is present and it
2301          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2302          * @throws NullPointerException if any argument is null
2303          */
2304         public MethodHandle findStaticSetter(Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2305             MemberName field = resolveOrFail(REF_putStatic, refc, name, type);
2306             return getDirectField(REF_putStatic, refc, field);
2307         }
2308 
2309         /**
2310          * Produces a VarHandle giving access to a static field {@code name} of
2311          * type {@code type} declared in a class of type {@code decl}.
2312          * The VarHandle's variable type is {@code type} and it has no
2313          * coordinate types.
2314          * <p>
2315          * Access checking is performed immediately on behalf of the lookup
2316          * class.
2317          * <p>
2318          * If the returned VarHandle is operated on, the declaring class will be
2319          * initialized, if it has not already been initialized.
2320          * <p>
2321          * Certain access modes of the returned VarHandle are unsupported under
2322          * the following conditions:
2323          * <ul>
2324          * <li>if the field is declared {@code final}, then the write, atomic
2325          *     update, numeric atomic update, and bitwise atomic update access
2326          *     modes are unsupported.
2327          * <li>if the field type is anything other than {@code byte},
2328          *     {@code short}, {@code char}, {@code int}, {@code long},
2329          *     {@code float}, or {@code double}, then numeric atomic update
2330          *     access modes are unsupported.
2331          * <li>if the field type is anything other than {@code boolean},
2332          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2333          *     {@code long} then bitwise atomic update access modes are
2334          *     unsupported.
2335          * </ul>
2336          * <p>
2337          * If the field is declared {@code volatile} then the returned VarHandle
2338          * will override access to the field (effectively ignore the
2339          * {@code volatile} declaration) in accordance to its specified
2340          * access modes.
2341          * <p>
2342          * If the field type is {@code float} or {@code double} then numeric
2343          * and atomic update access modes compare values using their bitwise
2344          * representation (see {@link Float#floatToRawIntBits} and
2345          * {@link Double#doubleToRawLongBits}, respectively).
2346          * @apiNote
2347          * Bitwise comparison of {@code float} values or {@code double} values,
2348          * as performed by the numeric and atomic update access modes, differ
2349          * from the primitive {@code ==} operator and the {@link Float#equals}
2350          * and {@link Double#equals} methods, specifically with respect to
2351          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2352          * Care should be taken when performing a compare and set or a compare
2353          * and exchange operation with such values since the operation may
2354          * unexpectedly fail.
2355          * There are many possible NaN values that are considered to be
2356          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2357          * provided by Java can distinguish between them.  Operation failure can
2358          * occur if the expected or witness value is a NaN value and it is
2359          * transformed (perhaps in a platform specific manner) into another NaN
2360          * value, and thus has a different bitwise representation (see
2361          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2362          * details).
2363          * The values {@code -0.0} and {@code +0.0} have different bitwise
2364          * representations but are considered equal when using the primitive
2365          * {@code ==} operator.  Operation failure can occur if, for example, a
2366          * numeric algorithm computes an expected value to be say {@code -0.0}
2367          * and previously computed the witness value to be say {@code +0.0}.
2368          * @param decl the class that declares the static field
2369          * @param name the field's name
2370          * @param type the field's type, of type {@code T}
2371          * @return a VarHandle giving access to a static field
2372          * @throws NoSuchFieldException if the field does not exist
2373          * @throws IllegalAccessException if access checking fails, or if the field is not {@code static}
2374          * @throws    SecurityException if a security manager is present and it
2375          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2376          * @throws NullPointerException if any argument is null
2377          * @since 9
2378          */
2379         public VarHandle findStaticVarHandle(Class<?> decl, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2380             MemberName getField = resolveOrFail(REF_getStatic, decl, name, type);
2381             MemberName putField = resolveOrFail(REF_putStatic, decl, name, type);
2382             return getFieldVarHandle(REF_getStatic, REF_putStatic, decl, getField, putField);
2383         }
2384 
2385         /**
2386          * Produces an early-bound method handle for a non-static method.
2387          * The receiver must have a supertype {@code defc} in which a method
2388          * of the given name and type is accessible to the lookup class.
2389          * The method and all its argument types must be accessible to the lookup object.
2390          * The type of the method handle will be that of the method,
2391          * without any insertion of an additional receiver parameter.
2392          * The given receiver will be bound into the method handle,
2393          * so that every call to the method handle will invoke the
2394          * requested method on the given receiver.
2395          * <p>
2396          * The returned method handle will have
2397          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2398          * the method's variable arity modifier bit ({@code 0x0080}) is set
2399          * <em>and</em> the trailing array argument is not the only argument.
2400          * (If the trailing array argument is the only argument,
2401          * the given receiver value will be bound to it.)
2402          * <p>
2403          * This is almost equivalent to the following code, with some differences noted below:
2404          * <blockquote><pre>{@code
2405 import static java.lang.invoke.MethodHandles.*;
2406 import static java.lang.invoke.MethodType.*;
2407 ...
2408 MethodHandle mh0 = lookup().findVirtual(defc, name, type);
2409 MethodHandle mh1 = mh0.bindTo(receiver);
2410 mh1 = mh1.withVarargs(mh0.isVarargsCollector());
2411 return mh1;
2412          * }</pre></blockquote>
2413          * where {@code defc} is either {@code receiver.getClass()} or a super
2414          * type of that class, in which the requested method is accessible
2415          * to the lookup class.
2416          * (Unlike {@code bind}, {@code bindTo} does not preserve variable arity.
2417          * Also, {@code bindTo} may throw a {@code ClassCastException} in instances where {@code bind} would
2418          * throw an {@code IllegalAccessException}, as in the case where the member is {@code protected} and
2419          * the receiver is restricted by {@code findVirtual} to the lookup class.)
2420          * @param receiver the object from which the method is accessed
2421          * @param name the name of the method
2422          * @param type the type of the method, with the receiver argument omitted
2423          * @return the desired method handle
2424          * @throws NoSuchMethodException if the method does not exist
2425          * @throws IllegalAccessException if access checking fails
2426          *                                or if the method's variable arity modifier bit
2427          *                                is set and {@code asVarargsCollector} fails
2428          * @throws    SecurityException if a security manager is present and it
2429          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2430          * @throws NullPointerException if any argument is null
2431          * @see MethodHandle#bindTo
2432          * @see #findVirtual
2433          */
2434         public MethodHandle bind(Object receiver, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2435             Class<? extends Object> refc = receiver.getClass(); // may get NPE
2436             MemberName method = resolveOrFail(REF_invokeSpecial, refc, name, type);
2437             MethodHandle mh = getDirectMethodNoRestrictInvokeSpecial(refc, method, findBoundCallerLookup(method));
2438             if (!mh.type().leadingReferenceParameter().isAssignableFrom(receiver.getClass())) {
2439                 throw new IllegalAccessException("The restricted defining class " +
2440                                                  mh.type().leadingReferenceParameter().getName() +
2441                                                  " is not assignable from receiver class " +
2442                                                  receiver.getClass().getName());
2443             }
2444             return mh.bindArgumentL(0, receiver).setVarargs(method);
2445         }
2446 
2447         /**
2448          * Makes a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2449          * to <i>m</i>, if the lookup class has permission.
2450          * If <i>m</i> is non-static, the receiver argument is treated as an initial argument.
2451          * If <i>m</i> is virtual, overriding is respected on every call.
2452          * Unlike the Core Reflection API, exceptions are <em>not</em> wrapped.
2453          * The type of the method handle will be that of the method,
2454          * with the receiver type prepended (but only if it is non-static).
2455          * If the method's {@code accessible} flag is not set,
2456          * access checking is performed immediately on behalf of the lookup class.
2457          * If <i>m</i> is not public, do not share the resulting handle with untrusted parties.
2458          * <p>
2459          * The returned method handle will have
2460          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2461          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2462          * <p>
2463          * If <i>m</i> is static, and
2464          * if the returned method handle is invoked, the method's class will
2465          * be initialized, if it has not already been initialized.
2466          * @param m the reflected method
2467          * @return a method handle which can invoke the reflected method
2468          * @throws IllegalAccessException if access checking fails
2469          *                                or if the method's variable arity modifier bit
2470          *                                is set and {@code asVarargsCollector} fails
2471          * @throws NullPointerException if the argument is null
2472          */
2473         public MethodHandle unreflect(Method m) throws IllegalAccessException {
2474             if (m.getDeclaringClass() == MethodHandle.class) {
2475                 MethodHandle mh = unreflectForMH(m);
2476                 if (mh != null)  return mh;
2477             }
2478             if (m.getDeclaringClass() == VarHandle.class) {
2479                 MethodHandle mh = unreflectForVH(m);
2480                 if (mh != null)  return mh;
2481             }
2482             MemberName method = new MemberName(m);
2483             byte refKind = method.getReferenceKind();
2484             if (refKind == REF_invokeSpecial)
2485                 refKind = REF_invokeVirtual;
2486             assert(method.isMethod());
2487             @SuppressWarnings("deprecation")
2488             Lookup lookup = m.isAccessible() ? IMPL_LOOKUP : this;
2489             return lookup.getDirectMethodNoSecurityManager(refKind, method.getDeclaringClass(), method, findBoundCallerLookup(method));
2490         }
2491         private MethodHandle unreflectForMH(Method m) {
2492             // these names require special lookups because they throw UnsupportedOperationException
2493             if (MemberName.isMethodHandleInvokeName(m.getName()))
2494                 return MethodHandleImpl.fakeMethodHandleInvoke(new MemberName(m));
2495             return null;
2496         }
2497         private MethodHandle unreflectForVH(Method m) {
2498             // these names require special lookups because they throw UnsupportedOperationException
2499             if (MemberName.isVarHandleMethodInvokeName(m.getName()))
2500                 return MethodHandleImpl.fakeVarHandleInvoke(new MemberName(m));
2501             return null;
2502         }
2503 
2504         /**
2505          * Produces a method handle for a reflected method.
2506          * It will bypass checks for overriding methods on the receiver,
2507          * <a href="MethodHandles.Lookup.html#equiv">as if called</a> from an {@code invokespecial}
2508          * instruction from within the explicitly specified {@code specialCaller}.
2509          * The type of the method handle will be that of the method,
2510          * with a suitably restricted receiver type prepended.
2511          * (The receiver type will be {@code specialCaller} or a subtype.)
2512          * If the method's {@code accessible} flag is not set,
2513          * access checking is performed immediately on behalf of the lookup class,
2514          * as if {@code invokespecial} instruction were being linked.
2515          * <p>
2516          * Before method resolution,
2517          * if the explicitly specified caller class is not identical with the
2518          * lookup class, or if this lookup object does not have
2519          * <a href="MethodHandles.Lookup.html#privacc">private access</a>
2520          * privileges, the access fails.
2521          * <p>
2522          * The returned method handle will have
2523          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2524          * the method's variable arity modifier bit ({@code 0x0080}) is set.
2525          * @param m the reflected method
2526          * @param specialCaller the class nominally calling the method
2527          * @return a method handle which can invoke the reflected method
2528          * @throws IllegalAccessException if access checking fails,
2529          *                                or if the method is {@code static},
2530          *                                or if the method's variable arity modifier bit
2531          *                                is set and {@code asVarargsCollector} fails
2532          * @throws NullPointerException if any argument is null
2533          */
2534         public MethodHandle unreflectSpecial(Method m, Class<?> specialCaller) throws IllegalAccessException {
2535             checkSpecialCaller(specialCaller, m.getDeclaringClass());
2536             Lookup specialLookup = this.in(specialCaller);
2537             MemberName method = new MemberName(m, true);
2538             assert(method.isMethod());
2539             // ignore m.isAccessible:  this is a new kind of access
2540             return specialLookup.getDirectMethodNoSecurityManager(REF_invokeSpecial, method.getDeclaringClass(), method, findBoundCallerLookup(method));
2541         }
2542 
2543         /**
2544          * Produces a method handle for a reflected constructor.
2545          * The type of the method handle will be that of the constructor,
2546          * with the return type changed to the declaring class.
2547          * The method handle will perform a {@code newInstance} operation,
2548          * creating a new instance of the constructor's class on the
2549          * arguments passed to the method handle.
2550          * <p>
2551          * If the constructor's {@code accessible} flag is not set,
2552          * access checking is performed immediately on behalf of the lookup class.
2553          * <p>
2554          * The returned method handle will have
2555          * {@linkplain MethodHandle#asVarargsCollector variable arity} if and only if
2556          * the constructor's variable arity modifier bit ({@code 0x0080}) is set.
2557          * <p>
2558          * If the returned method handle is invoked, the constructor's class will
2559          * be initialized, if it has not already been initialized.
2560          * @param c the reflected constructor
2561          * @return a method handle which can invoke the reflected constructor
2562          * @throws IllegalAccessException if access checking fails
2563          *                                or if the method's variable arity modifier bit
2564          *                                is set and {@code asVarargsCollector} fails
2565          * @throws NullPointerException if the argument is null
2566          */
2567         public MethodHandle unreflectConstructor(Constructor<?> c) throws IllegalAccessException {
2568             MemberName ctor = new MemberName(c);
2569             assert(ctor.isConstructor());
2570             @SuppressWarnings("deprecation")
2571             Lookup lookup = c.isAccessible() ? IMPL_LOOKUP : this;
2572             return lookup.getDirectConstructorNoSecurityManager(ctor.getDeclaringClass(), ctor);
2573         }
2574 
2575         /**
2576          * Produces a method handle giving read access to a reflected field.
2577          * The type of the method handle will have a return type of the field's
2578          * value type.
2579          * If the field is {@code static}, the method handle will take no arguments.
2580          * Otherwise, its single argument will be the instance containing
2581          * the field.
2582          * If the {@code Field} object's {@code accessible} flag is not set,
2583          * access checking is performed immediately on behalf of the lookup class.
2584          * <p>
2585          * If the field is static, and
2586          * if the returned method handle is invoked, the field's class will
2587          * be initialized, if it has not already been initialized.
2588          * @param f the reflected field
2589          * @return a method handle which can load values from the reflected field
2590          * @throws IllegalAccessException if access checking fails
2591          * @throws NullPointerException if the argument is null
2592          */
2593         public MethodHandle unreflectGetter(Field f) throws IllegalAccessException {
2594             return unreflectField(f, false);
2595         }
2596 
2597         /**
2598          * Produces a method handle giving write access to a reflected field.
2599          * The type of the method handle will have a void return type.
2600          * If the field is {@code static}, the method handle will take a single
2601          * argument, of the field's value type, the value to be stored.
2602          * Otherwise, the two arguments will be the instance containing
2603          * the field, and the value to be stored.
2604          * If the {@code Field} object's {@code accessible} flag is not set,
2605          * access checking is performed immediately on behalf of the lookup class.
2606          * <p>
2607          * If the field is {@code final}, write access will not be
2608          * allowed and access checking will fail, except under certain
2609          * narrow circumstances documented for {@link Field#set Field.set}.
2610          * A method handle is returned only if a corresponding call to
2611          * the {@code Field} object's {@code set} method could return
2612          * normally.  In particular, fields which are both {@code static}
2613          * and {@code final} may never be set.
2614          * <p>
2615          * If the field is {@code static}, and
2616          * if the returned method handle is invoked, the field's class will
2617          * be initialized, if it has not already been initialized.
2618          * @param f the reflected field
2619          * @return a method handle which can store values into the reflected field
2620          * @throws IllegalAccessException if access checking fails,
2621          *         or if the field is {@code final} and write access
2622          *         is not enabled on the {@code Field} object
2623          * @throws NullPointerException if the argument is null
2624          */
2625         public MethodHandle unreflectSetter(Field f) throws IllegalAccessException {
2626             return unreflectField(f, true);
2627         }
2628 
2629         private MethodHandle unreflectField(Field f, boolean isSetter) throws IllegalAccessException {
2630             MemberName field = new MemberName(f, isSetter);
2631             if (isSetter && field.isStatic() && field.isFinal())
2632                 throw field.makeAccessException("static final field has no write access", this);
2633             assert(isSetter
2634                     ? MethodHandleNatives.refKindIsSetter(field.getReferenceKind())
2635                     : MethodHandleNatives.refKindIsGetter(field.getReferenceKind()));
2636             @SuppressWarnings("deprecation")
2637             Lookup lookup = f.isAccessible() ? IMPL_LOOKUP : this;
2638             return lookup.getDirectFieldNoSecurityManager(field.getReferenceKind(), f.getDeclaringClass(), field);
2639         }
2640 
2641         /**
2642          * Produces a VarHandle giving access to a reflected field {@code f}
2643          * of type {@code T} declared in a class of type {@code R}.
2644          * The VarHandle's variable type is {@code T}.
2645          * If the field is non-static the VarHandle has one coordinate type,
2646          * {@code R}.  Otherwise, the field is static, and the VarHandle has no
2647          * coordinate types.
2648          * <p>
2649          * Access checking is performed immediately on behalf of the lookup
2650          * class, regardless of the value of the field's {@code accessible}
2651          * flag.
2652          * <p>
2653          * If the field is static, and if the returned VarHandle is operated
2654          * on, the field's declaring class will be initialized, if it has not
2655          * already been initialized.
2656          * <p>
2657          * Certain access modes of the returned VarHandle are unsupported under
2658          * the following conditions:
2659          * <ul>
2660          * <li>if the field is declared {@code final}, then the write, atomic
2661          *     update, numeric atomic update, and bitwise atomic update access
2662          *     modes are unsupported.
2663          * <li>if the field type is anything other than {@code byte},
2664          *     {@code short}, {@code char}, {@code int}, {@code long},
2665          *     {@code float}, or {@code double} then numeric atomic update
2666          *     access modes are unsupported.
2667          * <li>if the field type is anything other than {@code boolean},
2668          *     {@code byte}, {@code short}, {@code char}, {@code int} or
2669          *     {@code long} then bitwise atomic update access modes are
2670          *     unsupported.
2671          * </ul>
2672          * <p>
2673          * If the field is declared {@code volatile} then the returned VarHandle
2674          * will override access to the field (effectively ignore the
2675          * {@code volatile} declaration) in accordance to its specified
2676          * access modes.
2677          * <p>
2678          * If the field type is {@code float} or {@code double} then numeric
2679          * and atomic update access modes compare values using their bitwise
2680          * representation (see {@link Float#floatToRawIntBits} and
2681          * {@link Double#doubleToRawLongBits}, respectively).
2682          * @apiNote
2683          * Bitwise comparison of {@code float} values or {@code double} values,
2684          * as performed by the numeric and atomic update access modes, differ
2685          * from the primitive {@code ==} operator and the {@link Float#equals}
2686          * and {@link Double#equals} methods, specifically with respect to
2687          * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
2688          * Care should be taken when performing a compare and set or a compare
2689          * and exchange operation with such values since the operation may
2690          * unexpectedly fail.
2691          * There are many possible NaN values that are considered to be
2692          * {@code NaN} in Java, although no IEEE 754 floating-point operation
2693          * provided by Java can distinguish between them.  Operation failure can
2694          * occur if the expected or witness value is a NaN value and it is
2695          * transformed (perhaps in a platform specific manner) into another NaN
2696          * value, and thus has a different bitwise representation (see
2697          * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
2698          * details).
2699          * The values {@code -0.0} and {@code +0.0} have different bitwise
2700          * representations but are considered equal when using the primitive
2701          * {@code ==} operator.  Operation failure can occur if, for example, a
2702          * numeric algorithm computes an expected value to be say {@code -0.0}
2703          * and previously computed the witness value to be say {@code +0.0}.
2704          * @param f the reflected field, with a field of type {@code T}, and
2705          * a declaring class of type {@code R}
2706          * @return a VarHandle giving access to non-static fields or a static
2707          * field
2708          * @throws IllegalAccessException if access checking fails
2709          * @throws NullPointerException if the argument is null
2710          * @since 9
2711          */
2712         public VarHandle unreflectVarHandle(Field f) throws IllegalAccessException {
2713             MemberName getField = new MemberName(f, false);
2714             MemberName putField = new MemberName(f, true);
2715             return getFieldVarHandleNoSecurityManager(getField.getReferenceKind(), putField.getReferenceKind(),
2716                                                       f.getDeclaringClass(), getField, putField);
2717         }
2718 
2719         /**
2720          * Cracks a <a href="MethodHandleInfo.html#directmh">direct method handle</a>
2721          * created by this lookup object or a similar one.
2722          * Security and access checks are performed to ensure that this lookup object
2723          * is capable of reproducing the target method handle.
2724          * This means that the cracking may fail if target is a direct method handle
2725          * but was created by an unrelated lookup object.
2726          * This can happen if the method handle is <a href="MethodHandles.Lookup.html#callsens">caller sensitive</a>
2727          * and was created by a lookup object for a different class.
2728          * @param target a direct method handle to crack into symbolic reference components
2729          * @return a symbolic reference which can be used to reconstruct this method handle from this lookup object
2730          * @throws    SecurityException if a security manager is present and it
2731          *                              <a href="MethodHandles.Lookup.html#secmgr">refuses access</a>
2732          * @throws IllegalArgumentException if the target is not a direct method handle or if access checking fails
2733          * @throws    NullPointerException if the target is {@code null}
2734          * @see MethodHandleInfo
2735          * @since 1.8
2736          */
2737         public MethodHandleInfo revealDirect(MethodHandle target) {
2738             MemberName member = target.internalMemberName();
2739             if (member == null || (!member.isResolved() &&
2740                                    !member.isMethodHandleInvoke() &&
2741                                    !member.isVarHandleMethodInvoke()))
2742                 throw newIllegalArgumentException("not a direct method handle");
2743             Class<?> defc = member.getDeclaringClass();
2744             byte refKind = member.getReferenceKind();
2745             assert(MethodHandleNatives.refKindIsValid(refKind));
2746             if (refKind == REF_invokeSpecial && !target.isInvokeSpecial())
2747                 // Devirtualized method invocation is usually formally virtual.
2748                 // To avoid creating extra MemberName objects for this common case,
2749                 // we encode this extra degree of freedom using MH.isInvokeSpecial.
2750                 refKind = REF_invokeVirtual;
2751             if (refKind == REF_invokeVirtual && defc.isInterface())
2752                 // Symbolic reference is through interface but resolves to Object method (toString, etc.)
2753                 refKind = REF_invokeInterface;
2754             // Check SM permissions and member access before cracking.
2755             try {
2756                 checkAccess(refKind, defc, member);
2757                 checkSecurityManager(defc, member);
2758             } catch (IllegalAccessException ex) {
2759                 throw new IllegalArgumentException(ex);
2760             }
2761             if (allowedModes != TRUSTED && member.isCallerSensitive()) {
2762                 Class<?> callerClass = target.internalCallerClass();
2763                 if (!hasFullPrivilegeAccess() || callerClass != lookupClass())
2764                     throw new IllegalArgumentException("method handle is caller sensitive: "+callerClass);
2765             }
2766             // Produce the handle to the results.
2767             return new InfoFromMemberName(this, member, refKind);
2768         }
2769 
2770         /// Helper methods, all package-private.
2771 
2772         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, Class<?> type) throws NoSuchFieldException, IllegalAccessException {
2773             checkSymbolicClass(refc);  // do this before attempting to resolve
2774             Objects.requireNonNull(name);
2775             Objects.requireNonNull(type);
2776             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2777                                             NoSuchFieldException.class);
2778         }
2779 
2780         MemberName resolveOrFail(byte refKind, Class<?> refc, String name, MethodType type) throws NoSuchMethodException, IllegalAccessException {
2781             checkSymbolicClass(refc);  // do this before attempting to resolve
2782             Objects.requireNonNull(name);
2783             Objects.requireNonNull(type);
2784             checkMethodName(refKind, name);  // NPE check on name
2785             return IMPL_NAMES.resolveOrFail(refKind, new MemberName(refc, name, type, refKind), lookupClassOrNull(),
2786                                             NoSuchMethodException.class);
2787         }
2788 
2789         MemberName resolveOrFail(byte refKind, MemberName member) throws ReflectiveOperationException {
2790             checkSymbolicClass(member.getDeclaringClass());  // do this before attempting to resolve
2791             Objects.requireNonNull(member.getName());
2792             Objects.requireNonNull(member.getType());
2793             return IMPL_NAMES.resolveOrFail(refKind, member, lookupClassOrNull(),
2794                                             ReflectiveOperationException.class);
2795         }
2796 
2797         MemberName resolveOrNull(byte refKind, MemberName member) {
2798             // do this before attempting to resolve
2799             if (!isClassAccessible(member.getDeclaringClass())) {
2800                 return null;
2801             }
2802             Objects.requireNonNull(member.getName());
2803             Objects.requireNonNull(member.getType());
2804             return IMPL_NAMES.resolveOrNull(refKind, member, lookupClassOrNull());
2805         }
2806 
2807         void checkSymbolicClass(Class<?> refc) throws IllegalAccessException {
2808             if (!isClassAccessible(refc)) {
2809                 throw new MemberName(refc).makeAccessException("symbolic reference class is not accessible", this);
2810             }
2811         }
2812 
2813         boolean isClassAccessible(Class<?> refc) {
2814             Objects.requireNonNull(refc);
2815             Class<?> caller = lookupClassOrNull();
2816             return caller == null || VerifyAccess.isClassAccessible(refc, caller, prevLookupClass, allowedModes);
2817         }
2818 
2819         /** Check name for an illegal leading "&lt;" character. */
2820         void checkMethodName(byte refKind, String name) throws NoSuchMethodException {
2821             if (name.startsWith("<") && refKind != REF_newInvokeSpecial)
2822                 throw new NoSuchMethodException("illegal method name: "+name);
2823         }
2824 
2825 
2826         /**
2827          * Find my trustable caller class if m is a caller sensitive method.
2828          * If this lookup object has full privilege access, then the caller class is the lookupClass.
2829          * Otherwise, if m is caller-sensitive, throw IllegalAccessException.
2830          */
2831         Lookup findBoundCallerLookup(MemberName m) throws IllegalAccessException {
2832             if (MethodHandleNatives.isCallerSensitive(m) && !hasFullPrivilegeAccess()) {
2833                 // Only lookups with full privilege access are allowed to resolve caller-sensitive methods
2834                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
2835             }
2836             return this;
2837         }
2838 
2839         /**
2840          * Returns {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
2841          * @return {@code true} if this lookup has {@code PRIVATE} and {@code MODULE} access.
2842          *
2843          * @deprecated This method was originally designed to test {@code PRIVATE} access
2844          * that implies full privilege access but {@code MODULE} access has since become
2845          * independent of {@code PRIVATE} access.  It is recommended to call
2846          * {@link #hasFullPrivilegeAccess()} instead.
2847          * @since 9
2848          */
2849         @Deprecated(since="14")
2850         public boolean hasPrivateAccess() {
2851             return hasFullPrivilegeAccess();
2852         }
2853 
2854         /**
2855          * Returns {@code true} if this lookup has <em>full privilege access</em>,
2856          * i.e. {@code PRIVATE} and {@code MODULE} access.
2857          * A {@code Lookup} object must have full privilege access in order to
2858          * access all members that are allowed to the {@linkplain #lookupClass() lookup class}.
2859          *
2860          * @return {@code true} if this lookup has full privilege access.
2861          * @since 14
2862          * @see <a href="MethodHandles.Lookup.html#privacc">private and module access</a>
2863          */
2864         public boolean hasFullPrivilegeAccess() {
2865             return (allowedModes & (PRIVATE|MODULE)) == (PRIVATE|MODULE);
2866         }
2867 
2868         /**
2869          * Perform necessary <a href="MethodHandles.Lookup.html#secmgr">access checks</a>.
2870          * Determines a trustable caller class to compare with refc, the symbolic reference class.
2871          * If this lookup object has full privilege access, then the caller class is the lookupClass.
2872          */
2873         void checkSecurityManager(Class<?> refc, MemberName m) {
2874             if (allowedModes == TRUSTED)  return;
2875 
2876             SecurityManager smgr = System.getSecurityManager();
2877             if (smgr == null)  return;
2878 
2879             // Step 1:
2880             boolean fullPowerLookup = hasFullPrivilegeAccess();
2881             if (!fullPowerLookup ||
2882                 !VerifyAccess.classLoaderIsAncestor(lookupClass, refc)) {
2883                 ReflectUtil.checkPackageAccess(refc);
2884             }
2885 
2886             if (m == null) {  // findClass or accessClass
2887                 // Step 2b:
2888                 if (!fullPowerLookup) {
2889                     smgr.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
2890                 }
2891                 return;
2892             }
2893 
2894             // Step 2a:
2895             if (m.isPublic()) return;
2896             if (!fullPowerLookup) {
2897                 smgr.checkPermission(SecurityConstants.CHECK_MEMBER_ACCESS_PERMISSION);
2898             }
2899 
2900             // Step 3:
2901             Class<?> defc = m.getDeclaringClass();
2902             if (!fullPowerLookup && defc != refc) {
2903                 ReflectUtil.checkPackageAccess(defc);
2904             }
2905         }
2906 
2907         void checkMethod(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2908             boolean wantStatic = (refKind == REF_invokeStatic);
2909             String message;
2910             if (m.isConstructor())
2911                 message = "expected a method, not a constructor";
2912             else if (!m.isMethod())
2913                 message = "expected a method";
2914             else if (wantStatic != m.isStatic())
2915                 message = wantStatic ? "expected a static method" : "expected a non-static method";
2916             else
2917                 { checkAccess(refKind, refc, m); return; }
2918             throw m.makeAccessException(message, this);
2919         }
2920 
2921         void checkField(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2922             boolean wantStatic = !MethodHandleNatives.refKindHasReceiver(refKind);
2923             String message;
2924             if (wantStatic != m.isStatic())
2925                 message = wantStatic ? "expected a static field" : "expected a non-static field";
2926             else
2927                 { checkAccess(refKind, refc, m); return; }
2928             throw m.makeAccessException(message, this);
2929         }
2930 
2931         /** Check public/protected/private bits on the symbolic reference class and its member. */
2932         void checkAccess(byte refKind, Class<?> refc, MemberName m) throws IllegalAccessException {
2933             assert(m.referenceKindIsConsistentWith(refKind) &&
2934                    MethodHandleNatives.refKindIsValid(refKind) &&
2935                    (MethodHandleNatives.refKindIsField(refKind) == m.isField()));
2936             int allowedModes = this.allowedModes;
2937             if (allowedModes == TRUSTED)  return;
2938             int mods = m.getModifiers();
2939             if (Modifier.isProtected(mods) &&
2940                     refKind == REF_invokeVirtual &&
2941                     m.getDeclaringClass() == Object.class &&
2942                     m.getName().equals("clone") &&
2943                     refc.isArray()) {
2944                 // The JVM does this hack also.
2945                 // (See ClassVerifier::verify_invoke_instructions
2946                 // and LinkResolver::check_method_accessability.)
2947                 // Because the JVM does not allow separate methods on array types,
2948                 // there is no separate method for int[].clone.
2949                 // All arrays simply inherit Object.clone.
2950                 // But for access checking logic, we make Object.clone
2951                 // (normally protected) appear to be public.
2952                 // Later on, when the DirectMethodHandle is created,
2953                 // its leading argument will be restricted to the
2954                 // requested array type.
2955                 // N.B. The return type is not adjusted, because
2956                 // that is *not* the bytecode behavior.
2957                 mods ^= Modifier.PROTECTED | Modifier.PUBLIC;
2958             }
2959             if (Modifier.isProtected(mods) && refKind == REF_newInvokeSpecial) {
2960                 // cannot "new" a protected ctor in a different package
2961                 mods ^= Modifier.PROTECTED;
2962             }
2963             if (Modifier.isFinal(mods) &&
2964                     MethodHandleNatives.refKindIsSetter(refKind))
2965                 throw m.makeAccessException("unexpected set of a final field", this);
2966             int requestedModes = fixmods(mods);  // adjust 0 => PACKAGE
2967             if ((requestedModes & allowedModes) != 0) {
2968                 if (VerifyAccess.isMemberAccessible(refc, m.getDeclaringClass(),
2969                                                     mods, lookupClass(), previousLookupClass(), allowedModes))
2970                     return;
2971             } else {
2972                 // Protected members can also be checked as if they were package-private.
2973                 if ((requestedModes & PROTECTED) != 0 && (allowedModes & PACKAGE) != 0
2974                         && VerifyAccess.isSamePackage(m.getDeclaringClass(), lookupClass()))
2975                     return;
2976             }
2977             throw m.makeAccessException(accessFailedMessage(refc, m), this);
2978         }
2979 
2980         String accessFailedMessage(Class<?> refc, MemberName m) {
2981             Class<?> defc = m.getDeclaringClass();
2982             int mods = m.getModifiers();
2983             // check the class first:
2984             boolean classOK = (Modifier.isPublic(defc.getModifiers()) &&
2985                                (defc == refc ||
2986                                 Modifier.isPublic(refc.getModifiers())));
2987             if (!classOK && (allowedModes & PACKAGE) != 0) {
2988                 // ignore previous lookup class to check if default package access
2989                 classOK = (VerifyAccess.isClassAccessible(defc, lookupClass(), null, FULL_POWER_MODES) &&
2990                            (defc == refc ||
2991                             VerifyAccess.isClassAccessible(refc, lookupClass(), null, FULL_POWER_MODES)));
2992             }
2993             if (!classOK)
2994                 return "class is not public";
2995             if (Modifier.isPublic(mods))
2996                 return "access to public member failed";  // (how?, module not readable?)
2997             if (Modifier.isPrivate(mods))
2998                 return "member is private";
2999             if (Modifier.isProtected(mods))
3000                 return "member is protected";
3001             return "member is private to package";
3002         }
3003 
3004         private void checkSpecialCaller(Class<?> specialCaller, Class<?> refc) throws IllegalAccessException {
3005             int allowedModes = this.allowedModes;
3006             if (allowedModes == TRUSTED)  return;
3007             if ((lookupModes() & PRIVATE) == 0
3008                 || (specialCaller != lookupClass()
3009                        // ensure non-abstract methods in superinterfaces can be special-invoked
3010                     && !(refc != null && refc.isInterface() && refc.isAssignableFrom(specialCaller))))
3011                 throw new MemberName(specialCaller).
3012                     makeAccessException("no private access for invokespecial", this);
3013         }
3014 
3015         private boolean restrictProtectedReceiver(MemberName method) {
3016             // The accessing class only has the right to use a protected member
3017             // on itself or a subclass.  Enforce that restriction, from JVMS 5.4.4, etc.
3018             if (!method.isProtected() || method.isStatic()
3019                 || allowedModes == TRUSTED
3020                 || method.getDeclaringClass() == lookupClass()
3021                 || VerifyAccess.isSamePackage(method.getDeclaringClass(), lookupClass()))
3022                 return false;
3023             return true;
3024         }
3025         private MethodHandle restrictReceiver(MemberName method, DirectMethodHandle mh, Class<?> caller) throws IllegalAccessException {
3026             assert(!method.isStatic());
3027             // receiver type of mh is too wide; narrow to caller
3028             if (!method.getDeclaringClass().isAssignableFrom(caller)) {
3029                 throw method.makeAccessException("caller class must be a subclass below the method", caller);
3030             }
3031             MethodType rawType = mh.type();
3032             if (caller.isAssignableFrom(rawType.parameterType(0))) return mh; // no need to restrict; already narrow
3033             MethodType narrowType = rawType.changeParameterType(0, caller);
3034             assert(!mh.isVarargsCollector());  // viewAsType will lose varargs-ness
3035             assert(mh.viewAsTypeChecks(narrowType, true));
3036             return mh.copyWith(narrowType, mh.form);
3037         }
3038 
3039         /** Check access and get the requested method. */
3040         private MethodHandle getDirectMethod(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3041             final boolean doRestrict    = true;
3042             final boolean checkSecurity = true;
3043             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3044         }
3045         /** Check access and get the requested method, for invokespecial with no restriction on the application of narrowing rules. */
3046         private MethodHandle getDirectMethodNoRestrictInvokeSpecial(Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3047             final boolean doRestrict    = false;
3048             final boolean checkSecurity = true;
3049             return getDirectMethodCommon(REF_invokeSpecial, refc, method, checkSecurity, doRestrict, callerLookup);
3050         }
3051         /** Check access and get the requested method, eliding security manager checks. */
3052         private MethodHandle getDirectMethodNoSecurityManager(byte refKind, Class<?> refc, MemberName method, Lookup callerLookup) throws IllegalAccessException {
3053             final boolean doRestrict    = true;
3054             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3055             return getDirectMethodCommon(refKind, refc, method, checkSecurity, doRestrict, callerLookup);
3056         }
3057         /** Common code for all methods; do not call directly except from immediately above. */
3058         private MethodHandle getDirectMethodCommon(byte refKind, Class<?> refc, MemberName method,
3059                                                    boolean checkSecurity,
3060                                                    boolean doRestrict,
3061                                                    Lookup boundCaller) throws IllegalAccessException {
3062             checkMethod(refKind, refc, method);
3063             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3064             if (checkSecurity)
3065                 checkSecurityManager(refc, method);
3066             assert(!method.isMethodHandleInvoke());
3067 
3068             if (refKind == REF_invokeSpecial &&
3069                 refc != lookupClass() &&
3070                 !refc.isInterface() &&
3071                 refc != lookupClass().getSuperclass() &&
3072                 refc.isAssignableFrom(lookupClass())) {
3073                 assert(!method.getName().equals("<init>"));  // not this code path
3074 
3075                 // Per JVMS 6.5, desc. of invokespecial instruction:
3076                 // If the method is in a superclass of the LC,
3077                 // and if our original search was above LC.super,
3078                 // repeat the search (symbolic lookup) from LC.super
3079                 // and continue with the direct superclass of that class,
3080                 // and so forth, until a match is found or no further superclasses exist.
3081                 // FIXME: MemberName.resolve should handle this instead.
3082                 Class<?> refcAsSuper = lookupClass();
3083                 MemberName m2;
3084                 do {
3085                     refcAsSuper = refcAsSuper.getSuperclass();
3086                     m2 = new MemberName(refcAsSuper,
3087                                         method.getName(),
3088                                         method.getMethodType(),
3089                                         REF_invokeSpecial);
3090                     m2 = IMPL_NAMES.resolveOrNull(refKind, m2, lookupClassOrNull());
3091                 } while (m2 == null &&         // no method is found yet
3092                          refc != refcAsSuper); // search up to refc
3093                 if (m2 == null)  throw new InternalError(method.toString());
3094                 method = m2;
3095                 refc = refcAsSuper;
3096                 // redo basic checks
3097                 checkMethod(refKind, refc, method);
3098             }
3099             DirectMethodHandle dmh = DirectMethodHandle.make(refKind, refc, method, lookupClass());
3100             MethodHandle mh = dmh;
3101             // Optionally narrow the receiver argument to lookupClass using restrictReceiver.
3102             if ((doRestrict && refKind == REF_invokeSpecial) ||
3103                     (MethodHandleNatives.refKindHasReceiver(refKind) && restrictProtectedReceiver(method))) {
3104                 mh = restrictReceiver(method, dmh, lookupClass());
3105             }
3106             mh = maybeBindCaller(method, mh, boundCaller);
3107             mh = mh.setVarargs(method);
3108             return mh;
3109         }
3110         private MethodHandle maybeBindCaller(MemberName method, MethodHandle mh, Lookup boundCaller)
3111                                              throws IllegalAccessException {
3112             if (boundCaller.allowedModes == TRUSTED || !MethodHandleNatives.isCallerSensitive(method))
3113                 return mh;
3114 
3115             // boundCaller must have full privilege access.
3116             // It should have been checked by findBoundCallerLookup. Safe to check this again.
3117             if (!boundCaller.hasFullPrivilegeAccess())
3118                 throw new IllegalAccessException("Attempt to lookup caller-sensitive method using restricted lookup object");
3119 
3120             MethodHandle cbmh = MethodHandleImpl.bindCaller(mh, boundCaller.lookupClass);
3121             // Note: caller will apply varargs after this step happens.
3122             return cbmh;
3123         }
3124 
3125         /** Check access and get the requested field. */
3126         private MethodHandle getDirectField(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3127             final boolean checkSecurity = true;
3128             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3129         }
3130         /** Check access and get the requested field, eliding security manager checks. */
3131         private MethodHandle getDirectFieldNoSecurityManager(byte refKind, Class<?> refc, MemberName field) throws IllegalAccessException {
3132             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3133             return getDirectFieldCommon(refKind, refc, field, checkSecurity);
3134         }
3135         /** Common code for all fields; do not call directly except from immediately above. */
3136         private MethodHandle getDirectFieldCommon(byte refKind, Class<?> refc, MemberName field,
3137                                                   boolean checkSecurity) throws IllegalAccessException {
3138             checkField(refKind, refc, field);
3139             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3140             if (checkSecurity)
3141                 checkSecurityManager(refc, field);
3142             DirectMethodHandle dmh = DirectMethodHandle.make(refc, field);
3143             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(refKind) &&
3144                                     restrictProtectedReceiver(field));
3145             if (doRestrict)
3146                 return restrictReceiver(field, dmh, lookupClass());
3147             return dmh;
3148         }
3149         private VarHandle getFieldVarHandle(byte getRefKind, byte putRefKind,
3150                                             Class<?> refc, MemberName getField, MemberName putField)
3151                 throws IllegalAccessException {
3152             final boolean checkSecurity = true;
3153             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3154         }
3155         private VarHandle getFieldVarHandleNoSecurityManager(byte getRefKind, byte putRefKind,
3156                                                              Class<?> refc, MemberName getField, MemberName putField)
3157                 throws IllegalAccessException {
3158             final boolean checkSecurity = false;
3159             return getFieldVarHandleCommon(getRefKind, putRefKind, refc, getField, putField, checkSecurity);
3160         }
3161         private VarHandle getFieldVarHandleCommon(byte getRefKind, byte putRefKind,
3162                                                   Class<?> refc, MemberName getField, MemberName putField,
3163                                                   boolean checkSecurity) throws IllegalAccessException {
3164             assert getField.isStatic() == putField.isStatic();
3165             assert getField.isGetter() && putField.isSetter();
3166             assert MethodHandleNatives.refKindIsStatic(getRefKind) == MethodHandleNatives.refKindIsStatic(putRefKind);
3167             assert MethodHandleNatives.refKindIsGetter(getRefKind) && MethodHandleNatives.refKindIsSetter(putRefKind);
3168 
3169             checkField(getRefKind, refc, getField);
3170             if (checkSecurity)
3171                 checkSecurityManager(refc, getField);
3172 
3173             if (!putField.isFinal()) {
3174                 // A VarHandle does not support updates to final fields, any
3175                 // such VarHandle to a final field will be read-only and
3176                 // therefore the following write-based accessibility checks are
3177                 // only required for non-final fields
3178                 checkField(putRefKind, refc, putField);
3179                 if (checkSecurity)
3180                     checkSecurityManager(refc, putField);
3181             }
3182 
3183             boolean doRestrict = (MethodHandleNatives.refKindHasReceiver(getRefKind) &&
3184                                   restrictProtectedReceiver(getField));
3185             if (doRestrict) {
3186                 assert !getField.isStatic();
3187                 // receiver type of VarHandle is too wide; narrow to caller
3188                 if (!getField.getDeclaringClass().isAssignableFrom(lookupClass())) {
3189                     throw getField.makeAccessException("caller class must be a subclass below the method", lookupClass());
3190                 }
3191                 refc = lookupClass();
3192             }
3193             return VarHandles.makeFieldHandle(getField, refc, getField.getFieldType(), this.allowedModes == TRUSTED);
3194         }
3195         /** Check access and get the requested constructor. */
3196         private MethodHandle getDirectConstructor(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3197             final boolean checkSecurity = true;
3198             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3199         }
3200         /** Check access and get the requested constructor, eliding security manager checks. */
3201         private MethodHandle getDirectConstructorNoSecurityManager(Class<?> refc, MemberName ctor) throws IllegalAccessException {
3202             final boolean checkSecurity = false;  // not needed for reflection or for linking CONSTANT_MH constants
3203             return getDirectConstructorCommon(refc, ctor, checkSecurity);
3204         }
3205         /** Common code for all constructors; do not call directly except from immediately above. */
3206         private MethodHandle getDirectConstructorCommon(Class<?> refc, MemberName ctor,
3207                                                   boolean checkSecurity) throws IllegalAccessException {
3208             assert(ctor.isConstructor());
3209             checkAccess(REF_newInvokeSpecial, refc, ctor);
3210             // Optionally check with the security manager; this isn't needed for unreflect* calls.
3211             if (checkSecurity)
3212                 checkSecurityManager(refc, ctor);
3213             assert(!MethodHandleNatives.isCallerSensitive(ctor));  // maybeBindCaller not relevant here
3214             return DirectMethodHandle.make(ctor).setVarargs(ctor);
3215         }
3216 
3217         /** Hook called from the JVM (via MethodHandleNatives) to link MH constants:
3218          */
3219         /*non-public*/
3220         MethodHandle linkMethodHandleConstant(byte refKind, Class<?> defc, String name, Object type)
3221                 throws ReflectiveOperationException {
3222             if (!(type instanceof Class || type instanceof MethodType))
3223                 throw new InternalError("unresolved MemberName");
3224             MemberName member = new MemberName(refKind, defc, name, type);
3225             MethodHandle mh = LOOKASIDE_TABLE.get(member);
3226             if (mh != null) {
3227                 checkSymbolicClass(defc);
3228                 return mh;
3229             }
3230             if (defc == MethodHandle.class && refKind == REF_invokeVirtual) {
3231                 // Treat MethodHandle.invoke and invokeExact specially.
3232                 mh = findVirtualForMH(member.getName(), member.getMethodType());
3233                 if (mh != null) {
3234                     return mh;
3235                 }
3236             } else if (defc == VarHandle.class && refKind == REF_invokeVirtual) {
3237                 // Treat signature-polymorphic methods on VarHandle specially.
3238                 mh = findVirtualForVH(member.getName(), member.getMethodType());
3239                 if (mh != null) {
3240                     return mh;
3241                 }
3242             }
3243             MemberName resolved = resolveOrFail(refKind, member);
3244             mh = getDirectMethodForConstant(refKind, defc, resolved);
3245             if (mh instanceof DirectMethodHandle
3246                     && canBeCached(refKind, defc, resolved)) {
3247                 MemberName key = mh.internalMemberName();
3248                 if (key != null) {
3249                     key = key.asNormalOriginal();
3250                 }
3251                 if (member.equals(key)) {  // better safe than sorry
3252                     LOOKASIDE_TABLE.put(key, (DirectMethodHandle) mh);
3253                 }
3254             }
3255             return mh;
3256         }
3257         private boolean canBeCached(byte refKind, Class<?> defc, MemberName member) {
3258             if (refKind == REF_invokeSpecial) {
3259                 return false;
3260             }
3261             if (!Modifier.isPublic(defc.getModifiers()) ||
3262                     !Modifier.isPublic(member.getDeclaringClass().getModifiers()) ||
3263                     !member.isPublic() ||
3264                     member.isCallerSensitive()) {
3265                 return false;
3266             }
3267             ClassLoader loader = defc.getClassLoader();
3268             if (loader != null) {
3269                 ClassLoader sysl = ClassLoader.getSystemClassLoader();
3270                 boolean found = false;
3271                 while (sysl != null) {
3272                     if (loader == sysl) { found = true; break; }
3273                     sysl = sysl.getParent();
3274                 }
3275                 if (!found) {
3276                     return false;
3277                 }
3278             }
3279             try {
3280                 MemberName resolved2 = publicLookup().resolveOrNull(refKind,
3281                     new MemberName(refKind, defc, member.getName(), member.getType()));
3282                 if (resolved2 == null) {
3283                     return false;
3284                 }
3285                 checkSecurityManager(defc, resolved2);
3286             } catch (SecurityException ex) {
3287                 return false;
3288             }
3289             return true;
3290         }
3291         private MethodHandle getDirectMethodForConstant(byte refKind, Class<?> defc, MemberName member)
3292                 throws ReflectiveOperationException {
3293             if (MethodHandleNatives.refKindIsField(refKind)) {
3294                 return getDirectFieldNoSecurityManager(refKind, defc, member);
3295             } else if (MethodHandleNatives.refKindIsMethod(refKind)) {
3296                 return getDirectMethodNoSecurityManager(refKind, defc, member, findBoundCallerLookup(member));
3297             } else if (refKind == REF_newInvokeSpecial) {
3298                 return getDirectConstructorNoSecurityManager(defc, member);
3299             }
3300             // oops
3301             throw newIllegalArgumentException("bad MethodHandle constant #"+member);
3302         }
3303 
3304         static ConcurrentHashMap<MemberName, DirectMethodHandle> LOOKASIDE_TABLE = new ConcurrentHashMap<>();
3305     }
3306 
3307     /**
3308      * Produces a method handle constructing arrays of a desired type,
3309      * as if by the {@code anewarray} bytecode.
3310      * The return type of the method handle will be the array type.
3311      * The type of its sole argument will be {@code int}, which specifies the size of the array.
3312      *
3313      * <p> If the returned method handle is invoked with a negative
3314      * array size, a {@code NegativeArraySizeException} will be thrown.
3315      *
3316      * @param arrayClass an array type
3317      * @return a method handle which can create arrays of the given type
3318      * @throws NullPointerException if the argument is {@code null}
3319      * @throws IllegalArgumentException if {@code arrayClass} is not an array type
3320      * @see java.lang.reflect.Array#newInstance(Class, int)
3321      * @jvms 6.5 {@code anewarray} Instruction
3322      * @since 9
3323      */
3324     public static MethodHandle arrayConstructor(Class<?> arrayClass) throws IllegalArgumentException {
3325         if (!arrayClass.isArray()) {
3326             throw newIllegalArgumentException("not an array class: " + arrayClass.getName());
3327         }
3328         MethodHandle ani = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_Array_newInstance).
3329                 bindTo(arrayClass.getComponentType());
3330         return ani.asType(ani.type().changeReturnType(arrayClass));
3331     }
3332 
3333     /**
3334      * Produces a method handle returning the length of an array,
3335      * as if by the {@code arraylength} bytecode.
3336      * The type of the method handle will have {@code int} as return type,
3337      * and its sole argument will be the array type.
3338      *
3339      * <p> If the returned method handle is invoked with a {@code null}
3340      * array reference, a {@code NullPointerException} will be thrown.
3341      *
3342      * @param arrayClass an array type
3343      * @return a method handle which can retrieve the length of an array of the given array type
3344      * @throws NullPointerException if the argument is {@code null}
3345      * @throws IllegalArgumentException if arrayClass is not an array type
3346      * @jvms 6.5 {@code arraylength} Instruction
3347      * @since 9
3348      */
3349     public static MethodHandle arrayLength(Class<?> arrayClass) throws IllegalArgumentException {
3350         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.LENGTH);
3351     }
3352 
3353     /**
3354      * Produces a method handle giving read access to elements of an array,
3355      * as if by the {@code aaload} bytecode.
3356      * The type of the method handle will have a return type of the array's
3357      * element type.  Its first argument will be the array type,
3358      * and the second will be {@code int}.
3359      *
3360      * <p> When the returned method handle is invoked,
3361      * the array reference and array index are checked.
3362      * A {@code NullPointerException} will be thrown if the array reference
3363      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3364      * thrown if the index is negative or if it is greater than or equal to
3365      * the length of the array.
3366      *
3367      * @param arrayClass an array type
3368      * @return a method handle which can load values from the given array type
3369      * @throws NullPointerException if the argument is null
3370      * @throws  IllegalArgumentException if arrayClass is not an array type
3371      * @jvms 6.5 {@code aaload} Instruction
3372      */
3373     public static MethodHandle arrayElementGetter(Class<?> arrayClass) throws IllegalArgumentException {
3374         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.GET);
3375     }
3376 
3377     /**
3378      * Produces a method handle giving write access to elements of an array,
3379      * as if by the {@code astore} bytecode.
3380      * The type of the method handle will have a void return type.
3381      * Its last argument will be the array's element type.
3382      * The first and second arguments will be the array type and int.
3383      *
3384      * <p> When the returned method handle is invoked,
3385      * the array reference and array index are checked.
3386      * A {@code NullPointerException} will be thrown if the array reference
3387      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3388      * thrown if the index is negative or if it is greater than or equal to
3389      * the length of the array.
3390      *
3391      * @param arrayClass the class of an array
3392      * @return a method handle which can store values into the array type
3393      * @throws NullPointerException if the argument is null
3394      * @throws IllegalArgumentException if arrayClass is not an array type
3395      * @jvms 6.5 {@code aastore} Instruction
3396      */
3397     public static MethodHandle arrayElementSetter(Class<?> arrayClass) throws IllegalArgumentException {
3398         return MethodHandleImpl.makeArrayElementAccessor(arrayClass, MethodHandleImpl.ArrayAccess.SET);
3399     }
3400 
3401     /**
3402      * Produces a VarHandle giving access to elements of an array of type
3403      * {@code arrayClass}.  The VarHandle's variable type is the component type
3404      * of {@code arrayClass} and the list of coordinate types is
3405      * {@code (arrayClass, int)}, where the {@code int} coordinate type
3406      * corresponds to an argument that is an index into an array.
3407      * <p>
3408      * Certain access modes of the returned VarHandle are unsupported under
3409      * the following conditions:
3410      * <ul>
3411      * <li>if the component type is anything other than {@code byte},
3412      *     {@code short}, {@code char}, {@code int}, {@code long},
3413      *     {@code float}, or {@code double} then numeric atomic update access
3414      *     modes are unsupported.
3415      * <li>if the field type is anything other than {@code boolean},
3416      *     {@code byte}, {@code short}, {@code char}, {@code int} or
3417      *     {@code long} then bitwise atomic update access modes are
3418      *     unsupported.
3419      * </ul>
3420      * <p>
3421      * If the component type is {@code float} or {@code double} then numeric
3422      * and atomic update access modes compare values using their bitwise
3423      * representation (see {@link Float#floatToRawIntBits} and
3424      * {@link Double#doubleToRawLongBits}, respectively).
3425      *
3426      * <p> When the returned {@code VarHandle} is invoked,
3427      * the array reference and array index are checked.
3428      * A {@code NullPointerException} will be thrown if the array reference
3429      * is {@code null} and an {@code ArrayIndexOutOfBoundsException} will be
3430      * thrown if the index is negative or if it is greater than or equal to
3431      * the length of the array.
3432      *
3433      * @apiNote
3434      * Bitwise comparison of {@code float} values or {@code double} values,
3435      * as performed by the numeric and atomic update access modes, differ
3436      * from the primitive {@code ==} operator and the {@link Float#equals}
3437      * and {@link Double#equals} methods, specifically with respect to
3438      * comparing NaN values or comparing {@code -0.0} with {@code +0.0}.
3439      * Care should be taken when performing a compare and set or a compare
3440      * and exchange operation with such values since the operation may
3441      * unexpectedly fail.
3442      * There are many possible NaN values that are considered to be
3443      * {@code NaN} in Java, although no IEEE 754 floating-point operation
3444      * provided by Java can distinguish between them.  Operation failure can
3445      * occur if the expected or witness value is a NaN value and it is
3446      * transformed (perhaps in a platform specific manner) into another NaN
3447      * value, and thus has a different bitwise representation (see
3448      * {@link Float#intBitsToFloat} or {@link Double#longBitsToDouble} for more
3449      * details).
3450      * The values {@code -0.0} and {@code +0.0} have different bitwise
3451      * representations but are considered equal when using the primitive
3452      * {@code ==} operator.  Operation failure can occur if, for example, a
3453      * numeric algorithm computes an expected value to be say {@code -0.0}
3454      * and previously computed the witness value to be say {@code +0.0}.
3455      * @param arrayClass the class of an array, of type {@code T[]}
3456      * @return a VarHandle giving access to elements of an array
3457      * @throws NullPointerException if the arrayClass is null
3458      * @throws IllegalArgumentException if arrayClass is not an array type
3459      * @since 9
3460      */
3461     public static VarHandle arrayElementVarHandle(Class<?> arrayClass) throws IllegalArgumentException {
3462         return VarHandles.makeArrayElementHandle(arrayClass);
3463     }
3464 
3465     /**
3466      * Produces a VarHandle giving access to elements of a {@code byte[]} array
3467      * viewed as if it were a different primitive array type, such as
3468      * {@code int[]} or {@code long[]}.
3469      * The VarHandle's variable type is the component type of
3470      * {@code viewArrayClass} and the list of coordinate types is
3471      * {@code (byte[], int)}, where the {@code int} coordinate type
3472      * corresponds to an argument that is an index into a {@code byte[]} array.
3473      * The returned VarHandle accesses bytes at an index in a {@code byte[]}
3474      * array, composing bytes to or from a value of the component type of
3475      * {@code viewArrayClass} according to the given endianness.
3476      * <p>
3477      * The supported component types (variables types) are {@code short},
3478      * {@code char}, {@code int}, {@code long}, {@code float} and
3479      * {@code double}.
3480      * <p>
3481      * Access of bytes at a given index will result in an
3482      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3483      * or greater than the {@code byte[]} array length minus the size (in bytes)
3484      * of {@code T}.
3485      * <p>
3486      * Access of bytes at an index may be aligned or misaligned for {@code T},
3487      * with respect to the underlying memory address, {@code A} say, associated
3488      * with the array and index.
3489      * If access is misaligned then access for anything other than the
3490      * {@code get} and {@code set} access modes will result in an
3491      * {@code IllegalStateException}.  In such cases atomic access is only
3492      * guaranteed with respect to the largest power of two that divides the GCD
3493      * of {@code A} and the size (in bytes) of {@code T}.
3494      * If access is aligned then following access modes are supported and are
3495      * guaranteed to support atomic access:
3496      * <ul>
3497      * <li>read write access modes for all {@code T}, with the exception of
3498      *     access modes {@code get} and {@code set} for {@code long} and
3499      *     {@code double} on 32-bit platforms.
3500      * <li>atomic update access modes for {@code int}, {@code long},
3501      *     {@code float} or {@code double}.
3502      *     (Future major platform releases of the JDK may support additional
3503      *     types for certain currently unsupported access modes.)
3504      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3505      *     (Future major platform releases of the JDK may support additional
3506      *     numeric types for certain currently unsupported access modes.)
3507      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3508      *     (Future major platform releases of the JDK may support additional
3509      *     numeric types for certain currently unsupported access modes.)
3510      * </ul>
3511      * <p>
3512      * Misaligned access, and therefore atomicity guarantees, may be determined
3513      * for {@code byte[]} arrays without operating on a specific array.  Given
3514      * an {@code index}, {@code T} and it's corresponding boxed type,
3515      * {@code T_BOX}, misalignment may be determined as follows:
3516      * <pre>{@code
3517      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3518      * int misalignedAtZeroIndex = ByteBuffer.wrap(new byte[0]).
3519      *     alignmentOffset(0, sizeOfT);
3520      * int misalignedAtIndex = (misalignedAtZeroIndex + index) % sizeOfT;
3521      * boolean isMisaligned = misalignedAtIndex != 0;
3522      * }</pre>
3523      * <p>
3524      * If the variable type is {@code float} or {@code double} then atomic
3525      * update access modes compare values using their bitwise representation
3526      * (see {@link Float#floatToRawIntBits} and
3527      * {@link Double#doubleToRawLongBits}, respectively).
3528      * @param viewArrayClass the view array class, with a component type of
3529      * type {@code T}
3530      * @param byteOrder the endianness of the view array elements, as
3531      * stored in the underlying {@code byte} array
3532      * @return a VarHandle giving access to elements of a {@code byte[]} array
3533      * viewed as if elements corresponding to the components type of the view
3534      * array class
3535      * @throws NullPointerException if viewArrayClass or byteOrder is null
3536      * @throws IllegalArgumentException if viewArrayClass is not an array type
3537      * @throws UnsupportedOperationException if the component type of
3538      * viewArrayClass is not supported as a variable type
3539      * @since 9
3540      */
3541     public static VarHandle byteArrayViewVarHandle(Class<?> viewArrayClass,
3542                                      ByteOrder byteOrder) throws IllegalArgumentException {
3543         Objects.requireNonNull(byteOrder);
3544         return VarHandles.byteArrayViewHandle(viewArrayClass,
3545                                               byteOrder == ByteOrder.BIG_ENDIAN);
3546     }
3547 
3548     /**
3549      * Produces a VarHandle giving access to elements of a {@code ByteBuffer}
3550      * viewed as if it were an array of elements of a different primitive
3551      * component type to that of {@code byte}, such as {@code int[]} or
3552      * {@code long[]}.
3553      * The VarHandle's variable type is the component type of
3554      * {@code viewArrayClass} and the list of coordinate types is
3555      * {@code (ByteBuffer, int)}, where the {@code int} coordinate type
3556      * corresponds to an argument that is an index into a {@code byte[]} array.
3557      * The returned VarHandle accesses bytes at an index in a
3558      * {@code ByteBuffer}, composing bytes to or from a value of the component
3559      * type of {@code viewArrayClass} according to the given endianness.
3560      * <p>
3561      * The supported component types (variables types) are {@code short},
3562      * {@code char}, {@code int}, {@code long}, {@code float} and
3563      * {@code double}.
3564      * <p>
3565      * Access will result in a {@code ReadOnlyBufferException} for anything
3566      * other than the read access modes if the {@code ByteBuffer} is read-only.
3567      * <p>
3568      * Access of bytes at a given index will result in an
3569      * {@code IndexOutOfBoundsException} if the index is less than {@code 0}
3570      * or greater than the {@code ByteBuffer} limit minus the size (in bytes) of
3571      * {@code T}.
3572      * <p>
3573      * Access of bytes at an index may be aligned or misaligned for {@code T},
3574      * with respect to the underlying memory address, {@code A} say, associated
3575      * with the {@code ByteBuffer} and index.
3576      * If access is misaligned then access for anything other than the
3577      * {@code get} and {@code set} access modes will result in an
3578      * {@code IllegalStateException}.  In such cases atomic access is only
3579      * guaranteed with respect to the largest power of two that divides the GCD
3580      * of {@code A} and the size (in bytes) of {@code T}.
3581      * If access is aligned then following access modes are supported and are
3582      * guaranteed to support atomic access:
3583      * <ul>
3584      * <li>read write access modes for all {@code T}, with the exception of
3585      *     access modes {@code get} and {@code set} for {@code long} and
3586      *     {@code double} on 32-bit platforms.
3587      * <li>atomic update access modes for {@code int}, {@code long},
3588      *     {@code float} or {@code double}.
3589      *     (Future major platform releases of the JDK may support additional
3590      *     types for certain currently unsupported access modes.)
3591      * <li>numeric atomic update access modes for {@code int} and {@code long}.
3592      *     (Future major platform releases of the JDK may support additional
3593      *     numeric types for certain currently unsupported access modes.)
3594      * <li>bitwise atomic update access modes for {@code int} and {@code long}.
3595      *     (Future major platform releases of the JDK may support additional
3596      *     numeric types for certain currently unsupported access modes.)
3597      * </ul>
3598      * <p>
3599      * Misaligned access, and therefore atomicity guarantees, may be determined
3600      * for a {@code ByteBuffer}, {@code bb} (direct or otherwise), an
3601      * {@code index}, {@code T} and it's corresponding boxed type,
3602      * {@code T_BOX}, as follows:
3603      * <pre>{@code
3604      * int sizeOfT = T_BOX.BYTES;  // size in bytes of T
3605      * ByteBuffer bb = ...
3606      * int misalignedAtIndex = bb.alignmentOffset(index, sizeOfT);
3607      * boolean isMisaligned = misalignedAtIndex != 0;
3608      * }</pre>
3609      * <p>
3610      * If the variable type is {@code float} or {@code double} then atomic
3611      * update access modes compare values using their bitwise representation
3612      * (see {@link Float#floatToRawIntBits} and
3613      * {@link Double#doubleToRawLongBits}, respectively).
3614      * @param viewArrayClass the view array class, with a component type of
3615      * type {@code T}
3616      * @param byteOrder the endianness of the view array elements, as
3617      * stored in the underlying {@code ByteBuffer} (Note this overrides the
3618      * endianness of a {@code ByteBuffer})
3619      * @return a VarHandle giving access to elements of a {@code ByteBuffer}
3620      * viewed as if elements corresponding to the components type of the view
3621      * array class
3622      * @throws NullPointerException if viewArrayClass or byteOrder is null
3623      * @throws IllegalArgumentException if viewArrayClass is not an array type
3624      * @throws UnsupportedOperationException if the component type of
3625      * viewArrayClass is not supported as a variable type
3626      * @since 9
3627      */
3628     public static VarHandle byteBufferViewVarHandle(Class<?> viewArrayClass,
3629                                       ByteOrder byteOrder) throws IllegalArgumentException {
3630         Objects.requireNonNull(byteOrder);
3631         return VarHandles.makeByteBufferViewHandle(viewArrayClass,
3632                                                    byteOrder == ByteOrder.BIG_ENDIAN);
3633     }
3634 
3635 
3636     /// method handle invocation (reflective style)
3637 
3638     /**
3639      * Produces a method handle which will invoke any method handle of the
3640      * given {@code type}, with a given number of trailing arguments replaced by
3641      * a single trailing {@code Object[]} array.
3642      * The resulting invoker will be a method handle with the following
3643      * arguments:
3644      * <ul>
3645      * <li>a single {@code MethodHandle} target
3646      * <li>zero or more leading values (counted by {@code leadingArgCount})
3647      * <li>an {@code Object[]} array containing trailing arguments
3648      * </ul>
3649      * <p>
3650      * The invoker will invoke its target like a call to {@link MethodHandle#invoke invoke} with
3651      * the indicated {@code type}.
3652      * That is, if the target is exactly of the given {@code type}, it will behave
3653      * like {@code invokeExact}; otherwise it behave as if {@link MethodHandle#asType asType}
3654      * is used to convert the target to the required {@code type}.
3655      * <p>
3656      * The type of the returned invoker will not be the given {@code type}, but rather
3657      * will have all parameters except the first {@code leadingArgCount}
3658      * replaced by a single array of type {@code Object[]}, which will be
3659      * the final parameter.
3660      * <p>
3661      * Before invoking its target, the invoker will spread the final array, apply
3662      * reference casts as necessary, and unbox and widen primitive arguments.
3663      * If, when the invoker is called, the supplied array argument does
3664      * not have the correct number of elements, the invoker will throw
3665      * an {@link IllegalArgumentException} instead of invoking the target.
3666      * <p>
3667      * This method is equivalent to the following code (though it may be more efficient):
3668      * <blockquote><pre>{@code
3669 MethodHandle invoker = MethodHandles.invoker(type);
3670 int spreadArgCount = type.parameterCount() - leadingArgCount;
3671 invoker = invoker.asSpreader(Object[].class, spreadArgCount);
3672 return invoker;
3673      * }</pre></blockquote>
3674      * This method throws no reflective or security exceptions.
3675      * @param type the desired target type
3676      * @param leadingArgCount number of fixed arguments, to be passed unchanged to the target
3677      * @return a method handle suitable for invoking any method handle of the given type
3678      * @throws NullPointerException if {@code type} is null
3679      * @throws IllegalArgumentException if {@code leadingArgCount} is not in
3680      *                  the range from 0 to {@code type.parameterCount()} inclusive,
3681      *                  or if the resulting method handle's type would have
3682      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3683      */
3684     public static MethodHandle spreadInvoker(MethodType type, int leadingArgCount) {
3685         if (leadingArgCount < 0 || leadingArgCount > type.parameterCount())
3686             throw newIllegalArgumentException("bad argument count", leadingArgCount);
3687         type = type.asSpreaderType(Object[].class, leadingArgCount, type.parameterCount() - leadingArgCount);
3688         return type.invokers().spreadInvoker(leadingArgCount);
3689     }
3690 
3691     /**
3692      * Produces a special <em>invoker method handle</em> which can be used to
3693      * invoke any method handle of the given type, as if by {@link MethodHandle#invokeExact invokeExact}.
3694      * The resulting invoker will have a type which is
3695      * exactly equal to the desired type, except that it will accept
3696      * an additional leading argument of type {@code MethodHandle}.
3697      * <p>
3698      * This method is equivalent to the following code (though it may be more efficient):
3699      * {@code publicLookup().findVirtual(MethodHandle.class, "invokeExact", type)}
3700      *
3701      * <p style="font-size:smaller;">
3702      * <em>Discussion:</em>
3703      * Invoker method handles can be useful when working with variable method handles
3704      * of unknown types.
3705      * For example, to emulate an {@code invokeExact} call to a variable method
3706      * handle {@code M}, extract its type {@code T},
3707      * look up the invoker method {@code X} for {@code T},
3708      * and call the invoker method, as {@code X.invoke(T, A...)}.
3709      * (It would not work to call {@code X.invokeExact}, since the type {@code T}
3710      * is unknown.)
3711      * If spreading, collecting, or other argument transformations are required,
3712      * they can be applied once to the invoker {@code X} and reused on many {@code M}
3713      * method handle values, as long as they are compatible with the type of {@code X}.
3714      * <p style="font-size:smaller;">
3715      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3716      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3717      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3718      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3719      * <p>
3720      * This method throws no reflective or security exceptions.
3721      * @param type the desired target type
3722      * @return a method handle suitable for invoking any method handle of the given type
3723      * @throws IllegalArgumentException if the resulting method handle's type would have
3724      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3725      */
3726     public static MethodHandle exactInvoker(MethodType type) {
3727         return type.invokers().exactInvoker();
3728     }
3729 
3730     /**
3731      * Produces a special <em>invoker method handle</em> which can be used to
3732      * invoke any method handle compatible with the given type, as if by {@link MethodHandle#invoke invoke}.
3733      * The resulting invoker will have a type which is
3734      * exactly equal to the desired type, except that it will accept
3735      * an additional leading argument of type {@code MethodHandle}.
3736      * <p>
3737      * Before invoking its target, if the target differs from the expected type,
3738      * the invoker will apply reference casts as
3739      * necessary and box, unbox, or widen primitive values, as if by {@link MethodHandle#asType asType}.
3740      * Similarly, the return value will be converted as necessary.
3741      * If the target is a {@linkplain MethodHandle#asVarargsCollector variable arity method handle},
3742      * the required arity conversion will be made, again as if by {@link MethodHandle#asType asType}.
3743      * <p>
3744      * This method is equivalent to the following code (though it may be more efficient):
3745      * {@code publicLookup().findVirtual(MethodHandle.class, "invoke", type)}
3746      * <p style="font-size:smaller;">
3747      * <em>Discussion:</em>
3748      * A {@linkplain MethodType#genericMethodType general method type} is one which
3749      * mentions only {@code Object} arguments and return values.
3750      * An invoker for such a type is capable of calling any method handle
3751      * of the same arity as the general type.
3752      * <p style="font-size:smaller;">
3753      * <em>(Note:  The invoker method is not available via the Core Reflection API.
3754      * An attempt to call {@linkplain java.lang.reflect.Method#invoke java.lang.reflect.Method.invoke}
3755      * on the declared {@code invokeExact} or {@code invoke} method will raise an
3756      * {@link java.lang.UnsupportedOperationException UnsupportedOperationException}.)</em>
3757      * <p>
3758      * This method throws no reflective or security exceptions.
3759      * @param type the desired target type
3760      * @return a method handle suitable for invoking any method handle convertible to the given type
3761      * @throws IllegalArgumentException if the resulting method handle's type would have
3762      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
3763      */
3764     public static MethodHandle invoker(MethodType type) {
3765         return type.invokers().genericInvoker();
3766     }
3767 
3768     /**
3769      * Produces a special <em>invoker method handle</em> which can be used to
3770      * invoke a signature-polymorphic access mode method on any VarHandle whose
3771      * associated access mode type is compatible with the given type.
3772      * The resulting invoker will have a type which is exactly equal to the
3773      * desired given type, except that it will accept an additional leading
3774      * argument of type {@code VarHandle}.
3775      *
3776      * @param accessMode the VarHandle access mode
3777      * @param type the desired target type
3778      * @return a method handle suitable for invoking an access mode method of
3779      *         any VarHandle whose access mode type is of the given type.
3780      * @since 9
3781      */
3782     public static MethodHandle varHandleExactInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3783         return type.invokers().varHandleMethodExactInvoker(accessMode);
3784     }
3785 
3786     /**
3787      * Produces a special <em>invoker method handle</em> which can be used to
3788      * invoke a signature-polymorphic access mode method on any VarHandle whose
3789      * associated access mode type is compatible with the given type.
3790      * The resulting invoker will have a type which is exactly equal to the
3791      * desired given type, except that it will accept an additional leading
3792      * argument of type {@code VarHandle}.
3793      * <p>
3794      * Before invoking its target, if the access mode type differs from the
3795      * desired given type, the invoker will apply reference casts as necessary
3796      * and box, unbox, or widen primitive values, as if by
3797      * {@link MethodHandle#asType asType}.  Similarly, the return value will be
3798      * converted as necessary.
3799      * <p>
3800      * This method is equivalent to the following code (though it may be more
3801      * efficient): {@code publicLookup().findVirtual(VarHandle.class, accessMode.name(), type)}
3802      *
3803      * @param accessMode the VarHandle access mode
3804      * @param type the desired target type
3805      * @return a method handle suitable for invoking an access mode method of
3806      *         any VarHandle whose access mode type is convertible to the given
3807      *         type.
3808      * @since 9
3809      */
3810     public static MethodHandle varHandleInvoker(VarHandle.AccessMode accessMode, MethodType type) {
3811         return type.invokers().varHandleMethodInvoker(accessMode);
3812     }
3813 
3814     /*non-public*/
3815     static MethodHandle basicInvoker(MethodType type) {
3816         return type.invokers().basicInvoker();
3817     }
3818 
3819      /// method handle modification (creation from other method handles)
3820 
3821     /**
3822      * Produces a method handle which adapts the type of the
3823      * given method handle to a new type by pairwise argument and return type conversion.
3824      * The original type and new type must have the same number of arguments.
3825      * The resulting method handle is guaranteed to report a type
3826      * which is equal to the desired new type.
3827      * <p>
3828      * If the original type and new type are equal, returns target.
3829      * <p>
3830      * The same conversions are allowed as for {@link MethodHandle#asType MethodHandle.asType},
3831      * and some additional conversions are also applied if those conversions fail.
3832      * Given types <em>T0</em>, <em>T1</em>, one of the following conversions is applied
3833      * if possible, before or instead of any conversions done by {@code asType}:
3834      * <ul>
3835      * <li>If <em>T0</em> and <em>T1</em> are references, and <em>T1</em> is an interface type,
3836      *     then the value of type <em>T0</em> is passed as a <em>T1</em> without a cast.
3837      *     (This treatment of interfaces follows the usage of the bytecode verifier.)
3838      * <li>If <em>T0</em> is boolean and <em>T1</em> is another primitive,
3839      *     the boolean is converted to a byte value, 1 for true, 0 for false.
3840      *     (This treatment follows the usage of the bytecode verifier.)
3841      * <li>If <em>T1</em> is boolean and <em>T0</em> is another primitive,
3842      *     <em>T0</em> is converted to byte via Java casting conversion (JLS 5.5),
3843      *     and the low order bit of the result is tested, as if by {@code (x & 1) != 0}.
3844      * <li>If <em>T0</em> and <em>T1</em> are primitives other than boolean,
3845      *     then a Java casting conversion (JLS 5.5) is applied.
3846      *     (Specifically, <em>T0</em> will convert to <em>T1</em> by
3847      *     widening and/or narrowing.)
3848      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive, an unboxing
3849      *     conversion will be applied at runtime, possibly followed
3850      *     by a Java casting conversion (JLS 5.5) on the primitive value,
3851      *     possibly followed by a conversion from byte to boolean by testing
3852      *     the low-order bit.
3853      * <li>If <em>T0</em> is a reference and <em>T1</em> a primitive,
3854      *     and if the reference is null at runtime, a zero value is introduced.
3855      * </ul>
3856      * @param target the method handle to invoke after arguments are retyped
3857      * @param newType the expected type of the new method handle
3858      * @return a method handle which delegates to the target after performing
3859      *           any necessary argument conversions, and arranges for any
3860      *           necessary return value conversions
3861      * @throws NullPointerException if either argument is null
3862      * @throws WrongMethodTypeException if the conversion cannot be made
3863      * @see MethodHandle#asType
3864      */
3865     public static MethodHandle explicitCastArguments(MethodHandle target, MethodType newType) {
3866         explicitCastArgumentsChecks(target, newType);
3867         // use the asTypeCache when possible:
3868         MethodType oldType = target.type();
3869         if (oldType == newType)  return target;
3870         if (oldType.explicitCastEquivalentToAsType(newType)) {
3871             return target.asFixedArity().asType(newType);
3872         }
3873         return MethodHandleImpl.makePairwiseConvert(target, newType, false);
3874     }
3875 
3876     private static void explicitCastArgumentsChecks(MethodHandle target, MethodType newType) {
3877         if (target.type().parameterCount() != newType.parameterCount()) {
3878             throw new WrongMethodTypeException("cannot explicitly cast " + target + " to " + newType);
3879         }
3880     }
3881 
3882     /**
3883      * Produces a method handle which adapts the calling sequence of the
3884      * given method handle to a new type, by reordering the arguments.
3885      * The resulting method handle is guaranteed to report a type
3886      * which is equal to the desired new type.
3887      * <p>
3888      * The given array controls the reordering.
3889      * Call {@code #I} the number of incoming parameters (the value
3890      * {@code newType.parameterCount()}, and call {@code #O} the number
3891      * of outgoing parameters (the value {@code target.type().parameterCount()}).
3892      * Then the length of the reordering array must be {@code #O},
3893      * and each element must be a non-negative number less than {@code #I}.
3894      * For every {@code N} less than {@code #O}, the {@code N}-th
3895      * outgoing argument will be taken from the {@code I}-th incoming
3896      * argument, where {@code I} is {@code reorder[N]}.
3897      * <p>
3898      * No argument or return value conversions are applied.
3899      * The type of each incoming argument, as determined by {@code newType},
3900      * must be identical to the type of the corresponding outgoing parameter
3901      * or parameters in the target method handle.
3902      * The return type of {@code newType} must be identical to the return
3903      * type of the original target.
3904      * <p>
3905      * The reordering array need not specify an actual permutation.
3906      * An incoming argument will be duplicated if its index appears
3907      * more than once in the array, and an incoming argument will be dropped
3908      * if its index does not appear in the array.
3909      * As in the case of {@link #dropArguments(MethodHandle,int,List) dropArguments},
3910      * incoming arguments which are not mentioned in the reordering array
3911      * may be of any type, as determined only by {@code newType}.
3912      * <blockquote><pre>{@code
3913 import static java.lang.invoke.MethodHandles.*;
3914 import static java.lang.invoke.MethodType.*;
3915 ...
3916 MethodType intfn1 = methodType(int.class, int.class);
3917 MethodType intfn2 = methodType(int.class, int.class, int.class);
3918 MethodHandle sub = ... (int x, int y) -> (x-y) ...;
3919 assert(sub.type().equals(intfn2));
3920 MethodHandle sub1 = permuteArguments(sub, intfn2, 0, 1);
3921 MethodHandle rsub = permuteArguments(sub, intfn2, 1, 0);
3922 assert((int)rsub.invokeExact(1, 100) == 99);
3923 MethodHandle add = ... (int x, int y) -> (x+y) ...;
3924 assert(add.type().equals(intfn2));
3925 MethodHandle twice = permuteArguments(add, intfn1, 0, 0);
3926 assert(twice.type().equals(intfn1));
3927 assert((int)twice.invokeExact(21) == 42);
3928      * }</pre></blockquote>
3929      * <p>
3930      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
3931      * variable-arity method handle}, even if the original target method handle was.
3932      * @param target the method handle to invoke after arguments are reordered
3933      * @param newType the expected type of the new method handle
3934      * @param reorder an index array which controls the reordering
3935      * @return a method handle which delegates to the target after it
3936      *           drops unused arguments and moves and/or duplicates the other arguments
3937      * @throws NullPointerException if any argument is null
3938      * @throws IllegalArgumentException if the index array length is not equal to
3939      *                  the arity of the target, or if any index array element
3940      *                  not a valid index for a parameter of {@code newType},
3941      *                  or if two corresponding parameter types in
3942      *                  {@code target.type()} and {@code newType} are not identical,
3943      */
3944     public static MethodHandle permuteArguments(MethodHandle target, MethodType newType, int... reorder) {
3945         reorder = reorder.clone();  // get a private copy
3946         MethodType oldType = target.type();
3947         permuteArgumentChecks(reorder, newType, oldType);
3948         // first detect dropped arguments and handle them separately
3949         int[] originalReorder = reorder;
3950         BoundMethodHandle result = target.rebind();
3951         LambdaForm form = result.form;
3952         int newArity = newType.parameterCount();
3953         // Normalize the reordering into a real permutation,
3954         // by removing duplicates and adding dropped elements.
3955         // This somewhat improves lambda form caching, as well
3956         // as simplifying the transform by breaking it up into steps.
3957         for (int ddIdx; (ddIdx = findFirstDupOrDrop(reorder, newArity)) != 0; ) {
3958             if (ddIdx > 0) {
3959                 // We found a duplicated entry at reorder[ddIdx].
3960                 // Example:  (x,y,z)->asList(x,y,z)
3961                 // permuted by [1*,0,1] => (a0,a1)=>asList(a1,a0,a1)
3962                 // permuted by [0,1,0*] => (a0,a1)=>asList(a0,a1,a0)
3963                 // The starred element corresponds to the argument
3964                 // deleted by the dupArgumentForm transform.
3965                 int srcPos = ddIdx, dstPos = srcPos, dupVal = reorder[srcPos];
3966                 boolean killFirst = false;
3967                 for (int val; (val = reorder[--dstPos]) != dupVal; ) {
3968                     // Set killFirst if the dup is larger than an intervening position.
3969                     // This will remove at least one inversion from the permutation.
3970                     if (dupVal > val) killFirst = true;
3971                 }
3972                 if (!killFirst) {
3973                     srcPos = dstPos;
3974                     dstPos = ddIdx;
3975                 }
3976                 form = form.editor().dupArgumentForm(1 + srcPos, 1 + dstPos);
3977                 assert (reorder[srcPos] == reorder[dstPos]);
3978                 oldType = oldType.dropParameterTypes(dstPos, dstPos + 1);
3979                 // contract the reordering by removing the element at dstPos
3980                 int tailPos = dstPos + 1;
3981                 System.arraycopy(reorder, tailPos, reorder, dstPos, reorder.length - tailPos);
3982                 reorder = Arrays.copyOf(reorder, reorder.length - 1);
3983             } else {
3984                 int dropVal = ~ddIdx, insPos = 0;
3985                 while (insPos < reorder.length && reorder[insPos] < dropVal) {
3986                     // Find first element of reorder larger than dropVal.
3987                     // This is where we will insert the dropVal.
3988                     insPos += 1;
3989                 }
3990                 Class<?> ptype = newType.parameterType(dropVal);
3991                 form = form.editor().addArgumentForm(1 + insPos, BasicType.basicType(ptype));
3992                 oldType = oldType.insertParameterTypes(insPos, ptype);
3993                 // expand the reordering by inserting an element at insPos
3994                 int tailPos = insPos + 1;
3995                 reorder = Arrays.copyOf(reorder, reorder.length + 1);
3996                 System.arraycopy(reorder, insPos, reorder, tailPos, reorder.length - tailPos);
3997                 reorder[insPos] = dropVal;
3998             }
3999             assert (permuteArgumentChecks(reorder, newType, oldType));
4000         }
4001         assert (reorder.length == newArity);  // a perfect permutation
4002         // Note:  This may cache too many distinct LFs. Consider backing off to varargs code.
4003         form = form.editor().permuteArgumentsForm(1, reorder);
4004         if (newType == result.type() && form == result.internalForm())
4005             return result;
4006         return result.copyWith(newType, form);
4007     }
4008 
4009     /**
4010      * Return an indication of any duplicate or omission in reorder.
4011      * If the reorder contains a duplicate entry, return the index of the second occurrence.
4012      * Otherwise, return ~(n), for the first n in [0..newArity-1] that is not present in reorder.
4013      * Otherwise, return zero.
4014      * If an element not in [0..newArity-1] is encountered, return reorder.length.
4015      */
4016     private static int findFirstDupOrDrop(int[] reorder, int newArity) {
4017         final int BIT_LIMIT = 63;  // max number of bits in bit mask
4018         if (newArity < BIT_LIMIT) {
4019             long mask = 0;
4020             for (int i = 0; i < reorder.length; i++) {
4021                 int arg = reorder[i];
4022                 if (arg >= newArity) {
4023                     return reorder.length;
4024                 }
4025                 long bit = 1L << arg;
4026                 if ((mask & bit) != 0) {
4027                     return i;  // >0 indicates a dup
4028                 }
4029                 mask |= bit;
4030             }
4031             if (mask == (1L << newArity) - 1) {
4032                 assert(Long.numberOfTrailingZeros(Long.lowestOneBit(~mask)) == newArity);
4033                 return 0;
4034             }
4035             // find first zero
4036             long zeroBit = Long.lowestOneBit(~mask);
4037             int zeroPos = Long.numberOfTrailingZeros(zeroBit);
4038             assert(zeroPos <= newArity);
4039             if (zeroPos == newArity) {
4040                 return 0;
4041             }
4042             return ~zeroPos;
4043         } else {
4044             // same algorithm, different bit set
4045             BitSet mask = new BitSet(newArity);
4046             for (int i = 0; i < reorder.length; i++) {
4047                 int arg = reorder[i];
4048                 if (arg >= newArity) {
4049                     return reorder.length;
4050                 }
4051                 if (mask.get(arg)) {
4052                     return i;  // >0 indicates a dup
4053                 }
4054                 mask.set(arg);
4055             }
4056             int zeroPos = mask.nextClearBit(0);
4057             assert(zeroPos <= newArity);
4058             if (zeroPos == newArity) {
4059                 return 0;
4060             }
4061             return ~zeroPos;
4062         }
4063     }
4064 
4065     private static boolean permuteArgumentChecks(int[] reorder, MethodType newType, MethodType oldType) {
4066         if (newType.returnType() != oldType.returnType())
4067             throw newIllegalArgumentException("return types do not match",
4068                     oldType, newType);
4069         if (reorder.length == oldType.parameterCount()) {
4070             int limit = newType.parameterCount();
4071             boolean bad = false;
4072             for (int j = 0; j < reorder.length; j++) {
4073                 int i = reorder[j];
4074                 if (i < 0 || i >= limit) {
4075                     bad = true; break;
4076                 }
4077                 Class<?> src = newType.parameterType(i);
4078                 Class<?> dst = oldType.parameterType(j);
4079                 if (src != dst)
4080                     throw newIllegalArgumentException("parameter types do not match after reorder",
4081                             oldType, newType);
4082             }
4083             if (!bad)  return true;
4084         }
4085         throw newIllegalArgumentException("bad reorder array: "+Arrays.toString(reorder));
4086     }
4087 
4088     /**
4089      * Produces a method handle of the requested return type which returns the given
4090      * constant value every time it is invoked.
4091      * <p>
4092      * Before the method handle is returned, the passed-in value is converted to the requested type.
4093      * If the requested type is primitive, widening primitive conversions are attempted,
4094      * else reference conversions are attempted.
4095      * <p>The returned method handle is equivalent to {@code identity(type).bindTo(value)}.
4096      * @param type the return type of the desired method handle
4097      * @param value the value to return
4098      * @return a method handle of the given return type and no arguments, which always returns the given value
4099      * @throws NullPointerException if the {@code type} argument is null
4100      * @throws ClassCastException if the value cannot be converted to the required return type
4101      * @throws IllegalArgumentException if the given type is {@code void.class}
4102      */
4103     public static MethodHandle constant(Class<?> type, Object value) {
4104         if (type.isPrimitive()) {
4105             if (type == void.class)
4106                 throw newIllegalArgumentException("void type");
4107             Wrapper w = Wrapper.forPrimitiveType(type);
4108             value = w.convert(value, type);
4109             if (w.zero().equals(value))
4110                 return zero(w, type);
4111             return insertArguments(identity(type), 0, value);
4112         } else {
4113             if (value == null)
4114                 return zero(Wrapper.OBJECT, type);
4115             return identity(type).bindTo(value);
4116         }
4117     }
4118 
4119     /**
4120      * Produces a method handle which returns its sole argument when invoked.
4121      * @param type the type of the sole parameter and return value of the desired method handle
4122      * @return a unary method handle which accepts and returns the given type
4123      * @throws NullPointerException if the argument is null
4124      * @throws IllegalArgumentException if the given type is {@code void.class}
4125      */
4126     public static MethodHandle identity(Class<?> type) {
4127         Wrapper btw = (type.isPrimitive() ? Wrapper.forPrimitiveType(type) : Wrapper.OBJECT);
4128         int pos = btw.ordinal();
4129         MethodHandle ident = IDENTITY_MHS[pos];
4130         if (ident == null) {
4131             ident = setCachedMethodHandle(IDENTITY_MHS, pos, makeIdentity(btw.primitiveType()));
4132         }
4133         if (ident.type().returnType() == type)
4134             return ident;
4135         // something like identity(Foo.class); do not bother to intern these
4136         assert (btw == Wrapper.OBJECT);
4137         return makeIdentity(type);
4138     }
4139 
4140     /**
4141      * Produces a constant method handle of the requested return type which
4142      * returns the default value for that type every time it is invoked.
4143      * The resulting constant method handle will have no side effects.
4144      * <p>The returned method handle is equivalent to {@code empty(methodType(type))}.
4145      * It is also equivalent to {@code explicitCastArguments(constant(Object.class, null), methodType(type))},
4146      * since {@code explicitCastArguments} converts {@code null} to default values.
4147      * @param type the expected return type of the desired method handle
4148      * @return a constant method handle that takes no arguments
4149      *         and returns the default value of the given type (or void, if the type is void)
4150      * @throws NullPointerException if the argument is null
4151      * @see MethodHandles#constant
4152      * @see MethodHandles#empty
4153      * @see MethodHandles#explicitCastArguments
4154      * @since 9
4155      */
4156     public static MethodHandle zero(Class<?> type) {
4157         Objects.requireNonNull(type);
4158         return type.isPrimitive() ?  zero(Wrapper.forPrimitiveType(type), type) : zero(Wrapper.OBJECT, type);
4159     }
4160 
4161     private static MethodHandle identityOrVoid(Class<?> type) {
4162         return type == void.class ? zero(type) : identity(type);
4163     }
4164 
4165     /**
4166      * Produces a method handle of the requested type which ignores any arguments, does nothing,
4167      * and returns a suitable default depending on the return type.
4168      * That is, it returns a zero primitive value, a {@code null}, or {@code void}.
4169      * <p>The returned method handle is equivalent to
4170      * {@code dropArguments(zero(type.returnType()), 0, type.parameterList())}.
4171      *
4172      * @apiNote Given a predicate and target, a useful "if-then" construct can be produced as
4173      * {@code guardWithTest(pred, target, empty(target.type())}.
4174      * @param type the type of the desired method handle
4175      * @return a constant method handle of the given type, which returns a default value of the given return type
4176      * @throws NullPointerException if the argument is null
4177      * @see MethodHandles#zero
4178      * @see MethodHandles#constant
4179      * @since 9
4180      */
4181     public static  MethodHandle empty(MethodType type) {
4182         Objects.requireNonNull(type);
4183         return dropArguments(zero(type.returnType()), 0, type.parameterList());
4184     }
4185 
4186     private static final MethodHandle[] IDENTITY_MHS = new MethodHandle[Wrapper.COUNT];
4187     private static MethodHandle makeIdentity(Class<?> ptype) {
4188         MethodType mtype = methodType(ptype, ptype);
4189         LambdaForm lform = LambdaForm.identityForm(BasicType.basicType(ptype));
4190         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.IDENTITY);
4191     }
4192 
4193     private static MethodHandle zero(Wrapper btw, Class<?> rtype) {
4194         int pos = btw.ordinal();
4195         MethodHandle zero = ZERO_MHS[pos];
4196         if (zero == null) {
4197             zero = setCachedMethodHandle(ZERO_MHS, pos, makeZero(btw.primitiveType()));
4198         }
4199         if (zero.type().returnType() == rtype)
4200             return zero;
4201         assert(btw == Wrapper.OBJECT);
4202         return makeZero(rtype);
4203     }
4204     private static final MethodHandle[] ZERO_MHS = new MethodHandle[Wrapper.COUNT];
4205     private static MethodHandle makeZero(Class<?> rtype) {
4206         MethodType mtype = methodType(rtype);
4207         LambdaForm lform = LambdaForm.zeroForm(BasicType.basicType(rtype));
4208         return MethodHandleImpl.makeIntrinsic(mtype, lform, Intrinsic.ZERO);
4209     }
4210 
4211     private static synchronized MethodHandle setCachedMethodHandle(MethodHandle[] cache, int pos, MethodHandle value) {
4212         // Simulate a CAS, to avoid racy duplication of results.
4213         MethodHandle prev = cache[pos];
4214         if (prev != null) return prev;
4215         return cache[pos] = value;
4216     }
4217 
4218     /**
4219      * Provides a target method handle with one or more <em>bound arguments</em>
4220      * in advance of the method handle's invocation.
4221      * The formal parameters to the target corresponding to the bound
4222      * arguments are called <em>bound parameters</em>.
4223      * Returns a new method handle which saves away the bound arguments.
4224      * When it is invoked, it receives arguments for any non-bound parameters,
4225      * binds the saved arguments to their corresponding parameters,
4226      * and calls the original target.
4227      * <p>
4228      * The type of the new method handle will drop the types for the bound
4229      * parameters from the original target type, since the new method handle
4230      * will no longer require those arguments to be supplied by its callers.
4231      * <p>
4232      * Each given argument object must match the corresponding bound parameter type.
4233      * If a bound parameter type is a primitive, the argument object
4234      * must be a wrapper, and will be unboxed to produce the primitive value.
4235      * <p>
4236      * The {@code pos} argument selects which parameters are to be bound.
4237      * It may range between zero and <i>N-L</i> (inclusively),
4238      * where <i>N</i> is the arity of the target method handle
4239      * and <i>L</i> is the length of the values array.
4240      * <p>
4241      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4242      * variable-arity method handle}, even if the original target method handle was.
4243      * @param target the method handle to invoke after the argument is inserted
4244      * @param pos where to insert the argument (zero for the first)
4245      * @param values the series of arguments to insert
4246      * @return a method handle which inserts an additional argument,
4247      *         before calling the original method handle
4248      * @throws NullPointerException if the target or the {@code values} array is null
4249      * @throws IllegalArgumentException if (@code pos) is less than {@code 0} or greater than
4250      *         {@code N - L} where {@code N} is the arity of the target method handle and {@code L}
4251      *         is the length of the values array.
4252      * @throws ClassCastException if an argument does not match the corresponding bound parameter
4253      *         type.
4254      * @see MethodHandle#bindTo
4255      */
4256     public static MethodHandle insertArguments(MethodHandle target, int pos, Object... values) {
4257         int insCount = values.length;
4258         Class<?>[] ptypes = insertArgumentsChecks(target, insCount, pos);
4259         if (insCount == 0)  return target;
4260         BoundMethodHandle result = target.rebind();
4261         for (int i = 0; i < insCount; i++) {
4262             Object value = values[i];
4263             Class<?> ptype = ptypes[pos+i];
4264             if (ptype.isPrimitive()) {
4265                 result = insertArgumentPrimitive(result, pos, ptype, value);
4266             } else {
4267                 value = ptype.cast(value);  // throw CCE if needed
4268                 result = result.bindArgumentL(pos, value);
4269             }
4270         }
4271         return result;
4272     }
4273 
4274     private static BoundMethodHandle insertArgumentPrimitive(BoundMethodHandle result, int pos,
4275                                                              Class<?> ptype, Object value) {
4276         Wrapper w = Wrapper.forPrimitiveType(ptype);
4277         // perform unboxing and/or primitive conversion
4278         value = w.convert(value, ptype);
4279         switch (w) {
4280         case INT:     return result.bindArgumentI(pos, (int)value);
4281         case LONG:    return result.bindArgumentJ(pos, (long)value);
4282         case FLOAT:   return result.bindArgumentF(pos, (float)value);
4283         case DOUBLE:  return result.bindArgumentD(pos, (double)value);
4284         default:      return result.bindArgumentI(pos, ValueConversions.widenSubword(value));
4285         }
4286     }
4287 
4288     private static Class<?>[] insertArgumentsChecks(MethodHandle target, int insCount, int pos) throws RuntimeException {
4289         MethodType oldType = target.type();
4290         int outargs = oldType.parameterCount();
4291         int inargs  = outargs - insCount;
4292         if (inargs < 0)
4293             throw newIllegalArgumentException("too many values to insert");
4294         if (pos < 0 || pos > inargs)
4295             throw newIllegalArgumentException("no argument type to append");
4296         return oldType.ptypes();
4297     }
4298 
4299     /**
4300      * Produces a method handle which will discard some dummy arguments
4301      * before calling some other specified <i>target</i> method handle.
4302      * The type of the new method handle will be the same as the target's type,
4303      * except it will also include the dummy argument types,
4304      * at some given position.
4305      * <p>
4306      * The {@code pos} argument may range between zero and <i>N</i>,
4307      * where <i>N</i> is the arity of the target.
4308      * If {@code pos} is zero, the dummy arguments will precede
4309      * the target's real arguments; if {@code pos} is <i>N</i>
4310      * they will come after.
4311      * <p>
4312      * <b>Example:</b>
4313      * <blockquote><pre>{@code
4314 import static java.lang.invoke.MethodHandles.*;
4315 import static java.lang.invoke.MethodType.*;
4316 ...
4317 MethodHandle cat = lookup().findVirtual(String.class,
4318   "concat", methodType(String.class, String.class));
4319 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4320 MethodType bigType = cat.type().insertParameterTypes(0, int.class, String.class);
4321 MethodHandle d0 = dropArguments(cat, 0, bigType.parameterList().subList(0,2));
4322 assertEquals(bigType, d0.type());
4323 assertEquals("yz", (String) d0.invokeExact(123, "x", "y", "z"));
4324      * }</pre></blockquote>
4325      * <p>
4326      * This method is also equivalent to the following code:
4327      * <blockquote><pre>
4328      * {@link #dropArguments(MethodHandle,int,Class...) dropArguments}{@code (target, pos, valueTypes.toArray(new Class[0]))}
4329      * </pre></blockquote>
4330      * @param target the method handle to invoke after the arguments are dropped
4331      * @param pos position of first argument to drop (zero for the leftmost)
4332      * @param valueTypes the type(s) of the argument(s) to drop
4333      * @return a method handle which drops arguments of the given types,
4334      *         before calling the original method handle
4335      * @throws NullPointerException if the target is null,
4336      *                              or if the {@code valueTypes} list or any of its elements is null
4337      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4338      *                  or if {@code pos} is negative or greater than the arity of the target,
4339      *                  or if the new method handle's type would have too many parameters
4340      */
4341     public static MethodHandle dropArguments(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4342         return dropArguments0(target, pos, copyTypes(valueTypes.toArray()));
4343     }
4344 
4345     private static List<Class<?>> copyTypes(Object[] array) {
4346         return Arrays.asList(Arrays.copyOf(array, array.length, Class[].class));
4347     }
4348 
4349     private static MethodHandle dropArguments0(MethodHandle target, int pos, List<Class<?>> valueTypes) {
4350         MethodType oldType = target.type();  // get NPE
4351         int dropped = dropArgumentChecks(oldType, pos, valueTypes);
4352         MethodType newType = oldType.insertParameterTypes(pos, valueTypes);
4353         if (dropped == 0)  return target;
4354         BoundMethodHandle result = target.rebind();
4355         LambdaForm lform = result.form;
4356         int insertFormArg = 1 + pos;
4357         for (Class<?> ptype : valueTypes) {
4358             lform = lform.editor().addArgumentForm(insertFormArg++, BasicType.basicType(ptype));
4359         }
4360         result = result.copyWith(newType, lform);
4361         return result;
4362     }
4363 
4364     private static int dropArgumentChecks(MethodType oldType, int pos, List<Class<?>> valueTypes) {
4365         int dropped = valueTypes.size();
4366         MethodType.checkSlotCount(dropped);
4367         int outargs = oldType.parameterCount();
4368         int inargs  = outargs + dropped;
4369         if (pos < 0 || pos > outargs)
4370             throw newIllegalArgumentException("no argument type to remove"
4371                     + Arrays.asList(oldType, pos, valueTypes, inargs, outargs)
4372                     );
4373         return dropped;
4374     }
4375 
4376     /**
4377      * Produces a method handle which will discard some dummy arguments
4378      * before calling some other specified <i>target</i> method handle.
4379      * The type of the new method handle will be the same as the target's type,
4380      * except it will also include the dummy argument types,
4381      * at some given position.
4382      * <p>
4383      * The {@code pos} argument may range between zero and <i>N</i>,
4384      * where <i>N</i> is the arity of the target.
4385      * If {@code pos} is zero, the dummy arguments will precede
4386      * the target's real arguments; if {@code pos} is <i>N</i>
4387      * they will come after.
4388      * @apiNote
4389      * <blockquote><pre>{@code
4390 import static java.lang.invoke.MethodHandles.*;
4391 import static java.lang.invoke.MethodType.*;
4392 ...
4393 MethodHandle cat = lookup().findVirtual(String.class,
4394   "concat", methodType(String.class, String.class));
4395 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4396 MethodHandle d0 = dropArguments(cat, 0, String.class);
4397 assertEquals("yz", (String) d0.invokeExact("x", "y", "z"));
4398 MethodHandle d1 = dropArguments(cat, 1, String.class);
4399 assertEquals("xz", (String) d1.invokeExact("x", "y", "z"));
4400 MethodHandle d2 = dropArguments(cat, 2, String.class);
4401 assertEquals("xy", (String) d2.invokeExact("x", "y", "z"));
4402 MethodHandle d12 = dropArguments(cat, 1, int.class, boolean.class);
4403 assertEquals("xz", (String) d12.invokeExact("x", 12, true, "z"));
4404      * }</pre></blockquote>
4405      * <p>
4406      * This method is also equivalent to the following code:
4407      * <blockquote><pre>
4408      * {@link #dropArguments(MethodHandle,int,List) dropArguments}{@code (target, pos, Arrays.asList(valueTypes))}
4409      * </pre></blockquote>
4410      * @param target the method handle to invoke after the arguments are dropped
4411      * @param pos position of first argument to drop (zero for the leftmost)
4412      * @param valueTypes the type(s) of the argument(s) to drop
4413      * @return a method handle which drops arguments of the given types,
4414      *         before calling the original method handle
4415      * @throws NullPointerException if the target is null,
4416      *                              or if the {@code valueTypes} array or any of its elements is null
4417      * @throws IllegalArgumentException if any element of {@code valueTypes} is {@code void.class},
4418      *                  or if {@code pos} is negative or greater than the arity of the target,
4419      *                  or if the new method handle's type would have
4420      *                  <a href="MethodHandle.html#maxarity">too many parameters</a>
4421      */
4422     public static MethodHandle dropArguments(MethodHandle target, int pos, Class<?>... valueTypes) {
4423         return dropArguments0(target, pos, copyTypes(valueTypes));
4424     }
4425 
4426     // private version which allows caller some freedom with error handling
4427     private static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos,
4428                                       boolean nullOnFailure) {
4429         newTypes = copyTypes(newTypes.toArray());
4430         List<Class<?>> oldTypes = target.type().parameterList();
4431         int match = oldTypes.size();
4432         if (skip != 0) {
4433             if (skip < 0 || skip > match) {
4434                 throw newIllegalArgumentException("illegal skip", skip, target);
4435             }
4436             oldTypes = oldTypes.subList(skip, match);
4437             match -= skip;
4438         }
4439         List<Class<?>> addTypes = newTypes;
4440         int add = addTypes.size();
4441         if (pos != 0) {
4442             if (pos < 0 || pos > add) {
4443                 throw newIllegalArgumentException("illegal pos", pos, newTypes);
4444             }
4445             addTypes = addTypes.subList(pos, add);
4446             add -= pos;
4447             assert(addTypes.size() == add);
4448         }
4449         // Do not add types which already match the existing arguments.
4450         if (match > add || !oldTypes.equals(addTypes.subList(0, match))) {
4451             if (nullOnFailure) {
4452                 return null;
4453             }
4454             throw newIllegalArgumentException("argument lists do not match", oldTypes, newTypes);
4455         }
4456         addTypes = addTypes.subList(match, add);
4457         add -= match;
4458         assert(addTypes.size() == add);
4459         // newTypes:     (   P*[pos], M*[match], A*[add] )
4460         // target: ( S*[skip],        M*[match]  )
4461         MethodHandle adapter = target;
4462         if (add > 0) {
4463             adapter = dropArguments0(adapter, skip+ match, addTypes);
4464         }
4465         // adapter: (S*[skip],        M*[match], A*[add] )
4466         if (pos > 0) {
4467             adapter = dropArguments0(adapter, skip, newTypes.subList(0, pos));
4468         }
4469         // adapter: (S*[skip], P*[pos], M*[match], A*[add] )
4470         return adapter;
4471     }
4472 
4473     /**
4474      * Adapts a target method handle to match the given parameter type list. If necessary, adds dummy arguments. Some
4475      * leading parameters can be skipped before matching begins. The remaining types in the {@code target}'s parameter
4476      * type list must be a sub-list of the {@code newTypes} type list at the starting position {@code pos}. The
4477      * resulting handle will have the target handle's parameter type list, with any non-matching parameter types (before
4478      * or after the matching sub-list) inserted in corresponding positions of the target's original parameters, as if by
4479      * {@link #dropArguments(MethodHandle, int, Class[])}.
4480      * <p>
4481      * The resulting handle will have the same return type as the target handle.
4482      * <p>
4483      * In more formal terms, assume these two type lists:<ul>
4484      * <li>The target handle has the parameter type list {@code S..., M...}, with as many types in {@code S} as
4485      * indicated by {@code skip}. The {@code M} types are those that are supposed to match part of the given type list,
4486      * {@code newTypes}.
4487      * <li>The {@code newTypes} list contains types {@code P..., M..., A...}, with as many types in {@code P} as
4488      * indicated by {@code pos}. The {@code M} types are precisely those that the {@code M} types in the target handle's
4489      * parameter type list are supposed to match. The types in {@code A} are additional types found after the matching
4490      * sub-list.
4491      * </ul>
4492      * Given these assumptions, the result of an invocation of {@code dropArgumentsToMatch} will have the parameter type
4493      * list {@code S..., P..., M..., A...}, with the {@code P} and {@code A} types inserted as if by
4494      * {@link #dropArguments(MethodHandle, int, Class[])}.
4495      *
4496      * @apiNote
4497      * Two method handles whose argument lists are "effectively identical" (i.e., identical in a common prefix) may be
4498      * mutually converted to a common type by two calls to {@code dropArgumentsToMatch}, as follows:
4499      * <blockquote><pre>{@code
4500 import static java.lang.invoke.MethodHandles.*;
4501 import static java.lang.invoke.MethodType.*;
4502 ...
4503 ...
4504 MethodHandle h0 = constant(boolean.class, true);
4505 MethodHandle h1 = lookup().findVirtual(String.class, "concat", methodType(String.class, String.class));
4506 MethodType bigType = h1.type().insertParameterTypes(1, String.class, int.class);
4507 MethodHandle h2 = dropArguments(h1, 0, bigType.parameterList());
4508 if (h1.type().parameterCount() < h2.type().parameterCount())
4509     h1 = dropArgumentsToMatch(h1, 0, h2.type().parameterList(), 0);  // lengthen h1
4510 else
4511     h2 = dropArgumentsToMatch(h2, 0, h1.type().parameterList(), 0);    // lengthen h2
4512 MethodHandle h3 = guardWithTest(h0, h1, h2);
4513 assertEquals("xy", h3.invoke("x", "y", 1, "a", "b", "c"));
4514      * }</pre></blockquote>
4515      * @param target the method handle to adapt
4516      * @param skip number of targets parameters to disregard (they will be unchanged)
4517      * @param newTypes the list of types to match {@code target}'s parameter type list to
4518      * @param pos place in {@code newTypes} where the non-skipped target parameters must occur
4519      * @return a possibly adapted method handle
4520      * @throws NullPointerException if either argument is null
4521      * @throws IllegalArgumentException if any element of {@code newTypes} is {@code void.class},
4522      *         or if {@code skip} is negative or greater than the arity of the target,
4523      *         or if {@code pos} is negative or greater than the newTypes list size,
4524      *         or if {@code newTypes} does not contain the {@code target}'s non-skipped parameter types at position
4525      *         {@code pos}.
4526      * @since 9
4527      */
4528     public static MethodHandle dropArgumentsToMatch(MethodHandle target, int skip, List<Class<?>> newTypes, int pos) {
4529         Objects.requireNonNull(target);
4530         Objects.requireNonNull(newTypes);
4531         return dropArgumentsToMatch(target, skip, newTypes, pos, false);
4532     }
4533 
4534     /**
4535      * Adapts a target method handle by pre-processing
4536      * one or more of its arguments, each with its own unary filter function,
4537      * and then calling the target with each pre-processed argument
4538      * replaced by the result of its corresponding filter function.
4539      * <p>
4540      * The pre-processing is performed by one or more method handles,
4541      * specified in the elements of the {@code filters} array.
4542      * The first element of the filter array corresponds to the {@code pos}
4543      * argument of the target, and so on in sequence.
4544      * The filter functions are invoked in left to right order.
4545      * <p>
4546      * Null arguments in the array are treated as identity functions,
4547      * and the corresponding arguments left unchanged.
4548      * (If there are no non-null elements in the array, the original target is returned.)
4549      * Each filter is applied to the corresponding argument of the adapter.
4550      * <p>
4551      * If a filter {@code F} applies to the {@code N}th argument of
4552      * the target, then {@code F} must be a method handle which
4553      * takes exactly one argument.  The type of {@code F}'s sole argument
4554      * replaces the corresponding argument type of the target
4555      * in the resulting adapted method handle.
4556      * The return type of {@code F} must be identical to the corresponding
4557      * parameter type of the target.
4558      * <p>
4559      * It is an error if there are elements of {@code filters}
4560      * (null or not)
4561      * which do not correspond to argument positions in the target.
4562      * <p><b>Example:</b>
4563      * <blockquote><pre>{@code
4564 import static java.lang.invoke.MethodHandles.*;
4565 import static java.lang.invoke.MethodType.*;
4566 ...
4567 MethodHandle cat = lookup().findVirtual(String.class,
4568   "concat", methodType(String.class, String.class));
4569 MethodHandle upcase = lookup().findVirtual(String.class,
4570   "toUpperCase", methodType(String.class));
4571 assertEquals("xy", (String) cat.invokeExact("x", "y"));
4572 MethodHandle f0 = filterArguments(cat, 0, upcase);
4573 assertEquals("Xy", (String) f0.invokeExact("x", "y")); // Xy
4574 MethodHandle f1 = filterArguments(cat, 1, upcase);
4575 assertEquals("xY", (String) f1.invokeExact("x", "y")); // xY
4576 MethodHandle f2 = filterArguments(cat, 0, upcase, upcase);
4577 assertEquals("XY", (String) f2.invokeExact("x", "y")); // XY
4578      * }</pre></blockquote>
4579      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4580      * denotes the return type of both the {@code target} and resulting adapter.
4581      * {@code P}/{@code p} and {@code B}/{@code b} represent the types and values
4582      * of the parameters and arguments that precede and follow the filter position
4583      * {@code pos}, respectively. {@code A[i]}/{@code a[i]} stand for the types and
4584      * values of the filtered parameters and arguments; they also represent the
4585      * return types of the {@code filter[i]} handles. The latter accept arguments
4586      * {@code v[i]} of type {@code V[i]}, which also appear in the signature of
4587      * the resulting adapter.
4588      * <blockquote><pre>{@code
4589      * T target(P... p, A[i]... a[i], B... b);
4590      * A[i] filter[i](V[i]);
4591      * T adapter(P... p, V[i]... v[i], B... b) {
4592      *   return target(p..., filter[i](v[i])..., b...);
4593      * }
4594      * }</pre></blockquote>
4595      * <p>
4596      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4597      * variable-arity method handle}, even if the original target method handle was.
4598      *
4599      * @param target the method handle to invoke after arguments are filtered
4600      * @param pos the position of the first argument to filter
4601      * @param filters method handles to call initially on filtered arguments
4602      * @return method handle which incorporates the specified argument filtering logic
4603      * @throws NullPointerException if the target is null
4604      *                              or if the {@code filters} array is null
4605      * @throws IllegalArgumentException if a non-null element of {@code filters}
4606      *          does not match a corresponding argument type of target as described above,
4607      *          or if the {@code pos+filters.length} is greater than {@code target.type().parameterCount()},
4608      *          or if the resulting method handle's type would have
4609      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4610      */
4611     public static MethodHandle filterArguments(MethodHandle target, int pos, MethodHandle... filters) {
4612         // In method types arguments start at index 0, while the LF
4613         // editor have the MH receiver at position 0 - adjust appropriately.
4614         final int MH_RECEIVER_OFFSET = 1;
4615         filterArgumentsCheckArity(target, pos, filters);
4616         MethodHandle adapter = target;
4617 
4618         // keep track of currently matched filters, as to optimize repeated filters
4619         int index = 0;
4620         int[] positions = new int[filters.length];
4621         MethodHandle filter = null;
4622 
4623         // process filters in reverse order so that the invocation of
4624         // the resulting adapter will invoke the filters in left-to-right order
4625         for (int i = filters.length - 1; i >= 0; --i) {
4626             MethodHandle newFilter = filters[i];
4627             if (newFilter == null) continue;  // ignore null elements of filters
4628 
4629             // flush changes on update
4630             if (filter != newFilter) {
4631                 if (filter != null) {
4632                     if (index > 1) {
4633                         adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4634                     } else {
4635                         adapter = filterArgument(adapter, positions[0] - 1, filter);
4636                     }
4637                 }
4638                 filter = newFilter;
4639                 index = 0;
4640             }
4641 
4642             filterArgumentChecks(target, pos + i, newFilter);
4643             positions[index++] = pos + i + MH_RECEIVER_OFFSET;
4644         }
4645         if (index > 1) {
4646             adapter = filterRepeatedArgument(adapter, filter, Arrays.copyOf(positions, index));
4647         } else if (index == 1) {
4648             adapter = filterArgument(adapter, positions[0] - 1, filter);
4649         }
4650         return adapter;
4651     }
4652 
4653     private static MethodHandle filterRepeatedArgument(MethodHandle adapter, MethodHandle filter, int[] positions) {
4654         MethodType targetType = adapter.type();
4655         MethodType filterType = filter.type();
4656         BoundMethodHandle result = adapter.rebind();
4657         Class<?> newParamType = filterType.parameterType(0);
4658 
4659         Class<?>[] ptypes = targetType.ptypes().clone();
4660         for (int pos : positions) {
4661             ptypes[pos - 1] = newParamType;
4662         }
4663         MethodType newType = MethodType.makeImpl(targetType.rtype(), ptypes, true);
4664 
4665         LambdaForm lform = result.editor().filterRepeatedArgumentForm(BasicType.basicType(newParamType), positions);
4666         return result.copyWithExtendL(newType, lform, filter);
4667     }
4668 
4669     /*non-public*/
4670     static MethodHandle filterArgument(MethodHandle target, int pos, MethodHandle filter) {
4671         filterArgumentChecks(target, pos, filter);
4672         MethodType targetType = target.type();
4673         MethodType filterType = filter.type();
4674         BoundMethodHandle result = target.rebind();
4675         Class<?> newParamType = filterType.parameterType(0);
4676         LambdaForm lform = result.editor().filterArgumentForm(1 + pos, BasicType.basicType(newParamType));
4677         MethodType newType = targetType.changeParameterType(pos, newParamType);
4678         result = result.copyWithExtendL(newType, lform, filter);
4679         return result;
4680     }
4681 
4682     private static void filterArgumentsCheckArity(MethodHandle target, int pos, MethodHandle[] filters) {
4683         MethodType targetType = target.type();
4684         int maxPos = targetType.parameterCount();
4685         if (pos + filters.length > maxPos)
4686             throw newIllegalArgumentException("too many filters");
4687     }
4688 
4689     private static void filterArgumentChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4690         MethodType targetType = target.type();
4691         MethodType filterType = filter.type();
4692         if (filterType.parameterCount() != 1
4693             || filterType.returnType() != targetType.parameterType(pos))
4694             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4695     }
4696 
4697     /**
4698      * Adapts a target method handle by pre-processing
4699      * a sub-sequence of its arguments with a filter (another method handle).
4700      * The pre-processed arguments are replaced by the result (if any) of the
4701      * filter function.
4702      * The target is then called on the modified (usually shortened) argument list.
4703      * <p>
4704      * If the filter returns a value, the target must accept that value as
4705      * its argument in position {@code pos}, preceded and/or followed by
4706      * any arguments not passed to the filter.
4707      * If the filter returns void, the target must accept all arguments
4708      * not passed to the filter.
4709      * No arguments are reordered, and a result returned from the filter
4710      * replaces (in order) the whole subsequence of arguments originally
4711      * passed to the adapter.
4712      * <p>
4713      * The argument types (if any) of the filter
4714      * replace zero or one argument types of the target, at position {@code pos},
4715      * in the resulting adapted method handle.
4716      * The return type of the filter (if any) must be identical to the
4717      * argument type of the target at position {@code pos}, and that target argument
4718      * is supplied by the return value of the filter.
4719      * <p>
4720      * In all cases, {@code pos} must be greater than or equal to zero, and
4721      * {@code pos} must also be less than or equal to the target's arity.
4722      * <p><b>Example:</b>
4723      * <blockquote><pre>{@code
4724 import static java.lang.invoke.MethodHandles.*;
4725 import static java.lang.invoke.MethodType.*;
4726 ...
4727 MethodHandle deepToString = publicLookup()
4728   .findStatic(Arrays.class, "deepToString", methodType(String.class, Object[].class));
4729 
4730 MethodHandle ts1 = deepToString.asCollector(String[].class, 1);
4731 assertEquals("[strange]", (String) ts1.invokeExact("strange"));
4732 
4733 MethodHandle ts2 = deepToString.asCollector(String[].class, 2);
4734 assertEquals("[up, down]", (String) ts2.invokeExact("up", "down"));
4735 
4736 MethodHandle ts3 = deepToString.asCollector(String[].class, 3);
4737 MethodHandle ts3_ts2 = collectArguments(ts3, 1, ts2);
4738 assertEquals("[top, [up, down], strange]",
4739              (String) ts3_ts2.invokeExact("top", "up", "down", "strange"));
4740 
4741 MethodHandle ts3_ts2_ts1 = collectArguments(ts3_ts2, 3, ts1);
4742 assertEquals("[top, [up, down], [strange]]",
4743              (String) ts3_ts2_ts1.invokeExact("top", "up", "down", "strange"));
4744 
4745 MethodHandle ts3_ts2_ts3 = collectArguments(ts3_ts2, 1, ts3);
4746 assertEquals("[top, [[up, down, strange], charm], bottom]",
4747              (String) ts3_ts2_ts3.invokeExact("top", "up", "down", "strange", "charm", "bottom"));
4748      * }</pre></blockquote>
4749      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4750      * represents the return type of the {@code target} and resulting adapter.
4751      * {@code V}/{@code v} stand for the return type and value of the
4752      * {@code filter}, which are also found in the signature and arguments of
4753      * the {@code target}, respectively, unless {@code V} is {@code void}.
4754      * {@code A}/{@code a} and {@code C}/{@code c} represent the parameter types
4755      * and values preceding and following the collection position, {@code pos},
4756      * in the {@code target}'s signature. They also turn up in the resulting
4757      * adapter's signature and arguments, where they surround
4758      * {@code B}/{@code b}, which represent the parameter types and arguments
4759      * to the {@code filter} (if any).
4760      * <blockquote><pre>{@code
4761      * T target(A...,V,C...);
4762      * V filter(B...);
4763      * T adapter(A... a,B... b,C... c) {
4764      *   V v = filter(b...);
4765      *   return target(a...,v,c...);
4766      * }
4767      * // and if the filter has no arguments:
4768      * T target2(A...,V,C...);
4769      * V filter2();
4770      * T adapter2(A... a,C... c) {
4771      *   V v = filter2();
4772      *   return target2(a...,v,c...);
4773      * }
4774      * // and if the filter has a void return:
4775      * T target3(A...,C...);
4776      * void filter3(B...);
4777      * T adapter3(A... a,B... b,C... c) {
4778      *   filter3(b...);
4779      *   return target3(a...,c...);
4780      * }
4781      * }</pre></blockquote>
4782      * <p>
4783      * A collection adapter {@code collectArguments(mh, 0, coll)} is equivalent to
4784      * one which first "folds" the affected arguments, and then drops them, in separate
4785      * steps as follows:
4786      * <blockquote><pre>{@code
4787      * mh = MethodHandles.dropArguments(mh, 1, coll.type().parameterList()); //step 2
4788      * mh = MethodHandles.foldArguments(mh, coll); //step 1
4789      * }</pre></blockquote>
4790      * If the target method handle consumes no arguments besides than the result
4791      * (if any) of the filter {@code coll}, then {@code collectArguments(mh, 0, coll)}
4792      * is equivalent to {@code filterReturnValue(coll, mh)}.
4793      * If the filter method handle {@code coll} consumes one argument and produces
4794      * a non-void result, then {@code collectArguments(mh, N, coll)}
4795      * is equivalent to {@code filterArguments(mh, N, coll)}.
4796      * Other equivalences are possible but would require argument permutation.
4797      * <p>
4798      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4799      * variable-arity method handle}, even if the original target method handle was.
4800      *
4801      * @param target the method handle to invoke after filtering the subsequence of arguments
4802      * @param pos the position of the first adapter argument to pass to the filter,
4803      *            and/or the target argument which receives the result of the filter
4804      * @param filter method handle to call on the subsequence of arguments
4805      * @return method handle which incorporates the specified argument subsequence filtering logic
4806      * @throws NullPointerException if either argument is null
4807      * @throws IllegalArgumentException if the return type of {@code filter}
4808      *          is non-void and is not the same as the {@code pos} argument of the target,
4809      *          or if {@code pos} is not between 0 and the target's arity, inclusive,
4810      *          or if the resulting method handle's type would have
4811      *          <a href="MethodHandle.html#maxarity">too many parameters</a>
4812      * @see MethodHandles#foldArguments
4813      * @see MethodHandles#filterArguments
4814      * @see MethodHandles#filterReturnValue
4815      */
4816     public static MethodHandle collectArguments(MethodHandle target, int pos, MethodHandle filter) {
4817         MethodType newType = collectArgumentsChecks(target, pos, filter);
4818         MethodType collectorType = filter.type();
4819         BoundMethodHandle result = target.rebind();
4820         LambdaForm lform;
4821         if (collectorType.returnType().isArray() && filter.intrinsicName() == Intrinsic.NEW_ARRAY) {
4822             lform = result.editor().collectArgumentArrayForm(1 + pos, filter);
4823             if (lform != null) {
4824                 return result.copyWith(newType, lform);
4825             }
4826         }
4827         lform = result.editor().collectArgumentsForm(1 + pos, collectorType.basicType());
4828         return result.copyWithExtendL(newType, lform, filter);
4829     }
4830 
4831     private static MethodType collectArgumentsChecks(MethodHandle target, int pos, MethodHandle filter) throws RuntimeException {
4832         MethodType targetType = target.type();
4833         MethodType filterType = filter.type();
4834         Class<?> rtype = filterType.returnType();
4835         List<Class<?>> filterArgs = filterType.parameterList();
4836         if (rtype == void.class) {
4837             return targetType.insertParameterTypes(pos, filterArgs);
4838         }
4839         if (rtype != targetType.parameterType(pos)) {
4840             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4841         }
4842         return targetType.dropParameterTypes(pos, pos+1).insertParameterTypes(pos, filterArgs);
4843     }
4844 
4845     /**
4846      * Adapts a target method handle by post-processing
4847      * its return value (if any) with a filter (another method handle).
4848      * The result of the filter is returned from the adapter.
4849      * <p>
4850      * If the target returns a value, the filter must accept that value as
4851      * its only argument.
4852      * If the target returns void, the filter must accept no arguments.
4853      * <p>
4854      * The return type of the filter
4855      * replaces the return type of the target
4856      * in the resulting adapted method handle.
4857      * The argument type of the filter (if any) must be identical to the
4858      * return type of the target.
4859      * <p><b>Example:</b>
4860      * <blockquote><pre>{@code
4861 import static java.lang.invoke.MethodHandles.*;
4862 import static java.lang.invoke.MethodType.*;
4863 ...
4864 MethodHandle cat = lookup().findVirtual(String.class,
4865   "concat", methodType(String.class, String.class));
4866 MethodHandle length = lookup().findVirtual(String.class,
4867   "length", methodType(int.class));
4868 System.out.println((String) cat.invokeExact("x", "y")); // xy
4869 MethodHandle f0 = filterReturnValue(cat, length);
4870 System.out.println((int) f0.invokeExact("x", "y")); // 2
4871      * }</pre></blockquote>
4872      * <p>Here is pseudocode for the resulting adapter. In the code,
4873      * {@code T}/{@code t} represent the result type and value of the
4874      * {@code target}; {@code V}, the result type of the {@code filter}; and
4875      * {@code A}/{@code a}, the types and values of the parameters and arguments
4876      * of the {@code target} as well as the resulting adapter.
4877      * <blockquote><pre>{@code
4878      * T target(A...);
4879      * V filter(T);
4880      * V adapter(A... a) {
4881      *   T t = target(a...);
4882      *   return filter(t);
4883      * }
4884      * // and if the target has a void return:
4885      * void target2(A...);
4886      * V filter2();
4887      * V adapter2(A... a) {
4888      *   target2(a...);
4889      *   return filter2();
4890      * }
4891      * // and if the filter has a void return:
4892      * T target3(A...);
4893      * void filter3(V);
4894      * void adapter3(A... a) {
4895      *   T t = target3(a...);
4896      *   filter3(t);
4897      * }
4898      * }</pre></blockquote>
4899      * <p>
4900      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
4901      * variable-arity method handle}, even if the original target method handle was.
4902      * @param target the method handle to invoke before filtering the return value
4903      * @param filter method handle to call on the return value
4904      * @return method handle which incorporates the specified return value filtering logic
4905      * @throws NullPointerException if either argument is null
4906      * @throws IllegalArgumentException if the argument list of {@code filter}
4907      *          does not match the return type of target as described above
4908      */
4909     public static MethodHandle filterReturnValue(MethodHandle target, MethodHandle filter) {
4910         MethodType targetType = target.type();
4911         MethodType filterType = filter.type();
4912         filterReturnValueChecks(targetType, filterType);
4913         BoundMethodHandle result = target.rebind();
4914         BasicType rtype = BasicType.basicType(filterType.returnType());
4915         LambdaForm lform = result.editor().filterReturnForm(rtype, false);
4916         MethodType newType = targetType.changeReturnType(filterType.returnType());
4917         result = result.copyWithExtendL(newType, lform, filter);
4918         return result;
4919     }
4920 
4921     private static void filterReturnValueChecks(MethodType targetType, MethodType filterType) throws RuntimeException {
4922         Class<?> rtype = targetType.returnType();
4923         int filterValues = filterType.parameterCount();
4924         if (filterValues == 0
4925                 ? (rtype != void.class)
4926                 : (rtype != filterType.parameterType(0) || filterValues != 1))
4927             throw newIllegalArgumentException("target and filter types do not match", targetType, filterType);
4928     }
4929 
4930     /**
4931      * Adapts a target method handle by pre-processing
4932      * some of its arguments, and then calling the target with
4933      * the result of the pre-processing, inserted into the original
4934      * sequence of arguments.
4935      * <p>
4936      * The pre-processing is performed by {@code combiner}, a second method handle.
4937      * Of the arguments passed to the adapter, the first {@code N} arguments
4938      * are copied to the combiner, which is then called.
4939      * (Here, {@code N} is defined as the parameter count of the combiner.)
4940      * After this, control passes to the target, with any result
4941      * from the combiner inserted before the original {@code N} incoming
4942      * arguments.
4943      * <p>
4944      * If the combiner returns a value, the first parameter type of the target
4945      * must be identical with the return type of the combiner, and the next
4946      * {@code N} parameter types of the target must exactly match the parameters
4947      * of the combiner.
4948      * <p>
4949      * If the combiner has a void return, no result will be inserted,
4950      * and the first {@code N} parameter types of the target
4951      * must exactly match the parameters of the combiner.
4952      * <p>
4953      * The resulting adapter is the same type as the target, except that the
4954      * first parameter type is dropped,
4955      * if it corresponds to the result of the combiner.
4956      * <p>
4957      * (Note that {@link #dropArguments(MethodHandle,int,List) dropArguments} can be used to remove any arguments
4958      * that either the combiner or the target does not wish to receive.
4959      * If some of the incoming arguments are destined only for the combiner,
4960      * consider using {@link MethodHandle#asCollector asCollector} instead, since those
4961      * arguments will not need to be live on the stack on entry to the
4962      * target.)
4963      * <p><b>Example:</b>
4964      * <blockquote><pre>{@code
4965 import static java.lang.invoke.MethodHandles.*;
4966 import static java.lang.invoke.MethodType.*;
4967 ...
4968 MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
4969   "println", methodType(void.class, String.class))
4970     .bindTo(System.out);
4971 MethodHandle cat = lookup().findVirtual(String.class,
4972   "concat", methodType(String.class, String.class));
4973 assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
4974 MethodHandle catTrace = foldArguments(cat, trace);
4975 // also prints "boo":
4976 assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
4977      * }</pre></blockquote>
4978      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
4979      * represents the result type of the {@code target} and resulting adapter.
4980      * {@code V}/{@code v} represent the type and value of the parameter and argument
4981      * of {@code target} that precedes the folding position; {@code V} also is
4982      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
4983      * types and values of the {@code N} parameters and arguments at the folding
4984      * position. {@code B}/{@code b} represent the types and values of the
4985      * {@code target} parameters and arguments that follow the folded parameters
4986      * and arguments.
4987      * <blockquote><pre>{@code
4988      * // there are N arguments in A...
4989      * T target(V, A[N]..., B...);
4990      * V combiner(A...);
4991      * T adapter(A... a, B... b) {
4992      *   V v = combiner(a...);
4993      *   return target(v, a..., b...);
4994      * }
4995      * // and if the combiner has a void return:
4996      * T target2(A[N]..., B...);
4997      * void combiner2(A...);
4998      * T adapter2(A... a, B... b) {
4999      *   combiner2(a...);
5000      *   return target2(a..., b...);
5001      * }
5002      * }</pre></blockquote>
5003      * <p>
5004      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5005      * variable-arity method handle}, even if the original target method handle was.
5006      * @param target the method handle to invoke after arguments are combined
5007      * @param combiner method handle to call initially on the incoming arguments
5008      * @return method handle which incorporates the specified argument folding logic
5009      * @throws NullPointerException if either argument is null
5010      * @throws IllegalArgumentException if {@code combiner}'s return type
5011      *          is non-void and not the same as the first argument type of
5012      *          the target, or if the initial {@code N} argument types
5013      *          of the target
5014      *          (skipping one matching the {@code combiner}'s return type)
5015      *          are not identical with the argument types of {@code combiner}
5016      */
5017     public static MethodHandle foldArguments(MethodHandle target, MethodHandle combiner) {
5018         return foldArguments(target, 0, combiner);
5019     }
5020 
5021     /**
5022      * Adapts a target method handle by pre-processing some of its arguments, starting at a given position, and then
5023      * calling the target with the result of the pre-processing, inserted into the original sequence of arguments just
5024      * before the folded arguments.
5025      * <p>
5026      * This method is closely related to {@link #foldArguments(MethodHandle, MethodHandle)}, but allows to control the
5027      * position in the parameter list at which folding takes place. The argument controlling this, {@code pos}, is a
5028      * zero-based index. The aforementioned method {@link #foldArguments(MethodHandle, MethodHandle)} assumes position
5029      * 0.
5030      *
5031      * @apiNote Example:
5032      * <blockquote><pre>{@code
5033     import static java.lang.invoke.MethodHandles.*;
5034     import static java.lang.invoke.MethodType.*;
5035     ...
5036     MethodHandle trace = publicLookup().findVirtual(java.io.PrintStream.class,
5037     "println", methodType(void.class, String.class))
5038     .bindTo(System.out);
5039     MethodHandle cat = lookup().findVirtual(String.class,
5040     "concat", methodType(String.class, String.class));
5041     assertEquals("boojum", (String) cat.invokeExact("boo", "jum"));
5042     MethodHandle catTrace = foldArguments(cat, 1, trace);
5043     // also prints "jum":
5044     assertEquals("boojum", (String) catTrace.invokeExact("boo", "jum"));
5045      * }</pre></blockquote>
5046      * <p>Here is pseudocode for the resulting adapter. In the code, {@code T}
5047      * represents the result type of the {@code target} and resulting adapter.
5048      * {@code V}/{@code v} represent the type and value of the parameter and argument
5049      * of {@code target} that precedes the folding position; {@code V} also is
5050      * the result type of the {@code combiner}. {@code A}/{@code a} denote the
5051      * types and values of the {@code N} parameters and arguments at the folding
5052      * position. {@code Z}/{@code z} and {@code B}/{@code b} represent the types
5053      * and values of the {@code target} parameters and arguments that precede and
5054      * follow the folded parameters and arguments starting at {@code pos},
5055      * respectively.
5056      * <blockquote><pre>{@code
5057      * // there are N arguments in A...
5058      * T target(Z..., V, A[N]..., B...);
5059      * V combiner(A...);
5060      * T adapter(Z... z, A... a, B... b) {
5061      *   V v = combiner(a...);
5062      *   return target(z..., v, a..., b...);
5063      * }
5064      * // and if the combiner has a void return:
5065      * T target2(Z..., A[N]..., B...);
5066      * void combiner2(A...);
5067      * T adapter2(Z... z, A... a, B... b) {
5068      *   combiner2(a...);
5069      *   return target2(z..., a..., b...);
5070      * }
5071      * }</pre></blockquote>
5072      * <p>
5073      * <em>Note:</em> The resulting adapter is never a {@linkplain MethodHandle#asVarargsCollector
5074      * variable-arity method handle}, even if the original target method handle was.
5075      *
5076      * @param target the method handle to invoke after arguments are combined
5077      * @param pos the position at which to start folding and at which to insert the folding result; if this is {@code
5078      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5079      * @param combiner method handle to call initially on the incoming arguments
5080      * @return method handle which incorporates the specified argument folding logic
5081      * @throws NullPointerException if either argument is null
5082      * @throws IllegalArgumentException if either of the following two conditions holds:
5083      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5084      *              {@code pos} of the target signature;
5085      *          (2) the {@code N} argument types at position {@code pos} of the target signature (skipping one matching
5086      *              the {@code combiner}'s return type) are not identical with the argument types of {@code combiner}.
5087      *
5088      * @see #foldArguments(MethodHandle, MethodHandle)
5089      * @since 9
5090      */
5091     public static MethodHandle foldArguments(MethodHandle target, int pos, MethodHandle combiner) {
5092         MethodType targetType = target.type();
5093         MethodType combinerType = combiner.type();
5094         Class<?> rtype = foldArgumentChecks(pos, targetType, combinerType);
5095         BoundMethodHandle result = target.rebind();
5096         boolean dropResult = rtype == void.class;
5097         LambdaForm lform = result.editor().foldArgumentsForm(1 + pos, dropResult, combinerType.basicType());
5098         MethodType newType = targetType;
5099         if (!dropResult) {
5100             newType = newType.dropParameterTypes(pos, pos + 1);
5101         }
5102         result = result.copyWithExtendL(newType, lform, combiner);
5103         return result;
5104     }
5105 
5106     private static Class<?> foldArgumentChecks(int foldPos, MethodType targetType, MethodType combinerType) {
5107         int foldArgs   = combinerType.parameterCount();
5108         Class<?> rtype = combinerType.returnType();
5109         int foldVals = rtype == void.class ? 0 : 1;
5110         int afterInsertPos = foldPos + foldVals;
5111         boolean ok = (targetType.parameterCount() >= afterInsertPos + foldArgs);
5112         if (ok) {
5113             for (int i = 0; i < foldArgs; i++) {
5114                 if (combinerType.parameterType(i) != targetType.parameterType(i + afterInsertPos)) {
5115                     ok = false;
5116                     break;
5117                 }
5118             }
5119         }
5120         if (ok && foldVals != 0 && combinerType.returnType() != targetType.parameterType(foldPos))
5121             ok = false;
5122         if (!ok)
5123             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5124         return rtype;
5125     }
5126 
5127     /**
5128      * Adapts a target method handle by pre-processing some of its arguments, then calling the target with the result
5129      * of the pre-processing replacing the argument at the given position.
5130      *
5131      * @param target the method handle to invoke after arguments are combined
5132      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5133      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5134      * @param combiner method handle to call initially on the incoming arguments
5135      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5136      * @return method handle which incorporates the specified argument folding logic
5137      * @throws NullPointerException if either argument is null
5138      * @throws IllegalArgumentException if either of the following two conditions holds:
5139      *          (1) {@code combiner}'s return type is not the same as the argument type at position
5140      *              {@code pos} of the target signature;
5141      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature are
5142      *              not identical with the argument types of {@code combiner}.
5143      */
5144     /*non-public*/
5145     static MethodHandle filterArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5146         return argumentsWithCombiner(true, target, position, combiner, argPositions);
5147     }
5148 
5149     /**
5150      * Adapts a target method handle by pre-processing some of its arguments, calling the target with the result of
5151      * the pre-processing inserted into the original sequence of arguments at the given position.
5152      *
5153      * @param target the method handle to invoke after arguments are combined
5154      * @param position the position at which to start folding and at which to insert the folding result; if this is {@code
5155      *            0}, the effect is the same as for {@link #foldArguments(MethodHandle, MethodHandle)}.
5156      * @param combiner method handle to call initially on the incoming arguments
5157      * @param argPositions indexes of the target to pick arguments sent to the combiner from
5158      * @return method handle which incorporates the specified argument folding logic
5159      * @throws NullPointerException if either argument is null
5160      * @throws IllegalArgumentException if either of the following two conditions holds:
5161      *          (1) {@code combiner}'s return type is non-{@code void} and not the same as the argument type at position
5162      *              {@code pos} of the target signature;
5163      *          (2) the {@code N} argument types at positions {@code argPositions[1...N]} of the target signature
5164      *              (skipping {@code position} where the {@code combiner}'s return will be folded in) are not identical
5165      *              with the argument types of {@code combiner}.
5166      */
5167     /*non-public*/
5168     static MethodHandle foldArgumentsWithCombiner(MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5169         return argumentsWithCombiner(false, target, position, combiner, argPositions);
5170     }
5171 
5172     private static MethodHandle argumentsWithCombiner(boolean filter, MethodHandle target, int position, MethodHandle combiner, int ... argPositions) {
5173         MethodType targetType = target.type();
5174         MethodType combinerType = combiner.type();
5175         Class<?> rtype = argumentsWithCombinerChecks(position, filter, targetType, combinerType, argPositions);
5176         BoundMethodHandle result = target.rebind();
5177 
5178         MethodType newType = targetType;
5179         LambdaForm lform;
5180         if (filter) {
5181             lform = result.editor().filterArgumentsForm(1 + position, combinerType.basicType(), argPositions);
5182         } else {
5183             boolean dropResult = rtype == void.class;
5184             lform = result.editor().foldArgumentsForm(1 + position, dropResult, combinerType.basicType(), argPositions);
5185             if (!dropResult) {
5186                 newType = newType.dropParameterTypes(position, position + 1);
5187             }
5188         }
5189         result = result.copyWithExtendL(newType, lform, combiner);
5190         return result;
5191     }
5192 
5193     private static Class<?> argumentsWithCombinerChecks(int position, boolean filter, MethodType targetType, MethodType combinerType, int ... argPos) {
5194         int combinerArgs = combinerType.parameterCount();
5195         if (argPos.length != combinerArgs) {
5196             throw newIllegalArgumentException("combiner and argument map must be equal size", combinerType, argPos.length);
5197         }
5198         Class<?> rtype = combinerType.returnType();
5199 
5200         for (int i = 0; i < combinerArgs; i++) {
5201             int arg = argPos[i];
5202             if (arg < 0 || arg > targetType.parameterCount()) {
5203                 throw newIllegalArgumentException("arg outside of target parameterRange", targetType, arg);
5204             }
5205             if (combinerType.parameterType(i) != targetType.parameterType(arg)) {
5206                 throw newIllegalArgumentException("target argument type at position " + arg
5207                         + " must match combiner argument type at index " + i + ": " + targetType
5208                         + " -> " + combinerType + ", map: " + Arrays.toString(argPos));
5209             }
5210         }
5211         if (filter && combinerType.returnType() != targetType.parameterType(position)) {
5212             throw misMatchedTypes("target and combiner types", targetType, combinerType);
5213         }
5214         return rtype;
5215     }
5216 
5217     /**
5218      * Makes a method handle which adapts a target method handle,
5219      * by guarding it with a test, a boolean-valued method handle.
5220      * If the guard fails, a fallback handle is called instead.
5221      * All three method handles must have the same corresponding
5222      * argument and return types, except that the return type
5223      * of the test must be boolean, and the test is allowed
5224      * to have fewer arguments than the other two method handles.
5225      * <p>
5226      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5227      * represents the uniform result type of the three involved handles;
5228      * {@code A}/{@code a}, the types and values of the {@code target}
5229      * parameters and arguments that are consumed by the {@code test}; and
5230      * {@code B}/{@code b}, those types and values of the {@code target}
5231      * parameters and arguments that are not consumed by the {@code test}.
5232      * <blockquote><pre>{@code
5233      * boolean test(A...);
5234      * T target(A...,B...);
5235      * T fallback(A...,B...);
5236      * T adapter(A... a,B... b) {
5237      *   if (test(a...))
5238      *     return target(a..., b...);
5239      *   else
5240      *     return fallback(a..., b...);
5241      * }
5242      * }</pre></blockquote>
5243      * Note that the test arguments ({@code a...} in the pseudocode) cannot
5244      * be modified by execution of the test, and so are passed unchanged
5245      * from the caller to the target or fallback as appropriate.
5246      * @param test method handle used for test, must return boolean
5247      * @param target method handle to call if test passes
5248      * @param fallback method handle to call if test fails
5249      * @return method handle which incorporates the specified if/then/else logic
5250      * @throws NullPointerException if any argument is null
5251      * @throws IllegalArgumentException if {@code test} does not return boolean,
5252      *          or if all three method types do not match (with the return
5253      *          type of {@code test} changed to match that of the target).
5254      */
5255     public static MethodHandle guardWithTest(MethodHandle test,
5256                                MethodHandle target,
5257                                MethodHandle fallback) {
5258         MethodType gtype = test.type();
5259         MethodType ttype = target.type();
5260         MethodType ftype = fallback.type();
5261         if (!ttype.equals(ftype))
5262             throw misMatchedTypes("target and fallback types", ttype, ftype);
5263         if (gtype.returnType() != boolean.class)
5264             throw newIllegalArgumentException("guard type is not a predicate "+gtype);
5265         List<Class<?>> targs = ttype.parameterList();
5266         test = dropArgumentsToMatch(test, 0, targs, 0, true);
5267         if (test == null) {
5268             throw misMatchedTypes("target and test types", ttype, gtype);
5269         }
5270         return MethodHandleImpl.makeGuardWithTest(test, target, fallback);
5271     }
5272 
5273     static <T> RuntimeException misMatchedTypes(String what, T t1, T t2) {
5274         return newIllegalArgumentException(what + " must match: " + t1 + " != " + t2);
5275     }
5276 
5277     /**
5278      * Makes a method handle which adapts a target method handle,
5279      * by running it inside an exception handler.
5280      * If the target returns normally, the adapter returns that value.
5281      * If an exception matching the specified type is thrown, the fallback
5282      * handle is called instead on the exception, plus the original arguments.
5283      * <p>
5284      * The target and handler must have the same corresponding
5285      * argument and return types, except that handler may omit trailing arguments
5286      * (similarly to the predicate in {@link #guardWithTest guardWithTest}).
5287      * Also, the handler must have an extra leading parameter of {@code exType} or a supertype.
5288      * <p>
5289      * Here is pseudocode for the resulting adapter. In the code, {@code T}
5290      * represents the return type of the {@code target} and {@code handler},
5291      * and correspondingly that of the resulting adapter; {@code A}/{@code a},
5292      * the types and values of arguments to the resulting handle consumed by
5293      * {@code handler}; and {@code B}/{@code b}, those of arguments to the
5294      * resulting handle discarded by {@code handler}.
5295      * <blockquote><pre>{@code
5296      * T target(A..., B...);
5297      * T handler(ExType, A...);
5298      * T adapter(A... a, B... b) {
5299      *   try {
5300      *     return target(a..., b...);
5301      *   } catch (ExType ex) {
5302      *     return handler(ex, a...);
5303      *   }
5304      * }
5305      * }</pre></blockquote>
5306      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
5307      * be modified by execution of the target, and so are passed unchanged
5308      * from the caller to the handler, if the handler is invoked.
5309      * <p>
5310      * The target and handler must return the same type, even if the handler
5311      * always throws.  (This might happen, for instance, because the handler
5312      * is simulating a {@code finally} clause).
5313      * To create such a throwing handler, compose the handler creation logic
5314      * with {@link #throwException throwException},
5315      * in order to create a method handle of the correct return type.
5316      * @param target method handle to call
5317      * @param exType the type of exception which the handler will catch
5318      * @param handler method handle to call if a matching exception is thrown
5319      * @return method handle which incorporates the specified try/catch logic
5320      * @throws NullPointerException if any argument is null
5321      * @throws IllegalArgumentException if {@code handler} does not accept
5322      *          the given exception type, or if the method handle types do
5323      *          not match in their return types and their
5324      *          corresponding parameters
5325      * @see MethodHandles#tryFinally(MethodHandle, MethodHandle)
5326      */
5327     public static MethodHandle catchException(MethodHandle target,
5328                                 Class<? extends Throwable> exType,
5329                                 MethodHandle handler) {
5330         MethodType ttype = target.type();
5331         MethodType htype = handler.type();
5332         if (!Throwable.class.isAssignableFrom(exType))
5333             throw new ClassCastException(exType.getName());
5334         if (htype.parameterCount() < 1 ||
5335             !htype.parameterType(0).isAssignableFrom(exType))
5336             throw newIllegalArgumentException("handler does not accept exception type "+exType);
5337         if (htype.returnType() != ttype.returnType())
5338             throw misMatchedTypes("target and handler return types", ttype, htype);
5339         handler = dropArgumentsToMatch(handler, 1, ttype.parameterList(), 0, true);
5340         if (handler == null) {
5341             throw misMatchedTypes("target and handler types", ttype, htype);
5342         }
5343         return MethodHandleImpl.makeGuardWithCatch(target, exType, handler);
5344     }
5345 
5346     /**
5347      * Produces a method handle which will throw exceptions of the given {@code exType}.
5348      * The method handle will accept a single argument of {@code exType},
5349      * and immediately throw it as an exception.
5350      * The method type will nominally specify a return of {@code returnType}.
5351      * The return type may be anything convenient:  It doesn't matter to the
5352      * method handle's behavior, since it will never return normally.
5353      * @param returnType the return type of the desired method handle
5354      * @param exType the parameter type of the desired method handle
5355      * @return method handle which can throw the given exceptions
5356      * @throws NullPointerException if either argument is null
5357      */
5358     public static MethodHandle throwException(Class<?> returnType, Class<? extends Throwable> exType) {
5359         if (!Throwable.class.isAssignableFrom(exType))
5360             throw new ClassCastException(exType.getName());
5361         return MethodHandleImpl.throwException(methodType(returnType, exType));
5362     }
5363 
5364     /**
5365      * Constructs a method handle representing a loop with several loop variables that are updated and checked upon each
5366      * iteration. Upon termination of the loop due to one of the predicates, a corresponding finalizer is run and
5367      * delivers the loop's result, which is the return value of the resulting handle.
5368      * <p>
5369      * Intuitively, every loop is formed by one or more "clauses", each specifying a local <em>iteration variable</em> and/or a loop
5370      * exit. Each iteration of the loop executes each clause in order. A clause can optionally update its iteration
5371      * variable; it can also optionally perform a test and conditional loop exit. In order to express this logic in
5372      * terms of method handles, each clause will specify up to four independent actions:<ul>
5373      * <li><em>init:</em> Before the loop executes, the initialization of an iteration variable {@code v} of type {@code V}.
5374      * <li><em>step:</em> When a clause executes, an update step for the iteration variable {@code v}.
5375      * <li><em>pred:</em> When a clause executes, a predicate execution to test for loop exit.
5376      * <li><em>fini:</em> If a clause causes a loop exit, a finalizer execution to compute the loop's return value.
5377      * </ul>
5378      * The full sequence of all iteration variable types, in clause order, will be notated as {@code (V...)}.
5379      * The values themselves will be {@code (v...)}.  When we speak of "parameter lists", we will usually
5380      * be referring to types, but in some contexts (describing execution) the lists will be of actual values.
5381      * <p>
5382      * Some of these clause parts may be omitted according to certain rules, and useful default behavior is provided in
5383      * this case. See below for a detailed description.
5384      * <p>
5385      * <em>Parameters optional everywhere:</em>
5386      * Each clause function is allowed but not required to accept a parameter for each iteration variable {@code v}.
5387      * As an exception, the init functions cannot take any {@code v} parameters,
5388      * because those values are not yet computed when the init functions are executed.
5389      * Any clause function may neglect to take any trailing subsequence of parameters it is entitled to take.
5390      * In fact, any clause function may take no arguments at all.
5391      * <p>
5392      * <em>Loop parameters:</em>
5393      * A clause function may take all the iteration variable values it is entitled to, in which case
5394      * it may also take more trailing parameters. Such extra values are called <em>loop parameters</em>,
5395      * with their types and values notated as {@code (A...)} and {@code (a...)}.
5396      * These become the parameters of the resulting loop handle, to be supplied whenever the loop is executed.
5397      * (Since init functions do not accept iteration variables {@code v}, any parameter to an
5398      * init function is automatically a loop parameter {@code a}.)
5399      * As with iteration variables, clause functions are allowed but not required to accept loop parameters.
5400      * These loop parameters act as loop-invariant values visible across the whole loop.
5401      * <p>
5402      * <em>Parameters visible everywhere:</em>
5403      * Each non-init clause function is permitted to observe the entire loop state, because it can be passed the full
5404      * list {@code (v... a...)} of current iteration variable values and incoming loop parameters.
5405      * The init functions can observe initial pre-loop state, in the form {@code (a...)}.
5406      * Most clause functions will not need all of this information, but they will be formally connected to it
5407      * as if by {@link #dropArguments}.
5408      * <a id="astar"></a>
5409      * More specifically, we shall use the notation {@code (V*)} to express an arbitrary prefix of a full
5410      * sequence {@code (V...)} (and likewise for {@code (v*)}, {@code (A*)}, {@code (a*)}).
5411      * In that notation, the general form of an init function parameter list
5412      * is {@code (A*)}, and the general form of a non-init function parameter list is {@code (V*)} or {@code (V... A*)}.
5413      * <p>
5414      * <em>Checking clause structure:</em>
5415      * Given a set of clauses, there is a number of checks and adjustments performed to connect all the parts of the
5416      * loop. They are spelled out in detail in the steps below. In these steps, every occurrence of the word "must"
5417      * corresponds to a place where {@link IllegalArgumentException} will be thrown if the required constraint is not
5418      * met by the inputs to the loop combinator.
5419      * <p>
5420      * <em>Effectively identical sequences:</em>
5421      * <a id="effid"></a>
5422      * A parameter list {@code A} is defined to be <em>effectively identical</em> to another parameter list {@code B}
5423      * if {@code A} and {@code B} are identical, or if {@code A} is shorter and is identical with a proper prefix of {@code B}.
5424      * When speaking of an unordered set of parameter lists, we say they the set is "effectively identical"
5425      * as a whole if the set contains a longest list, and all members of the set are effectively identical to
5426      * that longest list.
5427      * For example, any set of type sequences of the form {@code (V*)} is effectively identical,
5428      * and the same is true if more sequences of the form {@code (V... A*)} are added.
5429      * <p>
5430      * <em>Step 0: Determine clause structure.</em><ol type="a">
5431      * <li>The clause array (of type {@code MethodHandle[][]}) must be non-{@code null} and contain at least one element.
5432      * <li>The clause array may not contain {@code null}s or sub-arrays longer than four elements.
5433      * <li>Clauses shorter than four elements are treated as if they were padded by {@code null} elements to length
5434      * four. Padding takes place by appending elements to the array.
5435      * <li>Clauses with all {@code null}s are disregarded.
5436      * <li>Each clause is treated as a four-tuple of functions, called "init", "step", "pred", and "fini".
5437      * </ol>
5438      * <p>
5439      * <em>Step 1A: Determine iteration variable types {@code (V...)}.</em><ol type="a">
5440      * <li>The iteration variable type for each clause is determined using the clause's init and step return types.
5441      * <li>If both functions are omitted, there is no iteration variable for the corresponding clause ({@code void} is
5442      * used as the type to indicate that). If one of them is omitted, the other's return type defines the clause's
5443      * iteration variable type. If both are given, the common return type (they must be identical) defines the clause's
5444      * iteration variable type.
5445      * <li>Form the list of return types (in clause order), omitting all occurrences of {@code void}.
5446      * <li>This list of types is called the "iteration variable types" ({@code (V...)}).
5447      * </ol>
5448      * <p>
5449      * <em>Step 1B: Determine loop parameters {@code (A...)}.</em><ul>
5450      * <li>Examine and collect init function parameter lists (which are of the form {@code (A*)}).
5451      * <li>Examine and collect the suffixes of the step, pred, and fini parameter lists, after removing the iteration variable types.
5452      * (They must have the form {@code (V... A*)}; collect the {@code (A*)} parts only.)
5453      * <li>Do not collect suffixes from step, pred, and fini parameter lists that do not begin with all the iteration variable types.
5454      * (These types will be checked in step 2, along with all the clause function types.)
5455      * <li>Omitted clause functions are ignored.  (Equivalently, they are deemed to have empty parameter lists.)
5456      * <li>All of the collected parameter lists must be effectively identical.
5457      * <li>The longest parameter list (which is necessarily unique) is called the "external parameter list" ({@code (A...)}).
5458      * <li>If there is no such parameter list, the external parameter list is taken to be the empty sequence.
5459      * <li>The combined list consisting of iteration variable types followed by the external parameter types is called
5460      * the "internal parameter list".
5461      * </ul>
5462      * <p>
5463      * <em>Step 1C: Determine loop return type.</em><ol type="a">
5464      * <li>Examine fini function return types, disregarding omitted fini functions.
5465      * <li>If there are no fini functions, the loop return type is {@code void}.
5466      * <li>Otherwise, the common return type {@code R} of the fini functions (their return types must be identical) defines the loop return
5467      * type.
5468      * </ol>
5469      * <p>
5470      * <em>Step 1D: Check other types.</em><ol type="a">
5471      * <li>There must be at least one non-omitted pred function.
5472      * <li>Every non-omitted pred function must have a {@code boolean} return type.
5473      * </ol>
5474      * <p>
5475      * <em>Step 2: Determine parameter lists.</em><ol type="a">
5476      * <li>The parameter list for the resulting loop handle will be the external parameter list {@code (A...)}.
5477      * <li>The parameter list for init functions will be adjusted to the external parameter list.
5478      * (Note that their parameter lists are already effectively identical to this list.)
5479      * <li>The parameter list for every non-omitted, non-init (step, pred, and fini) function must be
5480      * effectively identical to the internal parameter list {@code (V... A...)}.
5481      * </ol>
5482      * <p>
5483      * <em>Step 3: Fill in omitted functions.</em><ol type="a">
5484      * <li>If an init function is omitted, use a {@linkplain #empty default value} for the clause's iteration variable
5485      * type.
5486      * <li>If a step function is omitted, use an {@linkplain #identity identity function} of the clause's iteration
5487      * variable type; insert dropped argument parameters before the identity function parameter for the non-{@code void}
5488      * iteration variables of preceding clauses. (This will turn the loop variable into a local loop invariant.)
5489      * <li>If a pred function is omitted, use a constant {@code true} function. (This will keep the loop going, as far
5490      * as this clause is concerned.  Note that in such cases the corresponding fini function is unreachable.)
5491      * <li>If a fini function is omitted, use a {@linkplain #empty default value} for the
5492      * loop return type.
5493      * </ol>
5494      * <p>
5495      * <em>Step 4: Fill in missing parameter types.</em><ol type="a">
5496      * <li>At this point, every init function parameter list is effectively identical to the external parameter list {@code (A...)},
5497      * but some lists may be shorter. For every init function with a short parameter list, pad out the end of the list.
5498      * <li>At this point, every non-init function parameter list is effectively identical to the internal parameter
5499      * list {@code (V... A...)}, but some lists may be shorter. For every non-init function with a short parameter list,
5500      * pad out the end of the list.
5501      * <li>Argument lists are padded out by {@linkplain #dropArgumentsToMatch(MethodHandle, int, List, int) dropping unused trailing arguments}.
5502      * </ol>
5503      * <p>
5504      * <em>Final observations.</em><ol type="a">
5505      * <li>After these steps, all clauses have been adjusted by supplying omitted functions and arguments.
5506      * <li>All init functions have a common parameter type list {@code (A...)}, which the final loop handle will also have.
5507      * <li>All fini functions have a common return type {@code R}, which the final loop handle will also have.
5508      * <li>All non-init functions have a common parameter type list {@code (V... A...)}, of
5509      * (non-{@code void}) iteration variables {@code V} followed by loop parameters.
5510      * <li>Each pair of init and step functions agrees in their return type {@code V}.
5511      * <li>Each non-init function will be able to observe the current values {@code (v...)} of all iteration variables.
5512      * <li>Every function will be able to observe the incoming values {@code (a...)} of all loop parameters.
5513      * </ol>
5514      * <p>
5515      * <em>Example.</em> As a consequence of step 1A above, the {@code loop} combinator has the following property:
5516      * <ul>
5517      * <li>Given {@code N} clauses {@code Cn = {null, Sn, Pn}} with {@code n = 1..N}.
5518      * <li>Suppose predicate handles {@code Pn} are either {@code null} or have no parameters.
5519      * (Only one {@code Pn} has to be non-{@code null}.)
5520      * <li>Suppose step handles {@code Sn} have signatures {@code (B1..BX)Rn}, for some constant {@code X>=N}.
5521      * <li>Suppose {@code Q} is the count of non-void types {@code Rn}, and {@code (V1...VQ)} is the sequence of those types.
5522      * <li>It must be that {@code Vn == Bn} for {@code n = 1..min(X,Q)}.
5523      * <li>The parameter types {@code Vn} will be interpreted as loop-local state elements {@code (V...)}.
5524      * <li>Any remaining types {@code BQ+1..BX} (if {@code Q<X}) will determine
5525      * the resulting loop handle's parameter types {@code (A...)}.
5526      * </ul>
5527      * In this example, the loop handle parameters {@code (A...)} were derived from the step functions,
5528      * which is natural if most of the loop computation happens in the steps.  For some loops,
5529      * the burden of computation might be heaviest in the pred functions, and so the pred functions
5530      * might need to accept the loop parameter values.  For loops with complex exit logic, the fini
5531      * functions might need to accept loop parameters, and likewise for loops with complex entry logic,
5532      * where the init functions will need the extra parameters.  For such reasons, the rules for
5533      * determining these parameters are as symmetric as possible, across all clause parts.
5534      * In general, the loop parameters function as common invariant values across the whole
5535      * loop, while the iteration variables function as common variant values, or (if there is
5536      * no step function) as internal loop invariant temporaries.
5537      * <p>
5538      * <em>Loop execution.</em><ol type="a">
5539      * <li>When the loop is called, the loop input values are saved in locals, to be passed to
5540      * every clause function. These locals are loop invariant.
5541      * <li>Each init function is executed in clause order (passing the external arguments {@code (a...)})
5542      * and the non-{@code void} values are saved (as the iteration variables {@code (v...)}) into locals.
5543      * These locals will be loop varying (unless their steps behave as identity functions, as noted above).
5544      * <li>All function executions (except init functions) will be passed the internal parameter list, consisting of
5545      * the non-{@code void} iteration values {@code (v...)} (in clause order) and then the loop inputs {@code (a...)}
5546      * (in argument order).
5547      * <li>The step and pred functions are then executed, in clause order (step before pred), until a pred function
5548      * returns {@code false}.
5549      * <li>The non-{@code void} result from a step function call is used to update the corresponding value in the
5550      * sequence {@code (v...)} of loop variables.
5551      * The updated value is immediately visible to all subsequent function calls.
5552      * <li>If a pred function returns {@code false}, the corresponding fini function is called, and the resulting value
5553      * (of type {@code R}) is returned from the loop as a whole.
5554      * <li>If all the pred functions always return true, no fini function is ever invoked, and the loop cannot exit
5555      * except by throwing an exception.
5556      * </ol>
5557      * <p>
5558      * <em>Usage tips.</em>
5559      * <ul>
5560      * <li>Although each step function will receive the current values of <em>all</em> the loop variables,
5561      * sometimes a step function only needs to observe the current value of its own variable.
5562      * In that case, the step function may need to explicitly {@linkplain #dropArguments drop all preceding loop variables}.
5563      * This will require mentioning their types, in an expression like {@code dropArguments(step, 0, V0.class, ...)}.
5564      * <li>Loop variables are not required to vary; they can be loop invariant.  A clause can create
5565      * a loop invariant by a suitable init function with no step, pred, or fini function.  This may be
5566      * useful to "wire" an incoming loop argument into the step or pred function of an adjacent loop variable.
5567      * <li>If some of the clause functions are virtual methods on an instance, the instance
5568      * itself can be conveniently placed in an initial invariant loop "variable", using an initial clause
5569      * like {@code new MethodHandle[]{identity(ObjType.class)}}.  In that case, the instance reference
5570      * will be the first iteration variable value, and it will be easy to use virtual
5571      * methods as clause parts, since all of them will take a leading instance reference matching that value.
5572      * </ul>
5573      * <p>
5574      * Here is pseudocode for the resulting loop handle. As above, {@code V} and {@code v} represent the types
5575      * and values of loop variables; {@code A} and {@code a} represent arguments passed to the whole loop;
5576      * and {@code R} is the common result type of all finalizers as well as of the resulting loop.
5577      * <blockquote><pre>{@code
5578      * V... init...(A...);
5579      * boolean pred...(V..., A...);
5580      * V... step...(V..., A...);
5581      * R fini...(V..., A...);
5582      * R loop(A... a) {
5583      *   V... v... = init...(a...);
5584      *   for (;;) {
5585      *     for ((v, p, s, f) in (v..., pred..., step..., fini...)) {
5586      *       v = s(v..., a...);
5587      *       if (!p(v..., a...)) {
5588      *         return f(v..., a...);
5589      *       }
5590      *     }
5591      *   }
5592      * }
5593      * }</pre></blockquote>
5594      * Note that the parameter type lists {@code (V...)} and {@code (A...)} have been expanded
5595      * to their full length, even though individual clause functions may neglect to take them all.
5596      * As noted above, missing parameters are filled in as if by {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}.
5597      *
5598      * @apiNote Example:
5599      * <blockquote><pre>{@code
5600      * // iterative implementation of the factorial function as a loop handle
5601      * static int one(int k) { return 1; }
5602      * static int inc(int i, int acc, int k) { return i + 1; }
5603      * static int mult(int i, int acc, int k) { return i * acc; }
5604      * static boolean pred(int i, int acc, int k) { return i < k; }
5605      * static int fin(int i, int acc, int k) { return acc; }
5606      * // assume MH_one, MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5607      * // null initializer for counter, should initialize to 0
5608      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5609      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5610      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5611      * assertEquals(120, loop.invoke(5));
5612      * }</pre></blockquote>
5613      * The same example, dropping arguments and using combinators:
5614      * <blockquote><pre>{@code
5615      * // simplified implementation of the factorial function as a loop handle
5616      * static int inc(int i) { return i + 1; } // drop acc, k
5617      * static int mult(int i, int acc) { return i * acc; } //drop k
5618      * static boolean cmp(int i, int k) { return i < k; }
5619      * // assume MH_inc, MH_mult, and MH_cmp are handles to the above methods
5620      * // null initializer for counter, should initialize to 0
5621      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5622      * MethodHandle MH_pred = MethodHandles.dropArguments(MH_cmp, 1, int.class); // drop acc
5623      * MethodHandle MH_fin = MethodHandles.dropArguments(MethodHandles.identity(int.class), 0, int.class); // drop i
5624      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5625      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5626      * MethodHandle loop = MethodHandles.loop(counterClause, accumulatorClause);
5627      * assertEquals(720, loop.invoke(6));
5628      * }</pre></blockquote>
5629      * A similar example, using a helper object to hold a loop parameter:
5630      * <blockquote><pre>{@code
5631      * // instance-based implementation of the factorial function as a loop handle
5632      * static class FacLoop {
5633      *   final int k;
5634      *   FacLoop(int k) { this.k = k; }
5635      *   int inc(int i) { return i + 1; }
5636      *   int mult(int i, int acc) { return i * acc; }
5637      *   boolean pred(int i) { return i < k; }
5638      *   int fin(int i, int acc) { return acc; }
5639      * }
5640      * // assume MH_FacLoop is a handle to the constructor
5641      * // assume MH_inc, MH_mult, MH_pred, and MH_fin are handles to the above methods
5642      * // null initializer for counter, should initialize to 0
5643      * MethodHandle MH_one = MethodHandles.constant(int.class, 1);
5644      * MethodHandle[] instanceClause = new MethodHandle[]{MH_FacLoop};
5645      * MethodHandle[] counterClause = new MethodHandle[]{null, MH_inc};
5646      * MethodHandle[] accumulatorClause = new MethodHandle[]{MH_one, MH_mult, MH_pred, MH_fin};
5647      * MethodHandle loop = MethodHandles.loop(instanceClause, counterClause, accumulatorClause);
5648      * assertEquals(5040, loop.invoke(7));
5649      * }</pre></blockquote>
5650      *
5651      * @param clauses an array of arrays (4-tuples) of {@link MethodHandle}s adhering to the rules described above.
5652      *
5653      * @return a method handle embodying the looping behavior as defined by the arguments.
5654      *
5655      * @throws IllegalArgumentException in case any of the constraints described above is violated.
5656      *
5657      * @see MethodHandles#whileLoop(MethodHandle, MethodHandle, MethodHandle)
5658      * @see MethodHandles#doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5659      * @see MethodHandles#countedLoop(MethodHandle, MethodHandle, MethodHandle)
5660      * @see MethodHandles#iteratedLoop(MethodHandle, MethodHandle, MethodHandle)
5661      * @since 9
5662      */
5663     public static MethodHandle loop(MethodHandle[]... clauses) {
5664         // Step 0: determine clause structure.
5665         loopChecks0(clauses);
5666 
5667         List<MethodHandle> init = new ArrayList<>();
5668         List<MethodHandle> step = new ArrayList<>();
5669         List<MethodHandle> pred = new ArrayList<>();
5670         List<MethodHandle> fini = new ArrayList<>();
5671 
5672         Stream.of(clauses).filter(c -> Stream.of(c).anyMatch(Objects::nonNull)).forEach(clause -> {
5673             init.add(clause[0]); // all clauses have at least length 1
5674             step.add(clause.length <= 1 ? null : clause[1]);
5675             pred.add(clause.length <= 2 ? null : clause[2]);
5676             fini.add(clause.length <= 3 ? null : clause[3]);
5677         });
5678 
5679         assert Stream.of(init, step, pred, fini).map(List::size).distinct().count() == 1;
5680         final int nclauses = init.size();
5681 
5682         // Step 1A: determine iteration variables (V...).
5683         final List<Class<?>> iterationVariableTypes = new ArrayList<>();
5684         for (int i = 0; i < nclauses; ++i) {
5685             MethodHandle in = init.get(i);
5686             MethodHandle st = step.get(i);
5687             if (in == null && st == null) {
5688                 iterationVariableTypes.add(void.class);
5689             } else if (in != null && st != null) {
5690                 loopChecks1a(i, in, st);
5691                 iterationVariableTypes.add(in.type().returnType());
5692             } else {
5693                 iterationVariableTypes.add(in == null ? st.type().returnType() : in.type().returnType());
5694             }
5695         }
5696         final List<Class<?>> commonPrefix = iterationVariableTypes.stream().filter(t -> t != void.class).
5697                 collect(Collectors.toList());
5698 
5699         // Step 1B: determine loop parameters (A...).
5700         final List<Class<?>> commonSuffix = buildCommonSuffix(init, step, pred, fini, commonPrefix.size());
5701         loopChecks1b(init, commonSuffix);
5702 
5703         // Step 1C: determine loop return type.
5704         // Step 1D: check other types.
5705         // local variable required here; see JDK-8223553
5706         Stream<Class<?>> cstream = fini.stream().filter(Objects::nonNull).map(MethodHandle::type)
5707                 .map(MethodType::returnType);
5708         final Class<?> loopReturnType = cstream.findFirst().orElse(void.class);
5709         loopChecks1cd(pred, fini, loopReturnType);
5710 
5711         // Step 2: determine parameter lists.
5712         final List<Class<?>> commonParameterSequence = new ArrayList<>(commonPrefix);
5713         commonParameterSequence.addAll(commonSuffix);
5714         loopChecks2(step, pred, fini, commonParameterSequence);
5715 
5716         // Step 3: fill in omitted functions.
5717         for (int i = 0; i < nclauses; ++i) {
5718             Class<?> t = iterationVariableTypes.get(i);
5719             if (init.get(i) == null) {
5720                 init.set(i, empty(methodType(t, commonSuffix)));
5721             }
5722             if (step.get(i) == null) {
5723                 step.set(i, dropArgumentsToMatch(identityOrVoid(t), 0, commonParameterSequence, i));
5724             }
5725             if (pred.get(i) == null) {
5726                 pred.set(i, dropArguments0(constant(boolean.class, true), 0, commonParameterSequence));
5727             }
5728             if (fini.get(i) == null) {
5729                 fini.set(i, empty(methodType(t, commonParameterSequence)));
5730             }
5731         }
5732 
5733         // Step 4: fill in missing parameter types.
5734         // Also convert all handles to fixed-arity handles.
5735         List<MethodHandle> finit = fixArities(fillParameterTypes(init, commonSuffix));
5736         List<MethodHandle> fstep = fixArities(fillParameterTypes(step, commonParameterSequence));
5737         List<MethodHandle> fpred = fixArities(fillParameterTypes(pred, commonParameterSequence));
5738         List<MethodHandle> ffini = fixArities(fillParameterTypes(fini, commonParameterSequence));
5739 
5740         assert finit.stream().map(MethodHandle::type).map(MethodType::parameterList).
5741                 allMatch(pl -> pl.equals(commonSuffix));
5742         assert Stream.of(fstep, fpred, ffini).flatMap(List::stream).map(MethodHandle::type).map(MethodType::parameterList).
5743                 allMatch(pl -> pl.equals(commonParameterSequence));
5744 
5745         return MethodHandleImpl.makeLoop(loopReturnType, commonSuffix, finit, fstep, fpred, ffini);
5746     }
5747 
5748     private static void loopChecks0(MethodHandle[][] clauses) {
5749         if (clauses == null || clauses.length == 0) {
5750             throw newIllegalArgumentException("null or no clauses passed");
5751         }
5752         if (Stream.of(clauses).anyMatch(Objects::isNull)) {
5753             throw newIllegalArgumentException("null clauses are not allowed");
5754         }
5755         if (Stream.of(clauses).anyMatch(c -> c.length > 4)) {
5756             throw newIllegalArgumentException("All loop clauses must be represented as MethodHandle arrays with at most 4 elements.");
5757         }
5758     }
5759 
5760     private static void loopChecks1a(int i, MethodHandle in, MethodHandle st) {
5761         if (in.type().returnType() != st.type().returnType()) {
5762             throw misMatchedTypes("clause " + i + ": init and step return types", in.type().returnType(),
5763                     st.type().returnType());
5764         }
5765     }
5766 
5767     private static List<Class<?>> longestParameterList(Stream<MethodHandle> mhs, int skipSize) {
5768         final List<Class<?>> empty = List.of();
5769         final List<Class<?>> longest = mhs.filter(Objects::nonNull).
5770                 // take only those that can contribute to a common suffix because they are longer than the prefix
5771                         map(MethodHandle::type).
5772                         filter(t -> t.parameterCount() > skipSize).
5773                         map(MethodType::parameterList).
5774                         reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5775         return longest.size() == 0 ? empty : longest.subList(skipSize, longest.size());
5776     }
5777 
5778     private static List<Class<?>> longestParameterList(List<List<Class<?>>> lists) {
5779         final List<Class<?>> empty = List.of();
5780         return lists.stream().reduce((p, q) -> p.size() >= q.size() ? p : q).orElse(empty);
5781     }
5782 
5783     private static List<Class<?>> buildCommonSuffix(List<MethodHandle> init, List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, int cpSize) {
5784         final List<Class<?>> longest1 = longestParameterList(Stream.of(step, pred, fini).flatMap(List::stream), cpSize);
5785         final List<Class<?>> longest2 = longestParameterList(init.stream(), 0);
5786         return longestParameterList(Arrays.asList(longest1, longest2));
5787     }
5788 
5789     private static void loopChecks1b(List<MethodHandle> init, List<Class<?>> commonSuffix) {
5790         if (init.stream().filter(Objects::nonNull).map(MethodHandle::type).
5791                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonSuffix))) {
5792             throw newIllegalArgumentException("found non-effectively identical init parameter type lists: " + init +
5793                     " (common suffix: " + commonSuffix + ")");
5794         }
5795     }
5796 
5797     private static void loopChecks1cd(List<MethodHandle> pred, List<MethodHandle> fini, Class<?> loopReturnType) {
5798         if (fini.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5799                 anyMatch(t -> t != loopReturnType)) {
5800             throw newIllegalArgumentException("found non-identical finalizer return types: " + fini + " (return type: " +
5801                     loopReturnType + ")");
5802         }
5803 
5804         if (!pred.stream().filter(Objects::nonNull).findFirst().isPresent()) {
5805             throw newIllegalArgumentException("no predicate found", pred);
5806         }
5807         if (pred.stream().filter(Objects::nonNull).map(MethodHandle::type).map(MethodType::returnType).
5808                 anyMatch(t -> t != boolean.class)) {
5809             throw newIllegalArgumentException("predicates must have boolean return type", pred);
5810         }
5811     }
5812 
5813     private static void loopChecks2(List<MethodHandle> step, List<MethodHandle> pred, List<MethodHandle> fini, List<Class<?>> commonParameterSequence) {
5814         if (Stream.of(step, pred, fini).flatMap(List::stream).filter(Objects::nonNull).map(MethodHandle::type).
5815                 anyMatch(t -> !t.effectivelyIdenticalParameters(0, commonParameterSequence))) {
5816             throw newIllegalArgumentException("found non-effectively identical parameter type lists:\nstep: " + step +
5817                     "\npred: " + pred + "\nfini: " + fini + " (common parameter sequence: " + commonParameterSequence + ")");
5818         }
5819     }
5820 
5821     private static List<MethodHandle> fillParameterTypes(List<MethodHandle> hs, final List<Class<?>> targetParams) {
5822         return hs.stream().map(h -> {
5823             int pc = h.type().parameterCount();
5824             int tpsize = targetParams.size();
5825             return pc < tpsize ? dropArguments0(h, pc, targetParams.subList(pc, tpsize)) : h;
5826         }).collect(Collectors.toList());
5827     }
5828 
5829     private static List<MethodHandle> fixArities(List<MethodHandle> hs) {
5830         return hs.stream().map(MethodHandle::asFixedArity).collect(Collectors.toList());
5831     }
5832 
5833     /**
5834      * Constructs a {@code while} loop from an initializer, a body, and a predicate.
5835      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5836      * <p>
5837      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5838      * method will, in each iteration, first evaluate the predicate and then execute its body (if the predicate
5839      * evaluates to {@code true}).
5840      * The loop will terminate once the predicate evaluates to {@code false} (the body will not be executed in this case).
5841      * <p>
5842      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5843      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5844      * and updated with the value returned from its invocation. The result of loop execution will be
5845      * the final value of the additional loop-local variable (if present).
5846      * <p>
5847      * The following rules hold for these argument handles:<ul>
5848      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5849      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5850      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5851      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5852      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5853      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5854      * It will constrain the parameter lists of the other loop parts.
5855      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5856      * list {@code (A...)} is called the <em>external parameter list</em>.
5857      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5858      * additional state variable of the loop.
5859      * The body must both accept and return a value of this type {@code V}.
5860      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5861      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5862      * <a href="MethodHandles.html#effid">effectively identical</a>
5863      * to the external parameter list {@code (A...)}.
5864      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5865      * {@linkplain #empty default value}.
5866      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5867      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5868      * effectively identical to the internal parameter list.
5869      * </ul>
5870      * <p>
5871      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5872      * <li>The loop handle's result type is the result type {@code V} of the body.
5873      * <li>The loop handle's parameter types are the types {@code (A...)},
5874      * from the external parameter list.
5875      * </ul>
5876      * <p>
5877      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5878      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5879      * passed to the loop.
5880      * <blockquote><pre>{@code
5881      * V init(A...);
5882      * boolean pred(V, A...);
5883      * V body(V, A...);
5884      * V whileLoop(A... a...) {
5885      *   V v = init(a...);
5886      *   while (pred(v, a...)) {
5887      *     v = body(v, a...);
5888      *   }
5889      *   return v;
5890      * }
5891      * }</pre></blockquote>
5892      *
5893      * @apiNote Example:
5894      * <blockquote><pre>{@code
5895      * // implement the zip function for lists as a loop handle
5896      * static List<String> initZip(Iterator<String> a, Iterator<String> b) { return new ArrayList<>(); }
5897      * static boolean zipPred(List<String> zip, Iterator<String> a, Iterator<String> b) { return a.hasNext() && b.hasNext(); }
5898      * static List<String> zipStep(List<String> zip, Iterator<String> a, Iterator<String> b) {
5899      *   zip.add(a.next());
5900      *   zip.add(b.next());
5901      *   return zip;
5902      * }
5903      * // assume MH_initZip, MH_zipPred, and MH_zipStep are handles to the above methods
5904      * MethodHandle loop = MethodHandles.whileLoop(MH_initZip, MH_zipPred, MH_zipStep);
5905      * List<String> a = Arrays.asList("a", "b", "c", "d");
5906      * List<String> b = Arrays.asList("e", "f", "g", "h");
5907      * List<String> zipped = Arrays.asList("a", "e", "b", "f", "c", "g", "d", "h");
5908      * assertEquals(zipped, (List<String>) loop.invoke(a.iterator(), b.iterator()));
5909      * }</pre></blockquote>
5910      *
5911      *
5912      * @apiNote The implementation of this method can be expressed as follows:
5913      * <blockquote><pre>{@code
5914      * MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5915      *     MethodHandle fini = (body.type().returnType() == void.class
5916      *                         ? null : identity(body.type().returnType()));
5917      *     MethodHandle[]
5918      *         checkExit = { null, null, pred, fini },
5919      *         varBody   = { init, body };
5920      *     return loop(checkExit, varBody);
5921      * }
5922      * }</pre></blockquote>
5923      *
5924      * @param init optional initializer, providing the initial value of the loop variable.
5925      *             May be {@code null}, implying a default initial value.  See above for other constraints.
5926      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
5927      *             above for other constraints.
5928      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
5929      *             See above for other constraints.
5930      *
5931      * @return a method handle implementing the {@code while} loop as described by the arguments.
5932      * @throws IllegalArgumentException if the rules for the arguments are violated.
5933      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
5934      *
5935      * @see #loop(MethodHandle[][])
5936      * @see #doWhileLoop(MethodHandle, MethodHandle, MethodHandle)
5937      * @since 9
5938      */
5939     public static MethodHandle whileLoop(MethodHandle init, MethodHandle pred, MethodHandle body) {
5940         whileLoopChecks(init, pred, body);
5941         MethodHandle fini = identityOrVoid(body.type().returnType());
5942         MethodHandle[] checkExit = { null, null, pred, fini };
5943         MethodHandle[] varBody = { init, body };
5944         return loop(checkExit, varBody);
5945     }
5946 
5947     /**
5948      * Constructs a {@code do-while} loop from an initializer, a body, and a predicate.
5949      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
5950      * <p>
5951      * The {@code pred} handle describes the loop condition; and {@code body}, its body. The loop resulting from this
5952      * method will, in each iteration, first execute its body and then evaluate the predicate.
5953      * The loop will terminate once the predicate evaluates to {@code false} after an execution of the body.
5954      * <p>
5955      * The {@code init} handle describes the initial value of an additional optional loop-local variable.
5956      * In each iteration, this loop-local variable, if present, will be passed to the {@code body}
5957      * and updated with the value returned from its invocation. The result of loop execution will be
5958      * the final value of the additional loop-local variable (if present).
5959      * <p>
5960      * The following rules hold for these argument handles:<ul>
5961      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
5962      * {@code (V A...)V}, where {@code V} is non-{@code void}, or else {@code (A...)void}.
5963      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
5964      * and we will write {@code (V A...)V} with the understanding that a {@code void} type {@code V}
5965      * is quietly dropped from the parameter list, leaving {@code (A...)V}.)
5966      * <li>The parameter list {@code (V A...)} of the body is called the <em>internal parameter list</em>.
5967      * It will constrain the parameter lists of the other loop parts.
5968      * <li>If the iteration variable type {@code V} is dropped from the internal parameter list, the resulting shorter
5969      * list {@code (A...)} is called the <em>external parameter list</em>.
5970      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
5971      * additional state variable of the loop.
5972      * The body must both accept and return a value of this type {@code V}.
5973      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
5974      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
5975      * <a href="MethodHandles.html#effid">effectively identical</a>
5976      * to the external parameter list {@code (A...)}.
5977      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
5978      * {@linkplain #empty default value}.
5979      * <li>The {@code pred} handle must not be {@code null}.  It must have {@code boolean} as its return type.
5980      * Its parameter list (either empty or of the form {@code (V A*)}) must be
5981      * effectively identical to the internal parameter list.
5982      * </ul>
5983      * <p>
5984      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
5985      * <li>The loop handle's result type is the result type {@code V} of the body.
5986      * <li>The loop handle's parameter types are the types {@code (A...)},
5987      * from the external parameter list.
5988      * </ul>
5989      * <p>
5990      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
5991      * the sole loop variable as well as the result type of the loop; and {@code A}/{@code a}, that of the argument
5992      * passed to the loop.
5993      * <blockquote><pre>{@code
5994      * V init(A...);
5995      * boolean pred(V, A...);
5996      * V body(V, A...);
5997      * V doWhileLoop(A... a...) {
5998      *   V v = init(a...);
5999      *   do {
6000      *     v = body(v, a...);
6001      *   } while (pred(v, a...));
6002      *   return v;
6003      * }
6004      * }</pre></blockquote>
6005      *
6006      * @apiNote Example:
6007      * <blockquote><pre>{@code
6008      * // int i = 0; while (i < limit) { ++i; } return i; => limit
6009      * static int zero(int limit) { return 0; }
6010      * static int step(int i, int limit) { return i + 1; }
6011      * static boolean pred(int i, int limit) { return i < limit; }
6012      * // assume MH_zero, MH_step, and MH_pred are handles to the above methods
6013      * MethodHandle loop = MethodHandles.doWhileLoop(MH_zero, MH_step, MH_pred);
6014      * assertEquals(23, loop.invoke(23));
6015      * }</pre></blockquote>
6016      *
6017      *
6018      * @apiNote The implementation of this method can be expressed as follows:
6019      * <blockquote><pre>{@code
6020      * MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6021      *     MethodHandle fini = (body.type().returnType() == void.class
6022      *                         ? null : identity(body.type().returnType()));
6023      *     MethodHandle[] clause = { init, body, pred, fini };
6024      *     return loop(clause);
6025      * }
6026      * }</pre></blockquote>
6027      *
6028      * @param init optional initializer, providing the initial value of the loop variable.
6029      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6030      * @param body body of the loop, which may not be {@code null}. It controls the loop parameters and result type.
6031      *             See above for other constraints.
6032      * @param pred condition for the loop, which may not be {@code null}. Its result type must be {@code boolean}. See
6033      *             above for other constraints.
6034      *
6035      * @return a method handle implementing the {@code while} loop as described by the arguments.
6036      * @throws IllegalArgumentException if the rules for the arguments are violated.
6037      * @throws NullPointerException if {@code pred} or {@code body} are {@code null}.
6038      *
6039      * @see #loop(MethodHandle[][])
6040      * @see #whileLoop(MethodHandle, MethodHandle, MethodHandle)
6041      * @since 9
6042      */
6043     public static MethodHandle doWhileLoop(MethodHandle init, MethodHandle body, MethodHandle pred) {
6044         whileLoopChecks(init, pred, body);
6045         MethodHandle fini = identityOrVoid(body.type().returnType());
6046         MethodHandle[] clause = {init, body, pred, fini };
6047         return loop(clause);
6048     }
6049 
6050     private static void whileLoopChecks(MethodHandle init, MethodHandle pred, MethodHandle body) {
6051         Objects.requireNonNull(pred);
6052         Objects.requireNonNull(body);
6053         MethodType bodyType = body.type();
6054         Class<?> returnType = bodyType.returnType();
6055         List<Class<?>> innerList = bodyType.parameterList();
6056         List<Class<?>> outerList = innerList;
6057         if (returnType == void.class) {
6058             // OK
6059         } else if (innerList.size() == 0 || innerList.get(0) != returnType) {
6060             // leading V argument missing => error
6061             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6062             throw misMatchedTypes("body function", bodyType, expected);
6063         } else {
6064             outerList = innerList.subList(1, innerList.size());
6065         }
6066         MethodType predType = pred.type();
6067         if (predType.returnType() != boolean.class ||
6068                 !predType.effectivelyIdenticalParameters(0, innerList)) {
6069             throw misMatchedTypes("loop predicate", predType, methodType(boolean.class, innerList));
6070         }
6071         if (init != null) {
6072             MethodType initType = init.type();
6073             if (initType.returnType() != returnType ||
6074                     !initType.effectivelyIdenticalParameters(0, outerList)) {
6075                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6076             }
6077         }
6078     }
6079 
6080     /**
6081      * Constructs a loop that runs a given number of iterations.
6082      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6083      * <p>
6084      * The number of iterations is determined by the {@code iterations} handle evaluation result.
6085      * The loop counter {@code i} is an extra loop iteration variable of type {@code int}.
6086      * It will be initialized to 0 and incremented by 1 in each iteration.
6087      * <p>
6088      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6089      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6090      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6091      * <p>
6092      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6093      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6094      * iteration variable.
6095      * The result of the loop handle execution will be the final {@code V} value of that variable
6096      * (or {@code void} if there is no {@code V} variable).
6097      * <p>
6098      * The following rules hold for the argument handles:<ul>
6099      * <li>The {@code iterations} handle must not be {@code null}, and must return
6100      * the type {@code int}, referred to here as {@code I} in parameter type lists.
6101      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6102      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6103      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6104      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6105      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6106      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6107      * of types called the <em>internal parameter list</em>.
6108      * It will constrain the parameter lists of the other loop parts.
6109      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6110      * with no additional {@code A} types, then the internal parameter list is extended by
6111      * the argument types {@code A...} of the {@code iterations} handle.
6112      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6113      * list {@code (A...)} is called the <em>external parameter list</em>.
6114      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6115      * additional state variable of the loop.
6116      * The body must both accept a leading parameter and return a value of this type {@code V}.
6117      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6118      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6119      * <a href="MethodHandles.html#effid">effectively identical</a>
6120      * to the external parameter list {@code (A...)}.
6121      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6122      * {@linkplain #empty default value}.
6123      * <li>The parameter list of {@code iterations} (of some form {@code (A*)}) must be
6124      * effectively identical to the external parameter list {@code (A...)}.
6125      * </ul>
6126      * <p>
6127      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6128      * <li>The loop handle's result type is the result type {@code V} of the body.
6129      * <li>The loop handle's parameter types are the types {@code (A...)},
6130      * from the external parameter list.
6131      * </ul>
6132      * <p>
6133      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6134      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6135      * arguments passed to the loop.
6136      * <blockquote><pre>{@code
6137      * int iterations(A...);
6138      * V init(A...);
6139      * V body(V, int, A...);
6140      * V countedLoop(A... a...) {
6141      *   int end = iterations(a...);
6142      *   V v = init(a...);
6143      *   for (int i = 0; i < end; ++i) {
6144      *     v = body(v, i, a...);
6145      *   }
6146      *   return v;
6147      * }
6148      * }</pre></blockquote>
6149      *
6150      * @apiNote Example with a fully conformant body method:
6151      * <blockquote><pre>{@code
6152      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6153      * // => a variation on a well known theme
6154      * static String step(String v, int counter, String init) { return "na " + v; }
6155      * // assume MH_step is a handle to the method above
6156      * MethodHandle fit13 = MethodHandles.constant(int.class, 13);
6157      * MethodHandle start = MethodHandles.identity(String.class);
6158      * MethodHandle loop = MethodHandles.countedLoop(fit13, start, MH_step);
6159      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("Lambdaman!"));
6160      * }</pre></blockquote>
6161      *
6162      * @apiNote Example with the simplest possible body method type,
6163      * and passing the number of iterations to the loop invocation:
6164      * <blockquote><pre>{@code
6165      * // String s = "Lambdaman!"; for (int i = 0; i < 13; ++i) { s = "na " + s; } return s;
6166      * // => a variation on a well known theme
6167      * static String step(String v, int counter ) { return "na " + v; }
6168      * // assume MH_step is a handle to the method above
6169      * MethodHandle count = MethodHandles.dropArguments(MethodHandles.identity(int.class), 1, String.class);
6170      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class);
6171      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i) -> "na " + v
6172      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "Lambdaman!"));
6173      * }</pre></blockquote>
6174      *
6175      * @apiNote Example that treats the number of iterations, string to append to, and string to append
6176      * as loop parameters:
6177      * <blockquote><pre>{@code
6178      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6179      * // => a variation on a well known theme
6180      * static String step(String v, int counter, int iterations_, String pre, String start_) { return pre + " " + v; }
6181      * // assume MH_step is a handle to the method above
6182      * MethodHandle count = MethodHandles.identity(int.class);
6183      * MethodHandle start = MethodHandles.dropArguments(MethodHandles.identity(String.class), 0, int.class, String.class);
6184      * MethodHandle loop = MethodHandles.countedLoop(count, start, MH_step);  // (v, i, _, pre, _) -> pre + " " + v
6185      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke(13, "na", "Lambdaman!"));
6186      * }</pre></blockquote>
6187      *
6188      * @apiNote Example that illustrates the usage of {@link #dropArgumentsToMatch(MethodHandle, int, List, int)}
6189      * to enforce a loop type:
6190      * <blockquote><pre>{@code
6191      * // String s = "Lambdaman!", t = "na"; for (int i = 0; i < 13; ++i) { s = t + " " + s; } return s;
6192      * // => a variation on a well known theme
6193      * static String step(String v, int counter, String pre) { return pre + " " + v; }
6194      * // assume MH_step is a handle to the method above
6195      * MethodType loopType = methodType(String.class, String.class, int.class, String.class);
6196      * MethodHandle count = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(int.class),    0, loopType.parameterList(), 1);
6197      * MethodHandle start = MethodHandles.dropArgumentsToMatch(MethodHandles.identity(String.class), 0, loopType.parameterList(), 2);
6198      * MethodHandle body  = MethodHandles.dropArgumentsToMatch(MH_step,                              2, loopType.parameterList(), 0);
6199      * MethodHandle loop = MethodHandles.countedLoop(count, start, body);  // (v, i, pre, _, _) -> pre + " " + v
6200      * assertEquals("na na na na na na na na na na na na na Lambdaman!", loop.invoke("na", 13, "Lambdaman!"));
6201      * }</pre></blockquote>
6202      *
6203      * @apiNote The implementation of this method can be expressed as follows:
6204      * <blockquote><pre>{@code
6205      * MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6206      *     return countedLoop(empty(iterations.type()), iterations, init, body);
6207      * }
6208      * }</pre></blockquote>
6209      *
6210      * @param iterations a non-{@code null} handle to return the number of iterations this loop should run. The handle's
6211      *                   result type must be {@code int}. See above for other constraints.
6212      * @param init optional initializer, providing the initial value of the loop variable.
6213      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6214      * @param body body of the loop, which may not be {@code null}.
6215      *             It controls the loop parameters and result type in the standard case (see above for details).
6216      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6217      *             and may accept any number of additional types.
6218      *             See above for other constraints.
6219      *
6220      * @return a method handle representing the loop.
6221      * @throws NullPointerException if either of the {@code iterations} or {@code body} handles is {@code null}.
6222      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6223      *
6224      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle, MethodHandle)
6225      * @since 9
6226      */
6227     public static MethodHandle countedLoop(MethodHandle iterations, MethodHandle init, MethodHandle body) {
6228         return countedLoop(empty(iterations.type()), iterations, init, body);
6229     }
6230 
6231     /**
6232      * Constructs a loop that counts over a range of numbers.
6233      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6234      * <p>
6235      * The loop counter {@code i} is a loop iteration variable of type {@code int}.
6236      * The {@code start} and {@code end} handles determine the start (inclusive) and end (exclusive)
6237      * values of the loop counter.
6238      * The loop counter will be initialized to the {@code int} value returned from the evaluation of the
6239      * {@code start} handle and run to the value returned from {@code end} (exclusively) with a step width of 1.
6240      * <p>
6241      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6242      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6243      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6244      * <p>
6245      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6246      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6247      * iteration variable.
6248      * The result of the loop handle execution will be the final {@code V} value of that variable
6249      * (or {@code void} if there is no {@code V} variable).
6250      * <p>
6251      * The following rules hold for the argument handles:<ul>
6252      * <li>The {@code start} and {@code end} handles must not be {@code null}, and must both return
6253      * the common type {@code int}, referred to here as {@code I} in parameter type lists.
6254      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6255      * {@code (V I A...)V}, where {@code V} is non-{@code void}, or else {@code (I A...)void}.
6256      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6257      * and we will write {@code (V I A...)V} with the understanding that a {@code void} type {@code V}
6258      * is quietly dropped from the parameter list, leaving {@code (I A...)V}.)
6259      * <li>The parameter list {@code (V I A...)} of the body contributes to a list
6260      * of types called the <em>internal parameter list</em>.
6261      * It will constrain the parameter lists of the other loop parts.
6262      * <li>As a special case, if the body contributes only {@code V} and {@code I} types,
6263      * with no additional {@code A} types, then the internal parameter list is extended by
6264      * the argument types {@code A...} of the {@code end} handle.
6265      * <li>If the iteration variable types {@code (V I)} are dropped from the internal parameter list, the resulting shorter
6266      * list {@code (A...)} is called the <em>external parameter list</em>.
6267      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6268      * additional state variable of the loop.
6269      * The body must both accept a leading parameter and return a value of this type {@code V}.
6270      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6271      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6272      * <a href="MethodHandles.html#effid">effectively identical</a>
6273      * to the external parameter list {@code (A...)}.
6274      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6275      * {@linkplain #empty default value}.
6276      * <li>The parameter list of {@code start} (of some form {@code (A*)}) must be
6277      * effectively identical to the external parameter list {@code (A...)}.
6278      * <li>Likewise, the parameter list of {@code end} must be effectively identical
6279      * to the external parameter list.
6280      * </ul>
6281      * <p>
6282      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6283      * <li>The loop handle's result type is the result type {@code V} of the body.
6284      * <li>The loop handle's parameter types are the types {@code (A...)},
6285      * from the external parameter list.
6286      * </ul>
6287      * <p>
6288      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6289      * the second loop variable as well as the result type of the loop; and {@code A...}/{@code a...} represent
6290      * arguments passed to the loop.
6291      * <blockquote><pre>{@code
6292      * int start(A...);
6293      * int end(A...);
6294      * V init(A...);
6295      * V body(V, int, A...);
6296      * V countedLoop(A... a...) {
6297      *   int e = end(a...);
6298      *   int s = start(a...);
6299      *   V v = init(a...);
6300      *   for (int i = s; i < e; ++i) {
6301      *     v = body(v, i, a...);
6302      *   }
6303      *   return v;
6304      * }
6305      * }</pre></blockquote>
6306      *
6307      * @apiNote The implementation of this method can be expressed as follows:
6308      * <blockquote><pre>{@code
6309      * MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6310      *     MethodHandle returnVar = dropArguments(identity(init.type().returnType()), 0, int.class, int.class);
6311      *     // assume MH_increment and MH_predicate are handles to implementation-internal methods with
6312      *     // the following semantics:
6313      *     // MH_increment: (int limit, int counter) -> counter + 1
6314      *     // MH_predicate: (int limit, int counter) -> counter < limit
6315      *     Class<?> counterType = start.type().returnType();  // int
6316      *     Class<?> returnType = body.type().returnType();
6317      *     MethodHandle incr = MH_increment, pred = MH_predicate, retv = null;
6318      *     if (returnType != void.class) {  // ignore the V variable
6319      *         incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6320      *         pred = dropArguments(pred, 1, returnType);  // ditto
6321      *         retv = dropArguments(identity(returnType), 0, counterType); // ignore limit
6322      *     }
6323      *     body = dropArguments(body, 0, counterType);  // ignore the limit variable
6324      *     MethodHandle[]
6325      *         loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6326      *         bodyClause = { init, body },            // v = init(); v = body(v, i)
6327      *         indexVar   = { start, incr };           // i = start(); i = i + 1
6328      *     return loop(loopLimit, bodyClause, indexVar);
6329      * }
6330      * }</pre></blockquote>
6331      *
6332      * @param start a non-{@code null} handle to return the start value of the loop counter, which must be {@code int}.
6333      *              See above for other constraints.
6334      * @param end a non-{@code null} handle to return the end value of the loop counter (the loop will run to
6335      *            {@code end-1}). The result type must be {@code int}. See above for other constraints.
6336      * @param init optional initializer, providing the initial value of the loop variable.
6337      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6338      * @param body body of the loop, which may not be {@code null}.
6339      *             It controls the loop parameters and result type in the standard case (see above for details).
6340      *             It must accept its own return type (if non-void) plus an {@code int} parameter (for the counter),
6341      *             and may accept any number of additional types.
6342      *             See above for other constraints.
6343      *
6344      * @return a method handle representing the loop.
6345      * @throws NullPointerException if any of the {@code start}, {@code end}, or {@code body} handles is {@code null}.
6346      * @throws IllegalArgumentException if any argument violates the rules formulated above.
6347      *
6348      * @see #countedLoop(MethodHandle, MethodHandle, MethodHandle)
6349      * @since 9
6350      */
6351     public static MethodHandle countedLoop(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6352         countedLoopChecks(start, end, init, body);
6353         Class<?> counterType = start.type().returnType();  // int, but who's counting?
6354         Class<?> limitType   = end.type().returnType();    // yes, int again
6355         Class<?> returnType  = body.type().returnType();
6356         MethodHandle incr = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopStep);
6357         MethodHandle pred = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_countedLoopPred);
6358         MethodHandle retv = null;
6359         if (returnType != void.class) {
6360             incr = dropArguments(incr, 1, returnType);  // (limit, v, i) => (limit, i)
6361             pred = dropArguments(pred, 1, returnType);  // ditto
6362             retv = dropArguments(identity(returnType), 0, counterType);
6363         }
6364         body = dropArguments(body, 0, counterType);  // ignore the limit variable
6365         MethodHandle[]
6366             loopLimit  = { end, null, pred, retv }, // limit = end(); i < limit || return v
6367             bodyClause = { init, body },            // v = init(); v = body(v, i)
6368             indexVar   = { start, incr };           // i = start(); i = i + 1
6369         return loop(loopLimit, bodyClause, indexVar);
6370     }
6371 
6372     private static void countedLoopChecks(MethodHandle start, MethodHandle end, MethodHandle init, MethodHandle body) {
6373         Objects.requireNonNull(start);
6374         Objects.requireNonNull(end);
6375         Objects.requireNonNull(body);
6376         Class<?> counterType = start.type().returnType();
6377         if (counterType != int.class) {
6378             MethodType expected = start.type().changeReturnType(int.class);
6379             throw misMatchedTypes("start function", start.type(), expected);
6380         } else if (end.type().returnType() != counterType) {
6381             MethodType expected = end.type().changeReturnType(counterType);
6382             throw misMatchedTypes("end function", end.type(), expected);
6383         }
6384         MethodType bodyType = body.type();
6385         Class<?> returnType = bodyType.returnType();
6386         List<Class<?>> innerList = bodyType.parameterList();
6387         // strip leading V value if present
6388         int vsize = (returnType == void.class ? 0 : 1);
6389         if (vsize != 0 && (innerList.size() == 0 || innerList.get(0) != returnType)) {
6390             // argument list has no "V" => error
6391             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6392             throw misMatchedTypes("body function", bodyType, expected);
6393         } else if (innerList.size() <= vsize || innerList.get(vsize) != counterType) {
6394             // missing I type => error
6395             MethodType expected = bodyType.insertParameterTypes(vsize, counterType);
6396             throw misMatchedTypes("body function", bodyType, expected);
6397         }
6398         List<Class<?>> outerList = innerList.subList(vsize + 1, innerList.size());
6399         if (outerList.isEmpty()) {
6400             // special case; take lists from end handle
6401             outerList = end.type().parameterList();
6402             innerList = bodyType.insertParameterTypes(vsize + 1, outerList).parameterList();
6403         }
6404         MethodType expected = methodType(counterType, outerList);
6405         if (!start.type().effectivelyIdenticalParameters(0, outerList)) {
6406             throw misMatchedTypes("start parameter types", start.type(), expected);
6407         }
6408         if (end.type() != start.type() &&
6409             !end.type().effectivelyIdenticalParameters(0, outerList)) {
6410             throw misMatchedTypes("end parameter types", end.type(), expected);
6411         }
6412         if (init != null) {
6413             MethodType initType = init.type();
6414             if (initType.returnType() != returnType ||
6415                 !initType.effectivelyIdenticalParameters(0, outerList)) {
6416                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, outerList));
6417             }
6418         }
6419     }
6420 
6421     /**
6422      * Constructs a loop that ranges over the values produced by an {@code Iterator<T>}.
6423      * This is a convenience wrapper for the {@linkplain #loop(MethodHandle[][]) generic loop combinator}.
6424      * <p>
6425      * The iterator itself will be determined by the evaluation of the {@code iterator} handle.
6426      * Each value it produces will be stored in a loop iteration variable of type {@code T}.
6427      * <p>
6428      * If the {@code body} handle returns a non-{@code void} type {@code V}, a leading loop iteration variable
6429      * of that type is also present.  This variable is initialized using the optional {@code init} handle,
6430      * or to the {@linkplain #empty default value} of type {@code V} if that handle is {@code null}.
6431      * <p>
6432      * In each iteration, the iteration variables are passed to an invocation of the {@code body} handle.
6433      * A non-{@code void} value returned from the body (of type {@code V}) updates the leading
6434      * iteration variable.
6435      * The result of the loop handle execution will be the final {@code V} value of that variable
6436      * (or {@code void} if there is no {@code V} variable).
6437      * <p>
6438      * The following rules hold for the argument handles:<ul>
6439      * <li>The {@code body} handle must not be {@code null}; its type must be of the form
6440      * {@code (V T A...)V}, where {@code V} is non-{@code void}, or else {@code (T A...)void}.
6441      * (In the {@code void} case, we assign the type {@code void} to the name {@code V},
6442      * and we will write {@code (V T A...)V} with the understanding that a {@code void} type {@code V}
6443      * is quietly dropped from the parameter list, leaving {@code (T A...)V}.)
6444      * <li>The parameter list {@code (V T A...)} of the body contributes to a list
6445      * of types called the <em>internal parameter list</em>.
6446      * It will constrain the parameter lists of the other loop parts.
6447      * <li>As a special case, if the body contributes only {@code V} and {@code T} types,
6448      * with no additional {@code A} types, then the internal parameter list is extended by
6449      * the argument types {@code A...} of the {@code iterator} handle; if it is {@code null} the
6450      * single type {@code Iterable} is added and constitutes the {@code A...} list.
6451      * <li>If the iteration variable types {@code (V T)} are dropped from the internal parameter list, the resulting shorter
6452      * list {@code (A...)} is called the <em>external parameter list</em>.
6453      * <li>The body return type {@code V}, if non-{@code void}, determines the type of an
6454      * additional state variable of the loop.
6455      * The body must both accept a leading parameter and return a value of this type {@code V}.
6456      * <li>If {@code init} is non-{@code null}, it must have return type {@code V}.
6457      * Its parameter list (of some <a href="MethodHandles.html#astar">form {@code (A*)}</a>) must be
6458      * <a href="MethodHandles.html#effid">effectively identical</a>
6459      * to the external parameter list {@code (A...)}.
6460      * <li>If {@code init} is {@code null}, the loop variable will be initialized to its
6461      * {@linkplain #empty default value}.
6462      * <li>If the {@code iterator} handle is non-{@code null}, it must have the return
6463      * type {@code java.util.Iterator} or a subtype thereof.
6464      * The iterator it produces when the loop is executed will be assumed
6465      * to yield values which can be converted to type {@code T}.
6466      * <li>The parameter list of an {@code iterator} that is non-{@code null} (of some form {@code (A*)}) must be
6467      * effectively identical to the external parameter list {@code (A...)}.
6468      * <li>If {@code iterator} is {@code null} it defaults to a method handle which behaves
6469      * like {@link java.lang.Iterable#iterator()}.  In that case, the internal parameter list
6470      * {@code (V T A...)} must have at least one {@code A} type, and the default iterator
6471      * handle parameter is adjusted to accept the leading {@code A} type, as if by
6472      * the {@link MethodHandle#asType asType} conversion method.
6473      * The leading {@code A} type must be {@code Iterable} or a subtype thereof.
6474      * This conversion step, done at loop construction time, must not throw a {@code WrongMethodTypeException}.
6475      * </ul>
6476      * <p>
6477      * The type {@code T} may be either a primitive or reference.
6478      * Since type {@code Iterator<T>} is erased in the method handle representation to the raw type {@code Iterator},
6479      * the {@code iteratedLoop} combinator adjusts the leading argument type for {@code body} to {@code Object}
6480      * as if by the {@link MethodHandle#asType asType} conversion method.
6481      * Therefore, if an iterator of the wrong type appears as the loop is executed, runtime exceptions may occur
6482      * as the result of dynamic conversions performed by {@link MethodHandle#asType(MethodType)}.
6483      * <p>
6484      * The resulting loop handle's result type and parameter signature are determined as follows:<ul>
6485      * <li>The loop handle's result type is the result type {@code V} of the body.
6486      * <li>The loop handle's parameter types are the types {@code (A...)},
6487      * from the external parameter list.
6488      * </ul>
6489      * <p>
6490      * Here is pseudocode for the resulting loop handle. In the code, {@code V}/{@code v} represent the type / value of
6491      * the loop variable as well as the result type of the loop; {@code T}/{@code t}, that of the elements of the
6492      * structure the loop iterates over, and {@code A...}/{@code a...} represent arguments passed to the loop.
6493      * <blockquote><pre>{@code
6494      * Iterator<T> iterator(A...);  // defaults to Iterable::iterator
6495      * V init(A...);
6496      * V body(V,T,A...);
6497      * V iteratedLoop(A... a...) {
6498      *   Iterator<T> it = iterator(a...);
6499      *   V v = init(a...);
6500      *   while (it.hasNext()) {
6501      *     T t = it.next();
6502      *     v = body(v, t, a...);
6503      *   }
6504      *   return v;
6505      * }
6506      * }</pre></blockquote>
6507      *
6508      * @apiNote Example:
6509      * <blockquote><pre>{@code
6510      * // get an iterator from a list
6511      * static List<String> reverseStep(List<String> r, String e) {
6512      *   r.add(0, e);
6513      *   return r;
6514      * }
6515      * static List<String> newArrayList() { return new ArrayList<>(); }
6516      * // assume MH_reverseStep and MH_newArrayList are handles to the above methods
6517      * MethodHandle loop = MethodHandles.iteratedLoop(null, MH_newArrayList, MH_reverseStep);
6518      * List<String> list = Arrays.asList("a", "b", "c", "d", "e");
6519      * List<String> reversedList = Arrays.asList("e", "d", "c", "b", "a");
6520      * assertEquals(reversedList, (List<String>) loop.invoke(list));
6521      * }</pre></blockquote>
6522      *
6523      * @apiNote The implementation of this method can be expressed approximately as follows:
6524      * <blockquote><pre>{@code
6525      * MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6526      *     // assume MH_next, MH_hasNext, MH_startIter are handles to methods of Iterator/Iterable
6527      *     Class<?> returnType = body.type().returnType();
6528      *     Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6529      *     MethodHandle nextVal = MH_next.asType(MH_next.type().changeReturnType(ttype));
6530      *     MethodHandle retv = null, step = body, startIter = iterator;
6531      *     if (returnType != void.class) {
6532      *         // the simple thing first:  in (I V A...), drop the I to get V
6533      *         retv = dropArguments(identity(returnType), 0, Iterator.class);
6534      *         // body type signature (V T A...), internal loop types (I V A...)
6535      *         step = swapArguments(body, 0, 1);  // swap V <-> T
6536      *     }
6537      *     if (startIter == null)  startIter = MH_getIter;
6538      *     MethodHandle[]
6539      *         iterVar    = { startIter, null, MH_hasNext, retv }, // it = iterator; while (it.hasNext())
6540      *         bodyClause = { init, filterArguments(step, 0, nextVal) };  // v = body(v, t, a)
6541      *     return loop(iterVar, bodyClause);
6542      * }
6543      * }</pre></blockquote>
6544      *
6545      * @param iterator an optional handle to return the iterator to start the loop.
6546      *                 If non-{@code null}, the handle must return {@link java.util.Iterator} or a subtype.
6547      *                 See above for other constraints.
6548      * @param init optional initializer, providing the initial value of the loop variable.
6549      *             May be {@code null}, implying a default initial value.  See above for other constraints.
6550      * @param body body of the loop, which may not be {@code null}.
6551      *             It controls the loop parameters and result type in the standard case (see above for details).
6552      *             It must accept its own return type (if non-void) plus a {@code T} parameter (for the iterated values),
6553      *             and may accept any number of additional types.
6554      *             See above for other constraints.
6555      *
6556      * @return a method handle embodying the iteration loop functionality.
6557      * @throws NullPointerException if the {@code body} handle is {@code null}.
6558      * @throws IllegalArgumentException if any argument violates the above requirements.
6559      *
6560      * @since 9
6561      */
6562     public static MethodHandle iteratedLoop(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6563         Class<?> iterableType = iteratedLoopChecks(iterator, init, body);
6564         Class<?> returnType = body.type().returnType();
6565         MethodHandle hasNext = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iteratePred);
6566         MethodHandle nextRaw = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_iterateNext);
6567         MethodHandle startIter;
6568         MethodHandle nextVal;
6569         {
6570             MethodType iteratorType;
6571             if (iterator == null) {
6572                 // derive argument type from body, if available, else use Iterable
6573                 startIter = MethodHandleImpl.getConstantHandle(MethodHandleImpl.MH_initIterator);
6574                 iteratorType = startIter.type().changeParameterType(0, iterableType);
6575             } else {
6576                 // force return type to the internal iterator class
6577                 iteratorType = iterator.type().changeReturnType(Iterator.class);
6578                 startIter = iterator;
6579             }
6580             Class<?> ttype = body.type().parameterType(returnType == void.class ? 0 : 1);
6581             MethodType nextValType = nextRaw.type().changeReturnType(ttype);
6582 
6583             // perform the asType transforms under an exception transformer, as per spec.:
6584             try {
6585                 startIter = startIter.asType(iteratorType);
6586                 nextVal = nextRaw.asType(nextValType);
6587             } catch (WrongMethodTypeException ex) {
6588                 throw new IllegalArgumentException(ex);
6589             }
6590         }
6591 
6592         MethodHandle retv = null, step = body;
6593         if (returnType != void.class) {
6594             // the simple thing first:  in (I V A...), drop the I to get V
6595             retv = dropArguments(identity(returnType), 0, Iterator.class);
6596             // body type signature (V T A...), internal loop types (I V A...)
6597             step = swapArguments(body, 0, 1);  // swap V <-> T
6598         }
6599 
6600         MethodHandle[]
6601             iterVar    = { startIter, null, hasNext, retv },
6602             bodyClause = { init, filterArgument(step, 0, nextVal) };
6603         return loop(iterVar, bodyClause);
6604     }
6605 
6606     private static Class<?> iteratedLoopChecks(MethodHandle iterator, MethodHandle init, MethodHandle body) {
6607         Objects.requireNonNull(body);
6608         MethodType bodyType = body.type();
6609         Class<?> returnType = bodyType.returnType();
6610         List<Class<?>> internalParamList = bodyType.parameterList();
6611         // strip leading V value if present
6612         int vsize = (returnType == void.class ? 0 : 1);
6613         if (vsize != 0 && (internalParamList.size() == 0 || internalParamList.get(0) != returnType)) {
6614             // argument list has no "V" => error
6615             MethodType expected = bodyType.insertParameterTypes(0, returnType);
6616             throw misMatchedTypes("body function", bodyType, expected);
6617         } else if (internalParamList.size() <= vsize) {
6618             // missing T type => error
6619             MethodType expected = bodyType.insertParameterTypes(vsize, Object.class);
6620             throw misMatchedTypes("body function", bodyType, expected);
6621         }
6622         List<Class<?>> externalParamList = internalParamList.subList(vsize + 1, internalParamList.size());
6623         Class<?> iterableType = null;
6624         if (iterator != null) {
6625             // special case; if the body handle only declares V and T then
6626             // the external parameter list is obtained from iterator handle
6627             if (externalParamList.isEmpty()) {
6628                 externalParamList = iterator.type().parameterList();
6629             }
6630             MethodType itype = iterator.type();
6631             if (!Iterator.class.isAssignableFrom(itype.returnType())) {
6632                 throw newIllegalArgumentException("iteratedLoop first argument must have Iterator return type");
6633             }
6634             if (!itype.effectivelyIdenticalParameters(0, externalParamList)) {
6635                 MethodType expected = methodType(itype.returnType(), externalParamList);
6636                 throw misMatchedTypes("iterator parameters", itype, expected);
6637             }
6638         } else {
6639             if (externalParamList.isEmpty()) {
6640                 // special case; if the iterator handle is null and the body handle
6641                 // only declares V and T then the external parameter list consists
6642                 // of Iterable
6643                 externalParamList = Arrays.asList(Iterable.class);
6644                 iterableType = Iterable.class;
6645             } else {
6646                 // special case; if the iterator handle is null and the external
6647                 // parameter list is not empty then the first parameter must be
6648                 // assignable to Iterable
6649                 iterableType = externalParamList.get(0);
6650                 if (!Iterable.class.isAssignableFrom(iterableType)) {
6651                     throw newIllegalArgumentException(
6652                             "inferred first loop argument must inherit from Iterable: " + iterableType);
6653                 }
6654             }
6655         }
6656         if (init != null) {
6657             MethodType initType = init.type();
6658             if (initType.returnType() != returnType ||
6659                     !initType.effectivelyIdenticalParameters(0, externalParamList)) {
6660                 throw misMatchedTypes("loop initializer", initType, methodType(returnType, externalParamList));
6661             }
6662         }
6663         return iterableType;  // help the caller a bit
6664     }
6665 
6666     /*non-public*/
6667     static MethodHandle swapArguments(MethodHandle mh, int i, int j) {
6668         // there should be a better way to uncross my wires
6669         int arity = mh.type().parameterCount();
6670         int[] order = new int[arity];
6671         for (int k = 0; k < arity; k++)  order[k] = k;
6672         order[i] = j; order[j] = i;
6673         Class<?>[] types = mh.type().parameterArray();
6674         Class<?> ti = types[i]; types[i] = types[j]; types[j] = ti;
6675         MethodType swapType = methodType(mh.type().returnType(), types);
6676         return permuteArguments(mh, swapType, order);
6677     }
6678 
6679     /**
6680      * Makes a method handle that adapts a {@code target} method handle by wrapping it in a {@code try-finally} block.
6681      * Another method handle, {@code cleanup}, represents the functionality of the {@code finally} block. Any exception
6682      * thrown during the execution of the {@code target} handle will be passed to the {@code cleanup} handle. The
6683      * exception will be rethrown, unless {@code cleanup} handle throws an exception first.  The
6684      * value returned from the {@code cleanup} handle's execution will be the result of the execution of the
6685      * {@code try-finally} handle.
6686      * <p>
6687      * The {@code cleanup} handle will be passed one or two additional leading arguments.
6688      * The first is the exception thrown during the
6689      * execution of the {@code target} handle, or {@code null} if no exception was thrown.
6690      * The second is the result of the execution of the {@code target} handle, or, if it throws an exception,
6691      * a {@code null}, zero, or {@code false} value of the required type is supplied as a placeholder.
6692      * The second argument is not present if the {@code target} handle has a {@code void} return type.
6693      * (Note that, except for argument type conversions, combinators represent {@code void} values in parameter lists
6694      * by omitting the corresponding paradoxical arguments, not by inserting {@code null} or zero values.)
6695      * <p>
6696      * The {@code target} and {@code cleanup} handles must have the same corresponding argument and return types, except
6697      * that the {@code cleanup} handle may omit trailing arguments. Also, the {@code cleanup} handle must have one or
6698      * two extra leading parameters:<ul>
6699      * <li>a {@code Throwable}, which will carry the exception thrown by the {@code target} handle (if any); and
6700      * <li>a parameter of the same type as the return type of both {@code target} and {@code cleanup}, which will carry
6701      * the result from the execution of the {@code target} handle.
6702      * This parameter is not present if the {@code target} returns {@code void}.
6703      * </ul>
6704      * <p>
6705      * The pseudocode for the resulting adapter looks as follows. In the code, {@code V} represents the result type of
6706      * the {@code try/finally} construct; {@code A}/{@code a}, the types and values of arguments to the resulting
6707      * handle consumed by the cleanup; and {@code B}/{@code b}, those of arguments to the resulting handle discarded by
6708      * the cleanup.
6709      * <blockquote><pre>{@code
6710      * V target(A..., B...);
6711      * V cleanup(Throwable, V, A...);
6712      * V adapter(A... a, B... b) {
6713      *   V result = (zero value for V);
6714      *   Throwable throwable = null;
6715      *   try {
6716      *     result = target(a..., b...);
6717      *   } catch (Throwable t) {
6718      *     throwable = t;
6719      *     throw t;
6720      *   } finally {
6721      *     result = cleanup(throwable, result, a...);
6722      *   }
6723      *   return result;
6724      * }
6725      * }</pre></blockquote>
6726      * <p>
6727      * Note that the saved arguments ({@code a...} in the pseudocode) cannot
6728      * be modified by execution of the target, and so are passed unchanged
6729      * from the caller to the cleanup, if it is invoked.
6730      * <p>
6731      * The target and cleanup must return the same type, even if the cleanup
6732      * always throws.
6733      * To create such a throwing cleanup, compose the cleanup logic
6734      * with {@link #throwException throwException},
6735      * in order to create a method handle of the correct return type.
6736      * <p>
6737      * Note that {@code tryFinally} never converts exceptions into normal returns.
6738      * In rare cases where exceptions must be converted in that way, first wrap
6739      * the target with {@link #catchException(MethodHandle, Class, MethodHandle)}
6740      * to capture an outgoing exception, and then wrap with {@code tryFinally}.
6741      * <p>
6742      * It is recommended that the first parameter type of {@code cleanup} be
6743      * declared {@code Throwable} rather than a narrower subtype.  This ensures
6744      * {@code cleanup} will always be invoked with whatever exception that
6745      * {@code target} throws.  Declaring a narrower type may result in a
6746      * {@code ClassCastException} being thrown by the {@code try-finally}
6747      * handle if the type of the exception thrown by {@code target} is not
6748      * assignable to the first parameter type of {@code cleanup}.  Note that
6749      * various exception types of {@code VirtualMachineError},
6750      * {@code LinkageError}, and {@code RuntimeException} can in principle be
6751      * thrown by almost any kind of Java code, and a finally clause that
6752      * catches (say) only {@code IOException} would mask any of the others
6753      * behind a {@code ClassCastException}.
6754      *
6755      * @param target the handle whose execution is to be wrapped in a {@code try} block.
6756      * @param cleanup the handle that is invoked in the finally block.
6757      *
6758      * @return a method handle embodying the {@code try-finally} block composed of the two arguments.
6759      * @throws NullPointerException if any argument is null
6760      * @throws IllegalArgumentException if {@code cleanup} does not accept
6761      *          the required leading arguments, or if the method handle types do
6762      *          not match in their return types and their
6763      *          corresponding trailing parameters
6764      *
6765      * @see MethodHandles#catchException(MethodHandle, Class, MethodHandle)
6766      * @since 9
6767      */
6768     public static MethodHandle tryFinally(MethodHandle target, MethodHandle cleanup) {
6769         List<Class<?>> targetParamTypes = target.type().parameterList();
6770         Class<?> rtype = target.type().returnType();
6771 
6772         tryFinallyChecks(target, cleanup);
6773 
6774         // Match parameter lists: if the cleanup has a shorter parameter list than the target, add ignored arguments.
6775         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6776         // target parameter list.
6777         cleanup = dropArgumentsToMatch(cleanup, (rtype == void.class ? 1 : 2), targetParamTypes, 0);
6778 
6779         // Ensure that the intrinsic type checks the instance thrown by the
6780         // target against the first parameter of cleanup
6781         cleanup = cleanup.asType(cleanup.type().changeParameterType(0, Throwable.class));
6782 
6783         // Use asFixedArity() to avoid unnecessary boxing of last argument for VarargsCollector case.
6784         return MethodHandleImpl.makeTryFinally(target.asFixedArity(), cleanup.asFixedArity(), rtype, targetParamTypes);
6785     }
6786 
6787     private static void tryFinallyChecks(MethodHandle target, MethodHandle cleanup) {
6788         Class<?> rtype = target.type().returnType();
6789         if (rtype != cleanup.type().returnType()) {
6790             throw misMatchedTypes("target and return types", cleanup.type().returnType(), rtype);
6791         }
6792         MethodType cleanupType = cleanup.type();
6793         if (!Throwable.class.isAssignableFrom(cleanupType.parameterType(0))) {
6794             throw misMatchedTypes("cleanup first argument and Throwable", cleanup.type(), Throwable.class);
6795         }
6796         if (rtype != void.class && cleanupType.parameterType(1) != rtype) {
6797             throw misMatchedTypes("cleanup second argument and target return type", cleanup.type(), rtype);
6798         }
6799         // The cleanup parameter list (minus the leading Throwable and result parameters) must be a sublist of the
6800         // target parameter list.
6801         int cleanupArgIndex = rtype == void.class ? 1 : 2;
6802         if (!cleanupType.effectivelyIdenticalParameters(cleanupArgIndex, target.type().parameterList())) {
6803             throw misMatchedTypes("cleanup parameters after (Throwable,result) and target parameter list prefix",
6804                     cleanup.type(), target.type());
6805         }
6806     }
6807 
6808 }