1 /*
   2  * Copyright (c) 2008, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang.invoke;
  27 
  28 import java.lang.constant.ClassDesc;
  29 import java.lang.constant.Constable;
  30 import java.lang.constant.MethodTypeDesc;
  31 import java.lang.ref.Reference;
  32 import java.lang.ref.ReferenceQueue;
  33 import java.lang.ref.WeakReference;
  34 import java.util.Arrays;
  35 import java.util.Collections;
  36 import java.util.List;
  37 import java.util.NoSuchElementException;
  38 import java.util.Objects;
  39 import java.util.Optional;
  40 import java.util.StringJoiner;
  41 import java.util.concurrent.ConcurrentHashMap;
  42 import java.util.concurrent.ConcurrentMap;
  43 import java.util.stream.Stream;
  44 
  45 import jdk.internal.vm.annotation.Stable;
  46 import sun.invoke.util.BytecodeDescriptor;
  47 import sun.invoke.util.VerifyType;
  48 import sun.invoke.util.Wrapper;
  49 import sun.security.util.SecurityConstants;
  50 
  51 import static java.lang.invoke.MethodHandleStatics.UNSAFE;
  52 import static java.lang.invoke.MethodHandleStatics.newIllegalArgumentException;
  53 import static java.lang.invoke.MethodType.fromDescriptor;
  54 
  55 /**
  56  * A method type represents the arguments and return type accepted and
  57  * returned by a method handle, or the arguments and return type passed
  58  * and expected  by a method handle caller.  Method types must be properly
  59  * matched between a method handle and all its callers,
  60  * and the JVM's operations enforce this matching at, specifically
  61  * during calls to {@link MethodHandle#invokeExact MethodHandle.invokeExact}
  62  * and {@link MethodHandle#invoke MethodHandle.invoke}, and during execution
  63  * of {@code invokedynamic} instructions.
  64  * <p>
  65  * The structure is a return type accompanied by any number of parameter types.
  66  * The types (primitive, {@code void}, and reference) are represented by {@link Class} objects.
  67  * (For ease of exposition, we treat {@code void} as if it were a type.
  68  * In fact, it denotes the absence of a return type.)
  69  * <p>
  70  * All instances of {@code MethodType} are immutable.
  71  * Two instances are completely interchangeable if they compare equal.
  72  * Equality depends on pairwise correspondence of the return and parameter types and on nothing else.
  73  * <p>
  74  * This type can be created only by factory methods.
  75  * All factory methods may cache values, though caching is not guaranteed.
  76  * Some factory methods are static, while others are virtual methods which
  77  * modify precursor method types, e.g., by changing a selected parameter.
  78  * <p>
  79  * Factory methods which operate on groups of parameter types
  80  * are systematically presented in two versions, so that both Java arrays and
  81  * Java lists can be used to work with groups of parameter types.
  82  * The query methods {@code parameterArray} and {@code parameterList}
  83  * also provide a choice between arrays and lists.
  84  * <p>
  85  * {@code MethodType} objects are sometimes derived from bytecode instructions
  86  * such as {@code invokedynamic}, specifically from the type descriptor strings associated
  87  * with the instructions in a class file's constant pool.
  88  * <p>
  89  * Like classes and strings, method types can also be represented directly
  90  * in a class file's constant pool as constants.
  91  * A method type may be loaded by an {@code ldc} instruction which refers
  92  * to a suitable {@code CONSTANT_MethodType} constant pool entry.
  93  * The entry refers to a {@code CONSTANT_Utf8} spelling for the descriptor string.
  94  * (For full details on method type constants,
  95  * see sections {@jvms 4.4.8} and {@jvms 5.4.3.5} of the Java Virtual Machine Specification.)
  96  * <p>
  97  * When the JVM materializes a {@code MethodType} from a descriptor string,
  98  * all classes named in the descriptor must be accessible, and will be loaded.
  99  * (But the classes need not be initialized, as is the case with a {@code CONSTANT_Class}.)
 100  * This loading may occur at any time before the {@code MethodType} object is first derived.
 101  * @author John Rose, JSR 292 EG
 102  * @since 1.7
 103  */
 104 public final
 105 class MethodType
 106         implements Constable,
 107                    TypeDescriptor.OfMethod<Class<?>, MethodType>,
 108                    java.io.Serializable {
 109     @java.io.Serial
 110     private static final long serialVersionUID = 292L;  // {rtype, {ptype...}}
 111 
 112     // The rtype and ptypes fields define the structural identity of the method type:
 113     private final @Stable Class<?>   rtype;
 114     private final @Stable Class<?>[] ptypes;
 115 
 116     // The remaining fields are caches of various sorts:
 117     private @Stable MethodTypeForm form; // erased form, plus cached data about primitives
 118     private @Stable MethodType wrapAlt;  // alternative wrapped/unwrapped version
 119     private @Stable Invokers invokers;   // cache of handy higher-order adapters
 120     private @Stable String methodDescriptor;  // cache for toMethodDescriptorString
 121 
 122     /**
 123      * Constructor that performs no copying or validation.
 124      * Should only be called from the factory method makeImpl
 125      */
 126     private MethodType(Class<?> rtype, Class<?>[] ptypes) {
 127         this.rtype = rtype;
 128         this.ptypes = ptypes;
 129     }
 130 
 131     /*trusted*/ MethodTypeForm form() { return form; }
 132     /*trusted*/ Class<?> rtype() { return rtype; }
 133     /*trusted*/ Class<?>[] ptypes() { return ptypes; }
 134 
 135     void setForm(MethodTypeForm f) { form = f; }
 136 
 137     /** This number, mandated by the JVM spec as 255,
 138      *  is the maximum number of <em>slots</em>
 139      *  that any Java method can receive in its argument list.
 140      *  It limits both JVM signatures and method type objects.
 141      *  The longest possible invocation will look like
 142      *  {@code staticMethod(arg1, arg2, ..., arg255)} or
 143      *  {@code x.virtualMethod(arg1, arg2, ..., arg254)}.
 144      */
 145     /*non-public*/
 146     static final int MAX_JVM_ARITY = 255;  // this is mandated by the JVM spec.
 147 
 148     /** This number is the maximum arity of a method handle, 254.
 149      *  It is derived from the absolute JVM-imposed arity by subtracting one,
 150      *  which is the slot occupied by the method handle itself at the
 151      *  beginning of the argument list used to invoke the method handle.
 152      *  The longest possible invocation will look like
 153      *  {@code mh.invoke(arg1, arg2, ..., arg254)}.
 154      */
 155     // Issue:  Should we allow MH.invokeWithArguments to go to the full 255?
 156     /*non-public*/
 157     static final int MAX_MH_ARITY = MAX_JVM_ARITY-1;  // deduct one for mh receiver
 158 
 159     /** This number is the maximum arity of a method handle invoker, 253.
 160      *  It is derived from the absolute JVM-imposed arity by subtracting two,
 161      *  which are the slots occupied by invoke method handle, and the
 162      *  target method handle, which are both at the beginning of the argument
 163      *  list used to invoke the target method handle.
 164      *  The longest possible invocation will look like
 165      *  {@code invokermh.invoke(targetmh, arg1, arg2, ..., arg253)}.
 166      */
 167     /*non-public*/
 168     static final int MAX_MH_INVOKER_ARITY = MAX_MH_ARITY-1;  // deduct one more for invoker
 169 
 170     private static void checkRtype(Class<?> rtype) {
 171         Objects.requireNonNull(rtype);
 172     }
 173     private static void checkPtype(Class<?> ptype) {
 174         Objects.requireNonNull(ptype);
 175         if (ptype == void.class)
 176             throw newIllegalArgumentException("parameter type cannot be void");
 177     }
 178     /** Return number of extra slots (count of long/double args). */
 179     private static int checkPtypes(Class<?>[] ptypes) {
 180         int slots = 0;
 181         for (Class<?> ptype : ptypes) {
 182             checkPtype(ptype);
 183             if (ptype == double.class || ptype == long.class) {
 184                 slots++;
 185             }
 186         }
 187         checkSlotCount(ptypes.length + slots);
 188         return slots;
 189     }
 190 
 191     static {
 192         // MAX_JVM_ARITY must be power of 2 minus 1 for following code trick to work:
 193         assert((MAX_JVM_ARITY & (MAX_JVM_ARITY+1)) == 0);
 194     }
 195     static void checkSlotCount(int count) {
 196         if ((count & MAX_JVM_ARITY) != count)
 197             throw newIllegalArgumentException("bad parameter count "+count);
 198     }
 199     private static IndexOutOfBoundsException newIndexOutOfBoundsException(Object num) {
 200         if (num instanceof Integer)  num = "bad index: "+num;
 201         return new IndexOutOfBoundsException(num.toString());
 202     }
 203 
 204     static final ConcurrentWeakInternSet<MethodType> internTable = new ConcurrentWeakInternSet<>();
 205 
 206     static final Class<?>[] NO_PTYPES = {};
 207 
 208     /**
 209      * Finds or creates an instance of the given method type.
 210      * @param rtype  the return type
 211      * @param ptypes the parameter types
 212      * @return a method type with the given components
 213      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
 214      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
 215      */
 216     public static MethodType methodType(Class<?> rtype, Class<?>[] ptypes) {
 217         return makeImpl(rtype, ptypes, false);
 218     }
 219 
 220     /**
 221      * Finds or creates a method type with the given components.
 222      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 223      * @param rtype  the return type
 224      * @param ptypes the parameter types
 225      * @return a method type with the given components
 226      * @throws NullPointerException if {@code rtype} or {@code ptypes} or any element of {@code ptypes} is null
 227      * @throws IllegalArgumentException if any element of {@code ptypes} is {@code void.class}
 228      */
 229     public static MethodType methodType(Class<?> rtype, List<Class<?>> ptypes) {
 230         boolean notrust = false;  // random List impl. could return evil ptypes array
 231         return makeImpl(rtype, listToArray(ptypes), notrust);
 232     }
 233 
 234     private static Class<?>[] listToArray(List<Class<?>> ptypes) {
 235         // sanity check the size before the toArray call, since size might be huge
 236         checkSlotCount(ptypes.size());
 237         return ptypes.toArray(NO_PTYPES);
 238     }
 239 
 240     /**
 241      * Finds or creates a method type with the given components.
 242      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 243      * The leading parameter type is prepended to the remaining array.
 244      * @param rtype  the return type
 245      * @param ptype0 the first parameter type
 246      * @param ptypes the remaining parameter types
 247      * @return a method type with the given components
 248      * @throws NullPointerException if {@code rtype} or {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is null
 249      * @throws IllegalArgumentException if {@code ptype0} or {@code ptypes} or any element of {@code ptypes} is {@code void.class}
 250      */
 251     public static MethodType methodType(Class<?> rtype, Class<?> ptype0, Class<?>... ptypes) {
 252         Class<?>[] ptypes1 = new Class<?>[1+ptypes.length];
 253         ptypes1[0] = ptype0;
 254         System.arraycopy(ptypes, 0, ptypes1, 1, ptypes.length);
 255         return makeImpl(rtype, ptypes1, true);
 256     }
 257 
 258     /**
 259      * Finds or creates a method type with the given components.
 260      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 261      * The resulting method has no parameter types.
 262      * @param rtype  the return type
 263      * @return a method type with the given return value
 264      * @throws NullPointerException if {@code rtype} is null
 265      */
 266     public static MethodType methodType(Class<?> rtype) {
 267         return makeImpl(rtype, NO_PTYPES, true);
 268     }
 269 
 270     /**
 271      * Finds or creates a method type with the given components.
 272      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 273      * The resulting method has the single given parameter type.
 274      * @param rtype  the return type
 275      * @param ptype0 the parameter type
 276      * @return a method type with the given return value and parameter type
 277      * @throws NullPointerException if {@code rtype} or {@code ptype0} is null
 278      * @throws IllegalArgumentException if {@code ptype0} is {@code void.class}
 279      */
 280     public static MethodType methodType(Class<?> rtype, Class<?> ptype0) {
 281         return makeImpl(rtype, new Class<?>[]{ ptype0 }, true);
 282     }
 283 
 284     /**
 285      * Finds or creates a method type with the given components.
 286      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 287      * The resulting method has the same parameter types as {@code ptypes},
 288      * and the specified return type.
 289      * @param rtype  the return type
 290      * @param ptypes the method type which supplies the parameter types
 291      * @return a method type with the given components
 292      * @throws NullPointerException if {@code rtype} or {@code ptypes} is null
 293      */
 294     public static MethodType methodType(Class<?> rtype, MethodType ptypes) {
 295         return makeImpl(rtype, ptypes.ptypes, true);
 296     }
 297 
 298     /**
 299      * Sole factory method to find or create an interned method type.
 300      * @param rtype desired return type
 301      * @param ptypes desired parameter types
 302      * @param trusted whether the ptypes can be used without cloning
 303      * @return the unique method type of the desired structure
 304      */
 305     /*trusted*/
 306     static MethodType makeImpl(Class<?> rtype, Class<?>[] ptypes, boolean trusted) {
 307         if (ptypes.length == 0) {
 308             ptypes = NO_PTYPES; trusted = true;
 309         }
 310         MethodType primordialMT = new MethodType(rtype, ptypes);
 311         MethodType mt = internTable.get(primordialMT);
 312         if (mt != null)
 313             return mt;
 314 
 315         // promote the object to the Real Thing, and reprobe
 316         MethodType.checkRtype(rtype);
 317         if (trusted) {
 318             MethodType.checkPtypes(ptypes);
 319             mt = primordialMT;
 320         } else {
 321             // Make defensive copy then validate
 322             ptypes = Arrays.copyOf(ptypes, ptypes.length);
 323             MethodType.checkPtypes(ptypes);
 324             mt = new MethodType(rtype, ptypes);
 325         }
 326         mt.form = MethodTypeForm.findForm(mt);
 327         return internTable.add(mt);
 328     }
 329     private static final @Stable MethodType[] objectOnlyTypes = new MethodType[20];
 330 
 331     /**
 332      * Finds or creates a method type whose components are {@code Object} with an optional trailing {@code Object[]} array.
 333      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 334      * All parameters and the return type will be {@code Object},
 335      * except the final array parameter if any, which will be {@code Object[]}.
 336      * @param objectArgCount number of parameters (excluding the final array parameter if any)
 337      * @param finalArray whether there will be a trailing array parameter, of type {@code Object[]}
 338      * @return a generally applicable method type, for all calls of the given fixed argument count and a collected array of further arguments
 339      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255 (or 254, if {@code finalArray} is true)
 340      * @see #genericMethodType(int)
 341      */
 342     public static MethodType genericMethodType(int objectArgCount, boolean finalArray) {
 343         MethodType mt;
 344         checkSlotCount(objectArgCount);
 345         int ivarargs = (!finalArray ? 0 : 1);
 346         int ootIndex = objectArgCount*2 + ivarargs;
 347         if (ootIndex < objectOnlyTypes.length) {
 348             mt = objectOnlyTypes[ootIndex];
 349             if (mt != null)  return mt;
 350         }
 351         Class<?>[] ptypes = new Class<?>[objectArgCount + ivarargs];
 352         Arrays.fill(ptypes, Object.class);
 353         if (ivarargs != 0)  ptypes[objectArgCount] = Object[].class;
 354         mt = makeImpl(Object.class, ptypes, true);
 355         if (ootIndex < objectOnlyTypes.length) {
 356             objectOnlyTypes[ootIndex] = mt;     // cache it here also!
 357         }
 358         return mt;
 359     }
 360 
 361     /**
 362      * Finds or creates a method type whose components are all {@code Object}.
 363      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 364      * All parameters and the return type will be Object.
 365      * @param objectArgCount number of parameters
 366      * @return a generally applicable method type, for all calls of the given argument count
 367      * @throws IllegalArgumentException if {@code objectArgCount} is negative or greater than 255
 368      * @see #genericMethodType(int, boolean)
 369      */
 370     public static MethodType genericMethodType(int objectArgCount) {
 371         return genericMethodType(objectArgCount, false);
 372     }
 373 
 374     /**
 375      * Finds or creates a method type with a single different parameter type.
 376      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 377      * @param num    the index (zero-based) of the parameter type to change
 378      * @param nptype a new parameter type to replace the old one with
 379      * @return the same type, except with the selected parameter changed
 380      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
 381      * @throws IllegalArgumentException if {@code nptype} is {@code void.class}
 382      * @throws NullPointerException if {@code nptype} is null
 383      */
 384     public MethodType changeParameterType(int num, Class<?> nptype) {
 385         if (parameterType(num) == nptype)  return this;
 386         checkPtype(nptype);
 387         Class<?>[] nptypes = ptypes.clone();
 388         nptypes[num] = nptype;
 389         return makeImpl(rtype, nptypes, true);
 390     }
 391 
 392     /**
 393      * Finds or creates a method type with additional parameter types.
 394      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 395      * @param num    the position (zero-based) of the inserted parameter type(s)
 396      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 397      * @return the same type, except with the selected parameter(s) inserted
 398      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
 399      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 400      *                                  or if the resulting method type would have more than 255 parameter slots
 401      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 402      */
 403     public MethodType insertParameterTypes(int num, Class<?>... ptypesToInsert) {
 404         int len = ptypes.length;
 405         if (num < 0 || num > len)
 406             throw newIndexOutOfBoundsException(num);
 407         int ins = checkPtypes(ptypesToInsert);
 408         checkSlotCount(parameterSlotCount() + ptypesToInsert.length + ins);
 409         int ilen = ptypesToInsert.length;
 410         if (ilen == 0)  return this;
 411         Class<?>[] nptypes = new Class<?>[len + ilen];
 412         if (num > 0) {
 413             System.arraycopy(ptypes, 0, nptypes, 0, num);
 414         }
 415         System.arraycopy(ptypesToInsert, 0, nptypes, num, ilen);
 416         if (num < len) {
 417             System.arraycopy(ptypes, num, nptypes, num+ilen, len-num);
 418         }
 419         return makeImpl(rtype, nptypes, true);
 420     }
 421 
 422     /**
 423      * Finds or creates a method type with additional parameter types.
 424      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 425      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
 426      * @return the same type, except with the selected parameter(s) appended
 427      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 428      *                                  or if the resulting method type would have more than 255 parameter slots
 429      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 430      */
 431     public MethodType appendParameterTypes(Class<?>... ptypesToInsert) {
 432         return insertParameterTypes(parameterCount(), ptypesToInsert);
 433     }
 434 
 435     /**
 436      * Finds or creates a method type with additional parameter types.
 437      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 438      * @param num    the position (zero-based) of the inserted parameter type(s)
 439      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 440      * @return the same type, except with the selected parameter(s) inserted
 441      * @throws IndexOutOfBoundsException if {@code num} is negative or greater than {@code parameterCount()}
 442      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 443      *                                  or if the resulting method type would have more than 255 parameter slots
 444      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 445      */
 446     public MethodType insertParameterTypes(int num, List<Class<?>> ptypesToInsert) {
 447         return insertParameterTypes(num, listToArray(ptypesToInsert));
 448     }
 449 
 450     /**
 451      * Finds or creates a method type with additional parameter types.
 452      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 453      * @param ptypesToInsert zero or more new parameter types to insert after the end of the parameter list
 454      * @return the same type, except with the selected parameter(s) appended
 455      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 456      *                                  or if the resulting method type would have more than 255 parameter slots
 457      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 458      */
 459     public MethodType appendParameterTypes(List<Class<?>> ptypesToInsert) {
 460         return insertParameterTypes(parameterCount(), ptypesToInsert);
 461     }
 462 
 463      /**
 464      * Finds or creates a method type with modified parameter types.
 465      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 466      * @param start  the position (zero-based) of the first replaced parameter type(s)
 467      * @param end    the position (zero-based) after the last replaced parameter type(s)
 468      * @param ptypesToInsert zero or more new parameter types to insert into the parameter list
 469      * @return the same type, except with the selected parameter(s) replaced
 470      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
 471      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
 472      *                                  or if {@code start} is greater than {@code end}
 473      * @throws IllegalArgumentException if any element of {@code ptypesToInsert} is {@code void.class}
 474      *                                  or if the resulting method type would have more than 255 parameter slots
 475      * @throws NullPointerException if {@code ptypesToInsert} or any of its elements is null
 476      */
 477     /*non-public*/
 478     MethodType replaceParameterTypes(int start, int end, Class<?>... ptypesToInsert) {
 479         if (start == end)
 480             return insertParameterTypes(start, ptypesToInsert);
 481         int len = ptypes.length;
 482         if (!(0 <= start && start <= end && end <= len))
 483             throw newIndexOutOfBoundsException("start="+start+" end="+end);
 484         int ilen = ptypesToInsert.length;
 485         if (ilen == 0)
 486             return dropParameterTypes(start, end);
 487         return dropParameterTypes(start, end).insertParameterTypes(start, ptypesToInsert);
 488     }
 489 
 490     /** Replace the last arrayLength parameter types with the component type of arrayType.
 491      * @param arrayType any array type
 492      * @param pos position at which to spread
 493      * @param arrayLength the number of parameter types to change
 494      * @return the resulting type
 495      */
 496     /*non-public*/
 497     MethodType asSpreaderType(Class<?> arrayType, int pos, int arrayLength) {
 498         assert(parameterCount() >= arrayLength);
 499         int spreadPos = pos;
 500         if (arrayLength == 0)  return this;  // nothing to change
 501         if (arrayType == Object[].class) {
 502             if (isGeneric())  return this;  // nothing to change
 503             if (spreadPos == 0) {
 504                 // no leading arguments to preserve; go generic
 505                 MethodType res = genericMethodType(arrayLength);
 506                 if (rtype != Object.class) {
 507                     res = res.changeReturnType(rtype);
 508                 }
 509                 return res;
 510             }
 511         }
 512         Class<?> elemType = arrayType.getComponentType();
 513         assert(elemType != null);
 514         for (int i = spreadPos; i < spreadPos + arrayLength; i++) {
 515             if (ptypes[i] != elemType) {
 516                 Class<?>[] fixedPtypes = ptypes.clone();
 517                 Arrays.fill(fixedPtypes, i, spreadPos + arrayLength, elemType);
 518                 return methodType(rtype, fixedPtypes);
 519             }
 520         }
 521         return this;  // arguments check out; no change
 522     }
 523 
 524     /** Return the leading parameter type, which must exist and be a reference.
 525      *  @return the leading parameter type, after error checks
 526      */
 527     /*non-public*/
 528     Class<?> leadingReferenceParameter() {
 529         Class<?> ptype;
 530         if (ptypes.length == 0 ||
 531             (ptype = ptypes[0]).isPrimitive())
 532             throw newIllegalArgumentException("no leading reference parameter");
 533         return ptype;
 534     }
 535 
 536     /** Delete the last parameter type and replace it with arrayLength copies of the component type of arrayType.
 537      * @param arrayType any array type
 538      * @param pos position at which to insert parameters
 539      * @param arrayLength the number of parameter types to insert
 540      * @return the resulting type
 541      */
 542     /*non-public*/
 543     MethodType asCollectorType(Class<?> arrayType, int pos, int arrayLength) {
 544         assert(parameterCount() >= 1);
 545         assert(pos < ptypes.length);
 546         assert(ptypes[pos].isAssignableFrom(arrayType));
 547         MethodType res;
 548         if (arrayType == Object[].class) {
 549             res = genericMethodType(arrayLength);
 550             if (rtype != Object.class) {
 551                 res = res.changeReturnType(rtype);
 552             }
 553         } else {
 554             Class<?> elemType = arrayType.getComponentType();
 555             assert(elemType != null);
 556             res = methodType(rtype, Collections.nCopies(arrayLength, elemType));
 557         }
 558         if (ptypes.length == 1) {
 559             return res;
 560         } else {
 561             // insert after (if need be), then before
 562             if (pos < ptypes.length - 1) {
 563                 res = res.insertParameterTypes(arrayLength, Arrays.copyOfRange(ptypes, pos + 1, ptypes.length));
 564             }
 565             return res.insertParameterTypes(0, Arrays.copyOf(ptypes, pos));
 566         }
 567     }
 568 
 569     /**
 570      * Finds or creates a method type with some parameter types omitted.
 571      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 572      * @param start  the index (zero-based) of the first parameter type to remove
 573      * @param end    the index (greater than {@code start}) of the first parameter type after not to remove
 574      * @return the same type, except with the selected parameter(s) removed
 575      * @throws IndexOutOfBoundsException if {@code start} is negative or greater than {@code parameterCount()}
 576      *                                  or if {@code end} is negative or greater than {@code parameterCount()}
 577      *                                  or if {@code start} is greater than {@code end}
 578      */
 579     public MethodType dropParameterTypes(int start, int end) {
 580         int len = ptypes.length;
 581         if (!(0 <= start && start <= end && end <= len))
 582             throw newIndexOutOfBoundsException("start="+start+" end="+end);
 583         if (start == end)  return this;
 584         Class<?>[] nptypes;
 585         if (start == 0) {
 586             if (end == len) {
 587                 // drop all parameters
 588                 nptypes = NO_PTYPES;
 589             } else {
 590                 // drop initial parameter(s)
 591                 nptypes = Arrays.copyOfRange(ptypes, end, len);
 592             }
 593         } else {
 594             if (end == len) {
 595                 // drop trailing parameter(s)
 596                 nptypes = Arrays.copyOfRange(ptypes, 0, start);
 597             } else {
 598                 int tail = len - end;
 599                 nptypes = Arrays.copyOfRange(ptypes, 0, start + tail);
 600                 System.arraycopy(ptypes, end, nptypes, start, tail);
 601             }
 602         }
 603         return makeImpl(rtype, nptypes, true);
 604     }
 605 
 606     /**
 607      * Finds or creates a method type with a different return type.
 608      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 609      * @param nrtype a return parameter type to replace the old one with
 610      * @return the same type, except with the return type change
 611      * @throws NullPointerException if {@code nrtype} is null
 612      */
 613     public MethodType changeReturnType(Class<?> nrtype) {
 614         if (returnType() == nrtype)  return this;
 615         return makeImpl(nrtype, ptypes, true);
 616     }
 617 
 618     /**
 619      * Reports if this type contains a primitive argument or return value.
 620      * The return type {@code void} counts as a primitive.
 621      * @return true if any of the types are primitives
 622      */
 623     public boolean hasPrimitives() {
 624         return form.hasPrimitives();
 625     }
 626 
 627     /**
 628      * Reports if this type contains a wrapper argument or return value.
 629      * Wrappers are types which box primitive values, such as {@link Integer}.
 630      * The reference type {@code java.lang.Void} counts as a wrapper,
 631      * if it occurs as a return type.
 632      * @return true if any of the types are wrappers
 633      */
 634     public boolean hasWrappers() {
 635         return unwrap() != this;
 636     }
 637 
 638     /**
 639      * Erases all reference types to {@code Object}.
 640      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 641      * All primitive types (including {@code void}) will remain unchanged.
 642      * @return a version of the original type with all reference types replaced
 643      */
 644     public MethodType erase() {
 645         return form.erasedType();
 646     }
 647 
 648     /**
 649      * Erases all reference types to {@code Object}, and all subword types to {@code int}.
 650      * This is the reduced type polymorphism used by private methods
 651      * such as {@link MethodHandle#invokeBasic invokeBasic}.
 652      * @return a version of the original type with all reference and subword types replaced
 653      */
 654     /*non-public*/
 655     MethodType basicType() {
 656         return form.basicType();
 657     }
 658 
 659     private static final @Stable Class<?>[] METHOD_HANDLE_ARRAY
 660             = new Class<?>[] { MethodHandle.class };
 661 
 662     /**
 663      * @return a version of the original type with MethodHandle prepended as the first argument
 664      */
 665     /*non-public*/
 666     MethodType invokerType() {
 667         return insertParameterTypes(0, METHOD_HANDLE_ARRAY);
 668     }
 669 
 670     /**
 671      * Converts all types, both reference and primitive, to {@code Object}.
 672      * Convenience method for {@link #genericMethodType(int) genericMethodType}.
 673      * The expression {@code type.wrap().erase()} produces the same value
 674      * as {@code type.generic()}.
 675      * @return a version of the original type with all types replaced
 676      */
 677     public MethodType generic() {
 678         return genericMethodType(parameterCount());
 679     }
 680 
 681     /*non-public*/
 682     boolean isGeneric() {
 683         return this == erase() && !hasPrimitives();
 684     }
 685 
 686     /**
 687      * Converts all primitive types to their corresponding wrapper types.
 688      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 689      * All reference types (including wrapper types) will remain unchanged.
 690      * A {@code void} return type is changed to the type {@code java.lang.Void}.
 691      * The expression {@code type.wrap().erase()} produces the same value
 692      * as {@code type.generic()}.
 693      * @return a version of the original type with all primitive types replaced
 694      */
 695     public MethodType wrap() {
 696         return hasPrimitives() ? wrapWithPrims(this) : this;
 697     }
 698 
 699     /**
 700      * Converts all wrapper types to their corresponding primitive types.
 701      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
 702      * All primitive types (including {@code void}) will remain unchanged.
 703      * A return type of {@code java.lang.Void} is changed to {@code void}.
 704      * @return a version of the original type with all wrapper types replaced
 705      */
 706     public MethodType unwrap() {
 707         MethodType noprims = !hasPrimitives() ? this : wrapWithPrims(this);
 708         return unwrapWithNoPrims(noprims);
 709     }
 710 
 711     private static MethodType wrapWithPrims(MethodType pt) {
 712         assert(pt.hasPrimitives());
 713         MethodType wt = pt.wrapAlt;
 714         if (wt == null) {
 715             // fill in lazily
 716             wt = MethodTypeForm.canonicalize(pt, MethodTypeForm.WRAP, MethodTypeForm.WRAP);
 717             assert(wt != null);
 718             pt.wrapAlt = wt;
 719         }
 720         return wt;
 721     }
 722 
 723     private static MethodType unwrapWithNoPrims(MethodType wt) {
 724         assert(!wt.hasPrimitives());
 725         MethodType uwt = wt.wrapAlt;
 726         if (uwt == null) {
 727             // fill in lazily
 728             uwt = MethodTypeForm.canonicalize(wt, MethodTypeForm.UNWRAP, MethodTypeForm.UNWRAP);
 729             if (uwt == null)
 730                 uwt = wt;    // type has no wrappers or prims at all
 731             wt.wrapAlt = uwt;
 732         }
 733         return uwt;
 734     }
 735 
 736     /**
 737      * Returns the parameter type at the specified index, within this method type.
 738      * @param num the index (zero-based) of the desired parameter type
 739      * @return the selected parameter type
 740      * @throws IndexOutOfBoundsException if {@code num} is not a valid index into {@code parameterArray()}
 741      */
 742     public Class<?> parameterType(int num) {
 743         return ptypes[num];
 744     }
 745     /**
 746      * Returns the number of parameter types in this method type.
 747      * @return the number of parameter types
 748      */
 749     public int parameterCount() {
 750         return ptypes.length;
 751     }
 752     /**
 753      * Returns the return type of this method type.
 754      * @return the return type
 755      */
 756     public Class<?> returnType() {
 757         return rtype;
 758     }
 759 
 760     /**
 761      * Presents the parameter types as a list (a convenience method).
 762      * The list will be immutable.
 763      * @return the parameter types (as an immutable list)
 764      */
 765     public List<Class<?>> parameterList() {
 766         return Collections.unmodifiableList(Arrays.asList(ptypes.clone()));
 767     }
 768 
 769     /**
 770      * Returns the last parameter type of this method type.
 771      * If this type has no parameters, the sentinel value
 772      * {@code void.class} is returned instead.
 773      * @apiNote
 774      * <p>
 775      * The sentinel value is chosen so that reflective queries can be
 776      * made directly against the result value.
 777      * The sentinel value cannot be confused with a real parameter,
 778      * since {@code void} is never acceptable as a parameter type.
 779      * For variable arity invocation modes, the expression
 780      * {@link Class#getComponentType lastParameterType().getComponentType()}
 781      * is useful to query the type of the "varargs" parameter.
 782      * @return the last parameter type if any, else {@code void.class}
 783      * @since 10
 784      */
 785     public Class<?> lastParameterType() {
 786         int len = ptypes.length;
 787         return len == 0 ? void.class : ptypes[len-1];
 788     }
 789 
 790     /**
 791      * Presents the parameter types as an array (a convenience method).
 792      * Changes to the array will not result in changes to the type.
 793      * @return the parameter types (as a fresh copy if necessary)
 794      */
 795     public Class<?>[] parameterArray() {
 796         return ptypes.clone();
 797     }
 798 
 799     /**
 800      * Compares the specified object with this type for equality.
 801      * That is, it returns {@code true} if and only if the specified object
 802      * is also a method type with exactly the same parameters and return type.
 803      * @param x object to compare
 804      * @see Object#equals(Object)
 805      */
 806     // This implementation may also return true if x is a WeakEntry containing
 807     // a method type that is equal to this. This is an internal implementation
 808     // detail to allow for faster method type lookups.
 809     // See ConcurrentWeakInternSet.WeakEntry#equals(Object)
 810     @Override
 811     public boolean equals(Object x) {
 812         if (this == x) {
 813             return true;
 814         }
 815         if (x instanceof MethodType) {
 816             return equals((MethodType)x);
 817         }
 818         if (x instanceof ConcurrentWeakInternSet.WeakEntry) {
 819             Object o = ((ConcurrentWeakInternSet.WeakEntry)x).get();
 820             if (o instanceof MethodType) {
 821                 return equals((MethodType)o);
 822             }
 823         }
 824         return false;
 825     }
 826 
 827     private boolean equals(MethodType that) {
 828         return this.rtype == that.rtype
 829             && Arrays.equals(this.ptypes, that.ptypes);
 830     }
 831 
 832     /**
 833      * Returns the hash code value for this method type.
 834      * It is defined to be the same as the hashcode of a List
 835      * whose elements are the return type followed by the
 836      * parameter types.
 837      * @return the hash code value for this method type
 838      * @see Object#hashCode()
 839      * @see #equals(Object)
 840      * @see List#hashCode()
 841      */
 842     @Override
 843     public int hashCode() {
 844         int hashCode = 31 + rtype.hashCode();
 845         for (Class<?> ptype : ptypes)
 846             hashCode = 31 * hashCode + ptype.hashCode();
 847         return hashCode;
 848     }
 849 
 850     /**
 851      * Returns a string representation of the method type,
 852      * of the form {@code "(PT0,PT1...)RT"}.
 853      * The string representation of a method type is a
 854      * parenthesis enclosed, comma separated list of type names,
 855      * followed immediately by the return type.
 856      * <p>
 857      * Each type is represented by its
 858      * {@link java.lang.Class#getSimpleName simple name}.
 859      */
 860     @Override
 861     public String toString() {
 862         StringJoiner sj = new StringJoiner(",", "(",
 863                 ")" + rtype.getSimpleName());
 864         for (int i = 0; i < ptypes.length; i++) {
 865             sj.add(ptypes[i].getSimpleName());
 866         }
 867         return sj.toString();
 868     }
 869 
 870     /** True if my parameter list is effectively identical to the given full list,
 871      *  after skipping the given number of my own initial parameters.
 872      *  In other words, after disregarding {@code skipPos} parameters,
 873      *  my remaining parameter list is no longer than the {@code fullList}, and
 874      *  is equal to the same-length initial sublist of {@code fullList}.
 875      */
 876     /*non-public*/
 877     boolean effectivelyIdenticalParameters(int skipPos, List<Class<?>> fullList) {
 878         int myLen = ptypes.length, fullLen = fullList.size();
 879         if (skipPos > myLen || myLen - skipPos > fullLen)
 880             return false;
 881         List<Class<?>> myList = Arrays.asList(ptypes);
 882         if (skipPos != 0) {
 883             myList = myList.subList(skipPos, myLen);
 884             myLen -= skipPos;
 885         }
 886         if (fullLen == myLen)
 887             return myList.equals(fullList);
 888         else
 889             return myList.equals(fullList.subList(0, myLen));
 890     }
 891 
 892     /** True if the old return type can always be viewed (w/o casting) under new return type,
 893      *  and the new parameters can be viewed (w/o casting) under the old parameter types.
 894      */
 895     /*non-public*/
 896     boolean isViewableAs(MethodType newType, boolean keepInterfaces) {
 897         if (!VerifyType.isNullConversion(returnType(), newType.returnType(), keepInterfaces))
 898             return false;
 899         if (form == newType.form && form.erasedType == this)
 900             return true;  // my reference parameters are all Object
 901         if (ptypes == newType.ptypes)
 902             return true;
 903         int argc = parameterCount();
 904         if (argc != newType.parameterCount())
 905             return false;
 906         for (int i = 0; i < argc; i++) {
 907             if (!VerifyType.isNullConversion(newType.parameterType(i), parameterType(i), keepInterfaces))
 908                 return false;
 909         }
 910         return true;
 911     }
 912     /*non-public*/
 913     boolean isConvertibleTo(MethodType newType) {
 914         MethodTypeForm oldForm = this.form();
 915         MethodTypeForm newForm = newType.form();
 916         if (oldForm == newForm)
 917             // same parameter count, same primitive/object mix
 918             return true;
 919         if (!canConvert(returnType(), newType.returnType()))
 920             return false;
 921         Class<?>[] srcTypes = newType.ptypes;
 922         Class<?>[] dstTypes = ptypes;
 923         if (srcTypes == dstTypes)
 924             return true;
 925         int argc;
 926         if ((argc = srcTypes.length) != dstTypes.length)
 927             return false;
 928         if (argc <= 1) {
 929             if (argc == 1 && !canConvert(srcTypes[0], dstTypes[0]))
 930                 return false;
 931             return true;
 932         }
 933         if ((!oldForm.hasPrimitives() && oldForm.erasedType == this) ||
 934             (!newForm.hasPrimitives() && newForm.erasedType == newType)) {
 935             // Somewhat complicated test to avoid a loop of 2 or more trips.
 936             // If either type has only Object parameters, we know we can convert.
 937             assert(canConvertParameters(srcTypes, dstTypes));
 938             return true;
 939         }
 940         return canConvertParameters(srcTypes, dstTypes);
 941     }
 942 
 943     /** Returns true if MHs.explicitCastArguments produces the same result as MH.asType.
 944      *  If the type conversion is impossible for either, the result should be false.
 945      */
 946     /*non-public*/
 947     boolean explicitCastEquivalentToAsType(MethodType newType) {
 948         if (this == newType)  return true;
 949         if (!explicitCastEquivalentToAsType(rtype, newType.rtype)) {
 950             return false;
 951         }
 952         Class<?>[] srcTypes = newType.ptypes;
 953         Class<?>[] dstTypes = ptypes;
 954         if (dstTypes == srcTypes) {
 955             return true;
 956         }
 957         assert(dstTypes.length == srcTypes.length);
 958         for (int i = 0; i < dstTypes.length; i++) {
 959             if (!explicitCastEquivalentToAsType(srcTypes[i], dstTypes[i])) {
 960                 return false;
 961             }
 962         }
 963         return true;
 964     }
 965 
 966     /** Reports true if the src can be converted to the dst, by both asType and MHs.eCE,
 967      *  and with the same effect.
 968      *  MHs.eCA has the following "upgrades" to MH.asType:
 969      *  1. interfaces are unchecked (that is, treated as if aliased to Object)
 970      *     Therefore, {@code Object->CharSequence} is possible in both cases but has different semantics
 971      *  2. the full matrix of primitive-to-primitive conversions is supported
 972      *     Narrowing like {@code long->byte} and basic-typing like {@code boolean->int}
 973      *     are not supported by asType, but anything supported by asType is equivalent
 974      *     with MHs.eCE.
 975      *  3a. unboxing conversions can be followed by the full matrix of primitive conversions
 976      *  3b. unboxing of null is permitted (creates a zero primitive value)
 977      * Other than interfaces, reference-to-reference conversions are the same.
 978      * Boxing primitives to references is the same for both operators.
 979      */
 980     private static boolean explicitCastEquivalentToAsType(Class<?> src, Class<?> dst) {
 981         if (src == dst || dst == Object.class || dst == void.class)  return true;
 982         if (src.isPrimitive()) {
 983             // Could be a prim/prim conversion, where casting is a strict superset.
 984             // Or a boxing conversion, which is always to an exact wrapper class.
 985             return canConvert(src, dst);
 986         } else if (dst.isPrimitive()) {
 987             // Unboxing behavior is different between MHs.eCA & MH.asType (see 3b).
 988             return false;
 989         } else {
 990             // R->R always works, but we have to avoid a check-cast to an interface.
 991             return !dst.isInterface() || dst.isAssignableFrom(src);
 992         }
 993     }
 994 
 995     private boolean canConvertParameters(Class<?>[] srcTypes, Class<?>[] dstTypes) {
 996         for (int i = 0; i < srcTypes.length; i++) {
 997             if (!canConvert(srcTypes[i], dstTypes[i])) {
 998                 return false;
 999             }
1000         }
1001         return true;
1002     }
1003 
1004     /*non-public*/
1005     static boolean canConvert(Class<?> src, Class<?> dst) {
1006         // short-circuit a few cases:
1007         if (src == dst || src == Object.class || dst == Object.class)  return true;
1008         // the remainder of this logic is documented in MethodHandle.asType
1009         if (src.isPrimitive()) {
1010             // can force void to an explicit null, a la reflect.Method.invoke
1011             // can also force void to a primitive zero, by analogy
1012             if (src == void.class)  return true;  //or !dst.isPrimitive()?
1013             Wrapper sw = Wrapper.forPrimitiveType(src);
1014             if (dst.isPrimitive()) {
1015                 // P->P must widen
1016                 return Wrapper.forPrimitiveType(dst).isConvertibleFrom(sw);
1017             } else {
1018                 // P->R must box and widen
1019                 return dst.isAssignableFrom(sw.wrapperType());
1020             }
1021         } else if (dst.isPrimitive()) {
1022             // any value can be dropped
1023             if (dst == void.class)  return true;
1024             Wrapper dw = Wrapper.forPrimitiveType(dst);
1025             // R->P must be able to unbox (from a dynamically chosen type) and widen
1026             // For example:
1027             //   Byte/Number/Comparable/Object -> dw:Byte -> byte.
1028             //   Character/Comparable/Object -> dw:Character -> char
1029             //   Boolean/Comparable/Object -> dw:Boolean -> boolean
1030             // This means that dw must be cast-compatible with src.
1031             if (src.isAssignableFrom(dw.wrapperType())) {
1032                 return true;
1033             }
1034             // The above does not work if the source reference is strongly typed
1035             // to a wrapper whose primitive must be widened.  For example:
1036             //   Byte -> unbox:byte -> short/int/long/float/double
1037             //   Character -> unbox:char -> int/long/float/double
1038             if (Wrapper.isWrapperType(src) &&
1039                 dw.isConvertibleFrom(Wrapper.forWrapperType(src))) {
1040                 // can unbox from src and then widen to dst
1041                 return true;
1042             }
1043             // We have already covered cases which arise due to runtime unboxing
1044             // of a reference type which covers several wrapper types:
1045             //   Object -> cast:Integer -> unbox:int -> long/float/double
1046             //   Serializable -> cast:Byte -> unbox:byte -> byte/short/int/long/float/double
1047             // An marginal case is Number -> dw:Character -> char, which would be OK if there were a
1048             // subclass of Number which wraps a value that can convert to char.
1049             // Since there is none, we don't need an extra check here to cover char or boolean.
1050             return false;
1051         } else {
1052             // R->R always works, since null is always valid dynamically
1053             return true;
1054         }
1055     }
1056 
1057     /// Queries which have to do with the bytecode architecture
1058 
1059     /** Reports the number of JVM stack slots required to invoke a method
1060      * of this type.  Note that (for historical reasons) the JVM requires
1061      * a second stack slot to pass long and double arguments.
1062      * So this method returns {@link #parameterCount() parameterCount} plus the
1063      * number of long and double parameters (if any).
1064      * <p>
1065      * This method is included for the benefit of applications that must
1066      * generate bytecodes that process method handles and invokedynamic.
1067      * @return the number of JVM stack slots for this type's parameters
1068      */
1069     /*non-public*/
1070     int parameterSlotCount() {
1071         return form.parameterSlotCount();
1072     }
1073 
1074     /*non-public*/
1075     Invokers invokers() {
1076         Invokers inv = invokers;
1077         if (inv != null)  return inv;
1078         invokers = inv = new Invokers(this);
1079         return inv;
1080     }
1081 
1082     /**
1083      * Finds or creates an instance of a method type, given the spelling of its bytecode descriptor.
1084      * Convenience method for {@link #methodType(java.lang.Class, java.lang.Class[]) methodType}.
1085      * Any class or interface name embedded in the descriptor string will be
1086      * resolved by the given loader (or if it is null, on the system class loader).
1087      * <p>
1088      * Note that it is possible to encounter method types which cannot be
1089      * constructed by this method, because their component types are
1090      * not all reachable from a common class loader.
1091      * <p>
1092      * This method is included for the benefit of applications that must
1093      * generate bytecodes that process method handles and {@code invokedynamic}.
1094      * @param descriptor a bytecode-level type descriptor string "(T...)T"
1095      * @param loader the class loader in which to look up the types
1096      * @return a method type matching the bytecode-level type descriptor
1097      * @throws NullPointerException if the string is null
1098      * @throws IllegalArgumentException if the string is not well-formed
1099      * @throws TypeNotPresentException if a named type cannot be found
1100      * @throws SecurityException if the security manager is present and
1101      *         {@code loader} is {@code null} and the caller does not have the
1102      *         {@link RuntimePermission}{@code ("getClassLoader")}
1103      */
1104     public static MethodType fromMethodDescriptorString(String descriptor, ClassLoader loader)
1105         throws IllegalArgumentException, TypeNotPresentException
1106     {
1107         if (loader == null) {
1108             SecurityManager sm = System.getSecurityManager();
1109             if (sm != null) {
1110                 sm.checkPermission(SecurityConstants.GET_CLASSLOADER_PERMISSION);
1111             }
1112         }
1113         return fromDescriptor(descriptor,
1114                               (loader == null) ? ClassLoader.getSystemClassLoader() : loader);
1115     }
1116 
1117     /**
1118      * Same as {@link #fromMethodDescriptorString(String, ClassLoader)}, but
1119      * {@code null} ClassLoader means the bootstrap loader is used here.
1120      * <p>
1121      * IMPORTANT: This method is preferable for JDK internal use as it more
1122      * correctly interprets {@code null} ClassLoader than
1123      * {@link #fromMethodDescriptorString(String, ClassLoader)}.
1124      * Use of this method also avoids early initialization issues when system
1125      * ClassLoader is not initialized yet.
1126      */
1127     static MethodType fromDescriptor(String descriptor, ClassLoader loader)
1128         throws IllegalArgumentException, TypeNotPresentException
1129     {
1130         if (!descriptor.startsWith("(") ||  // also generates NPE if needed
1131             descriptor.indexOf(')') < 0 ||
1132             descriptor.indexOf('.') >= 0)
1133             throw newIllegalArgumentException("not a method descriptor: "+descriptor);
1134         List<Class<?>> types = BytecodeDescriptor.parseMethod(descriptor, loader);
1135         Class<?> rtype = types.remove(types.size() - 1);
1136         Class<?>[] ptypes = listToArray(types);
1137         return makeImpl(rtype, ptypes, true);
1138     }
1139 
1140     /**
1141      * Produces a bytecode descriptor representation of the method type.
1142      * <p>
1143      * Note that this is not a strict inverse of {@link #fromMethodDescriptorString fromMethodDescriptorString}.
1144      * Two distinct classes which share a common name but have different class loaders
1145      * will appear identical when viewed within descriptor strings.
1146      * <p>
1147      * This method is included for the benefit of applications that must
1148      * generate bytecodes that process method handles and {@code invokedynamic}.
1149      * {@link #fromMethodDescriptorString(java.lang.String, java.lang.ClassLoader) fromMethodDescriptorString},
1150      * because the latter requires a suitable class loader argument.
1151      * @return the bytecode type descriptor representation
1152      */
1153     public String toMethodDescriptorString() {
1154         String desc = methodDescriptor;
1155         if (desc == null) {
1156             desc = BytecodeDescriptor.unparseMethod(this.rtype, this.ptypes);
1157             methodDescriptor = desc;
1158         }
1159         return desc;
1160     }
1161 
1162     /**
1163      * Return a field type descriptor string for this type
1164      *
1165      * @return the descriptor string
1166      * @jvms 4.3.2 Field Descriptors
1167      * @since 12
1168      */
1169     @Override
1170     public String descriptorString() {
1171         return toMethodDescriptorString();
1172     }
1173 
1174     /*non-public*/
1175     static String toFieldDescriptorString(Class<?> cls) {
1176         return BytecodeDescriptor.unparse(cls);
1177     }
1178 
1179     /**
1180      * Return a nominal descriptor for this instance, if one can be
1181      * constructed, or an empty {@link Optional} if one cannot be.
1182      *
1183      * @return An {@link Optional} containing the resulting nominal descriptor,
1184      * or an empty {@link Optional} if one cannot be constructed.
1185      * @since 12
1186      */
1187     @Override
1188     public Optional<MethodTypeDesc> describeConstable() {
1189         try {
1190             return Optional.of(MethodTypeDesc.of(returnType().describeConstable().orElseThrow(),
1191                                                  Stream.of(parameterArray())
1192                                                       .map(p -> p.describeConstable().orElseThrow())
1193                                                       .toArray(ClassDesc[]::new)));
1194         }
1195         catch (NoSuchElementException e) {
1196             return Optional.empty();
1197         }
1198     }
1199 
1200     /// Serialization.
1201 
1202     /**
1203      * There are no serializable fields for {@code MethodType}.
1204      */
1205     @java.io.Serial
1206     private static final java.io.ObjectStreamField[] serialPersistentFields = { };
1207 
1208     /**
1209      * Save the {@code MethodType} instance to a stream.
1210      *
1211      * @serialData
1212      * For portability, the serialized format does not refer to named fields.
1213      * Instead, the return type and parameter type arrays are written directly
1214      * from the {@code writeObject} method, using two calls to {@code s.writeObject}
1215      * as follows:
1216      * <blockquote><pre>{@code
1217 s.writeObject(this.returnType());
1218 s.writeObject(this.parameterArray());
1219      * }</pre></blockquote>
1220      * <p>
1221      * The deserialized field values are checked as if they were
1222      * provided to the factory method {@link #methodType(Class,Class[]) methodType}.
1223      * For example, null values, or {@code void} parameter types,
1224      * will lead to exceptions during deserialization.
1225      * @param s the stream to write the object to
1226      * @throws java.io.IOException if there is a problem writing the object
1227      */
1228     @java.io.Serial
1229     private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException {
1230         s.defaultWriteObject();  // requires serialPersistentFields to be an empty array
1231         s.writeObject(returnType());
1232         s.writeObject(parameterArray());
1233     }
1234 
1235     /**
1236      * Reconstitute the {@code MethodType} instance from a stream (that is,
1237      * deserialize it).
1238      * This instance is a scratch object with bogus final fields.
1239      * It provides the parameters to the factory method called by
1240      * {@link #readResolve readResolve}.
1241      * After that call it is discarded.
1242      * @param s the stream to read the object from
1243      * @throws java.io.IOException if there is a problem reading the object
1244      * @throws ClassNotFoundException if one of the component classes cannot be resolved
1245      * @see #readResolve
1246      * @see #writeObject
1247      */
1248     @java.io.Serial
1249     private void readObject(java.io.ObjectInputStream s) throws java.io.IOException, ClassNotFoundException {
1250         // Assign temporary defaults in case this object escapes
1251         MethodType_init(void.class, NO_PTYPES);
1252 
1253         s.defaultReadObject();  // requires serialPersistentFields to be an empty array
1254 
1255         Class<?>   returnType     = (Class<?>)   s.readObject();
1256         Class<?>[] parameterArray = (Class<?>[]) s.readObject();
1257         parameterArray = parameterArray.clone();  // make sure it is unshared
1258 
1259         // Assign deserialized values
1260         MethodType_init(returnType, parameterArray);
1261     }
1262 
1263     // Initialization of state for deserialization only
1264     private void MethodType_init(Class<?> rtype, Class<?>[] ptypes) {
1265         // In order to communicate these values to readResolve, we must
1266         // store them into the implementation-specific final fields.
1267         checkRtype(rtype);
1268         checkPtypes(ptypes);
1269         UNSAFE.putReference(this, OffsetHolder.rtypeOffset, rtype);
1270         UNSAFE.putReference(this, OffsetHolder.ptypesOffset, ptypes);
1271     }
1272 
1273     // Support for resetting final fields while deserializing. Implement Holder
1274     // pattern to make the rarely needed offset calculation lazy.
1275     private static class OffsetHolder {
1276         static final long rtypeOffset
1277                 = UNSAFE.objectFieldOffset(MethodType.class, "rtype");
1278 
1279         static final long ptypesOffset
1280                 = UNSAFE.objectFieldOffset(MethodType.class, "ptypes");
1281     }
1282 
1283     /**
1284      * Resolves and initializes a {@code MethodType} object
1285      * after serialization.
1286      * @return the fully initialized {@code MethodType} object
1287      */
1288     @java.io.Serial
1289     private Object readResolve() {
1290         // Do not use a trusted path for deserialization:
1291         //    return makeImpl(rtype, ptypes, true);
1292         // Verify all operands, and make sure ptypes is unshared:
1293         try {
1294             return methodType(rtype, ptypes);
1295         } finally {
1296             // Re-assign defaults in case this object escapes
1297             MethodType_init(void.class, NO_PTYPES);
1298         }
1299     }
1300 
1301     /**
1302      * Simple implementation of weak concurrent intern set.
1303      *
1304      * @param <T> interned type
1305      */
1306     private static class ConcurrentWeakInternSet<T> {
1307 
1308         private final ConcurrentMap<WeakEntry<T>, WeakEntry<T>> map;
1309         private final ReferenceQueue<T> stale;
1310 
1311         public ConcurrentWeakInternSet() {
1312             this.map = new ConcurrentHashMap<>(512);
1313             this.stale = new ReferenceQueue<>();
1314         }
1315 
1316         /**
1317          * Get the existing interned element.
1318          * This method returns null if no element is interned.
1319          *
1320          * @param elem element to look up
1321          * @return the interned element
1322          */
1323         public T get(T elem) {
1324             if (elem == null) throw new NullPointerException();
1325             expungeStaleElements();
1326 
1327             WeakEntry<T> value = map.get(elem);
1328             if (value != null) {
1329                 T res = value.get();
1330                 if (res != null) {
1331                     return res;
1332                 }
1333             }
1334             return null;
1335         }
1336 
1337         /**
1338          * Interns the element.
1339          * Always returns non-null element, matching the one in the intern set.
1340          * Under the race against another add(), it can return <i>different</i>
1341          * element, if another thread beats us to interning it.
1342          *
1343          * @param elem element to add
1344          * @return element that was actually added
1345          */
1346         public T add(T elem) {
1347             if (elem == null) throw new NullPointerException();
1348 
1349             // Playing double race here, and so spinloop is required.
1350             // First race is with two concurrent updaters.
1351             // Second race is with GC purging weak ref under our feet.
1352             // Hopefully, we almost always end up with a single pass.
1353             T interned;
1354             WeakEntry<T> e = new WeakEntry<>(elem, stale);
1355             do {
1356                 expungeStaleElements();
1357                 WeakEntry<T> exist = map.putIfAbsent(e, e);
1358                 interned = (exist == null) ? elem : exist.get();
1359             } while (interned == null);
1360             return interned;
1361         }
1362 
1363         private void expungeStaleElements() {
1364             Reference<? extends T> reference;
1365             while ((reference = stale.poll()) != null) {
1366                 map.remove(reference);
1367             }
1368         }
1369 
1370         private static class WeakEntry<T> extends WeakReference<T> {
1371 
1372             public final int hashcode;
1373 
1374             public WeakEntry(T key, ReferenceQueue<T> queue) {
1375                 super(key, queue);
1376                 hashcode = key.hashCode();
1377             }
1378 
1379             /**
1380              * This implementation returns {@code true} if {@code obj} is another
1381              * {@code WeakEntry} whose referent is equals to this referent, or
1382              * if {@code obj} is equals to the referent of this. This allows
1383              * lookups to be made without wrapping in a {@code WeakEntry}.
1384              *
1385              * @param obj the object to compare
1386              * @return true if {@code obj} is equals to this or the referent of this
1387              * @see MethodType#equals(Object)
1388              * @see Object#equals(Object)
1389              */
1390             @Override
1391             public boolean equals(Object obj) {
1392                 Object mine = get();
1393                 if (obj instanceof WeakEntry) {
1394                     Object that = ((WeakEntry) obj).get();
1395                     return (that == null || mine == null) ? (this == obj) : mine.equals(that);
1396                 }
1397                 return (mine == null) ? (obj == null) : mine.equals(obj);
1398             }
1399 
1400             @Override
1401             public int hashCode() {
1402                 return hashcode;
1403             }
1404 
1405         }
1406     }
1407 
1408 }