1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardGeneration.inline.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/atomic.inline.hpp"
  60 #include "runtime/globals_extension.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/vmThread.hpp"
  65 #include "services/memoryService.hpp"
  66 #include "services/runtimeService.hpp"
  67 
  68 // statics
  69 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  70 bool CMSCollector::_full_gc_requested = false;
  71 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  72 
  73 //////////////////////////////////////////////////////////////////
  74 // In support of CMS/VM thread synchronization
  75 //////////////////////////////////////////////////////////////////
  76 // We split use of the CGC_lock into 2 "levels".
  77 // The low-level locking is of the usual CGC_lock monitor. We introduce
  78 // a higher level "token" (hereafter "CMS token") built on top of the
  79 // low level monitor (hereafter "CGC lock").
  80 // The token-passing protocol gives priority to the VM thread. The
  81 // CMS-lock doesn't provide any fairness guarantees, but clients
  82 // should ensure that it is only held for very short, bounded
  83 // durations.
  84 //
  85 // When either of the CMS thread or the VM thread is involved in
  86 // collection operations during which it does not want the other
  87 // thread to interfere, it obtains the CMS token.
  88 //
  89 // If either thread tries to get the token while the other has
  90 // it, that thread waits. However, if the VM thread and CMS thread
  91 // both want the token, then the VM thread gets priority while the
  92 // CMS thread waits. This ensures, for instance, that the "concurrent"
  93 // phases of the CMS thread's work do not block out the VM thread
  94 // for long periods of time as the CMS thread continues to hog
  95 // the token. (See bug 4616232).
  96 //
  97 // The baton-passing functions are, however, controlled by the
  98 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  99 // and here the low-level CMS lock, not the high level token,
 100 // ensures mutual exclusion.
 101 //
 102 // Two important conditions that we have to satisfy:
 103 // 1. if a thread does a low-level wait on the CMS lock, then it
 104 //    relinquishes the CMS token if it were holding that token
 105 //    when it acquired the low-level CMS lock.
 106 // 2. any low-level notifications on the low-level lock
 107 //    should only be sent when a thread has relinquished the token.
 108 //
 109 // In the absence of either property, we'd have potential deadlock.
 110 //
 111 // We protect each of the CMS (concurrent and sequential) phases
 112 // with the CMS _token_, not the CMS _lock_.
 113 //
 114 // The only code protected by CMS lock is the token acquisition code
 115 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 116 // baton-passing code.
 117 //
 118 // Unfortunately, i couldn't come up with a good abstraction to factor and
 119 // hide the naked CGC_lock manipulation in the baton-passing code
 120 // further below. That's something we should try to do. Also, the proof
 121 // of correctness of this 2-level locking scheme is far from obvious,
 122 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 123 // that there may be a theoretical possibility of delay/starvation in the
 124 // low-level lock/wait/notify scheme used for the baton-passing because of
 125 // potential interference with the priority scheme embodied in the
 126 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 127 // invocation further below and marked with "XXX 20011219YSR".
 128 // Indeed, as we note elsewhere, this may become yet more slippery
 129 // in the presence of multiple CMS and/or multiple VM threads. XXX
 130 
 131 class CMSTokenSync: public StackObj {
 132  private:
 133   bool _is_cms_thread;
 134  public:
 135   CMSTokenSync(bool is_cms_thread):
 136     _is_cms_thread(is_cms_thread) {
 137     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 138            "Incorrect argument to constructor");
 139     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 140   }
 141 
 142   ~CMSTokenSync() {
 143     assert(_is_cms_thread ?
 144              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 145              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 146           "Incorrect state");
 147     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 148   }
 149 };
 150 
 151 // Convenience class that does a CMSTokenSync, and then acquires
 152 // upto three locks.
 153 class CMSTokenSyncWithLocks: public CMSTokenSync {
 154  private:
 155   // Note: locks are acquired in textual declaration order
 156   // and released in the opposite order
 157   MutexLockerEx _locker1, _locker2, _locker3;
 158  public:
 159   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 160                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 161     CMSTokenSync(is_cms_thread),
 162     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 163     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 164     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 165   { }
 166 };
 167 
 168 
 169 //////////////////////////////////////////////////////////////////
 170 //  Concurrent Mark-Sweep Generation /////////////////////////////
 171 //////////////////////////////////////////////////////////////////
 172 
 173 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 174 
 175 // This struct contains per-thread things necessary to support parallel
 176 // young-gen collection.
 177 class CMSParGCThreadState: public CHeapObj<mtGC> {
 178  public:
 179   CFLS_LAB lab;
 180   PromotionInfo promo;
 181 
 182   // Constructor.
 183   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 184     promo.setSpace(cfls);
 185   }
 186 };
 187 
 188 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 189      ReservedSpace rs, size_t initial_byte_size, int level,
 190      CardTableRS* ct, bool use_adaptive_freelists,
 191      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 192   CardGeneration(rs, initial_byte_size, level, ct),
 193   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 194   _did_compact(false)
 195 {
 196   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 197   HeapWord* end    = (HeapWord*) _virtual_space.high();
 198 
 199   _direct_allocated_words = 0;
 200   NOT_PRODUCT(
 201     _numObjectsPromoted = 0;
 202     _numWordsPromoted = 0;
 203     _numObjectsAllocated = 0;
 204     _numWordsAllocated = 0;
 205   )
 206 
 207   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 208                                            use_adaptive_freelists,
 209                                            dictionaryChoice);
 210   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 211   _cmsSpace->_gen = this;
 212 
 213   _gc_stats = new CMSGCStats();
 214 
 215   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 216   // offsets match. The ability to tell free chunks from objects
 217   // depends on this property.
 218   debug_only(
 219     FreeChunk* junk = NULL;
 220     assert(UseCompressedClassPointers ||
 221            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 222            "Offset of FreeChunk::_prev within FreeChunk must match"
 223            "  that of OopDesc::_klass within OopDesc");
 224   )
 225   if (CollectedHeap::use_parallel_gc_threads()) {
 226     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 227     _par_gc_thread_states =
 228       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 229     for (uint i = 0; i < ParallelGCThreads; i++) {
 230       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 231     }
 232   } else {
 233     _par_gc_thread_states = NULL;
 234   }
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              (int) ParallelGCThreads,             // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 302     "Wrong type of heap");
 303   return gch->gen_policy()->size_policy();
 304 }
 305 
 306 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 307 
 308   const char* gen_name = "old";
 309   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 310 
 311   // Generation Counters - generation 1, 1 subspace
 312   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 313       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 314 
 315   _space_counters = new GSpaceCounters(gen_name, 0,
 316                                        _virtual_space.reserved_size(),
 317                                        this, _gen_counters);
 318 }
 319 
 320 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 321   _cms_gen(cms_gen)
 322 {
 323   assert(alpha <= 100, "bad value");
 324   _saved_alpha = alpha;
 325 
 326   // Initialize the alphas to the bootstrap value of 100.
 327   _gc0_alpha = _cms_alpha = 100;
 328 
 329   _cms_begin_time.update();
 330   _cms_end_time.update();
 331 
 332   _gc0_duration = 0.0;
 333   _gc0_period = 0.0;
 334   _gc0_promoted = 0;
 335 
 336   _cms_duration = 0.0;
 337   _cms_period = 0.0;
 338   _cms_allocated = 0;
 339 
 340   _cms_used_at_gc0_begin = 0;
 341   _cms_used_at_gc0_end = 0;
 342   _allow_duty_cycle_reduction = false;
 343   _valid_bits = 0;
 344 }
 345 
 346 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 347   // TBD: CR 6909490
 348   return 1.0;
 349 }
 350 
 351 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 352 }
 353 
 354 // If promotion failure handling is on use
 355 // the padded average size of the promotion for each
 356 // young generation collection.
 357 double CMSStats::time_until_cms_gen_full() const {
 358   size_t cms_free = _cms_gen->cmsSpace()->free();
 359   GenCollectedHeap* gch = GenCollectedHeap::heap();
 360   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 361                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 362   if (cms_free > expected_promotion) {
 363     // Start a cms collection if there isn't enough space to promote
 364     // for the next minor collection.  Use the padded average as
 365     // a safety factor.
 366     cms_free -= expected_promotion;
 367 
 368     // Adjust by the safety factor.
 369     double cms_free_dbl = (double)cms_free;
 370     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 371     // Apply a further correction factor which tries to adjust
 372     // for recent occurance of concurrent mode failures.
 373     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 374     cms_free_dbl = cms_free_dbl * cms_adjustment;
 375 
 376     if (PrintGCDetails && Verbose) {
 377       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 378         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 379         cms_free, expected_promotion);
 380       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 381         cms_free_dbl, cms_consumption_rate() + 1.0);
 382     }
 383     // Add 1 in case the consumption rate goes to zero.
 384     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 385   }
 386   return 0.0;
 387 }
 388 
 389 // Compare the duration of the cms collection to the
 390 // time remaining before the cms generation is empty.
 391 // Note that the time from the start of the cms collection
 392 // to the start of the cms sweep (less than the total
 393 // duration of the cms collection) can be used.  This
 394 // has been tried and some applications experienced
 395 // promotion failures early in execution.  This was
 396 // possibly because the averages were not accurate
 397 // enough at the beginning.
 398 double CMSStats::time_until_cms_start() const {
 399   // We add "gc0_period" to the "work" calculation
 400   // below because this query is done (mostly) at the
 401   // end of a scavenge, so we need to conservatively
 402   // account for that much possible delay
 403   // in the query so as to avoid concurrent mode failures
 404   // due to starting the collection just a wee bit too
 405   // late.
 406   double work = cms_duration() + gc0_period();
 407   double deadline = time_until_cms_gen_full();
 408   // If a concurrent mode failure occurred recently, we want to be
 409   // more conservative and halve our expected time_until_cms_gen_full()
 410   if (work > deadline) {
 411     if (Verbose && PrintGCDetails) {
 412       gclog_or_tty->print(
 413         " CMSCollector: collect because of anticipated promotion "
 414         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 415         gc0_period(), time_until_cms_gen_full());
 416     }
 417     return 0.0;
 418   }
 419   return work - deadline;
 420 }
 421 
 422 #ifndef PRODUCT
 423 void CMSStats::print_on(outputStream *st) const {
 424   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 425   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 426                gc0_duration(), gc0_period(), gc0_promoted());
 427   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 428             cms_duration(), cms_period(), cms_allocated());
 429   st->print(",cms_since_beg=%g,cms_since_end=%g",
 430             cms_time_since_begin(), cms_time_since_end());
 431   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 432             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 433 
 434   if (valid()) {
 435     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 436               promotion_rate(), cms_allocation_rate());
 437     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 438               cms_consumption_rate(), time_until_cms_gen_full());
 439   }
 440   st->print(" ");
 441 }
 442 #endif // #ifndef PRODUCT
 443 
 444 CMSCollector::CollectorState CMSCollector::_collectorState =
 445                              CMSCollector::Idling;
 446 bool CMSCollector::_foregroundGCIsActive = false;
 447 bool CMSCollector::_foregroundGCShouldWait = false;
 448 
 449 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 450                            CardTableRS*                   ct,
 451                            ConcurrentMarkSweepPolicy*     cp):
 452   _cmsGen(cmsGen),
 453   _ct(ct),
 454   _ref_processor(NULL),    // will be set later
 455   _conc_workers(NULL),     // may be set later
 456   _abort_preclean(false),
 457   _start_sampling(false),
 458   _between_prologue_and_epilogue(false),
 459   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 460   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 461                  -1 /* lock-free */, "No_lock" /* dummy */),
 462   _modUnionClosure(&_modUnionTable),
 463   _modUnionClosurePar(&_modUnionTable),
 464   // Adjust my span to cover old (cms) gen
 465   _span(cmsGen->reserved()),
 466   // Construct the is_alive_closure with _span & markBitMap
 467   _is_alive_closure(_span, &_markBitMap),
 468   _restart_addr(NULL),
 469   _overflow_list(NULL),
 470   _stats(cmsGen),
 471   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 472                              //verify that this lock should be acquired with safepoint check.
 473                              Monitor::_safepoint_check_sometimes)),
 474   _eden_chunk_array(NULL),     // may be set in ctor body
 475   _eden_chunk_capacity(0),     // -- ditto --
 476   _eden_chunk_index(0),        // -- ditto --
 477   _survivor_plab_array(NULL),  // -- ditto --
 478   _survivor_chunk_array(NULL), // -- ditto --
 479   _survivor_chunk_capacity(0), // -- ditto --
 480   _survivor_chunk_index(0),    // -- ditto --
 481   _ser_pmc_preclean_ovflw(0),
 482   _ser_kac_preclean_ovflw(0),
 483   _ser_pmc_remark_ovflw(0),
 484   _par_pmc_remark_ovflw(0),
 485   _ser_kac_ovflw(0),
 486   _par_kac_ovflw(0),
 487 #ifndef PRODUCT
 488   _num_par_pushes(0),
 489 #endif
 490   _collection_count_start(0),
 491   _verifying(false),
 492   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 493   _completed_initialization(false),
 494   _collector_policy(cp),
 495   _should_unload_classes(CMSClassUnloadingEnabled),
 496   _concurrent_cycles_since_last_unload(0),
 497   _roots_scanning_options(GenCollectedHeap::SO_None),
 498   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 499   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 500   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 501   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 502   _cms_start_registered(false)
 503 {
 504   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 505     ExplicitGCInvokesConcurrent = true;
 506   }
 507   // Now expand the span and allocate the collection support structures
 508   // (MUT, marking bit map etc.) to cover both generations subject to
 509   // collection.
 510 
 511   // For use by dirty card to oop closures.
 512   _cmsGen->cmsSpace()->set_collector(this);
 513 
 514   // Allocate MUT and marking bit map
 515   {
 516     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 517     if (!_markBitMap.allocate(_span)) {
 518       warning("Failed to allocate CMS Bit Map");
 519       return;
 520     }
 521     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 522   }
 523   {
 524     _modUnionTable.allocate(_span);
 525     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 526   }
 527 
 528   if (!_markStack.allocate(MarkStackSize)) {
 529     warning("Failed to allocate CMS Marking Stack");
 530     return;
 531   }
 532 
 533   // Support for multi-threaded concurrent phases
 534   if (CMSConcurrentMTEnabled) {
 535     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 536       // just for now
 537       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 538     }
 539     if (ConcGCThreads > 1) {
 540       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 541                                  ConcGCThreads, true);
 542       if (_conc_workers == NULL) {
 543         warning("GC/CMS: _conc_workers allocation failure: "
 544               "forcing -CMSConcurrentMTEnabled");
 545         CMSConcurrentMTEnabled = false;
 546       } else {
 547         _conc_workers->initialize_workers();
 548       }
 549     } else {
 550       CMSConcurrentMTEnabled = false;
 551     }
 552   }
 553   if (!CMSConcurrentMTEnabled) {
 554     ConcGCThreads = 0;
 555   } else {
 556     // Turn off CMSCleanOnEnter optimization temporarily for
 557     // the MT case where it's not fixed yet; see 6178663.
 558     CMSCleanOnEnter = false;
 559   }
 560   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 561          "Inconsistency");
 562 
 563   // Parallel task queues; these are shared for the
 564   // concurrent and stop-world phases of CMS, but
 565   // are not shared with parallel scavenge (ParNew).
 566   {
 567     uint i;
 568     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 569 
 570     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 571          || ParallelRefProcEnabled)
 572         && num_queues > 0) {
 573       _task_queues = new OopTaskQueueSet(num_queues);
 574       if (_task_queues == NULL) {
 575         warning("task_queues allocation failure.");
 576         return;
 577       }
 578       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 579       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 580       for (i = 0; i < num_queues; i++) {
 581         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 582         if (q == NULL) {
 583           warning("work_queue allocation failure.");
 584           return;
 585         }
 586         _task_queues->register_queue(i, q);
 587       }
 588       for (i = 0; i < num_queues; i++) {
 589         _task_queues->queue(i)->initialize();
 590         _hash_seed[i] = 17;  // copied from ParNew
 591       }
 592     }
 593   }
 594 
 595   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 596 
 597   // Clip CMSBootstrapOccupancy between 0 and 100.
 598   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 599 
 600   // Now tell CMS generations the identity of their collector
 601   ConcurrentMarkSweepGeneration::set_collector(this);
 602 
 603   // Create & start a CMS thread for this CMS collector
 604   _cmsThread = ConcurrentMarkSweepThread::start(this);
 605   assert(cmsThread() != NULL, "CMS Thread should have been created");
 606   assert(cmsThread()->collector() == this,
 607          "CMS Thread should refer to this gen");
 608   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 609 
 610   // Support for parallelizing young gen rescan
 611   GenCollectedHeap* gch = GenCollectedHeap::heap();
 612   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 613   _young_gen = (ParNewGeneration*)gch->young_gen();
 614   if (gch->supports_inline_contig_alloc()) {
 615     _top_addr = gch->top_addr();
 616     _end_addr = gch->end_addr();
 617     assert(_young_gen != NULL, "no _young_gen");
 618     _eden_chunk_index = 0;
 619     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 620     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 621   }
 622 
 623   // Support for parallelizing survivor space rescan
 624   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 625     const size_t max_plab_samples =
 626       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 627 
 628     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 629     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 630     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 631     _survivor_chunk_capacity = 2*max_plab_samples;
 632     for (uint i = 0; i < ParallelGCThreads; i++) {
 633       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 634       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 635       assert(cur->end() == 0, "Should be 0");
 636       assert(cur->array() == vec, "Should be vec");
 637       assert(cur->capacity() == max_plab_samples, "Error");
 638     }
 639   }
 640 
 641   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 642   _gc_counters = new CollectorCounters("CMS", 1);
 643   _completed_initialization = true;
 644   _inter_sweep_timer.start();  // start of time
 645 }
 646 
 647 size_t CMSCollector::plab_sample_minimum_size() {
 648   // The default value of MinTLABSize is 2k, but there is
 649   // no way to get the default value if the flag has been overridden.
 650   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 651 }
 652 
 653 const char* ConcurrentMarkSweepGeneration::name() const {
 654   return "concurrent mark-sweep generation";
 655 }
 656 void ConcurrentMarkSweepGeneration::update_counters() {
 657   if (UsePerfData) {
 658     _space_counters->update_all();
 659     _gen_counters->update_all();
 660   }
 661 }
 662 
 663 // this is an optimized version of update_counters(). it takes the
 664 // used value as a parameter rather than computing it.
 665 //
 666 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 667   if (UsePerfData) {
 668     _space_counters->update_used(used);
 669     _space_counters->update_capacity();
 670     _gen_counters->update_all();
 671   }
 672 }
 673 
 674 void ConcurrentMarkSweepGeneration::print() const {
 675   Generation::print();
 676   cmsSpace()->print();
 677 }
 678 
 679 #ifndef PRODUCT
 680 void ConcurrentMarkSweepGeneration::print_statistics() {
 681   cmsSpace()->printFLCensus(0);
 682 }
 683 #endif
 684 
 685 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 686   GenCollectedHeap* gch = GenCollectedHeap::heap();
 687   if (PrintGCDetails) {
 688     if (Verbose) {
 689       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 690         level(), short_name(), s, used(), capacity());
 691     } else {
 692       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 693         level(), short_name(), s, used() / K, capacity() / K);
 694     }
 695   }
 696   if (Verbose) {
 697     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 698               gch->used(), gch->capacity());
 699   } else {
 700     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 701               gch->used() / K, gch->capacity() / K);
 702   }
 703 }
 704 
 705 size_t
 706 ConcurrentMarkSweepGeneration::contiguous_available() const {
 707   // dld proposes an improvement in precision here. If the committed
 708   // part of the space ends in a free block we should add that to
 709   // uncommitted size in the calculation below. Will make this
 710   // change later, staying with the approximation below for the
 711   // time being. -- ysr.
 712   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 713 }
 714 
 715 size_t
 716 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 717   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 718 }
 719 
 720 size_t ConcurrentMarkSweepGeneration::max_available() const {
 721   return free() + _virtual_space.uncommitted_size();
 722 }
 723 
 724 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 725   size_t available = max_available();
 726   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 727   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 728   if (Verbose && PrintGCDetails) {
 729     gclog_or_tty->print_cr(
 730       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 731       "max_promo("SIZE_FORMAT")",
 732       res? "":" not", available, res? ">=":"<",
 733       av_promo, max_promotion_in_bytes);
 734   }
 735   return res;
 736 }
 737 
 738 // At a promotion failure dump information on block layout in heap
 739 // (cms old generation).
 740 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 741   if (CMSDumpAtPromotionFailure) {
 742     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 743   }
 744 }
 745 
 746 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 747   // Clear the promotion information.  These pointers can be adjusted
 748   // along with all the other pointers into the heap but
 749   // compaction is expected to be a rare event with
 750   // a heap using cms so don't do it without seeing the need.
 751   for (uint i = 0; i < ParallelGCThreads; i++) {
 752     _par_gc_thread_states[i]->promo.reset();
 753   }
 754 }
 755 
 756 void ConcurrentMarkSweepGeneration::compute_new_size() {
 757   assert_locked_or_safepoint(Heap_lock);
 758 
 759   // If incremental collection failed, we just want to expand
 760   // to the limit.
 761   if (incremental_collection_failed()) {
 762     clear_incremental_collection_failed();
 763     grow_to_reserved();
 764     return;
 765   }
 766 
 767   // The heap has been compacted but not reset yet.
 768   // Any metric such as free() or used() will be incorrect.
 769 
 770   CardGeneration::compute_new_size();
 771 
 772   // Reset again after a possible resizing
 773   if (did_compact()) {
 774     cmsSpace()->reset_after_compaction();
 775   }
 776 }
 777 
 778 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 779   assert_locked_or_safepoint(Heap_lock);
 780 
 781   // If incremental collection failed, we just want to expand
 782   // to the limit.
 783   if (incremental_collection_failed()) {
 784     clear_incremental_collection_failed();
 785     grow_to_reserved();
 786     return;
 787   }
 788 
 789   double free_percentage = ((double) free()) / capacity();
 790   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 791   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 792 
 793   // compute expansion delta needed for reaching desired free percentage
 794   if (free_percentage < desired_free_percentage) {
 795     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 796     assert(desired_capacity >= capacity(), "invalid expansion size");
 797     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 798     if (PrintGCDetails && Verbose) {
 799       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 800       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 801       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 802       gclog_or_tty->print_cr("  Desired free fraction %f",
 803         desired_free_percentage);
 804       gclog_or_tty->print_cr("  Maximum free fraction %f",
 805         maximum_free_percentage);
 806       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 807       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 808         desired_capacity/1000);
 809       int prev_level = level() - 1;
 810       if (prev_level >= 0) {
 811         size_t prev_size = 0;
 812         GenCollectedHeap* gch = GenCollectedHeap::heap();
 813         Generation* prev_gen = gch->young_gen();
 814         prev_size = prev_gen->capacity();
 815           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 816                                  prev_size/1000);
 817       }
 818       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 819         unsafe_max_alloc_nogc()/1000);
 820       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 821         contiguous_available()/1000);
 822       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 823         expand_bytes);
 824     }
 825     // safe if expansion fails
 826     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 827     if (PrintGCDetails && Verbose) {
 828       gclog_or_tty->print_cr("  Expanded free fraction %f",
 829         ((double) free()) / capacity());
 830     }
 831   } else {
 832     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 833     assert(desired_capacity <= capacity(), "invalid expansion size");
 834     size_t shrink_bytes = capacity() - desired_capacity;
 835     // Don't shrink unless the delta is greater than the minimum shrink we want
 836     if (shrink_bytes >= MinHeapDeltaBytes) {
 837       shrink_free_list_by(shrink_bytes);
 838     }
 839   }
 840 }
 841 
 842 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 843   return cmsSpace()->freelistLock();
 844 }
 845 
 846 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 847                                                   bool   tlab) {
 848   CMSSynchronousYieldRequest yr;
 849   MutexLockerEx x(freelistLock(),
 850                   Mutex::_no_safepoint_check_flag);
 851   return have_lock_and_allocate(size, tlab);
 852 }
 853 
 854 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 855                                                   bool   tlab /* ignored */) {
 856   assert_lock_strong(freelistLock());
 857   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 858   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 859   // Allocate the object live (grey) if the background collector has
 860   // started marking. This is necessary because the marker may
 861   // have passed this address and consequently this object will
 862   // not otherwise be greyed and would be incorrectly swept up.
 863   // Note that if this object contains references, the writing
 864   // of those references will dirty the card containing this object
 865   // allowing the object to be blackened (and its references scanned)
 866   // either during a preclean phase or at the final checkpoint.
 867   if (res != NULL) {
 868     // We may block here with an uninitialized object with
 869     // its mark-bit or P-bits not yet set. Such objects need
 870     // to be safely navigable by block_start().
 871     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 872     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 873     collector()->direct_allocated(res, adjustedSize);
 874     _direct_allocated_words += adjustedSize;
 875     // allocation counters
 876     NOT_PRODUCT(
 877       _numObjectsAllocated++;
 878       _numWordsAllocated += (int)adjustedSize;
 879     )
 880   }
 881   return res;
 882 }
 883 
 884 // In the case of direct allocation by mutators in a generation that
 885 // is being concurrently collected, the object must be allocated
 886 // live (grey) if the background collector has started marking.
 887 // This is necessary because the marker may
 888 // have passed this address and consequently this object will
 889 // not otherwise be greyed and would be incorrectly swept up.
 890 // Note that if this object contains references, the writing
 891 // of those references will dirty the card containing this object
 892 // allowing the object to be blackened (and its references scanned)
 893 // either during a preclean phase or at the final checkpoint.
 894 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 895   assert(_markBitMap.covers(start, size), "Out of bounds");
 896   if (_collectorState >= Marking) {
 897     MutexLockerEx y(_markBitMap.lock(),
 898                     Mutex::_no_safepoint_check_flag);
 899     // [see comments preceding SweepClosure::do_blk() below for details]
 900     //
 901     // Can the P-bits be deleted now?  JJJ
 902     //
 903     // 1. need to mark the object as live so it isn't collected
 904     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 905     // 3. need to mark the end of the object so marking, precleaning or sweeping
 906     //    can skip over uninitialized or unparsable objects. An allocated
 907     //    object is considered uninitialized for our purposes as long as
 908     //    its klass word is NULL.  All old gen objects are parsable
 909     //    as soon as they are initialized.)
 910     _markBitMap.mark(start);          // object is live
 911     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 912     _markBitMap.mark(start + size - 1);
 913                                       // mark end of object
 914   }
 915   // check that oop looks uninitialized
 916   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 917 }
 918 
 919 void CMSCollector::promoted(bool par, HeapWord* start,
 920                             bool is_obj_array, size_t obj_size) {
 921   assert(_markBitMap.covers(start), "Out of bounds");
 922   // See comment in direct_allocated() about when objects should
 923   // be allocated live.
 924   if (_collectorState >= Marking) {
 925     // we already hold the marking bit map lock, taken in
 926     // the prologue
 927     if (par) {
 928       _markBitMap.par_mark(start);
 929     } else {
 930       _markBitMap.mark(start);
 931     }
 932     // We don't need to mark the object as uninitialized (as
 933     // in direct_allocated above) because this is being done with the
 934     // world stopped and the object will be initialized by the
 935     // time the marking, precleaning or sweeping get to look at it.
 936     // But see the code for copying objects into the CMS generation,
 937     // where we need to ensure that concurrent readers of the
 938     // block offset table are able to safely navigate a block that
 939     // is in flux from being free to being allocated (and in
 940     // transition while being copied into) and subsequently
 941     // becoming a bona-fide object when the copy/promotion is complete.
 942     assert(SafepointSynchronize::is_at_safepoint(),
 943            "expect promotion only at safepoints");
 944 
 945     if (_collectorState < Sweeping) {
 946       // Mark the appropriate cards in the modUnionTable, so that
 947       // this object gets scanned before the sweep. If this is
 948       // not done, CMS generation references in the object might
 949       // not get marked.
 950       // For the case of arrays, which are otherwise precisely
 951       // marked, we need to dirty the entire array, not just its head.
 952       if (is_obj_array) {
 953         // The [par_]mark_range() method expects mr.end() below to
 954         // be aligned to the granularity of a bit's representation
 955         // in the heap. In the case of the MUT below, that's a
 956         // card size.
 957         MemRegion mr(start,
 958                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 959                         CardTableModRefBS::card_size /* bytes */));
 960         if (par) {
 961           _modUnionTable.par_mark_range(mr);
 962         } else {
 963           _modUnionTable.mark_range(mr);
 964         }
 965       } else {  // not an obj array; we can just mark the head
 966         if (par) {
 967           _modUnionTable.par_mark(start);
 968         } else {
 969           _modUnionTable.mark(start);
 970         }
 971       }
 972     }
 973   }
 974 }
 975 
 976 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 977   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 978   // allocate, copy and if necessary update promoinfo --
 979   // delegate to underlying space.
 980   assert_lock_strong(freelistLock());
 981 
 982 #ifndef PRODUCT
 983   if (Universe::heap()->promotion_should_fail()) {
 984     return NULL;
 985   }
 986 #endif  // #ifndef PRODUCT
 987 
 988   oop res = _cmsSpace->promote(obj, obj_size);
 989   if (res == NULL) {
 990     // expand and retry
 991     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 992     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 993     // Since this is the old generation, we don't try to promote
 994     // into a more senior generation.
 995     res = _cmsSpace->promote(obj, obj_size);
 996   }
 997   if (res != NULL) {
 998     // See comment in allocate() about when objects should
 999     // be allocated live.
1000     assert(obj->is_oop(), "Will dereference klass pointer below");
1001     collector()->promoted(false,           // Not parallel
1002                           (HeapWord*)res, obj->is_objArray(), obj_size);
1003     // promotion counters
1004     NOT_PRODUCT(
1005       _numObjectsPromoted++;
1006       _numWordsPromoted +=
1007         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1008     )
1009   }
1010   return res;
1011 }
1012 
1013 
1014 // IMPORTANT: Notes on object size recognition in CMS.
1015 // ---------------------------------------------------
1016 // A block of storage in the CMS generation is always in
1017 // one of three states. A free block (FREE), an allocated
1018 // object (OBJECT) whose size() method reports the correct size,
1019 // and an intermediate state (TRANSIENT) in which its size cannot
1020 // be accurately determined.
1021 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1022 // -----------------------------------------------------
1023 // FREE:      klass_word & 1 == 1; mark_word holds block size
1024 //
1025 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1026 //            obj->size() computes correct size
1027 //
1028 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1029 //
1030 // STATE IDENTIFICATION: (64 bit+COOPS)
1031 // ------------------------------------
1032 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1033 //
1034 // OBJECT:    klass_word installed; klass_word != 0;
1035 //            obj->size() computes correct size
1036 //
1037 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1038 //
1039 //
1040 // STATE TRANSITION DIAGRAM
1041 //
1042 //        mut / parnew                     mut  /  parnew
1043 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1044 //  ^                                                                   |
1045 //  |------------------------ DEAD <------------------------------------|
1046 //         sweep                            mut
1047 //
1048 // While a block is in TRANSIENT state its size cannot be determined
1049 // so readers will either need to come back later or stall until
1050 // the size can be determined. Note that for the case of direct
1051 // allocation, P-bits, when available, may be used to determine the
1052 // size of an object that may not yet have been initialized.
1053 
1054 // Things to support parallel young-gen collection.
1055 oop
1056 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1057                                            oop old, markOop m,
1058                                            size_t word_sz) {
1059 #ifndef PRODUCT
1060   if (Universe::heap()->promotion_should_fail()) {
1061     return NULL;
1062   }
1063 #endif  // #ifndef PRODUCT
1064 
1065   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1066   PromotionInfo* promoInfo = &ps->promo;
1067   // if we are tracking promotions, then first ensure space for
1068   // promotion (including spooling space for saving header if necessary).
1069   // then allocate and copy, then track promoted info if needed.
1070   // When tracking (see PromotionInfo::track()), the mark word may
1071   // be displaced and in this case restoration of the mark word
1072   // occurs in the (oop_since_save_marks_)iterate phase.
1073   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1074     // Out of space for allocating spooling buffers;
1075     // try expanding and allocating spooling buffers.
1076     if (!expand_and_ensure_spooling_space(promoInfo)) {
1077       return NULL;
1078     }
1079   }
1080   assert(promoInfo->has_spooling_space(), "Control point invariant");
1081   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1082   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1083   if (obj_ptr == NULL) {
1084      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1085      if (obj_ptr == NULL) {
1086        return NULL;
1087      }
1088   }
1089   oop obj = oop(obj_ptr);
1090   OrderAccess::storestore();
1091   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1092   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1093   // IMPORTANT: See note on object initialization for CMS above.
1094   // Otherwise, copy the object.  Here we must be careful to insert the
1095   // klass pointer last, since this marks the block as an allocated object.
1096   // Except with compressed oops it's the mark word.
1097   HeapWord* old_ptr = (HeapWord*)old;
1098   // Restore the mark word copied above.
1099   obj->set_mark(m);
1100   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1101   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1102   OrderAccess::storestore();
1103 
1104   if (UseCompressedClassPointers) {
1105     // Copy gap missed by (aligned) header size calculation below
1106     obj->set_klass_gap(old->klass_gap());
1107   }
1108   if (word_sz > (size_t)oopDesc::header_size()) {
1109     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1110                                  obj_ptr + oopDesc::header_size(),
1111                                  word_sz - oopDesc::header_size());
1112   }
1113 
1114   // Now we can track the promoted object, if necessary.  We take care
1115   // to delay the transition from uninitialized to full object
1116   // (i.e., insertion of klass pointer) until after, so that it
1117   // atomically becomes a promoted object.
1118   if (promoInfo->tracking()) {
1119     promoInfo->track((PromotedObject*)obj, old->klass());
1120   }
1121   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1122   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1123   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1124 
1125   // Finally, install the klass pointer (this should be volatile).
1126   OrderAccess::storestore();
1127   obj->set_klass(old->klass());
1128   // We should now be able to calculate the right size for this object
1129   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1130 
1131   collector()->promoted(true,          // parallel
1132                         obj_ptr, old->is_objArray(), word_sz);
1133 
1134   NOT_PRODUCT(
1135     Atomic::inc_ptr(&_numObjectsPromoted);
1136     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1137   )
1138 
1139   return obj;
1140 }
1141 
1142 void
1143 ConcurrentMarkSweepGeneration::
1144 par_promote_alloc_done(int thread_num) {
1145   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1146   ps->lab.retire(thread_num);
1147 }
1148 
1149 void
1150 ConcurrentMarkSweepGeneration::
1151 par_oop_since_save_marks_iterate_done(int thread_num) {
1152   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1153   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1154   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1155 }
1156 
1157 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1158                                                    size_t size,
1159                                                    bool   tlab)
1160 {
1161   // We allow a STW collection only if a full
1162   // collection was requested.
1163   return full || should_allocate(size, tlab); // FIX ME !!!
1164   // This and promotion failure handling are connected at the
1165   // hip and should be fixed by untying them.
1166 }
1167 
1168 bool CMSCollector::shouldConcurrentCollect() {
1169   if (_full_gc_requested) {
1170     if (Verbose && PrintGCDetails) {
1171       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1172                              " gc request (or gc_locker)");
1173     }
1174     return true;
1175   }
1176 
1177   FreelistLocker x(this);
1178   // ------------------------------------------------------------------
1179   // Print out lots of information which affects the initiation of
1180   // a collection.
1181   if (PrintCMSInitiationStatistics && stats().valid()) {
1182     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1183     gclog_or_tty->stamp();
1184     gclog_or_tty->cr();
1185     stats().print_on(gclog_or_tty);
1186     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1187       stats().time_until_cms_gen_full());
1188     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1189     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1190                            _cmsGen->contiguous_available());
1191     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1192     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1193     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1194     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1195     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1196     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1197     gclog_or_tty->print_cr("metadata initialized %d",
1198       MetaspaceGC::should_concurrent_collect());
1199   }
1200   // ------------------------------------------------------------------
1201 
1202   // If the estimated time to complete a cms collection (cms_duration())
1203   // is less than the estimated time remaining until the cms generation
1204   // is full, start a collection.
1205   if (!UseCMSInitiatingOccupancyOnly) {
1206     if (stats().valid()) {
1207       if (stats().time_until_cms_start() == 0.0) {
1208         return true;
1209       }
1210     } else {
1211       // We want to conservatively collect somewhat early in order
1212       // to try and "bootstrap" our CMS/promotion statistics;
1213       // this branch will not fire after the first successful CMS
1214       // collection because the stats should then be valid.
1215       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1216         if (Verbose && PrintGCDetails) {
1217           gclog_or_tty->print_cr(
1218             " CMSCollector: collect for bootstrapping statistics:"
1219             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1220             _bootstrap_occupancy);
1221         }
1222         return true;
1223       }
1224     }
1225   }
1226 
1227   // Otherwise, we start a collection cycle if
1228   // old gen want a collection cycle started. Each may use
1229   // an appropriate criterion for making this decision.
1230   // XXX We need to make sure that the gen expansion
1231   // criterion dovetails well with this. XXX NEED TO FIX THIS
1232   if (_cmsGen->should_concurrent_collect()) {
1233     if (Verbose && PrintGCDetails) {
1234       gclog_or_tty->print_cr("CMS old gen initiated");
1235     }
1236     return true;
1237   }
1238 
1239   // We start a collection if we believe an incremental collection may fail;
1240   // this is not likely to be productive in practice because it's probably too
1241   // late anyway.
1242   GenCollectedHeap* gch = GenCollectedHeap::heap();
1243   assert(gch->collector_policy()->is_generation_policy(),
1244          "You may want to check the correctness of the following");
1245   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1246     if (Verbose && PrintGCDetails) {
1247       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1248     }
1249     return true;
1250   }
1251 
1252   if (MetaspaceGC::should_concurrent_collect()) {
1253     if (Verbose && PrintGCDetails) {
1254       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1255     }
1256     return true;
1257   }
1258 
1259   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1260   if (CMSTriggerInterval >= 0) {
1261     if (CMSTriggerInterval == 0) {
1262       // Trigger always
1263       return true;
1264     }
1265 
1266     // Check the CMS time since begin (we do not check the stats validity
1267     // as we want to be able to trigger the first CMS cycle as well)
1268     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1269       if (Verbose && PrintGCDetails) {
1270         if (stats().valid()) {
1271           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1272                                  stats().cms_time_since_begin());
1273         } else {
1274           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1275         }
1276       }
1277       return true;
1278     }
1279   }
1280 
1281   return false;
1282 }
1283 
1284 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1285 
1286 // Clear _expansion_cause fields of constituent generations
1287 void CMSCollector::clear_expansion_cause() {
1288   _cmsGen->clear_expansion_cause();
1289 }
1290 
1291 // We should be conservative in starting a collection cycle.  To
1292 // start too eagerly runs the risk of collecting too often in the
1293 // extreme.  To collect too rarely falls back on full collections,
1294 // which works, even if not optimum in terms of concurrent work.
1295 // As a work around for too eagerly collecting, use the flag
1296 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1297 // giving the user an easily understandable way of controlling the
1298 // collections.
1299 // We want to start a new collection cycle if any of the following
1300 // conditions hold:
1301 // . our current occupancy exceeds the configured initiating occupancy
1302 //   for this generation, or
1303 // . we recently needed to expand this space and have not, since that
1304 //   expansion, done a collection of this generation, or
1305 // . the underlying space believes that it may be a good idea to initiate
1306 //   a concurrent collection (this may be based on criteria such as the
1307 //   following: the space uses linear allocation and linear allocation is
1308 //   going to fail, or there is believed to be excessive fragmentation in
1309 //   the generation, etc... or ...
1310 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1311 //   the case of the old generation; see CR 6543076):
1312 //   we may be approaching a point at which allocation requests may fail because
1313 //   we will be out of sufficient free space given allocation rate estimates.]
1314 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1315 
1316   assert_lock_strong(freelistLock());
1317   if (occupancy() > initiating_occupancy()) {
1318     if (PrintGCDetails && Verbose) {
1319       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1320         short_name(), occupancy(), initiating_occupancy());
1321     }
1322     return true;
1323   }
1324   if (UseCMSInitiatingOccupancyOnly) {
1325     return false;
1326   }
1327   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1328     if (PrintGCDetails && Verbose) {
1329       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1330         short_name());
1331     }
1332     return true;
1333   }
1334   if (_cmsSpace->should_concurrent_collect()) {
1335     if (PrintGCDetails && Verbose) {
1336       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1337         short_name());
1338     }
1339     return true;
1340   }
1341   return false;
1342 }
1343 
1344 void ConcurrentMarkSweepGeneration::collect(bool   full,
1345                                             bool   clear_all_soft_refs,
1346                                             size_t size,
1347                                             bool   tlab)
1348 {
1349   collector()->collect(full, clear_all_soft_refs, size, tlab);
1350 }
1351 
1352 void CMSCollector::collect(bool   full,
1353                            bool   clear_all_soft_refs,
1354                            size_t size,
1355                            bool   tlab)
1356 {
1357   // The following "if" branch is present for defensive reasons.
1358   // In the current uses of this interface, it can be replaced with:
1359   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1360   // But I am not placing that assert here to allow future
1361   // generality in invoking this interface.
1362   if (GC_locker::is_active()) {
1363     // A consistency test for GC_locker
1364     assert(GC_locker::needs_gc(), "Should have been set already");
1365     // Skip this foreground collection, instead
1366     // expanding the heap if necessary.
1367     // Need the free list locks for the call to free() in compute_new_size()
1368     compute_new_size();
1369     return;
1370   }
1371   acquire_control_and_collect(full, clear_all_soft_refs);
1372 }
1373 
1374 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1375   GenCollectedHeap* gch = GenCollectedHeap::heap();
1376   unsigned int gc_count = gch->total_full_collections();
1377   if (gc_count == full_gc_count) {
1378     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1379     _full_gc_requested = true;
1380     _full_gc_cause = cause;
1381     CGC_lock->notify();   // nudge CMS thread
1382   } else {
1383     assert(gc_count > full_gc_count, "Error: causal loop");
1384   }
1385 }
1386 
1387 bool CMSCollector::is_external_interruption() {
1388   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1389   return GCCause::is_user_requested_gc(cause) ||
1390          GCCause::is_serviceability_requested_gc(cause);
1391 }
1392 
1393 void CMSCollector::report_concurrent_mode_interruption() {
1394   if (is_external_interruption()) {
1395     if (PrintGCDetails) {
1396       gclog_or_tty->print(" (concurrent mode interrupted)");
1397     }
1398   } else {
1399     if (PrintGCDetails) {
1400       gclog_or_tty->print(" (concurrent mode failure)");
1401     }
1402     _gc_tracer_cm->report_concurrent_mode_failure();
1403   }
1404 }
1405 
1406 
1407 // The foreground and background collectors need to coordinate in order
1408 // to make sure that they do not mutually interfere with CMS collections.
1409 // When a background collection is active,
1410 // the foreground collector may need to take over (preempt) and
1411 // synchronously complete an ongoing collection. Depending on the
1412 // frequency of the background collections and the heap usage
1413 // of the application, this preemption can be seldom or frequent.
1414 // There are only certain
1415 // points in the background collection that the "collection-baton"
1416 // can be passed to the foreground collector.
1417 //
1418 // The foreground collector will wait for the baton before
1419 // starting any part of the collection.  The foreground collector
1420 // will only wait at one location.
1421 //
1422 // The background collector will yield the baton before starting a new
1423 // phase of the collection (e.g., before initial marking, marking from roots,
1424 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1425 // of the loop which switches the phases. The background collector does some
1426 // of the phases (initial mark, final re-mark) with the world stopped.
1427 // Because of locking involved in stopping the world,
1428 // the foreground collector should not block waiting for the background
1429 // collector when it is doing a stop-the-world phase.  The background
1430 // collector will yield the baton at an additional point just before
1431 // it enters a stop-the-world phase.  Once the world is stopped, the
1432 // background collector checks the phase of the collection.  If the
1433 // phase has not changed, it proceeds with the collection.  If the
1434 // phase has changed, it skips that phase of the collection.  See
1435 // the comments on the use of the Heap_lock in collect_in_background().
1436 //
1437 // Variable used in baton passing.
1438 //   _foregroundGCIsActive - Set to true by the foreground collector when
1439 //      it wants the baton.  The foreground clears it when it has finished
1440 //      the collection.
1441 //   _foregroundGCShouldWait - Set to true by the background collector
1442 //        when it is running.  The foreground collector waits while
1443 //      _foregroundGCShouldWait is true.
1444 //  CGC_lock - monitor used to protect access to the above variables
1445 //      and to notify the foreground and background collectors.
1446 //  _collectorState - current state of the CMS collection.
1447 //
1448 // The foreground collector
1449 //   acquires the CGC_lock
1450 //   sets _foregroundGCIsActive
1451 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1452 //     various locks acquired in preparation for the collection
1453 //     are released so as not to block the background collector
1454 //     that is in the midst of a collection
1455 //   proceeds with the collection
1456 //   clears _foregroundGCIsActive
1457 //   returns
1458 //
1459 // The background collector in a loop iterating on the phases of the
1460 //      collection
1461 //   acquires the CGC_lock
1462 //   sets _foregroundGCShouldWait
1463 //   if _foregroundGCIsActive is set
1464 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1465 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1466 //     and exits the loop.
1467 //   otherwise
1468 //     proceed with that phase of the collection
1469 //     if the phase is a stop-the-world phase,
1470 //       yield the baton once more just before enqueueing
1471 //       the stop-world CMS operation (executed by the VM thread).
1472 //   returns after all phases of the collection are done
1473 //
1474 
1475 void CMSCollector::acquire_control_and_collect(bool full,
1476         bool clear_all_soft_refs) {
1477   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1478   assert(!Thread::current()->is_ConcurrentGC_thread(),
1479          "shouldn't try to acquire control from self!");
1480 
1481   // Start the protocol for acquiring control of the
1482   // collection from the background collector (aka CMS thread).
1483   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1484          "VM thread should have CMS token");
1485   // Remember the possibly interrupted state of an ongoing
1486   // concurrent collection
1487   CollectorState first_state = _collectorState;
1488 
1489   // Signal to a possibly ongoing concurrent collection that
1490   // we want to do a foreground collection.
1491   _foregroundGCIsActive = true;
1492 
1493   // release locks and wait for a notify from the background collector
1494   // releasing the locks in only necessary for phases which
1495   // do yields to improve the granularity of the collection.
1496   assert_lock_strong(bitMapLock());
1497   // We need to lock the Free list lock for the space that we are
1498   // currently collecting.
1499   assert(haveFreelistLocks(), "Must be holding free list locks");
1500   bitMapLock()->unlock();
1501   releaseFreelistLocks();
1502   {
1503     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1504     if (_foregroundGCShouldWait) {
1505       // We are going to be waiting for action for the CMS thread;
1506       // it had better not be gone (for instance at shutdown)!
1507       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1508              "CMS thread must be running");
1509       // Wait here until the background collector gives us the go-ahead
1510       ConcurrentMarkSweepThread::clear_CMS_flag(
1511         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1512       // Get a possibly blocked CMS thread going:
1513       //   Note that we set _foregroundGCIsActive true above,
1514       //   without protection of the CGC_lock.
1515       CGC_lock->notify();
1516       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1517              "Possible deadlock");
1518       while (_foregroundGCShouldWait) {
1519         // wait for notification
1520         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1521         // Possibility of delay/starvation here, since CMS token does
1522         // not know to give priority to VM thread? Actually, i think
1523         // there wouldn't be any delay/starvation, but the proof of
1524         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1525       }
1526       ConcurrentMarkSweepThread::set_CMS_flag(
1527         ConcurrentMarkSweepThread::CMS_vm_has_token);
1528     }
1529   }
1530   // The CMS_token is already held.  Get back the other locks.
1531   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1532          "VM thread should have CMS token");
1533   getFreelistLocks();
1534   bitMapLock()->lock_without_safepoint_check();
1535   if (TraceCMSState) {
1536     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1537       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1538     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1539   }
1540 
1541   // Inform cms gen if this was due to partial collection failing.
1542   // The CMS gen may use this fact to determine its expansion policy.
1543   GenCollectedHeap* gch = GenCollectedHeap::heap();
1544   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1545     assert(!_cmsGen->incremental_collection_failed(),
1546            "Should have been noticed, reacted to and cleared");
1547     _cmsGen->set_incremental_collection_failed();
1548   }
1549 
1550   if (first_state > Idling) {
1551     report_concurrent_mode_interruption();
1552   }
1553 
1554   set_did_compact(true);
1555 
1556   // If the collection is being acquired from the background
1557   // collector, there may be references on the discovered
1558   // references lists.  Abandon those references, since some
1559   // of them may have become unreachable after concurrent
1560   // discovery; the STW compacting collector will redo discovery
1561   // more precisely, without being subject to floating garbage.
1562   // Leaving otherwise unreachable references in the discovered
1563   // lists would require special handling.
1564   ref_processor()->disable_discovery();
1565   ref_processor()->abandon_partial_discovery();
1566   ref_processor()->verify_no_references_recorded();
1567 
1568   if (first_state > Idling) {
1569     save_heap_summary();
1570   }
1571 
1572   do_compaction_work(clear_all_soft_refs);
1573 
1574   // Has the GC time limit been exceeded?
1575   size_t max_eden_size = _young_gen->max_capacity() -
1576                          _young_gen->to()->capacity() -
1577                          _young_gen->from()->capacity();
1578   GCCause::Cause gc_cause = gch->gc_cause();
1579   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1580                                          _young_gen->eden()->used(),
1581                                          _cmsGen->max_capacity(),
1582                                          max_eden_size,
1583                                          full,
1584                                          gc_cause,
1585                                          gch->collector_policy());
1586 
1587   // Reset the expansion cause, now that we just completed
1588   // a collection cycle.
1589   clear_expansion_cause();
1590   _foregroundGCIsActive = false;
1591   return;
1592 }
1593 
1594 // Resize the tenured generation
1595 // after obtaining the free list locks for the
1596 // two generations.
1597 void CMSCollector::compute_new_size() {
1598   assert_locked_or_safepoint(Heap_lock);
1599   FreelistLocker z(this);
1600   MetaspaceGC::compute_new_size();
1601   _cmsGen->compute_new_size_free_list();
1602 }
1603 
1604 // A work method used by the foreground collector to do
1605 // a mark-sweep-compact.
1606 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1607   GenCollectedHeap* gch = GenCollectedHeap::heap();
1608 
1609   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1610   gc_timer->register_gc_start();
1611 
1612   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1613   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1614 
1615   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1616 
1617   // Temporarily widen the span of the weak reference processing to
1618   // the entire heap.
1619   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1620   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1621   // Temporarily, clear the "is_alive_non_header" field of the
1622   // reference processor.
1623   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1624   // Temporarily make reference _processing_ single threaded (non-MT).
1625   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1626   // Temporarily make refs discovery atomic
1627   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1628   // Temporarily make reference _discovery_ single threaded (non-MT)
1629   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1630 
1631   ref_processor()->set_enqueuing_is_done(false);
1632   ref_processor()->enable_discovery();
1633   ref_processor()->setup_policy(clear_all_soft_refs);
1634   // If an asynchronous collection finishes, the _modUnionTable is
1635   // all clear.  If we are assuming the collection from an asynchronous
1636   // collection, clear the _modUnionTable.
1637   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1638     "_modUnionTable should be clear if the baton was not passed");
1639   _modUnionTable.clear_all();
1640   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1641     "mod union for klasses should be clear if the baton was passed");
1642   _ct->klass_rem_set()->clear_mod_union();
1643 
1644   // We must adjust the allocation statistics being maintained
1645   // in the free list space. We do so by reading and clearing
1646   // the sweep timer and updating the block flux rate estimates below.
1647   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1648   if (_inter_sweep_timer.is_active()) {
1649     _inter_sweep_timer.stop();
1650     // Note that we do not use this sample to update the _inter_sweep_estimate.
1651     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1652                                             _inter_sweep_estimate.padded_average(),
1653                                             _intra_sweep_estimate.padded_average());
1654   }
1655 
1656   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1657     ref_processor(), clear_all_soft_refs);
1658   #ifdef ASSERT
1659     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1660     size_t free_size = cms_space->free();
1661     assert(free_size ==
1662            pointer_delta(cms_space->end(), cms_space->compaction_top())
1663            * HeapWordSize,
1664       "All the free space should be compacted into one chunk at top");
1665     assert(cms_space->dictionary()->total_chunk_size(
1666                                       debug_only(cms_space->freelistLock())) == 0 ||
1667            cms_space->totalSizeInIndexedFreeLists() == 0,
1668       "All the free space should be in a single chunk");
1669     size_t num = cms_space->totalCount();
1670     assert((free_size == 0 && num == 0) ||
1671            (free_size > 0  && (num == 1 || num == 2)),
1672          "There should be at most 2 free chunks after compaction");
1673   #endif // ASSERT
1674   _collectorState = Resetting;
1675   assert(_restart_addr == NULL,
1676          "Should have been NULL'd before baton was passed");
1677   reset(false /* == !concurrent */);
1678   _cmsGen->reset_after_compaction();
1679   _concurrent_cycles_since_last_unload = 0;
1680 
1681   // Clear any data recorded in the PLAB chunk arrays.
1682   if (_survivor_plab_array != NULL) {
1683     reset_survivor_plab_arrays();
1684   }
1685 
1686   // Adjust the per-size allocation stats for the next epoch.
1687   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1688   // Restart the "inter sweep timer" for the next epoch.
1689   _inter_sweep_timer.reset();
1690   _inter_sweep_timer.start();
1691 
1692   gc_timer->register_gc_end();
1693 
1694   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1695 
1696   // For a mark-sweep-compact, compute_new_size() will be called
1697   // in the heap's do_collection() method.
1698 }
1699 
1700 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1701   ContiguousSpace* eden_space = _young_gen->eden();
1702   ContiguousSpace* from_space = _young_gen->from();
1703   ContiguousSpace* to_space   = _young_gen->to();
1704   // Eden
1705   if (_eden_chunk_array != NULL) {
1706     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1707                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1708                            p2i(eden_space->end()), eden_space->capacity());
1709     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1710                            "_eden_chunk_capacity=" SIZE_FORMAT,
1711                            _eden_chunk_index, _eden_chunk_capacity);
1712     for (size_t i = 0; i < _eden_chunk_index; i++) {
1713       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1714                              i, p2i(_eden_chunk_array[i]));
1715     }
1716   }
1717   // Survivor
1718   if (_survivor_chunk_array != NULL) {
1719     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1720                            p2i(from_space->bottom()), p2i(from_space->top()),
1721                            p2i(from_space->end()), from_space->capacity());
1722     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1723                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1724                            _survivor_chunk_index, _survivor_chunk_capacity);
1725     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1726       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1727                              i, p2i(_survivor_chunk_array[i]));
1728     }
1729   }
1730 }
1731 
1732 void CMSCollector::getFreelistLocks() const {
1733   // Get locks for all free lists in all generations that this
1734   // collector is responsible for
1735   _cmsGen->freelistLock()->lock_without_safepoint_check();
1736 }
1737 
1738 void CMSCollector::releaseFreelistLocks() const {
1739   // Release locks for all free lists in all generations that this
1740   // collector is responsible for
1741   _cmsGen->freelistLock()->unlock();
1742 }
1743 
1744 bool CMSCollector::haveFreelistLocks() const {
1745   // Check locks for all free lists in all generations that this
1746   // collector is responsible for
1747   assert_lock_strong(_cmsGen->freelistLock());
1748   PRODUCT_ONLY(ShouldNotReachHere());
1749   return true;
1750 }
1751 
1752 // A utility class that is used by the CMS collector to
1753 // temporarily "release" the foreground collector from its
1754 // usual obligation to wait for the background collector to
1755 // complete an ongoing phase before proceeding.
1756 class ReleaseForegroundGC: public StackObj {
1757  private:
1758   CMSCollector* _c;
1759  public:
1760   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1761     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1762     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1763     // allow a potentially blocked foreground collector to proceed
1764     _c->_foregroundGCShouldWait = false;
1765     if (_c->_foregroundGCIsActive) {
1766       CGC_lock->notify();
1767     }
1768     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1769            "Possible deadlock");
1770   }
1771 
1772   ~ReleaseForegroundGC() {
1773     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1774     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1775     _c->_foregroundGCShouldWait = true;
1776   }
1777 };
1778 
1779 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1780   assert(Thread::current()->is_ConcurrentGC_thread(),
1781     "A CMS asynchronous collection is only allowed on a CMS thread.");
1782 
1783   GenCollectedHeap* gch = GenCollectedHeap::heap();
1784   {
1785     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1786     MutexLockerEx hl(Heap_lock, safepoint_check);
1787     FreelistLocker fll(this);
1788     MutexLockerEx x(CGC_lock, safepoint_check);
1789     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1790       // The foreground collector is active or we're
1791       // not using asynchronous collections.  Skip this
1792       // background collection.
1793       assert(!_foregroundGCShouldWait, "Should be clear");
1794       return;
1795     } else {
1796       assert(_collectorState == Idling, "Should be idling before start.");
1797       _collectorState = InitialMarking;
1798       register_gc_start(cause);
1799       // Reset the expansion cause, now that we are about to begin
1800       // a new cycle.
1801       clear_expansion_cause();
1802 
1803       // Clear the MetaspaceGC flag since a concurrent collection
1804       // is starting but also clear it after the collection.
1805       MetaspaceGC::set_should_concurrent_collect(false);
1806     }
1807     // Decide if we want to enable class unloading as part of the
1808     // ensuing concurrent GC cycle.
1809     update_should_unload_classes();
1810     _full_gc_requested = false;           // acks all outstanding full gc requests
1811     _full_gc_cause = GCCause::_no_gc;
1812     // Signal that we are about to start a collection
1813     gch->increment_total_full_collections();  // ... starting a collection cycle
1814     _collection_count_start = gch->total_full_collections();
1815   }
1816 
1817   // Used for PrintGC
1818   size_t prev_used;
1819   if (PrintGC && Verbose) {
1820     prev_used = _cmsGen->used();
1821   }
1822 
1823   // The change of the collection state is normally done at this level;
1824   // the exceptions are phases that are executed while the world is
1825   // stopped.  For those phases the change of state is done while the
1826   // world is stopped.  For baton passing purposes this allows the
1827   // background collector to finish the phase and change state atomically.
1828   // The foreground collector cannot wait on a phase that is done
1829   // while the world is stopped because the foreground collector already
1830   // has the world stopped and would deadlock.
1831   while (_collectorState != Idling) {
1832     if (TraceCMSState) {
1833       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1834         p2i(Thread::current()), _collectorState);
1835     }
1836     // The foreground collector
1837     //   holds the Heap_lock throughout its collection.
1838     //   holds the CMS token (but not the lock)
1839     //     except while it is waiting for the background collector to yield.
1840     //
1841     // The foreground collector should be blocked (not for long)
1842     //   if the background collector is about to start a phase
1843     //   executed with world stopped.  If the background
1844     //   collector has already started such a phase, the
1845     //   foreground collector is blocked waiting for the
1846     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1847     //   are executed in the VM thread.
1848     //
1849     // The locking order is
1850     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1851     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1852     //   CMS token  (claimed in
1853     //                stop_world_and_do() -->
1854     //                  safepoint_synchronize() -->
1855     //                    CMSThread::synchronize())
1856 
1857     {
1858       // Check if the FG collector wants us to yield.
1859       CMSTokenSync x(true); // is cms thread
1860       if (waitForForegroundGC()) {
1861         // We yielded to a foreground GC, nothing more to be
1862         // done this round.
1863         assert(_foregroundGCShouldWait == false, "We set it to false in "
1864                "waitForForegroundGC()");
1865         if (TraceCMSState) {
1866           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1867             " exiting collection CMS state %d",
1868             p2i(Thread::current()), _collectorState);
1869         }
1870         return;
1871       } else {
1872         // The background collector can run but check to see if the
1873         // foreground collector has done a collection while the
1874         // background collector was waiting to get the CGC_lock
1875         // above.  If yes, break so that _foregroundGCShouldWait
1876         // is cleared before returning.
1877         if (_collectorState == Idling) {
1878           break;
1879         }
1880       }
1881     }
1882 
1883     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1884       "should be waiting");
1885 
1886     switch (_collectorState) {
1887       case InitialMarking:
1888         {
1889           ReleaseForegroundGC x(this);
1890           stats().record_cms_begin();
1891           VM_CMS_Initial_Mark initial_mark_op(this);
1892           VMThread::execute(&initial_mark_op);
1893         }
1894         // The collector state may be any legal state at this point
1895         // since the background collector may have yielded to the
1896         // foreground collector.
1897         break;
1898       case Marking:
1899         // initial marking in checkpointRootsInitialWork has been completed
1900         if (markFromRoots()) { // we were successful
1901           assert(_collectorState == Precleaning, "Collector state should "
1902             "have changed");
1903         } else {
1904           assert(_foregroundGCIsActive, "Internal state inconsistency");
1905         }
1906         break;
1907       case Precleaning:
1908         // marking from roots in markFromRoots has been completed
1909         preclean();
1910         assert(_collectorState == AbortablePreclean ||
1911                _collectorState == FinalMarking,
1912                "Collector state should have changed");
1913         break;
1914       case AbortablePreclean:
1915         abortable_preclean();
1916         assert(_collectorState == FinalMarking, "Collector state should "
1917           "have changed");
1918         break;
1919       case FinalMarking:
1920         {
1921           ReleaseForegroundGC x(this);
1922 
1923           VM_CMS_Final_Remark final_remark_op(this);
1924           VMThread::execute(&final_remark_op);
1925         }
1926         assert(_foregroundGCShouldWait, "block post-condition");
1927         break;
1928       case Sweeping:
1929         // final marking in checkpointRootsFinal has been completed
1930         sweep();
1931         assert(_collectorState == Resizing, "Collector state change "
1932           "to Resizing must be done under the free_list_lock");
1933 
1934       case Resizing: {
1935         // Sweeping has been completed...
1936         // At this point the background collection has completed.
1937         // Don't move the call to compute_new_size() down
1938         // into code that might be executed if the background
1939         // collection was preempted.
1940         {
1941           ReleaseForegroundGC x(this);   // unblock FG collection
1942           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1943           CMSTokenSync        z(true);   // not strictly needed.
1944           if (_collectorState == Resizing) {
1945             compute_new_size();
1946             save_heap_summary();
1947             _collectorState = Resetting;
1948           } else {
1949             assert(_collectorState == Idling, "The state should only change"
1950                    " because the foreground collector has finished the collection");
1951           }
1952         }
1953         break;
1954       }
1955       case Resetting:
1956         // CMS heap resizing has been completed
1957         reset(true);
1958         assert(_collectorState == Idling, "Collector state should "
1959           "have changed");
1960 
1961         MetaspaceGC::set_should_concurrent_collect(false);
1962 
1963         stats().record_cms_end();
1964         // Don't move the concurrent_phases_end() and compute_new_size()
1965         // calls to here because a preempted background collection
1966         // has it's state set to "Resetting".
1967         break;
1968       case Idling:
1969       default:
1970         ShouldNotReachHere();
1971         break;
1972     }
1973     if (TraceCMSState) {
1974       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1975         p2i(Thread::current()), _collectorState);
1976     }
1977     assert(_foregroundGCShouldWait, "block post-condition");
1978   }
1979 
1980   // Should this be in gc_epilogue?
1981   collector_policy()->counters()->update_counters();
1982 
1983   {
1984     // Clear _foregroundGCShouldWait and, in the event that the
1985     // foreground collector is waiting, notify it, before
1986     // returning.
1987     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1988     _foregroundGCShouldWait = false;
1989     if (_foregroundGCIsActive) {
1990       CGC_lock->notify();
1991     }
1992     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1993            "Possible deadlock");
1994   }
1995   if (TraceCMSState) {
1996     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1997       " exiting collection CMS state %d",
1998       p2i(Thread::current()), _collectorState);
1999   }
2000   if (PrintGC && Verbose) {
2001     _cmsGen->print_heap_change(prev_used);
2002   }
2003 }
2004 
2005 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2006   _cms_start_registered = true;
2007   _gc_timer_cm->register_gc_start();
2008   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2009 }
2010 
2011 void CMSCollector::register_gc_end() {
2012   if (_cms_start_registered) {
2013     report_heap_summary(GCWhen::AfterGC);
2014 
2015     _gc_timer_cm->register_gc_end();
2016     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2017     _cms_start_registered = false;
2018   }
2019 }
2020 
2021 void CMSCollector::save_heap_summary() {
2022   GenCollectedHeap* gch = GenCollectedHeap::heap();
2023   _last_heap_summary = gch->create_heap_summary();
2024   _last_metaspace_summary = gch->create_metaspace_summary();
2025 }
2026 
2027 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2028   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2029   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2030 }
2031 
2032 bool CMSCollector::waitForForegroundGC() {
2033   bool res = false;
2034   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2035          "CMS thread should have CMS token");
2036   // Block the foreground collector until the
2037   // background collectors decides whether to
2038   // yield.
2039   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2040   _foregroundGCShouldWait = true;
2041   if (_foregroundGCIsActive) {
2042     // The background collector yields to the
2043     // foreground collector and returns a value
2044     // indicating that it has yielded.  The foreground
2045     // collector can proceed.
2046     res = true;
2047     _foregroundGCShouldWait = false;
2048     ConcurrentMarkSweepThread::clear_CMS_flag(
2049       ConcurrentMarkSweepThread::CMS_cms_has_token);
2050     ConcurrentMarkSweepThread::set_CMS_flag(
2051       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2052     // Get a possibly blocked foreground thread going
2053     CGC_lock->notify();
2054     if (TraceCMSState) {
2055       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2056         p2i(Thread::current()), _collectorState);
2057     }
2058     while (_foregroundGCIsActive) {
2059       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2060     }
2061     ConcurrentMarkSweepThread::set_CMS_flag(
2062       ConcurrentMarkSweepThread::CMS_cms_has_token);
2063     ConcurrentMarkSweepThread::clear_CMS_flag(
2064       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2065   }
2066   if (TraceCMSState) {
2067     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2068       p2i(Thread::current()), _collectorState);
2069   }
2070   return res;
2071 }
2072 
2073 // Because of the need to lock the free lists and other structures in
2074 // the collector, common to all the generations that the collector is
2075 // collecting, we need the gc_prologues of individual CMS generations
2076 // delegate to their collector. It may have been simpler had the
2077 // current infrastructure allowed one to call a prologue on a
2078 // collector. In the absence of that we have the generation's
2079 // prologue delegate to the collector, which delegates back
2080 // some "local" work to a worker method in the individual generations
2081 // that it's responsible for collecting, while itself doing any
2082 // work common to all generations it's responsible for. A similar
2083 // comment applies to the  gc_epilogue()'s.
2084 // The role of the variable _between_prologue_and_epilogue is to
2085 // enforce the invocation protocol.
2086 void CMSCollector::gc_prologue(bool full) {
2087   // Call gc_prologue_work() for the CMSGen
2088   // we are responsible for.
2089 
2090   // The following locking discipline assumes that we are only called
2091   // when the world is stopped.
2092   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2093 
2094   // The CMSCollector prologue must call the gc_prologues for the
2095   // "generations" that it's responsible
2096   // for.
2097 
2098   assert(   Thread::current()->is_VM_thread()
2099          || (   CMSScavengeBeforeRemark
2100              && Thread::current()->is_ConcurrentGC_thread()),
2101          "Incorrect thread type for prologue execution");
2102 
2103   if (_between_prologue_and_epilogue) {
2104     // We have already been invoked; this is a gc_prologue delegation
2105     // from yet another CMS generation that we are responsible for, just
2106     // ignore it since all relevant work has already been done.
2107     return;
2108   }
2109 
2110   // set a bit saying prologue has been called; cleared in epilogue
2111   _between_prologue_and_epilogue = true;
2112   // Claim locks for common data structures, then call gc_prologue_work()
2113   // for each CMSGen.
2114 
2115   getFreelistLocks();   // gets free list locks on constituent spaces
2116   bitMapLock()->lock_without_safepoint_check();
2117 
2118   // Should call gc_prologue_work() for all cms gens we are responsible for
2119   bool duringMarking =    _collectorState >= Marking
2120                          && _collectorState < Sweeping;
2121 
2122   // The young collections clear the modified oops state, which tells if
2123   // there are any modified oops in the class. The remark phase also needs
2124   // that information. Tell the young collection to save the union of all
2125   // modified klasses.
2126   if (duringMarking) {
2127     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2128   }
2129 
2130   bool registerClosure = duringMarking;
2131 
2132   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2133                                                &_modUnionClosurePar
2134                                                : &_modUnionClosure;
2135   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2136 
2137   if (!full) {
2138     stats().record_gc0_begin();
2139   }
2140 }
2141 
2142 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2143 
2144   _capacity_at_prologue = capacity();
2145   _used_at_prologue = used();
2146 
2147   // Delegate to CMScollector which knows how to coordinate between
2148   // this and any other CMS generations that it is responsible for
2149   // collecting.
2150   collector()->gc_prologue(full);
2151 }
2152 
2153 // This is a "private" interface for use by this generation's CMSCollector.
2154 // Not to be called directly by any other entity (for instance,
2155 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2156 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2157   bool registerClosure, ModUnionClosure* modUnionClosure) {
2158   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2159   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2160     "Should be NULL");
2161   if (registerClosure) {
2162     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2163   }
2164   cmsSpace()->gc_prologue();
2165   // Clear stat counters
2166   NOT_PRODUCT(
2167     assert(_numObjectsPromoted == 0, "check");
2168     assert(_numWordsPromoted   == 0, "check");
2169     if (Verbose && PrintGC) {
2170       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2171                           SIZE_FORMAT" bytes concurrently",
2172       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2173     }
2174     _numObjectsAllocated = 0;
2175     _numWordsAllocated   = 0;
2176   )
2177 }
2178 
2179 void CMSCollector::gc_epilogue(bool full) {
2180   // The following locking discipline assumes that we are only called
2181   // when the world is stopped.
2182   assert(SafepointSynchronize::is_at_safepoint(),
2183          "world is stopped assumption");
2184 
2185   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2186   // if linear allocation blocks need to be appropriately marked to allow the
2187   // the blocks to be parsable. We also check here whether we need to nudge the
2188   // CMS collector thread to start a new cycle (if it's not already active).
2189   assert(   Thread::current()->is_VM_thread()
2190          || (   CMSScavengeBeforeRemark
2191              && Thread::current()->is_ConcurrentGC_thread()),
2192          "Incorrect thread type for epilogue execution");
2193 
2194   if (!_between_prologue_and_epilogue) {
2195     // We have already been invoked; this is a gc_epilogue delegation
2196     // from yet another CMS generation that we are responsible for, just
2197     // ignore it since all relevant work has already been done.
2198     return;
2199   }
2200   assert(haveFreelistLocks(), "must have freelist locks");
2201   assert_lock_strong(bitMapLock());
2202 
2203   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2204 
2205   _cmsGen->gc_epilogue_work(full);
2206 
2207   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2208     // in case sampling was not already enabled, enable it
2209     _start_sampling = true;
2210   }
2211   // reset _eden_chunk_array so sampling starts afresh
2212   _eden_chunk_index = 0;
2213 
2214   size_t cms_used   = _cmsGen->cmsSpace()->used();
2215 
2216   // update performance counters - this uses a special version of
2217   // update_counters() that allows the utilization to be passed as a
2218   // parameter, avoiding multiple calls to used().
2219   //
2220   _cmsGen->update_counters(cms_used);
2221 
2222   bitMapLock()->unlock();
2223   releaseFreelistLocks();
2224 
2225   if (!CleanChunkPoolAsync) {
2226     Chunk::clean_chunk_pool();
2227   }
2228 
2229   set_did_compact(false);
2230   _between_prologue_and_epilogue = false;  // ready for next cycle
2231 }
2232 
2233 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2234   collector()->gc_epilogue(full);
2235 
2236   // Also reset promotion tracking in par gc thread states.
2237   for (uint i = 0; i < ParallelGCThreads; i++) {
2238     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2239   }
2240 }
2241 
2242 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2243   assert(!incremental_collection_failed(), "Should have been cleared");
2244   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2245   cmsSpace()->gc_epilogue();
2246     // Print stat counters
2247   NOT_PRODUCT(
2248     assert(_numObjectsAllocated == 0, "check");
2249     assert(_numWordsAllocated == 0, "check");
2250     if (Verbose && PrintGC) {
2251       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2252                           SIZE_FORMAT" bytes",
2253                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2254     }
2255     _numObjectsPromoted = 0;
2256     _numWordsPromoted   = 0;
2257   )
2258 
2259   if (PrintGC && Verbose) {
2260     // Call down the chain in contiguous_available needs the freelistLock
2261     // so print this out before releasing the freeListLock.
2262     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2263                         contiguous_available());
2264   }
2265 }
2266 
2267 #ifndef PRODUCT
2268 bool CMSCollector::have_cms_token() {
2269   Thread* thr = Thread::current();
2270   if (thr->is_VM_thread()) {
2271     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2272   } else if (thr->is_ConcurrentGC_thread()) {
2273     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2274   } else if (thr->is_GC_task_thread()) {
2275     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2276            ParGCRareEvent_lock->owned_by_self();
2277   }
2278   return false;
2279 }
2280 #endif
2281 
2282 // Check reachability of the given heap address in CMS generation,
2283 // treating all other generations as roots.
2284 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2285   // We could "guarantee" below, rather than assert, but I'll
2286   // leave these as "asserts" so that an adventurous debugger
2287   // could try this in the product build provided some subset of
2288   // the conditions were met, provided they were interested in the
2289   // results and knew that the computation below wouldn't interfere
2290   // with other concurrent computations mutating the structures
2291   // being read or written.
2292   assert(SafepointSynchronize::is_at_safepoint(),
2293          "Else mutations in object graph will make answer suspect");
2294   assert(have_cms_token(), "Should hold cms token");
2295   assert(haveFreelistLocks(), "must hold free list locks");
2296   assert_lock_strong(bitMapLock());
2297 
2298   // Clear the marking bit map array before starting, but, just
2299   // for kicks, first report if the given address is already marked
2300   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2301                 _markBitMap.isMarked(addr) ? "" : " not");
2302 
2303   if (verify_after_remark()) {
2304     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2305     bool result = verification_mark_bm()->isMarked(addr);
2306     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2307                            result ? "IS" : "is NOT");
2308     return result;
2309   } else {
2310     gclog_or_tty->print_cr("Could not compute result");
2311     return false;
2312   }
2313 }
2314 
2315 
2316 void
2317 CMSCollector::print_on_error(outputStream* st) {
2318   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2319   if (collector != NULL) {
2320     CMSBitMap* bitmap = &collector->_markBitMap;
2321     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2322     bitmap->print_on_error(st, " Bits: ");
2323 
2324     st->cr();
2325 
2326     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2327     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2328     mut_bitmap->print_on_error(st, " Bits: ");
2329   }
2330 }
2331 
2332 ////////////////////////////////////////////////////////
2333 // CMS Verification Support
2334 ////////////////////////////////////////////////////////
2335 // Following the remark phase, the following invariant
2336 // should hold -- each object in the CMS heap which is
2337 // marked in markBitMap() should be marked in the verification_mark_bm().
2338 
2339 class VerifyMarkedClosure: public BitMapClosure {
2340   CMSBitMap* _marks;
2341   bool       _failed;
2342 
2343  public:
2344   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2345 
2346   bool do_bit(size_t offset) {
2347     HeapWord* addr = _marks->offsetToHeapWord(offset);
2348     if (!_marks->isMarked(addr)) {
2349       oop(addr)->print_on(gclog_or_tty);
2350       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2351       _failed = true;
2352     }
2353     return true;
2354   }
2355 
2356   bool failed() { return _failed; }
2357 };
2358 
2359 bool CMSCollector::verify_after_remark(bool silent) {
2360   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2361   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2362   static bool init = false;
2363 
2364   assert(SafepointSynchronize::is_at_safepoint(),
2365          "Else mutations in object graph will make answer suspect");
2366   assert(have_cms_token(),
2367          "Else there may be mutual interference in use of "
2368          " verification data structures");
2369   assert(_collectorState > Marking && _collectorState <= Sweeping,
2370          "Else marking info checked here may be obsolete");
2371   assert(haveFreelistLocks(), "must hold free list locks");
2372   assert_lock_strong(bitMapLock());
2373 
2374 
2375   // Allocate marking bit map if not already allocated
2376   if (!init) { // first time
2377     if (!verification_mark_bm()->allocate(_span)) {
2378       return false;
2379     }
2380     init = true;
2381   }
2382 
2383   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2384 
2385   // Turn off refs discovery -- so we will be tracing through refs.
2386   // This is as intended, because by this time
2387   // GC must already have cleared any refs that need to be cleared,
2388   // and traced those that need to be marked; moreover,
2389   // the marking done here is not going to interfere in any
2390   // way with the marking information used by GC.
2391   NoRefDiscovery no_discovery(ref_processor());
2392 
2393   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2394 
2395   // Clear any marks from a previous round
2396   verification_mark_bm()->clear_all();
2397   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2398   verify_work_stacks_empty();
2399 
2400   GenCollectedHeap* gch = GenCollectedHeap::heap();
2401   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2402   // Update the saved marks which may affect the root scans.
2403   gch->save_marks();
2404 
2405   if (CMSRemarkVerifyVariant == 1) {
2406     // In this first variant of verification, we complete
2407     // all marking, then check if the new marks-vector is
2408     // a subset of the CMS marks-vector.
2409     verify_after_remark_work_1();
2410   } else if (CMSRemarkVerifyVariant == 2) {
2411     // In this second variant of verification, we flag an error
2412     // (i.e. an object reachable in the new marks-vector not reachable
2413     // in the CMS marks-vector) immediately, also indicating the
2414     // identify of an object (A) that references the unmarked object (B) --
2415     // presumably, a mutation to A failed to be picked up by preclean/remark?
2416     verify_after_remark_work_2();
2417   } else {
2418     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2419             CMSRemarkVerifyVariant);
2420   }
2421   if (!silent) gclog_or_tty->print(" done] ");
2422   return true;
2423 }
2424 
2425 void CMSCollector::verify_after_remark_work_1() {
2426   ResourceMark rm;
2427   HandleMark  hm;
2428   GenCollectedHeap* gch = GenCollectedHeap::heap();
2429 
2430   // Get a clear set of claim bits for the roots processing to work with.
2431   ClassLoaderDataGraph::clear_claimed_marks();
2432 
2433   // Mark from roots one level into CMS
2434   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2435   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2436 
2437   gch->gen_process_roots(_cmsGen->level(),
2438                          true,   // younger gens are roots
2439                          true,   // activate StrongRootsScope
2440                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2441                          should_unload_classes(),
2442                          &notOlder,
2443                          NULL,
2444                          NULL);  // SSS: Provide correct closure
2445 
2446   // Now mark from the roots
2447   MarkFromRootsClosure markFromRootsClosure(this, _span,
2448     verification_mark_bm(), verification_mark_stack(),
2449     false /* don't yield */, true /* verifying */);
2450   assert(_restart_addr == NULL, "Expected pre-condition");
2451   verification_mark_bm()->iterate(&markFromRootsClosure);
2452   while (_restart_addr != NULL) {
2453     // Deal with stack overflow: by restarting at the indicated
2454     // address.
2455     HeapWord* ra = _restart_addr;
2456     markFromRootsClosure.reset(ra);
2457     _restart_addr = NULL;
2458     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2459   }
2460   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2461   verify_work_stacks_empty();
2462 
2463   // Marking completed -- now verify that each bit marked in
2464   // verification_mark_bm() is also marked in markBitMap(); flag all
2465   // errors by printing corresponding objects.
2466   VerifyMarkedClosure vcl(markBitMap());
2467   verification_mark_bm()->iterate(&vcl);
2468   if (vcl.failed()) {
2469     gclog_or_tty->print("Verification failed");
2470     Universe::heap()->print_on(gclog_or_tty);
2471     fatal("CMS: failed marking verification after remark");
2472   }
2473 }
2474 
2475 class VerifyKlassOopsKlassClosure : public KlassClosure {
2476   class VerifyKlassOopsClosure : public OopClosure {
2477     CMSBitMap* _bitmap;
2478    public:
2479     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2480     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2481     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2482   } _oop_closure;
2483  public:
2484   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2485   void do_klass(Klass* k) {
2486     k->oops_do(&_oop_closure);
2487   }
2488 };
2489 
2490 void CMSCollector::verify_after_remark_work_2() {
2491   ResourceMark rm;
2492   HandleMark  hm;
2493   GenCollectedHeap* gch = GenCollectedHeap::heap();
2494 
2495   // Get a clear set of claim bits for the roots processing to work with.
2496   ClassLoaderDataGraph::clear_claimed_marks();
2497 
2498   // Mark from roots one level into CMS
2499   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2500                                      markBitMap());
2501   CLDToOopClosure cld_closure(&notOlder, true);
2502 
2503   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2504 
2505   gch->gen_process_roots(_cmsGen->level(),
2506                          true,   // younger gens are roots
2507                          true,   // activate StrongRootsScope
2508                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2509                          should_unload_classes(),
2510                          &notOlder,
2511                          NULL,
2512                          &cld_closure);
2513 
2514   // Now mark from the roots
2515   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2516     verification_mark_bm(), markBitMap(), verification_mark_stack());
2517   assert(_restart_addr == NULL, "Expected pre-condition");
2518   verification_mark_bm()->iterate(&markFromRootsClosure);
2519   while (_restart_addr != NULL) {
2520     // Deal with stack overflow: by restarting at the indicated
2521     // address.
2522     HeapWord* ra = _restart_addr;
2523     markFromRootsClosure.reset(ra);
2524     _restart_addr = NULL;
2525     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2526   }
2527   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2528   verify_work_stacks_empty();
2529 
2530   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2531   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2532 
2533   // Marking completed -- now verify that each bit marked in
2534   // verification_mark_bm() is also marked in markBitMap(); flag all
2535   // errors by printing corresponding objects.
2536   VerifyMarkedClosure vcl(markBitMap());
2537   verification_mark_bm()->iterate(&vcl);
2538   assert(!vcl.failed(), "Else verification above should not have succeeded");
2539 }
2540 
2541 void ConcurrentMarkSweepGeneration::save_marks() {
2542   // delegate to CMS space
2543   cmsSpace()->save_marks();
2544   for (uint i = 0; i < ParallelGCThreads; i++) {
2545     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2546   }
2547 }
2548 
2549 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2550   return cmsSpace()->no_allocs_since_save_marks();
2551 }
2552 
2553 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2554                                                                 \
2555 void ConcurrentMarkSweepGeneration::                            \
2556 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2557   cl->set_generation(this);                                     \
2558   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2559   cl->reset_generation();                                       \
2560   save_marks();                                                 \
2561 }
2562 
2563 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2564 
2565 void
2566 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2567   if (freelistLock()->owned_by_self()) {
2568     Generation::oop_iterate(cl);
2569   } else {
2570     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2571     Generation::oop_iterate(cl);
2572   }
2573 }
2574 
2575 void
2576 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2577   if (freelistLock()->owned_by_self()) {
2578     Generation::object_iterate(cl);
2579   } else {
2580     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2581     Generation::object_iterate(cl);
2582   }
2583 }
2584 
2585 void
2586 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2587   if (freelistLock()->owned_by_self()) {
2588     Generation::safe_object_iterate(cl);
2589   } else {
2590     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2591     Generation::safe_object_iterate(cl);
2592   }
2593 }
2594 
2595 void
2596 ConcurrentMarkSweepGeneration::post_compact() {
2597 }
2598 
2599 void
2600 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2601   // Fix the linear allocation blocks to look like free blocks.
2602 
2603   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2604   // are not called when the heap is verified during universe initialization and
2605   // at vm shutdown.
2606   if (freelistLock()->owned_by_self()) {
2607     cmsSpace()->prepare_for_verify();
2608   } else {
2609     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2610     cmsSpace()->prepare_for_verify();
2611   }
2612 }
2613 
2614 void
2615 ConcurrentMarkSweepGeneration::verify() {
2616   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2617   // are not called when the heap is verified during universe initialization and
2618   // at vm shutdown.
2619   if (freelistLock()->owned_by_self()) {
2620     cmsSpace()->verify();
2621   } else {
2622     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2623     cmsSpace()->verify();
2624   }
2625 }
2626 
2627 void CMSCollector::verify() {
2628   _cmsGen->verify();
2629 }
2630 
2631 #ifndef PRODUCT
2632 bool CMSCollector::overflow_list_is_empty() const {
2633   assert(_num_par_pushes >= 0, "Inconsistency");
2634   if (_overflow_list == NULL) {
2635     assert(_num_par_pushes == 0, "Inconsistency");
2636   }
2637   return _overflow_list == NULL;
2638 }
2639 
2640 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2641 // merely consolidate assertion checks that appear to occur together frequently.
2642 void CMSCollector::verify_work_stacks_empty() const {
2643   assert(_markStack.isEmpty(), "Marking stack should be empty");
2644   assert(overflow_list_is_empty(), "Overflow list should be empty");
2645 }
2646 
2647 void CMSCollector::verify_overflow_empty() const {
2648   assert(overflow_list_is_empty(), "Overflow list should be empty");
2649   assert(no_preserved_marks(), "No preserved marks");
2650 }
2651 #endif // PRODUCT
2652 
2653 // Decide if we want to enable class unloading as part of the
2654 // ensuing concurrent GC cycle. We will collect and
2655 // unload classes if it's the case that:
2656 // (1) an explicit gc request has been made and the flag
2657 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2658 // (2) (a) class unloading is enabled at the command line, and
2659 //     (b) old gen is getting really full
2660 // NOTE: Provided there is no change in the state of the heap between
2661 // calls to this method, it should have idempotent results. Moreover,
2662 // its results should be monotonically increasing (i.e. going from 0 to 1,
2663 // but not 1 to 0) between successive calls between which the heap was
2664 // not collected. For the implementation below, it must thus rely on
2665 // the property that concurrent_cycles_since_last_unload()
2666 // will not decrease unless a collection cycle happened and that
2667 // _cmsGen->is_too_full() are
2668 // themselves also monotonic in that sense. See check_monotonicity()
2669 // below.
2670 void CMSCollector::update_should_unload_classes() {
2671   _should_unload_classes = false;
2672   // Condition 1 above
2673   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2674     _should_unload_classes = true;
2675   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2676     // Disjuncts 2.b.(i,ii,iii) above
2677     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2678                               CMSClassUnloadingMaxInterval)
2679                            || _cmsGen->is_too_full();
2680   }
2681 }
2682 
2683 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2684   bool res = should_concurrent_collect();
2685   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2686   return res;
2687 }
2688 
2689 void CMSCollector::setup_cms_unloading_and_verification_state() {
2690   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2691                              || VerifyBeforeExit;
2692   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2693 
2694   // We set the proper root for this CMS cycle here.
2695   if (should_unload_classes()) {   // Should unload classes this cycle
2696     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2697     set_verifying(should_verify);    // Set verification state for this cycle
2698     return;                            // Nothing else needs to be done at this time
2699   }
2700 
2701   // Not unloading classes this cycle
2702   assert(!should_unload_classes(), "Inconsistency!");
2703 
2704   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2705     // Include symbols, strings and code cache elements to prevent their resurrection.
2706     add_root_scanning_option(rso);
2707     set_verifying(true);
2708   } else if (verifying() && !should_verify) {
2709     // We were verifying, but some verification flags got disabled.
2710     set_verifying(false);
2711     // Exclude symbols, strings and code cache elements from root scanning to
2712     // reduce IM and RM pauses.
2713     remove_root_scanning_option(rso);
2714   }
2715 }
2716 
2717 
2718 #ifndef PRODUCT
2719 HeapWord* CMSCollector::block_start(const void* p) const {
2720   const HeapWord* addr = (HeapWord*)p;
2721   if (_span.contains(p)) {
2722     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2723       return _cmsGen->cmsSpace()->block_start(p);
2724     }
2725   }
2726   return NULL;
2727 }
2728 #endif
2729 
2730 HeapWord*
2731 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2732                                                    bool   tlab,
2733                                                    bool   parallel) {
2734   CMSSynchronousYieldRequest yr;
2735   assert(!tlab, "Can't deal with TLAB allocation");
2736   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2737   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2738   if (GCExpandToAllocateDelayMillis > 0) {
2739     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2740   }
2741   return have_lock_and_allocate(word_size, tlab);
2742 }
2743 
2744 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2745     size_t bytes,
2746     size_t expand_bytes,
2747     CMSExpansionCause::Cause cause)
2748 {
2749 
2750   bool success = expand(bytes, expand_bytes);
2751 
2752   // remember why we expanded; this information is used
2753   // by shouldConcurrentCollect() when making decisions on whether to start
2754   // a new CMS cycle.
2755   if (success) {
2756     set_expansion_cause(cause);
2757     if (PrintGCDetails && Verbose) {
2758       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2759         CMSExpansionCause::to_string(cause));
2760     }
2761   }
2762 }
2763 
2764 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2765   HeapWord* res = NULL;
2766   MutexLocker x(ParGCRareEvent_lock);
2767   while (true) {
2768     // Expansion by some other thread might make alloc OK now:
2769     res = ps->lab.alloc(word_sz);
2770     if (res != NULL) return res;
2771     // If there's not enough expansion space available, give up.
2772     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2773       return NULL;
2774     }
2775     // Otherwise, we try expansion.
2776     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2777     // Now go around the loop and try alloc again;
2778     // A competing par_promote might beat us to the expansion space,
2779     // so we may go around the loop again if promotion fails again.
2780     if (GCExpandToAllocateDelayMillis > 0) {
2781       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2782     }
2783   }
2784 }
2785 
2786 
2787 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2788   PromotionInfo* promo) {
2789   MutexLocker x(ParGCRareEvent_lock);
2790   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2791   while (true) {
2792     // Expansion by some other thread might make alloc OK now:
2793     if (promo->ensure_spooling_space()) {
2794       assert(promo->has_spooling_space(),
2795              "Post-condition of successful ensure_spooling_space()");
2796       return true;
2797     }
2798     // If there's not enough expansion space available, give up.
2799     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2800       return false;
2801     }
2802     // Otherwise, we try expansion.
2803     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2804     // Now go around the loop and try alloc again;
2805     // A competing allocation might beat us to the expansion space,
2806     // so we may go around the loop again if allocation fails again.
2807     if (GCExpandToAllocateDelayMillis > 0) {
2808       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2809     }
2810   }
2811 }
2812 
2813 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2814   // Only shrink if a compaction was done so that all the free space
2815   // in the generation is in a contiguous block at the end.
2816   if (did_compact()) {
2817     CardGeneration::shrink(bytes);
2818   }
2819 }
2820 
2821 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2822   assert_locked_or_safepoint(Heap_lock);
2823 }
2824 
2825 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2826   assert_locked_or_safepoint(Heap_lock);
2827   assert_lock_strong(freelistLock());
2828   if (PrintGCDetails && Verbose) {
2829     warning("Shrinking of CMS not yet implemented");
2830   }
2831   return;
2832 }
2833 
2834 
2835 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2836 // phases.
2837 class CMSPhaseAccounting: public StackObj {
2838  public:
2839   CMSPhaseAccounting(CMSCollector *collector,
2840                      const char *phase,
2841                      const GCId gc_id,
2842                      bool print_cr = true);
2843   ~CMSPhaseAccounting();
2844 
2845  private:
2846   CMSCollector *_collector;
2847   const char *_phase;
2848   elapsedTimer _wallclock;
2849   bool _print_cr;
2850   const GCId _gc_id;
2851 
2852  public:
2853   // Not MT-safe; so do not pass around these StackObj's
2854   // where they may be accessed by other threads.
2855   jlong wallclock_millis() {
2856     assert(_wallclock.is_active(), "Wall clock should not stop");
2857     _wallclock.stop();  // to record time
2858     jlong ret = _wallclock.milliseconds();
2859     _wallclock.start(); // restart
2860     return ret;
2861   }
2862 };
2863 
2864 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2865                                        const char *phase,
2866                                        const GCId gc_id,
2867                                        bool print_cr) :
2868   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2869 
2870   if (PrintCMSStatistics != 0) {
2871     _collector->resetYields();
2872   }
2873   if (PrintGCDetails) {
2874     gclog_or_tty->gclog_stamp(_gc_id);
2875     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2876       _collector->cmsGen()->short_name(), _phase);
2877   }
2878   _collector->resetTimer();
2879   _wallclock.start();
2880   _collector->startTimer();
2881 }
2882 
2883 CMSPhaseAccounting::~CMSPhaseAccounting() {
2884   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2885   _collector->stopTimer();
2886   _wallclock.stop();
2887   if (PrintGCDetails) {
2888     gclog_or_tty->gclog_stamp(_gc_id);
2889     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2890                  _collector->cmsGen()->short_name(),
2891                  _phase, _collector->timerValue(), _wallclock.seconds());
2892     if (_print_cr) {
2893       gclog_or_tty->cr();
2894     }
2895     if (PrintCMSStatistics != 0) {
2896       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2897                     _collector->yields());
2898     }
2899   }
2900 }
2901 
2902 // CMS work
2903 
2904 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2905 class CMSParMarkTask : public AbstractGangTask {
2906  protected:
2907   CMSCollector*     _collector;
2908   int               _n_workers;
2909   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
2910       AbstractGangTask(name),
2911       _collector(collector),
2912       _n_workers(n_workers) {}
2913   // Work method in support of parallel rescan ... of young gen spaces
2914   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2915                              ContiguousSpace* space,
2916                              HeapWord** chunk_array, size_t chunk_top);
2917   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2918 };
2919 
2920 // Parallel initial mark task
2921 class CMSParInitialMarkTask: public CMSParMarkTask {
2922  public:
2923   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
2924       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2925                      collector, n_workers) {}
2926   void work(uint worker_id);
2927 };
2928 
2929 // Checkpoint the roots into this generation from outside
2930 // this generation. [Note this initial checkpoint need only
2931 // be approximate -- we'll do a catch up phase subsequently.]
2932 void CMSCollector::checkpointRootsInitial() {
2933   assert(_collectorState == InitialMarking, "Wrong collector state");
2934   check_correct_thread_executing();
2935   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2936 
2937   save_heap_summary();
2938   report_heap_summary(GCWhen::BeforeGC);
2939 
2940   ReferenceProcessor* rp = ref_processor();
2941   assert(_restart_addr == NULL, "Control point invariant");
2942   {
2943     // acquire locks for subsequent manipulations
2944     MutexLockerEx x(bitMapLock(),
2945                     Mutex::_no_safepoint_check_flag);
2946     checkpointRootsInitialWork();
2947     // enable ("weak") refs discovery
2948     rp->enable_discovery();
2949     _collectorState = Marking;
2950   }
2951 }
2952 
2953 void CMSCollector::checkpointRootsInitialWork() {
2954   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2955   assert(_collectorState == InitialMarking, "just checking");
2956 
2957   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2958   // precede our marking with a collection of all
2959   // younger generations to keep floating garbage to a minimum.
2960   // XXX: we won't do this for now -- it's an optimization to be done later.
2961 
2962   // already have locks
2963   assert_lock_strong(bitMapLock());
2964   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2965 
2966   // Setup the verification and class unloading state for this
2967   // CMS collection cycle.
2968   setup_cms_unloading_and_verification_state();
2969 
2970   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2971     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2972 
2973   // Reset all the PLAB chunk arrays if necessary.
2974   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2975     reset_survivor_plab_arrays();
2976   }
2977 
2978   ResourceMark rm;
2979   HandleMark  hm;
2980 
2981   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2982   GenCollectedHeap* gch = GenCollectedHeap::heap();
2983 
2984   verify_work_stacks_empty();
2985   verify_overflow_empty();
2986 
2987   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2988   // Update the saved marks which may affect the root scans.
2989   gch->save_marks();
2990 
2991   // weak reference processing has not started yet.
2992   ref_processor()->set_enqueuing_is_done(false);
2993 
2994   // Need to remember all newly created CLDs,
2995   // so that we can guarantee that the remark finds them.
2996   ClassLoaderDataGraph::remember_new_clds(true);
2997 
2998   // Whenever a CLD is found, it will be claimed before proceeding to mark
2999   // the klasses. The claimed marks need to be cleared before marking starts.
3000   ClassLoaderDataGraph::clear_claimed_marks();
3001 
3002   if (CMSPrintEdenSurvivorChunks) {
3003     print_eden_and_survivor_chunk_arrays();
3004   }
3005 
3006   {
3007     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3008     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3009       // The parallel version.
3010       FlexibleWorkGang* workers = gch->workers();
3011       assert(workers != NULL, "Need parallel worker threads.");
3012       int n_workers = workers->active_workers();
3013       CMSParInitialMarkTask tsk(this, n_workers);
3014       gch->set_par_threads(n_workers);
3015       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3016       if (n_workers > 1) {
3017         GenCollectedHeap::StrongRootsScope srs(gch);
3018         workers->run_task(&tsk);
3019       } else {
3020         GenCollectedHeap::StrongRootsScope srs(gch);
3021         tsk.work(0);
3022       }
3023       gch->set_par_threads(0);
3024     } else {
3025       // The serial version.
3026       CLDToOopClosure cld_closure(&notOlder, true);
3027       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3028       gch->gen_process_roots(_cmsGen->level(),
3029                              true,   // younger gens are roots
3030                              true,   // activate StrongRootsScope
3031                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3032                              should_unload_classes(),
3033                              &notOlder,
3034                              NULL,
3035                              &cld_closure);
3036     }
3037   }
3038 
3039   // Clear mod-union table; it will be dirtied in the prologue of
3040   // CMS generation per each younger generation collection.
3041 
3042   assert(_modUnionTable.isAllClear(),
3043        "Was cleared in most recent final checkpoint phase"
3044        " or no bits are set in the gc_prologue before the start of the next "
3045        "subsequent marking phase.");
3046 
3047   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3048 
3049   // Save the end of the used_region of the constituent generations
3050   // to be used to limit the extent of sweep in each generation.
3051   save_sweep_limits();
3052   verify_overflow_empty();
3053 }
3054 
3055 bool CMSCollector::markFromRoots() {
3056   // we might be tempted to assert that:
3057   // assert(!SafepointSynchronize::is_at_safepoint(),
3058   //        "inconsistent argument?");
3059   // However that wouldn't be right, because it's possible that
3060   // a safepoint is indeed in progress as a younger generation
3061   // stop-the-world GC happens even as we mark in this generation.
3062   assert(_collectorState == Marking, "inconsistent state?");
3063   check_correct_thread_executing();
3064   verify_overflow_empty();
3065 
3066   // Weak ref discovery note: We may be discovering weak
3067   // refs in this generation concurrent (but interleaved) with
3068   // weak ref discovery by a younger generation collector.
3069 
3070   CMSTokenSyncWithLocks ts(true, bitMapLock());
3071   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3072   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3073   bool res = markFromRootsWork();
3074   if (res) {
3075     _collectorState = Precleaning;
3076   } else { // We failed and a foreground collection wants to take over
3077     assert(_foregroundGCIsActive, "internal state inconsistency");
3078     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3079     if (PrintGCDetails) {
3080       gclog_or_tty->print_cr("bailing out to foreground collection");
3081     }
3082   }
3083   verify_overflow_empty();
3084   return res;
3085 }
3086 
3087 bool CMSCollector::markFromRootsWork() {
3088   // iterate over marked bits in bit map, doing a full scan and mark
3089   // from these roots using the following algorithm:
3090   // . if oop is to the right of the current scan pointer,
3091   //   mark corresponding bit (we'll process it later)
3092   // . else (oop is to left of current scan pointer)
3093   //   push oop on marking stack
3094   // . drain the marking stack
3095 
3096   // Note that when we do a marking step we need to hold the
3097   // bit map lock -- recall that direct allocation (by mutators)
3098   // and promotion (by younger generation collectors) is also
3099   // marking the bit map. [the so-called allocate live policy.]
3100   // Because the implementation of bit map marking is not
3101   // robust wrt simultaneous marking of bits in the same word,
3102   // we need to make sure that there is no such interference
3103   // between concurrent such updates.
3104 
3105   // already have locks
3106   assert_lock_strong(bitMapLock());
3107 
3108   verify_work_stacks_empty();
3109   verify_overflow_empty();
3110   bool result = false;
3111   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3112     result = do_marking_mt();
3113   } else {
3114     result = do_marking_st();
3115   }
3116   return result;
3117 }
3118 
3119 // Forward decl
3120 class CMSConcMarkingTask;
3121 
3122 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3123   CMSCollector*       _collector;
3124   CMSConcMarkingTask* _task;
3125  public:
3126   virtual void yield();
3127 
3128   // "n_threads" is the number of threads to be terminated.
3129   // "queue_set" is a set of work queues of other threads.
3130   // "collector" is the CMS collector associated with this task terminator.
3131   // "yield" indicates whether we need the gang as a whole to yield.
3132   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3133     ParallelTaskTerminator(n_threads, queue_set),
3134     _collector(collector) { }
3135 
3136   void set_task(CMSConcMarkingTask* task) {
3137     _task = task;
3138   }
3139 };
3140 
3141 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3142   CMSConcMarkingTask* _task;
3143  public:
3144   bool should_exit_termination();
3145   void set_task(CMSConcMarkingTask* task) {
3146     _task = task;
3147   }
3148 };
3149 
3150 // MT Concurrent Marking Task
3151 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3152   CMSCollector* _collector;
3153   int           _n_workers;                  // requested/desired # workers
3154   bool          _result;
3155   CompactibleFreeListSpace*  _cms_space;
3156   char          _pad_front[64];   // padding to ...
3157   HeapWord*     _global_finger;   // ... avoid sharing cache line
3158   char          _pad_back[64];
3159   HeapWord*     _restart_addr;
3160 
3161   //  Exposed here for yielding support
3162   Mutex* const _bit_map_lock;
3163 
3164   // The per thread work queues, available here for stealing
3165   OopTaskQueueSet*  _task_queues;
3166 
3167   // Termination (and yielding) support
3168   CMSConcMarkingTerminator _term;
3169   CMSConcMarkingTerminatorTerminator _term_term;
3170 
3171  public:
3172   CMSConcMarkingTask(CMSCollector* collector,
3173                  CompactibleFreeListSpace* cms_space,
3174                  YieldingFlexibleWorkGang* workers,
3175                  OopTaskQueueSet* task_queues):
3176     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3177     _collector(collector),
3178     _cms_space(cms_space),
3179     _n_workers(0), _result(true),
3180     _task_queues(task_queues),
3181     _term(_n_workers, task_queues, _collector),
3182     _bit_map_lock(collector->bitMapLock())
3183   {
3184     _requested_size = _n_workers;
3185     _term.set_task(this);
3186     _term_term.set_task(this);
3187     _restart_addr = _global_finger = _cms_space->bottom();
3188   }
3189 
3190 
3191   OopTaskQueueSet* task_queues()  { return _task_queues; }
3192 
3193   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3194 
3195   HeapWord** global_finger_addr() { return &_global_finger; }
3196 
3197   CMSConcMarkingTerminator* terminator() { return &_term; }
3198 
3199   virtual void set_for_termination(int active_workers) {
3200     terminator()->reset_for_reuse(active_workers);
3201   }
3202 
3203   void work(uint worker_id);
3204   bool should_yield() {
3205     return    ConcurrentMarkSweepThread::should_yield()
3206            && !_collector->foregroundGCIsActive();
3207   }
3208 
3209   virtual void coordinator_yield();  // stuff done by coordinator
3210   bool result() { return _result; }
3211 
3212   void reset(HeapWord* ra) {
3213     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3214     _restart_addr = _global_finger = ra;
3215     _term.reset_for_reuse();
3216   }
3217 
3218   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3219                                            OopTaskQueue* work_q);
3220 
3221  private:
3222   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3223   void do_work_steal(int i);
3224   void bump_global_finger(HeapWord* f);
3225 };
3226 
3227 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3228   assert(_task != NULL, "Error");
3229   return _task->yielding();
3230   // Note that we do not need the disjunct || _task->should_yield() above
3231   // because we want terminating threads to yield only if the task
3232   // is already in the midst of yielding, which happens only after at least one
3233   // thread has yielded.
3234 }
3235 
3236 void CMSConcMarkingTerminator::yield() {
3237   if (_task->should_yield()) {
3238     _task->yield();
3239   } else {
3240     ParallelTaskTerminator::yield();
3241   }
3242 }
3243 
3244 ////////////////////////////////////////////////////////////////
3245 // Concurrent Marking Algorithm Sketch
3246 ////////////////////////////////////////////////////////////////
3247 // Until all tasks exhausted (both spaces):
3248 // -- claim next available chunk
3249 // -- bump global finger via CAS
3250 // -- find first object that starts in this chunk
3251 //    and start scanning bitmap from that position
3252 // -- scan marked objects for oops
3253 // -- CAS-mark target, and if successful:
3254 //    . if target oop is above global finger (volatile read)
3255 //      nothing to do
3256 //    . if target oop is in chunk and above local finger
3257 //        then nothing to do
3258 //    . else push on work-queue
3259 // -- Deal with possible overflow issues:
3260 //    . local work-queue overflow causes stuff to be pushed on
3261 //      global (common) overflow queue
3262 //    . always first empty local work queue
3263 //    . then get a batch of oops from global work queue if any
3264 //    . then do work stealing
3265 // -- When all tasks claimed (both spaces)
3266 //    and local work queue empty,
3267 //    then in a loop do:
3268 //    . check global overflow stack; steal a batch of oops and trace
3269 //    . try to steal from other threads oif GOS is empty
3270 //    . if neither is available, offer termination
3271 // -- Terminate and return result
3272 //
3273 void CMSConcMarkingTask::work(uint worker_id) {
3274   elapsedTimer _timer;
3275   ResourceMark rm;
3276   HandleMark hm;
3277 
3278   DEBUG_ONLY(_collector->verify_overflow_empty();)
3279 
3280   // Before we begin work, our work queue should be empty
3281   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3282   // Scan the bitmap covering _cms_space, tracing through grey objects.
3283   _timer.start();
3284   do_scan_and_mark(worker_id, _cms_space);
3285   _timer.stop();
3286   if (PrintCMSStatistics != 0) {
3287     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3288       worker_id, _timer.seconds());
3289       // XXX: need xxx/xxx type of notation, two timers
3290   }
3291 
3292   // ... do work stealing
3293   _timer.reset();
3294   _timer.start();
3295   do_work_steal(worker_id);
3296   _timer.stop();
3297   if (PrintCMSStatistics != 0) {
3298     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3299       worker_id, _timer.seconds());
3300       // XXX: need xxx/xxx type of notation, two timers
3301   }
3302   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3303   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3304   // Note that under the current task protocol, the
3305   // following assertion is true even of the spaces
3306   // expanded since the completion of the concurrent
3307   // marking. XXX This will likely change under a strict
3308   // ABORT semantics.
3309   // After perm removal the comparison was changed to
3310   // greater than or equal to from strictly greater than.
3311   // Before perm removal the highest address sweep would
3312   // have been at the end of perm gen but now is at the
3313   // end of the tenured gen.
3314   assert(_global_finger >=  _cms_space->end(),
3315          "All tasks have been completed");
3316   DEBUG_ONLY(_collector->verify_overflow_empty();)
3317 }
3318 
3319 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3320   HeapWord* read = _global_finger;
3321   HeapWord* cur  = read;
3322   while (f > read) {
3323     cur = read;
3324     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3325     if (cur == read) {
3326       // our cas succeeded
3327       assert(_global_finger >= f, "protocol consistency");
3328       break;
3329     }
3330   }
3331 }
3332 
3333 // This is really inefficient, and should be redone by
3334 // using (not yet available) block-read and -write interfaces to the
3335 // stack and the work_queue. XXX FIX ME !!!
3336 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3337                                                       OopTaskQueue* work_q) {
3338   // Fast lock-free check
3339   if (ovflw_stk->length() == 0) {
3340     return false;
3341   }
3342   assert(work_q->size() == 0, "Shouldn't steal");
3343   MutexLockerEx ml(ovflw_stk->par_lock(),
3344                    Mutex::_no_safepoint_check_flag);
3345   // Grab up to 1/4 the size of the work queue
3346   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3347                     (size_t)ParGCDesiredObjsFromOverflowList);
3348   num = MIN2(num, ovflw_stk->length());
3349   for (int i = (int) num; i > 0; i--) {
3350     oop cur = ovflw_stk->pop();
3351     assert(cur != NULL, "Counted wrong?");
3352     work_q->push(cur);
3353   }
3354   return num > 0;
3355 }
3356 
3357 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3358   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3359   int n_tasks = pst->n_tasks();
3360   // We allow that there may be no tasks to do here because
3361   // we are restarting after a stack overflow.
3362   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3363   uint nth_task = 0;
3364 
3365   HeapWord* aligned_start = sp->bottom();
3366   if (sp->used_region().contains(_restart_addr)) {
3367     // Align down to a card boundary for the start of 0th task
3368     // for this space.
3369     aligned_start =
3370       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3371                                  CardTableModRefBS::card_size);
3372   }
3373 
3374   size_t chunk_size = sp->marking_task_size();
3375   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3376     // Having claimed the nth task in this space,
3377     // compute the chunk that it corresponds to:
3378     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3379                                aligned_start + (nth_task+1)*chunk_size);
3380     // Try and bump the global finger via a CAS;
3381     // note that we need to do the global finger bump
3382     // _before_ taking the intersection below, because
3383     // the task corresponding to that region will be
3384     // deemed done even if the used_region() expands
3385     // because of allocation -- as it almost certainly will
3386     // during start-up while the threads yield in the
3387     // closure below.
3388     HeapWord* finger = span.end();
3389     bump_global_finger(finger);   // atomically
3390     // There are null tasks here corresponding to chunks
3391     // beyond the "top" address of the space.
3392     span = span.intersection(sp->used_region());
3393     if (!span.is_empty()) {  // Non-null task
3394       HeapWord* prev_obj;
3395       assert(!span.contains(_restart_addr) || nth_task == 0,
3396              "Inconsistency");
3397       if (nth_task == 0) {
3398         // For the 0th task, we'll not need to compute a block_start.
3399         if (span.contains(_restart_addr)) {
3400           // In the case of a restart because of stack overflow,
3401           // we might additionally skip a chunk prefix.
3402           prev_obj = _restart_addr;
3403         } else {
3404           prev_obj = span.start();
3405         }
3406       } else {
3407         // We want to skip the first object because
3408         // the protocol is to scan any object in its entirety
3409         // that _starts_ in this span; a fortiori, any
3410         // object starting in an earlier span is scanned
3411         // as part of an earlier claimed task.
3412         // Below we use the "careful" version of block_start
3413         // so we do not try to navigate uninitialized objects.
3414         prev_obj = sp->block_start_careful(span.start());
3415         // Below we use a variant of block_size that uses the
3416         // Printezis bits to avoid waiting for allocated
3417         // objects to become initialized/parsable.
3418         while (prev_obj < span.start()) {
3419           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3420           if (sz > 0) {
3421             prev_obj += sz;
3422           } else {
3423             // In this case we may end up doing a bit of redundant
3424             // scanning, but that appears unavoidable, short of
3425             // locking the free list locks; see bug 6324141.
3426             break;
3427           }
3428         }
3429       }
3430       if (prev_obj < span.end()) {
3431         MemRegion my_span = MemRegion(prev_obj, span.end());
3432         // Do the marking work within a non-empty span --
3433         // the last argument to the constructor indicates whether the
3434         // iteration should be incremental with periodic yields.
3435         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3436                                     &_collector->_markBitMap,
3437                                     work_queue(i),
3438                                     &_collector->_markStack);
3439         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3440       } // else nothing to do for this task
3441     }   // else nothing to do for this task
3442   }
3443   // We'd be tempted to assert here that since there are no
3444   // more tasks left to claim in this space, the global_finger
3445   // must exceed space->top() and a fortiori space->end(). However,
3446   // that would not quite be correct because the bumping of
3447   // global_finger occurs strictly after the claiming of a task,
3448   // so by the time we reach here the global finger may not yet
3449   // have been bumped up by the thread that claimed the last
3450   // task.
3451   pst->all_tasks_completed();
3452 }
3453 
3454 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3455  private:
3456   CMSCollector* _collector;
3457   CMSConcMarkingTask* _task;
3458   MemRegion     _span;
3459   CMSBitMap*    _bit_map;
3460   CMSMarkStack* _overflow_stack;
3461   OopTaskQueue* _work_queue;
3462  protected:
3463   DO_OOP_WORK_DEFN
3464  public:
3465   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3466                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3467     MetadataAwareOopClosure(collector->ref_processor()),
3468     _collector(collector),
3469     _task(task),
3470     _span(collector->_span),
3471     _work_queue(work_queue),
3472     _bit_map(bit_map),
3473     _overflow_stack(overflow_stack)
3474   { }
3475   virtual void do_oop(oop* p);
3476   virtual void do_oop(narrowOop* p);
3477 
3478   void trim_queue(size_t max);
3479   void handle_stack_overflow(HeapWord* lost);
3480   void do_yield_check() {
3481     if (_task->should_yield()) {
3482       _task->yield();
3483     }
3484   }
3485 };
3486 
3487 // Grey object scanning during work stealing phase --
3488 // the salient assumption here is that any references
3489 // that are in these stolen objects being scanned must
3490 // already have been initialized (else they would not have
3491 // been published), so we do not need to check for
3492 // uninitialized objects before pushing here.
3493 void Par_ConcMarkingClosure::do_oop(oop obj) {
3494   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3495   HeapWord* addr = (HeapWord*)obj;
3496   // Check if oop points into the CMS generation
3497   // and is not marked
3498   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3499     // a white object ...
3500     // If we manage to "claim" the object, by being the
3501     // first thread to mark it, then we push it on our
3502     // marking stack
3503     if (_bit_map->par_mark(addr)) {     // ... now grey
3504       // push on work queue (grey set)
3505       bool simulate_overflow = false;
3506       NOT_PRODUCT(
3507         if (CMSMarkStackOverflowALot &&
3508             _collector->simulate_overflow()) {
3509           // simulate a stack overflow
3510           simulate_overflow = true;
3511         }
3512       )
3513       if (simulate_overflow ||
3514           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3515         // stack overflow
3516         if (PrintCMSStatistics != 0) {
3517           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3518                                  SIZE_FORMAT, _overflow_stack->capacity());
3519         }
3520         // We cannot assert that the overflow stack is full because
3521         // it may have been emptied since.
3522         assert(simulate_overflow ||
3523                _work_queue->size() == _work_queue->max_elems(),
3524               "Else push should have succeeded");
3525         handle_stack_overflow(addr);
3526       }
3527     } // Else, some other thread got there first
3528     do_yield_check();
3529   }
3530 }
3531 
3532 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3533 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3534 
3535 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3536   while (_work_queue->size() > max) {
3537     oop new_oop;
3538     if (_work_queue->pop_local(new_oop)) {
3539       assert(new_oop->is_oop(), "Should be an oop");
3540       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3541       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3542       new_oop->oop_iterate(this);  // do_oop() above
3543       do_yield_check();
3544     }
3545   }
3546 }
3547 
3548 // Upon stack overflow, we discard (part of) the stack,
3549 // remembering the least address amongst those discarded
3550 // in CMSCollector's _restart_address.
3551 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3552   // We need to do this under a mutex to prevent other
3553   // workers from interfering with the work done below.
3554   MutexLockerEx ml(_overflow_stack->par_lock(),
3555                    Mutex::_no_safepoint_check_flag);
3556   // Remember the least grey address discarded
3557   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3558   _collector->lower_restart_addr(ra);
3559   _overflow_stack->reset();  // discard stack contents
3560   _overflow_stack->expand(); // expand the stack if possible
3561 }
3562 
3563 
3564 void CMSConcMarkingTask::do_work_steal(int i) {
3565   OopTaskQueue* work_q = work_queue(i);
3566   oop obj_to_scan;
3567   CMSBitMap* bm = &(_collector->_markBitMap);
3568   CMSMarkStack* ovflw = &(_collector->_markStack);
3569   int* seed = _collector->hash_seed(i);
3570   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3571   while (true) {
3572     cl.trim_queue(0);
3573     assert(work_q->size() == 0, "Should have been emptied above");
3574     if (get_work_from_overflow_stack(ovflw, work_q)) {
3575       // Can't assert below because the work obtained from the
3576       // overflow stack may already have been stolen from us.
3577       // assert(work_q->size() > 0, "Work from overflow stack");
3578       continue;
3579     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3580       assert(obj_to_scan->is_oop(), "Should be an oop");
3581       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3582       obj_to_scan->oop_iterate(&cl);
3583     } else if (terminator()->offer_termination(&_term_term)) {
3584       assert(work_q->size() == 0, "Impossible!");
3585       break;
3586     } else if (yielding() || should_yield()) {
3587       yield();
3588     }
3589   }
3590 }
3591 
3592 // This is run by the CMS (coordinator) thread.
3593 void CMSConcMarkingTask::coordinator_yield() {
3594   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3595          "CMS thread should hold CMS token");
3596   // First give up the locks, then yield, then re-lock
3597   // We should probably use a constructor/destructor idiom to
3598   // do this unlock/lock or modify the MutexUnlocker class to
3599   // serve our purpose. XXX
3600   assert_lock_strong(_bit_map_lock);
3601   _bit_map_lock->unlock();
3602   ConcurrentMarkSweepThread::desynchronize(true);
3603   _collector->stopTimer();
3604   if (PrintCMSStatistics != 0) {
3605     _collector->incrementYields();
3606   }
3607 
3608   // It is possible for whichever thread initiated the yield request
3609   // not to get a chance to wake up and take the bitmap lock between
3610   // this thread releasing it and reacquiring it. So, while the
3611   // should_yield() flag is on, let's sleep for a bit to give the
3612   // other thread a chance to wake up. The limit imposed on the number
3613   // of iterations is defensive, to avoid any unforseen circumstances
3614   // putting us into an infinite loop. Since it's always been this
3615   // (coordinator_yield()) method that was observed to cause the
3616   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3617   // which is by default non-zero. For the other seven methods that
3618   // also perform the yield operation, as are using a different
3619   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3620   // can enable the sleeping for those methods too, if necessary.
3621   // See 6442774.
3622   //
3623   // We really need to reconsider the synchronization between the GC
3624   // thread and the yield-requesting threads in the future and we
3625   // should really use wait/notify, which is the recommended
3626   // way of doing this type of interaction. Additionally, we should
3627   // consolidate the eight methods that do the yield operation and they
3628   // are almost identical into one for better maintainability and
3629   // readability. See 6445193.
3630   //
3631   // Tony 2006.06.29
3632   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3633                    ConcurrentMarkSweepThread::should_yield() &&
3634                    !CMSCollector::foregroundGCIsActive(); ++i) {
3635     os::sleep(Thread::current(), 1, false);
3636   }
3637 
3638   ConcurrentMarkSweepThread::synchronize(true);
3639   _bit_map_lock->lock_without_safepoint_check();
3640   _collector->startTimer();
3641 }
3642 
3643 bool CMSCollector::do_marking_mt() {
3644   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3645   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
3646                                        conc_workers()->total_workers(),
3647                                        conc_workers()->active_workers(),
3648                                        Threads::number_of_non_daemon_threads());
3649   conc_workers()->set_active_workers(num_workers);
3650 
3651   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3652 
3653   CMSConcMarkingTask tsk(this,
3654                          cms_space,
3655                          conc_workers(),
3656                          task_queues());
3657 
3658   // Since the actual number of workers we get may be different
3659   // from the number we requested above, do we need to do anything different
3660   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3661   // class?? XXX
3662   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3663 
3664   // Refs discovery is already non-atomic.
3665   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3666   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3667   conc_workers()->start_task(&tsk);
3668   while (tsk.yielded()) {
3669     tsk.coordinator_yield();
3670     conc_workers()->continue_task(&tsk);
3671   }
3672   // If the task was aborted, _restart_addr will be non-NULL
3673   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3674   while (_restart_addr != NULL) {
3675     // XXX For now we do not make use of ABORTED state and have not
3676     // yet implemented the right abort semantics (even in the original
3677     // single-threaded CMS case). That needs some more investigation
3678     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3679     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3680     // If _restart_addr is non-NULL, a marking stack overflow
3681     // occurred; we need to do a fresh marking iteration from the
3682     // indicated restart address.
3683     if (_foregroundGCIsActive) {
3684       // We may be running into repeated stack overflows, having
3685       // reached the limit of the stack size, while making very
3686       // slow forward progress. It may be best to bail out and
3687       // let the foreground collector do its job.
3688       // Clear _restart_addr, so that foreground GC
3689       // works from scratch. This avoids the headache of
3690       // a "rescan" which would otherwise be needed because
3691       // of the dirty mod union table & card table.
3692       _restart_addr = NULL;
3693       return false;
3694     }
3695     // Adjust the task to restart from _restart_addr
3696     tsk.reset(_restart_addr);
3697     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3698                   _restart_addr);
3699     _restart_addr = NULL;
3700     // Get the workers going again
3701     conc_workers()->start_task(&tsk);
3702     while (tsk.yielded()) {
3703       tsk.coordinator_yield();
3704       conc_workers()->continue_task(&tsk);
3705     }
3706   }
3707   assert(tsk.completed(), "Inconsistency");
3708   assert(tsk.result() == true, "Inconsistency");
3709   return true;
3710 }
3711 
3712 bool CMSCollector::do_marking_st() {
3713   ResourceMark rm;
3714   HandleMark   hm;
3715 
3716   // Temporarily make refs discovery single threaded (non-MT)
3717   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3718   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3719     &_markStack, CMSYield);
3720   // the last argument to iterate indicates whether the iteration
3721   // should be incremental with periodic yields.
3722   _markBitMap.iterate(&markFromRootsClosure);
3723   // If _restart_addr is non-NULL, a marking stack overflow
3724   // occurred; we need to do a fresh iteration from the
3725   // indicated restart address.
3726   while (_restart_addr != NULL) {
3727     if (_foregroundGCIsActive) {
3728       // We may be running into repeated stack overflows, having
3729       // reached the limit of the stack size, while making very
3730       // slow forward progress. It may be best to bail out and
3731       // let the foreground collector do its job.
3732       // Clear _restart_addr, so that foreground GC
3733       // works from scratch. This avoids the headache of
3734       // a "rescan" which would otherwise be needed because
3735       // of the dirty mod union table & card table.
3736       _restart_addr = NULL;
3737       return false;  // indicating failure to complete marking
3738     }
3739     // Deal with stack overflow:
3740     // we restart marking from _restart_addr
3741     HeapWord* ra = _restart_addr;
3742     markFromRootsClosure.reset(ra);
3743     _restart_addr = NULL;
3744     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3745   }
3746   return true;
3747 }
3748 
3749 void CMSCollector::preclean() {
3750   check_correct_thread_executing();
3751   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3752   verify_work_stacks_empty();
3753   verify_overflow_empty();
3754   _abort_preclean = false;
3755   if (CMSPrecleaningEnabled) {
3756     if (!CMSEdenChunksRecordAlways) {
3757       _eden_chunk_index = 0;
3758     }
3759     size_t used = get_eden_used();
3760     size_t capacity = get_eden_capacity();
3761     // Don't start sampling unless we will get sufficiently
3762     // many samples.
3763     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3764                 * CMSScheduleRemarkEdenPenetration)) {
3765       _start_sampling = true;
3766     } else {
3767       _start_sampling = false;
3768     }
3769     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3770     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3771     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3772   }
3773   CMSTokenSync x(true); // is cms thread
3774   if (CMSPrecleaningEnabled) {
3775     sample_eden();
3776     _collectorState = AbortablePreclean;
3777   } else {
3778     _collectorState = FinalMarking;
3779   }
3780   verify_work_stacks_empty();
3781   verify_overflow_empty();
3782 }
3783 
3784 // Try and schedule the remark such that young gen
3785 // occupancy is CMSScheduleRemarkEdenPenetration %.
3786 void CMSCollector::abortable_preclean() {
3787   check_correct_thread_executing();
3788   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3789   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3790 
3791   // If Eden's current occupancy is below this threshold,
3792   // immediately schedule the remark; else preclean
3793   // past the next scavenge in an effort to
3794   // schedule the pause as described above. By choosing
3795   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3796   // we will never do an actual abortable preclean cycle.
3797   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3798     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3799     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3800     // We need more smarts in the abortable preclean
3801     // loop below to deal with cases where allocation
3802     // in young gen is very very slow, and our precleaning
3803     // is running a losing race against a horde of
3804     // mutators intent on flooding us with CMS updates
3805     // (dirty cards).
3806     // One, admittedly dumb, strategy is to give up
3807     // after a certain number of abortable precleaning loops
3808     // or after a certain maximum time. We want to make
3809     // this smarter in the next iteration.
3810     // XXX FIX ME!!! YSR
3811     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3812     while (!(should_abort_preclean() ||
3813              ConcurrentMarkSweepThread::should_terminate())) {
3814       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3815       cumworkdone += workdone;
3816       loops++;
3817       // Voluntarily terminate abortable preclean phase if we have
3818       // been at it for too long.
3819       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3820           loops >= CMSMaxAbortablePrecleanLoops) {
3821         if (PrintGCDetails) {
3822           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3823         }
3824         break;
3825       }
3826       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3827         if (PrintGCDetails) {
3828           gclog_or_tty->print(" CMS: abort preclean due to time ");
3829         }
3830         break;
3831       }
3832       // If we are doing little work each iteration, we should
3833       // take a short break.
3834       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3835         // Sleep for some time, waiting for work to accumulate
3836         stopTimer();
3837         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3838         startTimer();
3839         waited++;
3840       }
3841     }
3842     if (PrintCMSStatistics > 0) {
3843       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3844                           loops, waited, cumworkdone);
3845     }
3846   }
3847   CMSTokenSync x(true); // is cms thread
3848   if (_collectorState != Idling) {
3849     assert(_collectorState == AbortablePreclean,
3850            "Spontaneous state transition?");
3851     _collectorState = FinalMarking;
3852   } // Else, a foreground collection completed this CMS cycle.
3853   return;
3854 }
3855 
3856 // Respond to an Eden sampling opportunity
3857 void CMSCollector::sample_eden() {
3858   // Make sure a young gc cannot sneak in between our
3859   // reading and recording of a sample.
3860   assert(Thread::current()->is_ConcurrentGC_thread(),
3861          "Only the cms thread may collect Eden samples");
3862   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3863          "Should collect samples while holding CMS token");
3864   if (!_start_sampling) {
3865     return;
3866   }
3867   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3868   // is populated by the young generation.
3869   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3870     if (_eden_chunk_index < _eden_chunk_capacity) {
3871       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3872       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3873              "Unexpected state of Eden");
3874       // We'd like to check that what we just sampled is an oop-start address;
3875       // however, we cannot do that here since the object may not yet have been
3876       // initialized. So we'll instead do the check when we _use_ this sample
3877       // later.
3878       if (_eden_chunk_index == 0 ||
3879           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3880                          _eden_chunk_array[_eden_chunk_index-1])
3881            >= CMSSamplingGrain)) {
3882         _eden_chunk_index++;  // commit sample
3883       }
3884     }
3885   }
3886   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3887     size_t used = get_eden_used();
3888     size_t capacity = get_eden_capacity();
3889     assert(used <= capacity, "Unexpected state of Eden");
3890     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3891       _abort_preclean = true;
3892     }
3893   }
3894 }
3895 
3896 
3897 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3898   assert(_collectorState == Precleaning ||
3899          _collectorState == AbortablePreclean, "incorrect state");
3900   ResourceMark rm;
3901   HandleMark   hm;
3902 
3903   // Precleaning is currently not MT but the reference processor
3904   // may be set for MT.  Disable it temporarily here.
3905   ReferenceProcessor* rp = ref_processor();
3906   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3907 
3908   // Do one pass of scrubbing the discovered reference lists
3909   // to remove any reference objects with strongly-reachable
3910   // referents.
3911   if (clean_refs) {
3912     CMSPrecleanRefsYieldClosure yield_cl(this);
3913     assert(rp->span().equals(_span), "Spans should be equal");
3914     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3915                                    &_markStack, true /* preclean */);
3916     CMSDrainMarkingStackClosure complete_trace(this,
3917                                    _span, &_markBitMap, &_markStack,
3918                                    &keep_alive, true /* preclean */);
3919 
3920     // We don't want this step to interfere with a young
3921     // collection because we don't want to take CPU
3922     // or memory bandwidth away from the young GC threads
3923     // (which may be as many as there are CPUs).
3924     // Note that we don't need to protect ourselves from
3925     // interference with mutators because they can't
3926     // manipulate the discovered reference lists nor affect
3927     // the computed reachability of the referents, the
3928     // only properties manipulated by the precleaning
3929     // of these reference lists.
3930     stopTimer();
3931     CMSTokenSyncWithLocks x(true /* is cms thread */,
3932                             bitMapLock());
3933     startTimer();
3934     sample_eden();
3935 
3936     // The following will yield to allow foreground
3937     // collection to proceed promptly. XXX YSR:
3938     // The code in this method may need further
3939     // tweaking for better performance and some restructuring
3940     // for cleaner interfaces.
3941     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3942     rp->preclean_discovered_references(
3943           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3944           gc_timer, _gc_tracer_cm->gc_id());
3945   }
3946 
3947   if (clean_survivor) {  // preclean the active survivor space(s)
3948     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3949                              &_markBitMap, &_modUnionTable,
3950                              &_markStack, true /* precleaning phase */);
3951     stopTimer();
3952     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3953                              bitMapLock());
3954     startTimer();
3955     unsigned int before_count =
3956       GenCollectedHeap::heap()->total_collections();
3957     SurvivorSpacePrecleanClosure
3958       sss_cl(this, _span, &_markBitMap, &_markStack,
3959              &pam_cl, before_count, CMSYield);
3960     _young_gen->from()->object_iterate_careful(&sss_cl);
3961     _young_gen->to()->object_iterate_careful(&sss_cl);
3962   }
3963   MarkRefsIntoAndScanClosure
3964     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3965              &_markStack, this, CMSYield,
3966              true /* precleaning phase */);
3967   // CAUTION: The following closure has persistent state that may need to
3968   // be reset upon a decrease in the sequence of addresses it
3969   // processes.
3970   ScanMarkedObjectsAgainCarefullyClosure
3971     smoac_cl(this, _span,
3972       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3973 
3974   // Preclean dirty cards in ModUnionTable and CardTable using
3975   // appropriate convergence criterion;
3976   // repeat CMSPrecleanIter times unless we find that
3977   // we are losing.
3978   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3979   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3980          "Bad convergence multiplier");
3981   assert(CMSPrecleanThreshold >= 100,
3982          "Unreasonably low CMSPrecleanThreshold");
3983 
3984   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3985   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3986        numIter < CMSPrecleanIter;
3987        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3988     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3989     if (Verbose && PrintGCDetails) {
3990       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3991     }
3992     // Either there are very few dirty cards, so re-mark
3993     // pause will be small anyway, or our pre-cleaning isn't
3994     // that much faster than the rate at which cards are being
3995     // dirtied, so we might as well stop and re-mark since
3996     // precleaning won't improve our re-mark time by much.
3997     if (curNumCards <= CMSPrecleanThreshold ||
3998         (numIter > 0 &&
3999          (curNumCards * CMSPrecleanDenominator >
4000          lastNumCards * CMSPrecleanNumerator))) {
4001       numIter++;
4002       cumNumCards += curNumCards;
4003       break;
4004     }
4005   }
4006 
4007   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4008 
4009   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4010   cumNumCards += curNumCards;
4011   if (PrintGCDetails && PrintCMSStatistics != 0) {
4012     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4013                   curNumCards, cumNumCards, numIter);
4014   }
4015   return cumNumCards;   // as a measure of useful work done
4016 }
4017 
4018 // PRECLEANING NOTES:
4019 // Precleaning involves:
4020 // . reading the bits of the modUnionTable and clearing the set bits.
4021 // . For the cards corresponding to the set bits, we scan the
4022 //   objects on those cards. This means we need the free_list_lock
4023 //   so that we can safely iterate over the CMS space when scanning
4024 //   for oops.
4025 // . When we scan the objects, we'll be both reading and setting
4026 //   marks in the marking bit map, so we'll need the marking bit map.
4027 // . For protecting _collector_state transitions, we take the CGC_lock.
4028 //   Note that any races in the reading of of card table entries by the
4029 //   CMS thread on the one hand and the clearing of those entries by the
4030 //   VM thread or the setting of those entries by the mutator threads on the
4031 //   other are quite benign. However, for efficiency it makes sense to keep
4032 //   the VM thread from racing with the CMS thread while the latter is
4033 //   dirty card info to the modUnionTable. We therefore also use the
4034 //   CGC_lock to protect the reading of the card table and the mod union
4035 //   table by the CM thread.
4036 // . We run concurrently with mutator updates, so scanning
4037 //   needs to be done carefully  -- we should not try to scan
4038 //   potentially uninitialized objects.
4039 //
4040 // Locking strategy: While holding the CGC_lock, we scan over and
4041 // reset a maximal dirty range of the mod union / card tables, then lock
4042 // the free_list_lock and bitmap lock to do a full marking, then
4043 // release these locks; and repeat the cycle. This allows for a
4044 // certain amount of fairness in the sharing of these locks between
4045 // the CMS collector on the one hand, and the VM thread and the
4046 // mutators on the other.
4047 
4048 // NOTE: preclean_mod_union_table() and preclean_card_table()
4049 // further below are largely identical; if you need to modify
4050 // one of these methods, please check the other method too.
4051 
4052 size_t CMSCollector::preclean_mod_union_table(
4053   ConcurrentMarkSweepGeneration* gen,
4054   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4055   verify_work_stacks_empty();
4056   verify_overflow_empty();
4057 
4058   // strategy: starting with the first card, accumulate contiguous
4059   // ranges of dirty cards; clear these cards, then scan the region
4060   // covered by these cards.
4061 
4062   // Since all of the MUT is committed ahead, we can just use
4063   // that, in case the generations expand while we are precleaning.
4064   // It might also be fine to just use the committed part of the
4065   // generation, but we might potentially miss cards when the
4066   // generation is rapidly expanding while we are in the midst
4067   // of precleaning.
4068   HeapWord* startAddr = gen->reserved().start();
4069   HeapWord* endAddr   = gen->reserved().end();
4070 
4071   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4072 
4073   size_t numDirtyCards, cumNumDirtyCards;
4074   HeapWord *nextAddr, *lastAddr;
4075   for (cumNumDirtyCards = numDirtyCards = 0,
4076        nextAddr = lastAddr = startAddr;
4077        nextAddr < endAddr;
4078        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4079 
4080     ResourceMark rm;
4081     HandleMark   hm;
4082 
4083     MemRegion dirtyRegion;
4084     {
4085       stopTimer();
4086       // Potential yield point
4087       CMSTokenSync ts(true);
4088       startTimer();
4089       sample_eden();
4090       // Get dirty region starting at nextOffset (inclusive),
4091       // simultaneously clearing it.
4092       dirtyRegion =
4093         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4094       assert(dirtyRegion.start() >= nextAddr,
4095              "returned region inconsistent?");
4096     }
4097     // Remember where the next search should begin.
4098     // The returned region (if non-empty) is a right open interval,
4099     // so lastOffset is obtained from the right end of that
4100     // interval.
4101     lastAddr = dirtyRegion.end();
4102     // Should do something more transparent and less hacky XXX
4103     numDirtyCards =
4104       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4105 
4106     // We'll scan the cards in the dirty region (with periodic
4107     // yields for foreground GC as needed).
4108     if (!dirtyRegion.is_empty()) {
4109       assert(numDirtyCards > 0, "consistency check");
4110       HeapWord* stop_point = NULL;
4111       stopTimer();
4112       // Potential yield point
4113       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4114                                bitMapLock());
4115       startTimer();
4116       {
4117         verify_work_stacks_empty();
4118         verify_overflow_empty();
4119         sample_eden();
4120         stop_point =
4121           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4122       }
4123       if (stop_point != NULL) {
4124         // The careful iteration stopped early either because it found an
4125         // uninitialized object, or because we were in the midst of an
4126         // "abortable preclean", which should now be aborted. Redirty
4127         // the bits corresponding to the partially-scanned or unscanned
4128         // cards. We'll either restart at the next block boundary or
4129         // abort the preclean.
4130         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4131                "Should only be AbortablePreclean.");
4132         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4133         if (should_abort_preclean()) {
4134           break; // out of preclean loop
4135         } else {
4136           // Compute the next address at which preclean should pick up;
4137           // might need bitMapLock in order to read P-bits.
4138           lastAddr = next_card_start_after_block(stop_point);
4139         }
4140       }
4141     } else {
4142       assert(lastAddr == endAddr, "consistency check");
4143       assert(numDirtyCards == 0, "consistency check");
4144       break;
4145     }
4146   }
4147   verify_work_stacks_empty();
4148   verify_overflow_empty();
4149   return cumNumDirtyCards;
4150 }
4151 
4152 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4153 // below are largely identical; if you need to modify
4154 // one of these methods, please check the other method too.
4155 
4156 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4157   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4158   // strategy: it's similar to precleamModUnionTable above, in that
4159   // we accumulate contiguous ranges of dirty cards, mark these cards
4160   // precleaned, then scan the region covered by these cards.
4161   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4162   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4163 
4164   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4165 
4166   size_t numDirtyCards, cumNumDirtyCards;
4167   HeapWord *lastAddr, *nextAddr;
4168 
4169   for (cumNumDirtyCards = numDirtyCards = 0,
4170        nextAddr = lastAddr = startAddr;
4171        nextAddr < endAddr;
4172        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4173 
4174     ResourceMark rm;
4175     HandleMark   hm;
4176 
4177     MemRegion dirtyRegion;
4178     {
4179       // See comments in "Precleaning notes" above on why we
4180       // do this locking. XXX Could the locking overheads be
4181       // too high when dirty cards are sparse? [I don't think so.]
4182       stopTimer();
4183       CMSTokenSync x(true); // is cms thread
4184       startTimer();
4185       sample_eden();
4186       // Get and clear dirty region from card table
4187       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4188                                     MemRegion(nextAddr, endAddr),
4189                                     true,
4190                                     CardTableModRefBS::precleaned_card_val());
4191 
4192       assert(dirtyRegion.start() >= nextAddr,
4193              "returned region inconsistent?");
4194     }
4195     lastAddr = dirtyRegion.end();
4196     numDirtyCards =
4197       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4198 
4199     if (!dirtyRegion.is_empty()) {
4200       stopTimer();
4201       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4202       startTimer();
4203       sample_eden();
4204       verify_work_stacks_empty();
4205       verify_overflow_empty();
4206       HeapWord* stop_point =
4207         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4208       if (stop_point != NULL) {
4209         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4210                "Should only be AbortablePreclean.");
4211         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4212         if (should_abort_preclean()) {
4213           break; // out of preclean loop
4214         } else {
4215           // Compute the next address at which preclean should pick up.
4216           lastAddr = next_card_start_after_block(stop_point);
4217         }
4218       }
4219     } else {
4220       break;
4221     }
4222   }
4223   verify_work_stacks_empty();
4224   verify_overflow_empty();
4225   return cumNumDirtyCards;
4226 }
4227 
4228 class PrecleanKlassClosure : public KlassClosure {
4229   KlassToOopClosure _cm_klass_closure;
4230  public:
4231   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4232   void do_klass(Klass* k) {
4233     if (k->has_accumulated_modified_oops()) {
4234       k->clear_accumulated_modified_oops();
4235 
4236       _cm_klass_closure.do_klass(k);
4237     }
4238   }
4239 };
4240 
4241 // The freelist lock is needed to prevent asserts, is it really needed?
4242 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4243 
4244   cl->set_freelistLock(freelistLock);
4245 
4246   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4247 
4248   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4249   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4250   PrecleanKlassClosure preclean_klass_closure(cl);
4251   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4252 
4253   verify_work_stacks_empty();
4254   verify_overflow_empty();
4255 }
4256 
4257 void CMSCollector::checkpointRootsFinal() {
4258   assert(_collectorState == FinalMarking, "incorrect state transition?");
4259   check_correct_thread_executing();
4260   // world is stopped at this checkpoint
4261   assert(SafepointSynchronize::is_at_safepoint(),
4262          "world should be stopped");
4263   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4264 
4265   verify_work_stacks_empty();
4266   verify_overflow_empty();
4267 
4268   if (PrintGCDetails) {
4269     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4270                         _young_gen->used() / K,
4271                         _young_gen->capacity() / K);
4272   }
4273   {
4274     if (CMSScavengeBeforeRemark) {
4275       GenCollectedHeap* gch = GenCollectedHeap::heap();
4276       // Temporarily set flag to false, GCH->do_collection will
4277       // expect it to be false and set to true
4278       FlagSetting fl(gch->_is_gc_active, false);
4279       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4280         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4281       int level = _cmsGen->level() - 1;
4282       if (level >= 0) {
4283         gch->do_collection(true,        // full (i.e. force, see below)
4284                            false,       // !clear_all_soft_refs
4285                            0,           // size
4286                            false,       // is_tlab
4287                            level        // max_level
4288                           );
4289       }
4290     }
4291     FreelistLocker x(this);
4292     MutexLockerEx y(bitMapLock(),
4293                     Mutex::_no_safepoint_check_flag);
4294     checkpointRootsFinalWork();
4295   }
4296   verify_work_stacks_empty();
4297   verify_overflow_empty();
4298 }
4299 
4300 void CMSCollector::checkpointRootsFinalWork() {
4301   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4302 
4303   assert(haveFreelistLocks(), "must have free list locks");
4304   assert_lock_strong(bitMapLock());
4305 
4306   ResourceMark rm;
4307   HandleMark   hm;
4308 
4309   GenCollectedHeap* gch = GenCollectedHeap::heap();
4310 
4311   if (should_unload_classes()) {
4312     CodeCache::gc_prologue();
4313   }
4314   assert(haveFreelistLocks(), "must have free list locks");
4315   assert_lock_strong(bitMapLock());
4316 
4317   // We might assume that we need not fill TLAB's when
4318   // CMSScavengeBeforeRemark is set, because we may have just done
4319   // a scavenge which would have filled all TLAB's -- and besides
4320   // Eden would be empty. This however may not always be the case --
4321   // for instance although we asked for a scavenge, it may not have
4322   // happened because of a JNI critical section. We probably need
4323   // a policy for deciding whether we can in that case wait until
4324   // the critical section releases and then do the remark following
4325   // the scavenge, and skip it here. In the absence of that policy,
4326   // or of an indication of whether the scavenge did indeed occur,
4327   // we cannot rely on TLAB's having been filled and must do
4328   // so here just in case a scavenge did not happen.
4329   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4330   // Update the saved marks which may affect the root scans.
4331   gch->save_marks();
4332 
4333   if (CMSPrintEdenSurvivorChunks) {
4334     print_eden_and_survivor_chunk_arrays();
4335   }
4336 
4337   {
4338     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4339 
4340     // Note on the role of the mod union table:
4341     // Since the marker in "markFromRoots" marks concurrently with
4342     // mutators, it is possible for some reachable objects not to have been
4343     // scanned. For instance, an only reference to an object A was
4344     // placed in object B after the marker scanned B. Unless B is rescanned,
4345     // A would be collected. Such updates to references in marked objects
4346     // are detected via the mod union table which is the set of all cards
4347     // dirtied since the first checkpoint in this GC cycle and prior to
4348     // the most recent young generation GC, minus those cleaned up by the
4349     // concurrent precleaning.
4350     if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4351       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4352       do_remark_parallel();
4353     } else {
4354       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4355                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4356       do_remark_non_parallel();
4357     }
4358   }
4359   verify_work_stacks_empty();
4360   verify_overflow_empty();
4361 
4362   {
4363     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4364     refProcessingWork();
4365   }
4366   verify_work_stacks_empty();
4367   verify_overflow_empty();
4368 
4369   if (should_unload_classes()) {
4370     CodeCache::gc_epilogue();
4371   }
4372   JvmtiExport::gc_epilogue();
4373 
4374   // If we encountered any (marking stack / work queue) overflow
4375   // events during the current CMS cycle, take appropriate
4376   // remedial measures, where possible, so as to try and avoid
4377   // recurrence of that condition.
4378   assert(_markStack.isEmpty(), "No grey objects");
4379   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4380                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4381   if (ser_ovflw > 0) {
4382     if (PrintCMSStatistics != 0) {
4383       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4384         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4385         ", kac_preclean="SIZE_FORMAT")",
4386         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4387         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4388     }
4389     _markStack.expand();
4390     _ser_pmc_remark_ovflw = 0;
4391     _ser_pmc_preclean_ovflw = 0;
4392     _ser_kac_preclean_ovflw = 0;
4393     _ser_kac_ovflw = 0;
4394   }
4395   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4396     if (PrintCMSStatistics != 0) {
4397       gclog_or_tty->print_cr("Work queue overflow (benign) "
4398         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4399         _par_pmc_remark_ovflw, _par_kac_ovflw);
4400     }
4401     _par_pmc_remark_ovflw = 0;
4402     _par_kac_ovflw = 0;
4403   }
4404   if (PrintCMSStatistics != 0) {
4405      if (_markStack._hit_limit > 0) {
4406        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4407                               _markStack._hit_limit);
4408      }
4409      if (_markStack._failed_double > 0) {
4410        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4411                               " current capacity "SIZE_FORMAT,
4412                               _markStack._failed_double,
4413                               _markStack.capacity());
4414      }
4415   }
4416   _markStack._hit_limit = 0;
4417   _markStack._failed_double = 0;
4418 
4419   if ((VerifyAfterGC || VerifyDuringGC) &&
4420       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4421     verify_after_remark();
4422   }
4423 
4424   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4425 
4426   // Change under the freelistLocks.
4427   _collectorState = Sweeping;
4428   // Call isAllClear() under bitMapLock
4429   assert(_modUnionTable.isAllClear(),
4430       "Should be clear by end of the final marking");
4431   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4432       "Should be clear by end of the final marking");
4433 }
4434 
4435 void CMSParInitialMarkTask::work(uint worker_id) {
4436   elapsedTimer _timer;
4437   ResourceMark rm;
4438   HandleMark   hm;
4439 
4440   // ---------- scan from roots --------------
4441   _timer.start();
4442   GenCollectedHeap* gch = GenCollectedHeap::heap();
4443   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4444 
4445   // ---------- young gen roots --------------
4446   {
4447     work_on_young_gen_roots(worker_id, &par_mri_cl);
4448     _timer.stop();
4449     if (PrintCMSStatistics != 0) {
4450       gclog_or_tty->print_cr(
4451         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4452         worker_id, _timer.seconds());
4453     }
4454   }
4455 
4456   // ---------- remaining roots --------------
4457   _timer.reset();
4458   _timer.start();
4459 
4460   CLDToOopClosure cld_closure(&par_mri_cl, true);
4461 
4462   gch->gen_process_roots(_collector->_cmsGen->level(),
4463                          false,     // yg was scanned above
4464                          false,     // this is parallel code
4465                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4466                          _collector->should_unload_classes(),
4467                          &par_mri_cl,
4468                          NULL,
4469                          &cld_closure);
4470   assert(_collector->should_unload_classes()
4471          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4472          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4473   _timer.stop();
4474   if (PrintCMSStatistics != 0) {
4475     gclog_or_tty->print_cr(
4476       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4477       worker_id, _timer.seconds());
4478   }
4479 }
4480 
4481 // Parallel remark task
4482 class CMSParRemarkTask: public CMSParMarkTask {
4483   CompactibleFreeListSpace* _cms_space;
4484 
4485   // The per-thread work queues, available here for stealing.
4486   OopTaskQueueSet*       _task_queues;
4487   ParallelTaskTerminator _term;
4488 
4489  public:
4490   // A value of 0 passed to n_workers will cause the number of
4491   // workers to be taken from the active workers in the work gang.
4492   CMSParRemarkTask(CMSCollector* collector,
4493                    CompactibleFreeListSpace* cms_space,
4494                    int n_workers, FlexibleWorkGang* workers,
4495                    OopTaskQueueSet* task_queues):
4496     CMSParMarkTask("Rescan roots and grey objects in parallel",
4497                    collector, n_workers),
4498     _cms_space(cms_space),
4499     _task_queues(task_queues),
4500     _term(n_workers, task_queues) { }
4501 
4502   OopTaskQueueSet* task_queues() { return _task_queues; }
4503 
4504   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4505 
4506   ParallelTaskTerminator* terminator() { return &_term; }
4507   int n_workers() { return _n_workers; }
4508 
4509   void work(uint worker_id);
4510 
4511  private:
4512   // ... of  dirty cards in old space
4513   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4514                                   Par_MarkRefsIntoAndScanClosure* cl);
4515 
4516   // ... work stealing for the above
4517   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4518 };
4519 
4520 class RemarkKlassClosure : public KlassClosure {
4521   KlassToOopClosure _cm_klass_closure;
4522  public:
4523   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4524   void do_klass(Klass* k) {
4525     // Check if we have modified any oops in the Klass during the concurrent marking.
4526     if (k->has_accumulated_modified_oops()) {
4527       k->clear_accumulated_modified_oops();
4528 
4529       // We could have transfered the current modified marks to the accumulated marks,
4530       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4531     } else if (k->has_modified_oops()) {
4532       // Don't clear anything, this info is needed by the next young collection.
4533     } else {
4534       // No modified oops in the Klass.
4535       return;
4536     }
4537 
4538     // The klass has modified fields, need to scan the klass.
4539     _cm_klass_closure.do_klass(k);
4540   }
4541 };
4542 
4543 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4544   ParNewGeneration* young_gen = _collector->_young_gen;
4545   ContiguousSpace* eden_space = young_gen->eden();
4546   ContiguousSpace* from_space = young_gen->from();
4547   ContiguousSpace* to_space   = young_gen->to();
4548 
4549   HeapWord** eca = _collector->_eden_chunk_array;
4550   size_t     ect = _collector->_eden_chunk_index;
4551   HeapWord** sca = _collector->_survivor_chunk_array;
4552   size_t     sct = _collector->_survivor_chunk_index;
4553 
4554   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4555   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4556 
4557   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4558   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4559   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4560 }
4561 
4562 // work_queue(i) is passed to the closure
4563 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4564 // also is passed to do_dirty_card_rescan_tasks() and to
4565 // do_work_steal() to select the i-th task_queue.
4566 
4567 void CMSParRemarkTask::work(uint worker_id) {
4568   elapsedTimer _timer;
4569   ResourceMark rm;
4570   HandleMark   hm;
4571 
4572   // ---------- rescan from roots --------------
4573   _timer.start();
4574   GenCollectedHeap* gch = GenCollectedHeap::heap();
4575   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4576     _collector->_span, _collector->ref_processor(),
4577     &(_collector->_markBitMap),
4578     work_queue(worker_id));
4579 
4580   // Rescan young gen roots first since these are likely
4581   // coarsely partitioned and may, on that account, constitute
4582   // the critical path; thus, it's best to start off that
4583   // work first.
4584   // ---------- young gen roots --------------
4585   {
4586     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4587     _timer.stop();
4588     if (PrintCMSStatistics != 0) {
4589       gclog_or_tty->print_cr(
4590         "Finished young gen rescan work in %dth thread: %3.3f sec",
4591         worker_id, _timer.seconds());
4592     }
4593   }
4594 
4595   // ---------- remaining roots --------------
4596   _timer.reset();
4597   _timer.start();
4598   gch->gen_process_roots(_collector->_cmsGen->level(),
4599                          false,     // yg was scanned above
4600                          false,     // this is parallel code
4601                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4602                          _collector->should_unload_classes(),
4603                          &par_mrias_cl,
4604                          NULL,
4605                          NULL);     // The dirty klasses will be handled below
4606 
4607   assert(_collector->should_unload_classes()
4608          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4609          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4610   _timer.stop();
4611   if (PrintCMSStatistics != 0) {
4612     gclog_or_tty->print_cr(
4613       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4614       worker_id, _timer.seconds());
4615   }
4616 
4617   // ---------- unhandled CLD scanning ----------
4618   if (worker_id == 0) { // Single threaded at the moment.
4619     _timer.reset();
4620     _timer.start();
4621 
4622     // Scan all new class loader data objects and new dependencies that were
4623     // introduced during concurrent marking.
4624     ResourceMark rm;
4625     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4626     for (int i = 0; i < array->length(); i++) {
4627       par_mrias_cl.do_class_loader_data(array->at(i));
4628     }
4629 
4630     // We don't need to keep track of new CLDs anymore.
4631     ClassLoaderDataGraph::remember_new_clds(false);
4632 
4633     _timer.stop();
4634     if (PrintCMSStatistics != 0) {
4635       gclog_or_tty->print_cr(
4636           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4637           worker_id, _timer.seconds());
4638     }
4639   }
4640 
4641   // ---------- dirty klass scanning ----------
4642   if (worker_id == 0) { // Single threaded at the moment.
4643     _timer.reset();
4644     _timer.start();
4645 
4646     // Scan all classes that was dirtied during the concurrent marking phase.
4647     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4648     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4649 
4650     _timer.stop();
4651     if (PrintCMSStatistics != 0) {
4652       gclog_or_tty->print_cr(
4653           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4654           worker_id, _timer.seconds());
4655     }
4656   }
4657 
4658   // We might have added oops to ClassLoaderData::_handles during the
4659   // concurrent marking phase. These oops point to newly allocated objects
4660   // that are guaranteed to be kept alive. Either by the direct allocation
4661   // code, or when the young collector processes the roots. Hence,
4662   // we don't have to revisit the _handles block during the remark phase.
4663 
4664   // ---------- rescan dirty cards ------------
4665   _timer.reset();
4666   _timer.start();
4667 
4668   // Do the rescan tasks for each of the two spaces
4669   // (cms_space) in turn.
4670   // "worker_id" is passed to select the task_queue for "worker_id"
4671   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4672   _timer.stop();
4673   if (PrintCMSStatistics != 0) {
4674     gclog_or_tty->print_cr(
4675       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4676       worker_id, _timer.seconds());
4677   }
4678 
4679   // ---------- steal work from other threads ...
4680   // ---------- ... and drain overflow list.
4681   _timer.reset();
4682   _timer.start();
4683   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4684   _timer.stop();
4685   if (PrintCMSStatistics != 0) {
4686     gclog_or_tty->print_cr(
4687       "Finished work stealing in %dth thread: %3.3f sec",
4688       worker_id, _timer.seconds());
4689   }
4690 }
4691 
4692 // Note that parameter "i" is not used.
4693 void
4694 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4695   OopsInGenClosure* cl, ContiguousSpace* space,
4696   HeapWord** chunk_array, size_t chunk_top) {
4697   // Until all tasks completed:
4698   // . claim an unclaimed task
4699   // . compute region boundaries corresponding to task claimed
4700   //   using chunk_array
4701   // . par_oop_iterate(cl) over that region
4702 
4703   ResourceMark rm;
4704   HandleMark   hm;
4705 
4706   SequentialSubTasksDone* pst = space->par_seq_tasks();
4707 
4708   uint nth_task = 0;
4709   uint n_tasks  = pst->n_tasks();
4710 
4711   if (n_tasks > 0) {
4712     assert(pst->valid(), "Uninitialized use?");
4713     HeapWord *start, *end;
4714     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4715       // We claimed task # nth_task; compute its boundaries.
4716       if (chunk_top == 0) {  // no samples were taken
4717         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4718         start = space->bottom();
4719         end   = space->top();
4720       } else if (nth_task == 0) {
4721         start = space->bottom();
4722         end   = chunk_array[nth_task];
4723       } else if (nth_task < (uint)chunk_top) {
4724         assert(nth_task >= 1, "Control point invariant");
4725         start = chunk_array[nth_task - 1];
4726         end   = chunk_array[nth_task];
4727       } else {
4728         assert(nth_task == (uint)chunk_top, "Control point invariant");
4729         start = chunk_array[chunk_top - 1];
4730         end   = space->top();
4731       }
4732       MemRegion mr(start, end);
4733       // Verify that mr is in space
4734       assert(mr.is_empty() || space->used_region().contains(mr),
4735              "Should be in space");
4736       // Verify that "start" is an object boundary
4737       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4738              "Should be an oop");
4739       space->par_oop_iterate(mr, cl);
4740     }
4741     pst->all_tasks_completed();
4742   }
4743 }
4744 
4745 void
4746 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4747   CompactibleFreeListSpace* sp, int i,
4748   Par_MarkRefsIntoAndScanClosure* cl) {
4749   // Until all tasks completed:
4750   // . claim an unclaimed task
4751   // . compute region boundaries corresponding to task claimed
4752   // . transfer dirty bits ct->mut for that region
4753   // . apply rescanclosure to dirty mut bits for that region
4754 
4755   ResourceMark rm;
4756   HandleMark   hm;
4757 
4758   OopTaskQueue* work_q = work_queue(i);
4759   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4760   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4761   // CAUTION: This closure has state that persists across calls to
4762   // the work method dirty_range_iterate_clear() in that it has
4763   // embedded in it a (subtype of) UpwardsObjectClosure. The
4764   // use of that state in the embedded UpwardsObjectClosure instance
4765   // assumes that the cards are always iterated (even if in parallel
4766   // by several threads) in monotonically increasing order per each
4767   // thread. This is true of the implementation below which picks
4768   // card ranges (chunks) in monotonically increasing order globally
4769   // and, a-fortiori, in monotonically increasing order per thread
4770   // (the latter order being a subsequence of the former).
4771   // If the work code below is ever reorganized into a more chaotic
4772   // work-partitioning form than the current "sequential tasks"
4773   // paradigm, the use of that persistent state will have to be
4774   // revisited and modified appropriately. See also related
4775   // bug 4756801 work on which should examine this code to make
4776   // sure that the changes there do not run counter to the
4777   // assumptions made here and necessary for correctness and
4778   // efficiency. Note also that this code might yield inefficient
4779   // behavior in the case of very large objects that span one or
4780   // more work chunks. Such objects would potentially be scanned
4781   // several times redundantly. Work on 4756801 should try and
4782   // address that performance anomaly if at all possible. XXX
4783   MemRegion  full_span  = _collector->_span;
4784   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4785   MarkFromDirtyCardsClosure
4786     greyRescanClosure(_collector, full_span, // entire span of interest
4787                       sp, bm, work_q, cl);
4788 
4789   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4790   assert(pst->valid(), "Uninitialized use?");
4791   uint nth_task = 0;
4792   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4793   MemRegion span = sp->used_region();
4794   HeapWord* start_addr = span.start();
4795   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4796                                            alignment);
4797   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4798   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4799          start_addr, "Check alignment");
4800   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4801          chunk_size, "Check alignment");
4802 
4803   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4804     // Having claimed the nth_task, compute corresponding mem-region,
4805     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4806     // The alignment restriction ensures that we do not need any
4807     // synchronization with other gang-workers while setting or
4808     // clearing bits in thus chunk of the MUT.
4809     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4810                                     start_addr + (nth_task+1)*chunk_size);
4811     // The last chunk's end might be way beyond end of the
4812     // used region. In that case pull back appropriately.
4813     if (this_span.end() > end_addr) {
4814       this_span.set_end(end_addr);
4815       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4816     }
4817     // Iterate over the dirty cards covering this chunk, marking them
4818     // precleaned, and setting the corresponding bits in the mod union
4819     // table. Since we have been careful to partition at Card and MUT-word
4820     // boundaries no synchronization is needed between parallel threads.
4821     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4822                                                  &modUnionClosure);
4823 
4824     // Having transferred these marks into the modUnionTable,
4825     // rescan the marked objects on the dirty cards in the modUnionTable.
4826     // Even if this is at a synchronous collection, the initial marking
4827     // may have been done during an asynchronous collection so there
4828     // may be dirty bits in the mod-union table.
4829     _collector->_modUnionTable.dirty_range_iterate_clear(
4830                   this_span, &greyRescanClosure);
4831     _collector->_modUnionTable.verifyNoOneBitsInRange(
4832                                  this_span.start(),
4833                                  this_span.end());
4834   }
4835   pst->all_tasks_completed();  // declare that i am done
4836 }
4837 
4838 // . see if we can share work_queues with ParNew? XXX
4839 void
4840 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4841                                 int* seed) {
4842   OopTaskQueue* work_q = work_queue(i);
4843   NOT_PRODUCT(int num_steals = 0;)
4844   oop obj_to_scan;
4845   CMSBitMap* bm = &(_collector->_markBitMap);
4846 
4847   while (true) {
4848     // Completely finish any left over work from (an) earlier round(s)
4849     cl->trim_queue(0);
4850     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4851                                          (size_t)ParGCDesiredObjsFromOverflowList);
4852     // Now check if there's any work in the overflow list
4853     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4854     // only affects the number of attempts made to get work from the
4855     // overflow list and does not affect the number of workers.  Just
4856     // pass ParallelGCThreads so this behavior is unchanged.
4857     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4858                                                 work_q,
4859                                                 ParallelGCThreads)) {
4860       // found something in global overflow list;
4861       // not yet ready to go stealing work from others.
4862       // We'd like to assert(work_q->size() != 0, ...)
4863       // because we just took work from the overflow list,
4864       // but of course we can't since all of that could have
4865       // been already stolen from us.
4866       // "He giveth and He taketh away."
4867       continue;
4868     }
4869     // Verify that we have no work before we resort to stealing
4870     assert(work_q->size() == 0, "Have work, shouldn't steal");
4871     // Try to steal from other queues that have work
4872     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4873       NOT_PRODUCT(num_steals++;)
4874       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4875       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4876       // Do scanning work
4877       obj_to_scan->oop_iterate(cl);
4878       // Loop around, finish this work, and try to steal some more
4879     } else if (terminator()->offer_termination()) {
4880         break;  // nirvana from the infinite cycle
4881     }
4882   }
4883   NOT_PRODUCT(
4884     if (PrintCMSStatistics != 0) {
4885       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4886     }
4887   )
4888   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4889          "Else our work is not yet done");
4890 }
4891 
4892 // Record object boundaries in _eden_chunk_array by sampling the eden
4893 // top in the slow-path eden object allocation code path and record
4894 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4895 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4896 // sampling in sample_eden() that activates during the part of the
4897 // preclean phase.
4898 void CMSCollector::sample_eden_chunk() {
4899   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4900     if (_eden_chunk_lock->try_lock()) {
4901       // Record a sample. This is the critical section. The contents
4902       // of the _eden_chunk_array have to be non-decreasing in the
4903       // address order.
4904       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4905       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4906              "Unexpected state of Eden");
4907       if (_eden_chunk_index == 0 ||
4908           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4909            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4910                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4911         _eden_chunk_index++;  // commit sample
4912       }
4913       _eden_chunk_lock->unlock();
4914     }
4915   }
4916 }
4917 
4918 // Return a thread-local PLAB recording array, as appropriate.
4919 void* CMSCollector::get_data_recorder(int thr_num) {
4920   if (_survivor_plab_array != NULL &&
4921       (CMSPLABRecordAlways ||
4922        (_collectorState > Marking && _collectorState < FinalMarking))) {
4923     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4924     ChunkArray* ca = &_survivor_plab_array[thr_num];
4925     ca->reset();   // clear it so that fresh data is recorded
4926     return (void*) ca;
4927   } else {
4928     return NULL;
4929   }
4930 }
4931 
4932 // Reset all the thread-local PLAB recording arrays
4933 void CMSCollector::reset_survivor_plab_arrays() {
4934   for (uint i = 0; i < ParallelGCThreads; i++) {
4935     _survivor_plab_array[i].reset();
4936   }
4937 }
4938 
4939 // Merge the per-thread plab arrays into the global survivor chunk
4940 // array which will provide the partitioning of the survivor space
4941 // for CMS initial scan and rescan.
4942 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4943                                               int no_of_gc_threads) {
4944   assert(_survivor_plab_array  != NULL, "Error");
4945   assert(_survivor_chunk_array != NULL, "Error");
4946   assert(_collectorState == FinalMarking ||
4947          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4948   for (int j = 0; j < no_of_gc_threads; j++) {
4949     _cursor[j] = 0;
4950   }
4951   HeapWord* top = surv->top();
4952   size_t i;
4953   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4954     HeapWord* min_val = top;          // Higher than any PLAB address
4955     uint      min_tid = 0;            // position of min_val this round
4956     for (int j = 0; j < no_of_gc_threads; j++) {
4957       ChunkArray* cur_sca = &_survivor_plab_array[j];
4958       if (_cursor[j] == cur_sca->end()) {
4959         continue;
4960       }
4961       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4962       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4963       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4964       if (cur_val < min_val) {
4965         min_tid = j;
4966         min_val = cur_val;
4967       } else {
4968         assert(cur_val < top, "All recorded addresses should be less");
4969       }
4970     }
4971     // At this point min_val and min_tid are respectively
4972     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4973     // and the thread (j) that witnesses that address.
4974     // We record this address in the _survivor_chunk_array[i]
4975     // and increment _cursor[min_tid] prior to the next round i.
4976     if (min_val == top) {
4977       break;
4978     }
4979     _survivor_chunk_array[i] = min_val;
4980     _cursor[min_tid]++;
4981   }
4982   // We are all done; record the size of the _survivor_chunk_array
4983   _survivor_chunk_index = i; // exclusive: [0, i)
4984   if (PrintCMSStatistics > 0) {
4985     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4986   }
4987   // Verify that we used up all the recorded entries
4988   #ifdef ASSERT
4989     size_t total = 0;
4990     for (int j = 0; j < no_of_gc_threads; j++) {
4991       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4992       total += _cursor[j];
4993     }
4994     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4995     // Check that the merged array is in sorted order
4996     if (total > 0) {
4997       for (size_t i = 0; i < total - 1; i++) {
4998         if (PrintCMSStatistics > 0) {
4999           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5000                               i, p2i(_survivor_chunk_array[i]));
5001         }
5002         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5003                "Not sorted");
5004       }
5005     }
5006   #endif // ASSERT
5007 }
5008 
5009 // Set up the space's par_seq_tasks structure for work claiming
5010 // for parallel initial scan and rescan of young gen.
5011 // See ParRescanTask where this is currently used.
5012 void
5013 CMSCollector::
5014 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5015   assert(n_threads > 0, "Unexpected n_threads argument");
5016 
5017   // Eden space
5018   if (!_young_gen->eden()->is_empty()) {
5019     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5020     assert(!pst->valid(), "Clobbering existing data?");
5021     // Each valid entry in [0, _eden_chunk_index) represents a task.
5022     size_t n_tasks = _eden_chunk_index + 1;
5023     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5024     // Sets the condition for completion of the subtask (how many threads
5025     // need to finish in order to be done).
5026     pst->set_n_threads(n_threads);
5027     pst->set_n_tasks((int)n_tasks);
5028   }
5029 
5030   // Merge the survivor plab arrays into _survivor_chunk_array
5031   if (_survivor_plab_array != NULL) {
5032     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5033   } else {
5034     assert(_survivor_chunk_index == 0, "Error");
5035   }
5036 
5037   // To space
5038   {
5039     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5040     assert(!pst->valid(), "Clobbering existing data?");
5041     // Sets the condition for completion of the subtask (how many threads
5042     // need to finish in order to be done).
5043     pst->set_n_threads(n_threads);
5044     pst->set_n_tasks(1);
5045     assert(pst->valid(), "Error");
5046   }
5047 
5048   // From space
5049   {
5050     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5051     assert(!pst->valid(), "Clobbering existing data?");
5052     size_t n_tasks = _survivor_chunk_index + 1;
5053     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5054     // Sets the condition for completion of the subtask (how many threads
5055     // need to finish in order to be done).
5056     pst->set_n_threads(n_threads);
5057     pst->set_n_tasks((int)n_tasks);
5058     assert(pst->valid(), "Error");
5059   }
5060 }
5061 
5062 // Parallel version of remark
5063 void CMSCollector::do_remark_parallel() {
5064   GenCollectedHeap* gch = GenCollectedHeap::heap();
5065   FlexibleWorkGang* workers = gch->workers();
5066   assert(workers != NULL, "Need parallel worker threads.");
5067   // Choose to use the number of GC workers most recently set
5068   // into "active_workers".  If active_workers is not set, set it
5069   // to ParallelGCThreads.
5070   int n_workers = workers->active_workers();
5071   if (n_workers == 0) {
5072     assert(n_workers > 0, "Should have been set during scavenge");
5073     n_workers = ParallelGCThreads;
5074     workers->set_active_workers(n_workers);
5075   }
5076   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5077 
5078   CMSParRemarkTask tsk(this,
5079     cms_space,
5080     n_workers, workers, task_queues());
5081 
5082   // Set up for parallel process_roots work.
5083   gch->set_par_threads(n_workers);
5084   // We won't be iterating over the cards in the card table updating
5085   // the younger_gen cards, so we shouldn't call the following else
5086   // the verification code as well as subsequent younger_refs_iterate
5087   // code would get confused. XXX
5088   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5089 
5090   // The young gen rescan work will not be done as part of
5091   // process_roots (which currently doesn't know how to
5092   // parallelize such a scan), but rather will be broken up into
5093   // a set of parallel tasks (via the sampling that the [abortable]
5094   // preclean phase did of eden, plus the [two] tasks of
5095   // scanning the [two] survivor spaces. Further fine-grain
5096   // parallelization of the scanning of the survivor spaces
5097   // themselves, and of precleaning of the younger gen itself
5098   // is deferred to the future.
5099   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5100 
5101   // The dirty card rescan work is broken up into a "sequence"
5102   // of parallel tasks (per constituent space) that are dynamically
5103   // claimed by the parallel threads.
5104   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5105 
5106   // It turns out that even when we're using 1 thread, doing the work in a
5107   // separate thread causes wide variance in run times.  We can't help this
5108   // in the multi-threaded case, but we special-case n=1 here to get
5109   // repeatable measurements of the 1-thread overhead of the parallel code.
5110   if (n_workers > 1) {
5111     // Make refs discovery MT-safe, if it isn't already: it may not
5112     // necessarily be so, since it's possible that we are doing
5113     // ST marking.
5114     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5115     GenCollectedHeap::StrongRootsScope srs(gch);
5116     workers->run_task(&tsk);
5117   } else {
5118     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5119     GenCollectedHeap::StrongRootsScope srs(gch);
5120     tsk.work(0);
5121   }
5122 
5123   gch->set_par_threads(0);  // 0 ==> non-parallel.
5124   // restore, single-threaded for now, any preserved marks
5125   // as a result of work_q overflow
5126   restore_preserved_marks_if_any();
5127 }
5128 
5129 // Non-parallel version of remark
5130 void CMSCollector::do_remark_non_parallel() {
5131   ResourceMark rm;
5132   HandleMark   hm;
5133   GenCollectedHeap* gch = GenCollectedHeap::heap();
5134   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5135 
5136   MarkRefsIntoAndScanClosure
5137     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5138              &_markStack, this,
5139              false /* should_yield */, false /* not precleaning */);
5140   MarkFromDirtyCardsClosure
5141     markFromDirtyCardsClosure(this, _span,
5142                               NULL,  // space is set further below
5143                               &_markBitMap, &_markStack, &mrias_cl);
5144   {
5145     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5146     // Iterate over the dirty cards, setting the corresponding bits in the
5147     // mod union table.
5148     {
5149       ModUnionClosure modUnionClosure(&_modUnionTable);
5150       _ct->ct_bs()->dirty_card_iterate(
5151                       _cmsGen->used_region(),
5152                       &modUnionClosure);
5153     }
5154     // Having transferred these marks into the modUnionTable, we just need
5155     // to rescan the marked objects on the dirty cards in the modUnionTable.
5156     // The initial marking may have been done during an asynchronous
5157     // collection so there may be dirty bits in the mod-union table.
5158     const int alignment =
5159       CardTableModRefBS::card_size * BitsPerWord;
5160     {
5161       // ... First handle dirty cards in CMS gen
5162       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5163       MemRegion ur = _cmsGen->used_region();
5164       HeapWord* lb = ur.start();
5165       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5166       MemRegion cms_span(lb, ub);
5167       _modUnionTable.dirty_range_iterate_clear(cms_span,
5168                                                &markFromDirtyCardsClosure);
5169       verify_work_stacks_empty();
5170       if (PrintCMSStatistics != 0) {
5171         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5172           markFromDirtyCardsClosure.num_dirty_cards());
5173       }
5174     }
5175   }
5176   if (VerifyDuringGC &&
5177       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5178     HandleMark hm;  // Discard invalid handles created during verification
5179     Universe::verify();
5180   }
5181   {
5182     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5183 
5184     verify_work_stacks_empty();
5185 
5186     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5187     GenCollectedHeap::StrongRootsScope srs(gch);
5188 
5189     gch->gen_process_roots(_cmsGen->level(),
5190                            true,  // younger gens as roots
5191                            false, // use the local StrongRootsScope
5192                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5193                            should_unload_classes(),
5194                            &mrias_cl,
5195                            NULL,
5196                            NULL); // The dirty klasses will be handled below
5197 
5198     assert(should_unload_classes()
5199            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5200            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5201   }
5202 
5203   {
5204     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5205 
5206     verify_work_stacks_empty();
5207 
5208     // Scan all class loader data objects that might have been introduced
5209     // during concurrent marking.
5210     ResourceMark rm;
5211     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5212     for (int i = 0; i < array->length(); i++) {
5213       mrias_cl.do_class_loader_data(array->at(i));
5214     }
5215 
5216     // We don't need to keep track of new CLDs anymore.
5217     ClassLoaderDataGraph::remember_new_clds(false);
5218 
5219     verify_work_stacks_empty();
5220   }
5221 
5222   {
5223     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5224 
5225     verify_work_stacks_empty();
5226 
5227     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5228     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5229 
5230     verify_work_stacks_empty();
5231   }
5232 
5233   // We might have added oops to ClassLoaderData::_handles during the
5234   // concurrent marking phase. These oops point to newly allocated objects
5235   // that are guaranteed to be kept alive. Either by the direct allocation
5236   // code, or when the young collector processes the roots. Hence,
5237   // we don't have to revisit the _handles block during the remark phase.
5238 
5239   verify_work_stacks_empty();
5240   // Restore evacuated mark words, if any, used for overflow list links
5241   if (!CMSOverflowEarlyRestoration) {
5242     restore_preserved_marks_if_any();
5243   }
5244   verify_overflow_empty();
5245 }
5246 
5247 ////////////////////////////////////////////////////////
5248 // Parallel Reference Processing Task Proxy Class
5249 ////////////////////////////////////////////////////////
5250 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5251   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5252   CMSCollector*          _collector;
5253   CMSBitMap*             _mark_bit_map;
5254   const MemRegion        _span;
5255   ProcessTask&           _task;
5256 
5257 public:
5258   CMSRefProcTaskProxy(ProcessTask&     task,
5259                       CMSCollector*    collector,
5260                       const MemRegion& span,
5261                       CMSBitMap*       mark_bit_map,
5262                       AbstractWorkGang* workers,
5263                       OopTaskQueueSet* task_queues):
5264     // XXX Should superclass AGTWOQ also know about AWG since it knows
5265     // about the task_queues used by the AWG? Then it could initialize
5266     // the terminator() object. See 6984287. The set_for_termination()
5267     // below is a temporary band-aid for the regression in 6984287.
5268     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5269       task_queues),
5270     _task(task),
5271     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5272   {
5273     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5274            "Inconsistency in _span");
5275     set_for_termination(workers->active_workers());
5276   }
5277 
5278   OopTaskQueueSet* task_queues() { return queues(); }
5279 
5280   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5281 
5282   void do_work_steal(int i,
5283                      CMSParDrainMarkingStackClosure* drain,
5284                      CMSParKeepAliveClosure* keep_alive,
5285                      int* seed);
5286 
5287   virtual void work(uint worker_id);
5288 };
5289 
5290 void CMSRefProcTaskProxy::work(uint worker_id) {
5291   ResourceMark rm;
5292   HandleMark hm;
5293   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5294   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5295                                         _mark_bit_map,
5296                                         work_queue(worker_id));
5297   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5298                                                  _mark_bit_map,
5299                                                  work_queue(worker_id));
5300   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5301   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5302   if (_task.marks_oops_alive()) {
5303     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5304                   _collector->hash_seed(worker_id));
5305   }
5306   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5307   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5308 }
5309 
5310 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5311   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5312   EnqueueTask& _task;
5313 
5314 public:
5315   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5316     : AbstractGangTask("Enqueue reference objects in parallel"),
5317       _task(task)
5318   { }
5319 
5320   virtual void work(uint worker_id)
5321   {
5322     _task.work(worker_id);
5323   }
5324 };
5325 
5326 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5327   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5328    _span(span),
5329    _bit_map(bit_map),
5330    _work_queue(work_queue),
5331    _mark_and_push(collector, span, bit_map, work_queue),
5332    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5333                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5334 { }
5335 
5336 // . see if we can share work_queues with ParNew? XXX
5337 void CMSRefProcTaskProxy::do_work_steal(int i,
5338   CMSParDrainMarkingStackClosure* drain,
5339   CMSParKeepAliveClosure* keep_alive,
5340   int* seed) {
5341   OopTaskQueue* work_q = work_queue(i);
5342   NOT_PRODUCT(int num_steals = 0;)
5343   oop obj_to_scan;
5344 
5345   while (true) {
5346     // Completely finish any left over work from (an) earlier round(s)
5347     drain->trim_queue(0);
5348     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5349                                          (size_t)ParGCDesiredObjsFromOverflowList);
5350     // Now check if there's any work in the overflow list
5351     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5352     // only affects the number of attempts made to get work from the
5353     // overflow list and does not affect the number of workers.  Just
5354     // pass ParallelGCThreads so this behavior is unchanged.
5355     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5356                                                 work_q,
5357                                                 ParallelGCThreads)) {
5358       // Found something in global overflow list;
5359       // not yet ready to go stealing work from others.
5360       // We'd like to assert(work_q->size() != 0, ...)
5361       // because we just took work from the overflow list,
5362       // but of course we can't, since all of that might have
5363       // been already stolen from us.
5364       continue;
5365     }
5366     // Verify that we have no work before we resort to stealing
5367     assert(work_q->size() == 0, "Have work, shouldn't steal");
5368     // Try to steal from other queues that have work
5369     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5370       NOT_PRODUCT(num_steals++;)
5371       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5372       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5373       // Do scanning work
5374       obj_to_scan->oop_iterate(keep_alive);
5375       // Loop around, finish this work, and try to steal some more
5376     } else if (terminator()->offer_termination()) {
5377       break;  // nirvana from the infinite cycle
5378     }
5379   }
5380   NOT_PRODUCT(
5381     if (PrintCMSStatistics != 0) {
5382       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5383     }
5384   )
5385 }
5386 
5387 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5388 {
5389   GenCollectedHeap* gch = GenCollectedHeap::heap();
5390   FlexibleWorkGang* workers = gch->workers();
5391   assert(workers != NULL, "Need parallel worker threads.");
5392   CMSRefProcTaskProxy rp_task(task, &_collector,
5393                               _collector.ref_processor()->span(),
5394                               _collector.markBitMap(),
5395                               workers, _collector.task_queues());
5396   workers->run_task(&rp_task);
5397 }
5398 
5399 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5400 {
5401 
5402   GenCollectedHeap* gch = GenCollectedHeap::heap();
5403   FlexibleWorkGang* workers = gch->workers();
5404   assert(workers != NULL, "Need parallel worker threads.");
5405   CMSRefEnqueueTaskProxy enq_task(task);
5406   workers->run_task(&enq_task);
5407 }
5408 
5409 void CMSCollector::refProcessingWork() {
5410   ResourceMark rm;
5411   HandleMark   hm;
5412 
5413   ReferenceProcessor* rp = ref_processor();
5414   assert(rp->span().equals(_span), "Spans should be equal");
5415   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5416   // Process weak references.
5417   rp->setup_policy(false);
5418   verify_work_stacks_empty();
5419 
5420   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5421                                           &_markStack, false /* !preclean */);
5422   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5423                                 _span, &_markBitMap, &_markStack,
5424                                 &cmsKeepAliveClosure, false /* !preclean */);
5425   {
5426     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5427 
5428     ReferenceProcessorStats stats;
5429     if (rp->processing_is_mt()) {
5430       // Set the degree of MT here.  If the discovery is done MT, there
5431       // may have been a different number of threads doing the discovery
5432       // and a different number of discovered lists may have Ref objects.
5433       // That is OK as long as the Reference lists are balanced (see
5434       // balance_all_queues() and balance_queues()).
5435       GenCollectedHeap* gch = GenCollectedHeap::heap();
5436       int active_workers = ParallelGCThreads;
5437       FlexibleWorkGang* workers = gch->workers();
5438       if (workers != NULL) {
5439         active_workers = workers->active_workers();
5440         // The expectation is that active_workers will have already
5441         // been set to a reasonable value.  If it has not been set,
5442         // investigate.
5443         assert(active_workers > 0, "Should have been set during scavenge");
5444       }
5445       rp->set_active_mt_degree(active_workers);
5446       CMSRefProcTaskExecutor task_executor(*this);
5447       stats = rp->process_discovered_references(&_is_alive_closure,
5448                                         &cmsKeepAliveClosure,
5449                                         &cmsDrainMarkingStackClosure,
5450                                         &task_executor,
5451                                         _gc_timer_cm,
5452                                         _gc_tracer_cm->gc_id());
5453     } else {
5454       stats = rp->process_discovered_references(&_is_alive_closure,
5455                                         &cmsKeepAliveClosure,
5456                                         &cmsDrainMarkingStackClosure,
5457                                         NULL,
5458                                         _gc_timer_cm,
5459                                         _gc_tracer_cm->gc_id());
5460     }
5461     _gc_tracer_cm->report_gc_reference_stats(stats);
5462 
5463   }
5464 
5465   // This is the point where the entire marking should have completed.
5466   verify_work_stacks_empty();
5467 
5468   if (should_unload_classes()) {
5469     {
5470       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5471 
5472       // Unload classes and purge the SystemDictionary.
5473       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5474 
5475       // Unload nmethods.
5476       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5477 
5478       // Prune dead klasses from subklass/sibling/implementor lists.
5479       Klass::clean_weak_klass_links(&_is_alive_closure);
5480     }
5481 
5482     {
5483       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5484       // Clean up unreferenced symbols in symbol table.
5485       SymbolTable::unlink();
5486     }
5487 
5488     {
5489       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5490       // Delete entries for dead interned strings.
5491       StringTable::unlink(&_is_alive_closure);
5492     }
5493   }
5494 
5495 
5496   // Restore any preserved marks as a result of mark stack or
5497   // work queue overflow
5498   restore_preserved_marks_if_any();  // done single-threaded for now
5499 
5500   rp->set_enqueuing_is_done(true);
5501   if (rp->processing_is_mt()) {
5502     rp->balance_all_queues();
5503     CMSRefProcTaskExecutor task_executor(*this);
5504     rp->enqueue_discovered_references(&task_executor);
5505   } else {
5506     rp->enqueue_discovered_references(NULL);
5507   }
5508   rp->verify_no_references_recorded();
5509   assert(!rp->discovery_enabled(), "should have been disabled");
5510 }
5511 
5512 #ifndef PRODUCT
5513 void CMSCollector::check_correct_thread_executing() {
5514   Thread* t = Thread::current();
5515   // Only the VM thread or the CMS thread should be here.
5516   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5517          "Unexpected thread type");
5518   // If this is the vm thread, the foreground process
5519   // should not be waiting.  Note that _foregroundGCIsActive is
5520   // true while the foreground collector is waiting.
5521   if (_foregroundGCShouldWait) {
5522     // We cannot be the VM thread
5523     assert(t->is_ConcurrentGC_thread(),
5524            "Should be CMS thread");
5525   } else {
5526     // We can be the CMS thread only if we are in a stop-world
5527     // phase of CMS collection.
5528     if (t->is_ConcurrentGC_thread()) {
5529       assert(_collectorState == InitialMarking ||
5530              _collectorState == FinalMarking,
5531              "Should be a stop-world phase");
5532       // The CMS thread should be holding the CMS_token.
5533       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5534              "Potential interference with concurrently "
5535              "executing VM thread");
5536     }
5537   }
5538 }
5539 #endif
5540 
5541 void CMSCollector::sweep() {
5542   assert(_collectorState == Sweeping, "just checking");
5543   check_correct_thread_executing();
5544   verify_work_stacks_empty();
5545   verify_overflow_empty();
5546   increment_sweep_count();
5547   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5548 
5549   _inter_sweep_timer.stop();
5550   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5551 
5552   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5553   _intra_sweep_timer.reset();
5554   _intra_sweep_timer.start();
5555   {
5556     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5557     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5558     // First sweep the old gen
5559     {
5560       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5561                                bitMapLock());
5562       sweepWork(_cmsGen);
5563     }
5564 
5565     // Update Universe::_heap_*_at_gc figures.
5566     // We need all the free list locks to make the abstract state
5567     // transition from Sweeping to Resetting. See detailed note
5568     // further below.
5569     {
5570       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5571       // Update heap occupancy information which is used as
5572       // input to soft ref clearing policy at the next gc.
5573       Universe::update_heap_info_at_gc();
5574       _collectorState = Resizing;
5575     }
5576   }
5577   verify_work_stacks_empty();
5578   verify_overflow_empty();
5579 
5580   if (should_unload_classes()) {
5581     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5582     // requires that the virtual spaces are stable and not deleted.
5583     ClassLoaderDataGraph::set_should_purge(true);
5584   }
5585 
5586   _intra_sweep_timer.stop();
5587   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5588 
5589   _inter_sweep_timer.reset();
5590   _inter_sweep_timer.start();
5591 
5592   // We need to use a monotonically non-decreasing time in ms
5593   // or we will see time-warp warnings and os::javaTimeMillis()
5594   // does not guarantee monotonicity.
5595   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5596   update_time_of_last_gc(now);
5597 
5598   // NOTE on abstract state transitions:
5599   // Mutators allocate-live and/or mark the mod-union table dirty
5600   // based on the state of the collection.  The former is done in
5601   // the interval [Marking, Sweeping] and the latter in the interval
5602   // [Marking, Sweeping).  Thus the transitions into the Marking state
5603   // and out of the Sweeping state must be synchronously visible
5604   // globally to the mutators.
5605   // The transition into the Marking state happens with the world
5606   // stopped so the mutators will globally see it.  Sweeping is
5607   // done asynchronously by the background collector so the transition
5608   // from the Sweeping state to the Resizing state must be done
5609   // under the freelistLock (as is the check for whether to
5610   // allocate-live and whether to dirty the mod-union table).
5611   assert(_collectorState == Resizing, "Change of collector state to"
5612     " Resizing must be done under the freelistLocks (plural)");
5613 
5614   // Now that sweeping has been completed, we clear
5615   // the incremental_collection_failed flag,
5616   // thus inviting a younger gen collection to promote into
5617   // this generation. If such a promotion may still fail,
5618   // the flag will be set again when a young collection is
5619   // attempted.
5620   GenCollectedHeap* gch = GenCollectedHeap::heap();
5621   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5622   gch->update_full_collections_completed(_collection_count_start);
5623 }
5624 
5625 // FIX ME!!! Looks like this belongs in CFLSpace, with
5626 // CMSGen merely delegating to it.
5627 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5628   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5629   HeapWord*  minAddr        = _cmsSpace->bottom();
5630   HeapWord*  largestAddr    =
5631     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5632   if (largestAddr == NULL) {
5633     // The dictionary appears to be empty.  In this case
5634     // try to coalesce at the end of the heap.
5635     largestAddr = _cmsSpace->end();
5636   }
5637   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5638   size_t nearLargestOffset =
5639     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5640   if (PrintFLSStatistics != 0) {
5641     gclog_or_tty->print_cr(
5642       "CMS: Large Block: " PTR_FORMAT ";"
5643       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5644       p2i(largestAddr),
5645       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5646   }
5647   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5648 }
5649 
5650 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5651   return addr >= _cmsSpace->nearLargestChunk();
5652 }
5653 
5654 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5655   return _cmsSpace->find_chunk_at_end();
5656 }
5657 
5658 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5659                                                     bool full) {
5660   // The next lower level has been collected.  Gather any statistics
5661   // that are of interest at this point.
5662   if (!full && (current_level + 1) == level()) {
5663     // Gather statistics on the young generation collection.
5664     collector()->stats().record_gc0_end(used());
5665   }
5666 }
5667 
5668 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5669   // We iterate over the space(s) underlying this generation,
5670   // checking the mark bit map to see if the bits corresponding
5671   // to specific blocks are marked or not. Blocks that are
5672   // marked are live and are not swept up. All remaining blocks
5673   // are swept up, with coalescing on-the-fly as we sweep up
5674   // contiguous free and/or garbage blocks:
5675   // We need to ensure that the sweeper synchronizes with allocators
5676   // and stop-the-world collectors. In particular, the following
5677   // locks are used:
5678   // . CMS token: if this is held, a stop the world collection cannot occur
5679   // . freelistLock: if this is held no allocation can occur from this
5680   //                 generation by another thread
5681   // . bitMapLock: if this is held, no other thread can access or update
5682   //
5683 
5684   // Note that we need to hold the freelistLock if we use
5685   // block iterate below; else the iterator might go awry if
5686   // a mutator (or promotion) causes block contents to change
5687   // (for instance if the allocator divvies up a block).
5688   // If we hold the free list lock, for all practical purposes
5689   // young generation GC's can't occur (they'll usually need to
5690   // promote), so we might as well prevent all young generation
5691   // GC's while we do a sweeping step. For the same reason, we might
5692   // as well take the bit map lock for the entire duration
5693 
5694   // check that we hold the requisite locks
5695   assert(have_cms_token(), "Should hold cms token");
5696   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5697   assert_lock_strong(gen->freelistLock());
5698   assert_lock_strong(bitMapLock());
5699 
5700   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5701   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5702   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5703                                       _inter_sweep_estimate.padded_average(),
5704                                       _intra_sweep_estimate.padded_average());
5705   gen->setNearLargestChunk();
5706 
5707   {
5708     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5709     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5710     // We need to free-up/coalesce garbage/blocks from a
5711     // co-terminal free run. This is done in the SweepClosure
5712     // destructor; so, do not remove this scope, else the
5713     // end-of-sweep-census below will be off by a little bit.
5714   }
5715   gen->cmsSpace()->sweep_completed();
5716   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5717   if (should_unload_classes()) {                // unloaded classes this cycle,
5718     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5719   } else {                                      // did not unload classes,
5720     _concurrent_cycles_since_last_unload++;     // ... increment count
5721   }
5722 }
5723 
5724 // Reset CMS data structures (for now just the marking bit map)
5725 // preparatory for the next cycle.
5726 void CMSCollector::reset(bool concurrent) {
5727   if (concurrent) {
5728     CMSTokenSyncWithLocks ts(true, bitMapLock());
5729 
5730     // If the state is not "Resetting", the foreground  thread
5731     // has done a collection and the resetting.
5732     if (_collectorState != Resetting) {
5733       assert(_collectorState == Idling, "The state should only change"
5734         " because the foreground collector has finished the collection");
5735       return;
5736     }
5737 
5738     // Clear the mark bitmap (no grey objects to start with)
5739     // for the next cycle.
5740     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5741     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5742 
5743     HeapWord* curAddr = _markBitMap.startWord();
5744     while (curAddr < _markBitMap.endWord()) {
5745       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5746       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5747       _markBitMap.clear_large_range(chunk);
5748       if (ConcurrentMarkSweepThread::should_yield() &&
5749           !foregroundGCIsActive() &&
5750           CMSYield) {
5751         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5752                "CMS thread should hold CMS token");
5753         assert_lock_strong(bitMapLock());
5754         bitMapLock()->unlock();
5755         ConcurrentMarkSweepThread::desynchronize(true);
5756         stopTimer();
5757         if (PrintCMSStatistics != 0) {
5758           incrementYields();
5759         }
5760 
5761         // See the comment in coordinator_yield()
5762         for (unsigned i = 0; i < CMSYieldSleepCount &&
5763                          ConcurrentMarkSweepThread::should_yield() &&
5764                          !CMSCollector::foregroundGCIsActive(); ++i) {
5765           os::sleep(Thread::current(), 1, false);
5766         }
5767 
5768         ConcurrentMarkSweepThread::synchronize(true);
5769         bitMapLock()->lock_without_safepoint_check();
5770         startTimer();
5771       }
5772       curAddr = chunk.end();
5773     }
5774     // A successful mostly concurrent collection has been done.
5775     // Because only the full (i.e., concurrent mode failure) collections
5776     // are being measured for gc overhead limits, clean the "near" flag
5777     // and count.
5778     size_policy()->reset_gc_overhead_limit_count();
5779     _collectorState = Idling;
5780   } else {
5781     // already have the lock
5782     assert(_collectorState == Resetting, "just checking");
5783     assert_lock_strong(bitMapLock());
5784     _markBitMap.clear_all();
5785     _collectorState = Idling;
5786   }
5787 
5788   register_gc_end();
5789 }
5790 
5791 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5792   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5793   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5794   TraceCollectorStats tcs(counters());
5795 
5796   switch (op) {
5797     case CMS_op_checkpointRootsInitial: {
5798       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5799       checkpointRootsInitial();
5800       if (PrintGC) {
5801         _cmsGen->printOccupancy("initial-mark");
5802       }
5803       break;
5804     }
5805     case CMS_op_checkpointRootsFinal: {
5806       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5807       checkpointRootsFinal();
5808       if (PrintGC) {
5809         _cmsGen->printOccupancy("remark");
5810       }
5811       break;
5812     }
5813     default:
5814       fatal("No such CMS_op");
5815   }
5816 }
5817 
5818 #ifndef PRODUCT
5819 size_t const CMSCollector::skip_header_HeapWords() {
5820   return FreeChunk::header_size();
5821 }
5822 
5823 // Try and collect here conditions that should hold when
5824 // CMS thread is exiting. The idea is that the foreground GC
5825 // thread should not be blocked if it wants to terminate
5826 // the CMS thread and yet continue to run the VM for a while
5827 // after that.
5828 void CMSCollector::verify_ok_to_terminate() const {
5829   assert(Thread::current()->is_ConcurrentGC_thread(),
5830          "should be called by CMS thread");
5831   assert(!_foregroundGCShouldWait, "should be false");
5832   // We could check here that all the various low-level locks
5833   // are not held by the CMS thread, but that is overkill; see
5834   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5835   // is checked.
5836 }
5837 #endif
5838 
5839 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5840    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5841           "missing Printezis mark?");
5842   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5843   size_t size = pointer_delta(nextOneAddr + 1, addr);
5844   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5845          "alignment problem");
5846   assert(size >= 3, "Necessary for Printezis marks to work");
5847   return size;
5848 }
5849 
5850 // A variant of the above (block_size_using_printezis_bits()) except
5851 // that we return 0 if the P-bits are not yet set.
5852 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5853   if (_markBitMap.isMarked(addr + 1)) {
5854     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5855     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5856     size_t size = pointer_delta(nextOneAddr + 1, addr);
5857     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5858            "alignment problem");
5859     assert(size >= 3, "Necessary for Printezis marks to work");
5860     return size;
5861   }
5862   return 0;
5863 }
5864 
5865 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5866   size_t sz = 0;
5867   oop p = (oop)addr;
5868   if (p->klass_or_null() != NULL) {
5869     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5870   } else {
5871     sz = block_size_using_printezis_bits(addr);
5872   }
5873   assert(sz > 0, "size must be nonzero");
5874   HeapWord* next_block = addr + sz;
5875   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5876                                              CardTableModRefBS::card_size);
5877   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5878          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5879          "must be different cards");
5880   return next_card;
5881 }
5882 
5883 
5884 // CMS Bit Map Wrapper /////////////////////////////////////////
5885 
5886 // Construct a CMS bit map infrastructure, but don't create the
5887 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5888 // further below.
5889 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5890   _bm(),
5891   _shifter(shifter),
5892   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5893                                     Monitor::_safepoint_check_sometimes) : NULL)
5894 {
5895   _bmStartWord = 0;
5896   _bmWordSize  = 0;
5897 }
5898 
5899 bool CMSBitMap::allocate(MemRegion mr) {
5900   _bmStartWord = mr.start();
5901   _bmWordSize  = mr.word_size();
5902   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5903                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5904   if (!brs.is_reserved()) {
5905     warning("CMS bit map allocation failure");
5906     return false;
5907   }
5908   // For now we'll just commit all of the bit map up front.
5909   // Later on we'll try to be more parsimonious with swap.
5910   if (!_virtual_space.initialize(brs, brs.size())) {
5911     warning("CMS bit map backing store failure");
5912     return false;
5913   }
5914   assert(_virtual_space.committed_size() == brs.size(),
5915          "didn't reserve backing store for all of CMS bit map?");
5916   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5917   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5918          _bmWordSize, "inconsistency in bit map sizing");
5919   _bm.set_size(_bmWordSize >> _shifter);
5920 
5921   // bm.clear(); // can we rely on getting zero'd memory? verify below
5922   assert(isAllClear(),
5923          "Expected zero'd memory from ReservedSpace constructor");
5924   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5925          "consistency check");
5926   return true;
5927 }
5928 
5929 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5930   HeapWord *next_addr, *end_addr, *last_addr;
5931   assert_locked();
5932   assert(covers(mr), "out-of-range error");
5933   // XXX assert that start and end are appropriately aligned
5934   for (next_addr = mr.start(), end_addr = mr.end();
5935        next_addr < end_addr; next_addr = last_addr) {
5936     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5937     last_addr = dirty_region.end();
5938     if (!dirty_region.is_empty()) {
5939       cl->do_MemRegion(dirty_region);
5940     } else {
5941       assert(last_addr == end_addr, "program logic");
5942       return;
5943     }
5944   }
5945 }
5946 
5947 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5948   _bm.print_on_error(st, prefix);
5949 }
5950 
5951 #ifndef PRODUCT
5952 void CMSBitMap::assert_locked() const {
5953   CMSLockVerifier::assert_locked(lock());
5954 }
5955 
5956 bool CMSBitMap::covers(MemRegion mr) const {
5957   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5958   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5959          "size inconsistency");
5960   return (mr.start() >= _bmStartWord) &&
5961          (mr.end()   <= endWord());
5962 }
5963 
5964 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5965     return (start >= _bmStartWord && (start + size) <= endWord());
5966 }
5967 
5968 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5969   // verify that there are no 1 bits in the interval [left, right)
5970   FalseBitMapClosure falseBitMapClosure;
5971   iterate(&falseBitMapClosure, left, right);
5972 }
5973 
5974 void CMSBitMap::region_invariant(MemRegion mr)
5975 {
5976   assert_locked();
5977   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5978   assert(!mr.is_empty(), "unexpected empty region");
5979   assert(covers(mr), "mr should be covered by bit map");
5980   // convert address range into offset range
5981   size_t start_ofs = heapWordToOffset(mr.start());
5982   // Make sure that end() is appropriately aligned
5983   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5984                         (1 << (_shifter+LogHeapWordSize))),
5985          "Misaligned mr.end()");
5986   size_t end_ofs   = heapWordToOffset(mr.end());
5987   assert(end_ofs > start_ofs, "Should mark at least one bit");
5988 }
5989 
5990 #endif
5991 
5992 bool CMSMarkStack::allocate(size_t size) {
5993   // allocate a stack of the requisite depth
5994   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5995                    size * sizeof(oop)));
5996   if (!rs.is_reserved()) {
5997     warning("CMSMarkStack allocation failure");
5998     return false;
5999   }
6000   if (!_virtual_space.initialize(rs, rs.size())) {
6001     warning("CMSMarkStack backing store failure");
6002     return false;
6003   }
6004   assert(_virtual_space.committed_size() == rs.size(),
6005          "didn't reserve backing store for all of CMS stack?");
6006   _base = (oop*)(_virtual_space.low());
6007   _index = 0;
6008   _capacity = size;
6009   NOT_PRODUCT(_max_depth = 0);
6010   return true;
6011 }
6012 
6013 // XXX FIX ME !!! In the MT case we come in here holding a
6014 // leaf lock. For printing we need to take a further lock
6015 // which has lower rank. We need to recalibrate the two
6016 // lock-ranks involved in order to be able to print the
6017 // messages below. (Or defer the printing to the caller.
6018 // For now we take the expedient path of just disabling the
6019 // messages for the problematic case.)
6020 void CMSMarkStack::expand() {
6021   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6022   if (_capacity == MarkStackSizeMax) {
6023     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6024       // We print a warning message only once per CMS cycle.
6025       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6026     }
6027     return;
6028   }
6029   // Double capacity if possible
6030   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6031   // Do not give up existing stack until we have managed to
6032   // get the double capacity that we desired.
6033   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6034                    new_capacity * sizeof(oop)));
6035   if (rs.is_reserved()) {
6036     // Release the backing store associated with old stack
6037     _virtual_space.release();
6038     // Reinitialize virtual space for new stack
6039     if (!_virtual_space.initialize(rs, rs.size())) {
6040       fatal("Not enough swap for expanded marking stack");
6041     }
6042     _base = (oop*)(_virtual_space.low());
6043     _index = 0;
6044     _capacity = new_capacity;
6045   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6046     // Failed to double capacity, continue;
6047     // we print a detail message only once per CMS cycle.
6048     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6049             SIZE_FORMAT"K",
6050             _capacity / K, new_capacity / K);
6051   }
6052 }
6053 
6054 
6055 // Closures
6056 // XXX: there seems to be a lot of code  duplication here;
6057 // should refactor and consolidate common code.
6058 
6059 // This closure is used to mark refs into the CMS generation in
6060 // the CMS bit map. Called at the first checkpoint. This closure
6061 // assumes that we do not need to re-mark dirty cards; if the CMS
6062 // generation on which this is used is not an oldest
6063 // generation then this will lose younger_gen cards!
6064 
6065 MarkRefsIntoClosure::MarkRefsIntoClosure(
6066   MemRegion span, CMSBitMap* bitMap):
6067     _span(span),
6068     _bitMap(bitMap)
6069 {
6070     assert(_ref_processor == NULL, "deliberately left NULL");
6071     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6072 }
6073 
6074 void MarkRefsIntoClosure::do_oop(oop obj) {
6075   // if p points into _span, then mark corresponding bit in _markBitMap
6076   assert(obj->is_oop(), "expected an oop");
6077   HeapWord* addr = (HeapWord*)obj;
6078   if (_span.contains(addr)) {
6079     // this should be made more efficient
6080     _bitMap->mark(addr);
6081   }
6082 }
6083 
6084 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6085 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6086 
6087 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6088   MemRegion span, CMSBitMap* bitMap):
6089     _span(span),
6090     _bitMap(bitMap)
6091 {
6092     assert(_ref_processor == NULL, "deliberately left NULL");
6093     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6094 }
6095 
6096 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6097   // if p points into _span, then mark corresponding bit in _markBitMap
6098   assert(obj->is_oop(), "expected an oop");
6099   HeapWord* addr = (HeapWord*)obj;
6100   if (_span.contains(addr)) {
6101     // this should be made more efficient
6102     _bitMap->par_mark(addr);
6103   }
6104 }
6105 
6106 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6107 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6108 
6109 // A variant of the above, used for CMS marking verification.
6110 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6111   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6112     _span(span),
6113     _verification_bm(verification_bm),
6114     _cms_bm(cms_bm)
6115 {
6116     assert(_ref_processor == NULL, "deliberately left NULL");
6117     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6118 }
6119 
6120 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6121   // if p points into _span, then mark corresponding bit in _markBitMap
6122   assert(obj->is_oop(), "expected an oop");
6123   HeapWord* addr = (HeapWord*)obj;
6124   if (_span.contains(addr)) {
6125     _verification_bm->mark(addr);
6126     if (!_cms_bm->isMarked(addr)) {
6127       oop(addr)->print();
6128       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6129       fatal("... aborting");
6130     }
6131   }
6132 }
6133 
6134 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6135 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6136 
6137 //////////////////////////////////////////////////
6138 // MarkRefsIntoAndScanClosure
6139 //////////////////////////////////////////////////
6140 
6141 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6142                                                        ReferenceProcessor* rp,
6143                                                        CMSBitMap* bit_map,
6144                                                        CMSBitMap* mod_union_table,
6145                                                        CMSMarkStack*  mark_stack,
6146                                                        CMSCollector* collector,
6147                                                        bool should_yield,
6148                                                        bool concurrent_precleaning):
6149   _collector(collector),
6150   _span(span),
6151   _bit_map(bit_map),
6152   _mark_stack(mark_stack),
6153   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6154                       mark_stack, concurrent_precleaning),
6155   _yield(should_yield),
6156   _concurrent_precleaning(concurrent_precleaning),
6157   _freelistLock(NULL)
6158 {
6159   _ref_processor = rp;
6160   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6161 }
6162 
6163 // This closure is used to mark refs into the CMS generation at the
6164 // second (final) checkpoint, and to scan and transitively follow
6165 // the unmarked oops. It is also used during the concurrent precleaning
6166 // phase while scanning objects on dirty cards in the CMS generation.
6167 // The marks are made in the marking bit map and the marking stack is
6168 // used for keeping the (newly) grey objects during the scan.
6169 // The parallel version (Par_...) appears further below.
6170 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6171   if (obj != NULL) {
6172     assert(obj->is_oop(), "expected an oop");
6173     HeapWord* addr = (HeapWord*)obj;
6174     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6175     assert(_collector->overflow_list_is_empty(),
6176            "overflow list should be empty");
6177     if (_span.contains(addr) &&
6178         !_bit_map->isMarked(addr)) {
6179       // mark bit map (object is now grey)
6180       _bit_map->mark(addr);
6181       // push on marking stack (stack should be empty), and drain the
6182       // stack by applying this closure to the oops in the oops popped
6183       // from the stack (i.e. blacken the grey objects)
6184       bool res = _mark_stack->push(obj);
6185       assert(res, "Should have space to push on empty stack");
6186       do {
6187         oop new_oop = _mark_stack->pop();
6188         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6189         assert(_bit_map->isMarked((HeapWord*)new_oop),
6190                "only grey objects on this stack");
6191         // iterate over the oops in this oop, marking and pushing
6192         // the ones in CMS heap (i.e. in _span).
6193         new_oop->oop_iterate(&_pushAndMarkClosure);
6194         // check if it's time to yield
6195         do_yield_check();
6196       } while (!_mark_stack->isEmpty() ||
6197                (!_concurrent_precleaning && take_from_overflow_list()));
6198         // if marking stack is empty, and we are not doing this
6199         // during precleaning, then check the overflow list
6200     }
6201     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6202     assert(_collector->overflow_list_is_empty(),
6203            "overflow list was drained above");
6204     // We could restore evacuated mark words, if any, used for
6205     // overflow list links here because the overflow list is
6206     // provably empty here. That would reduce the maximum
6207     // size requirements for preserved_{oop,mark}_stack.
6208     // But we'll just postpone it until we are all done
6209     // so we can just stream through.
6210     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6211       _collector->restore_preserved_marks_if_any();
6212       assert(_collector->no_preserved_marks(), "No preserved marks");
6213     }
6214     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6215            "All preserved marks should have been restored above");
6216   }
6217 }
6218 
6219 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6220 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6221 
6222 void MarkRefsIntoAndScanClosure::do_yield_work() {
6223   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6224          "CMS thread should hold CMS token");
6225   assert_lock_strong(_freelistLock);
6226   assert_lock_strong(_bit_map->lock());
6227   // relinquish the free_list_lock and bitMaplock()
6228   _bit_map->lock()->unlock();
6229   _freelistLock->unlock();
6230   ConcurrentMarkSweepThread::desynchronize(true);
6231   _collector->stopTimer();
6232   if (PrintCMSStatistics != 0) {
6233     _collector->incrementYields();
6234   }
6235 
6236   // See the comment in coordinator_yield()
6237   for (unsigned i = 0;
6238        i < CMSYieldSleepCount &&
6239        ConcurrentMarkSweepThread::should_yield() &&
6240        !CMSCollector::foregroundGCIsActive();
6241        ++i) {
6242     os::sleep(Thread::current(), 1, false);
6243   }
6244 
6245   ConcurrentMarkSweepThread::synchronize(true);
6246   _freelistLock->lock_without_safepoint_check();
6247   _bit_map->lock()->lock_without_safepoint_check();
6248   _collector->startTimer();
6249 }
6250 
6251 ///////////////////////////////////////////////////////////
6252 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6253 //                                 MarkRefsIntoAndScanClosure
6254 ///////////////////////////////////////////////////////////
6255 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6256   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6257   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6258   _span(span),
6259   _bit_map(bit_map),
6260   _work_queue(work_queue),
6261   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6262                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6263   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6264 {
6265   _ref_processor = rp;
6266   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6267 }
6268 
6269 // This closure is used to mark refs into the CMS generation at the
6270 // second (final) checkpoint, and to scan and transitively follow
6271 // the unmarked oops. The marks are made in the marking bit map and
6272 // the work_queue is used for keeping the (newly) grey objects during
6273 // the scan phase whence they are also available for stealing by parallel
6274 // threads. Since the marking bit map is shared, updates are
6275 // synchronized (via CAS).
6276 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6277   if (obj != NULL) {
6278     // Ignore mark word because this could be an already marked oop
6279     // that may be chained at the end of the overflow list.
6280     assert(obj->is_oop(true), "expected an oop");
6281     HeapWord* addr = (HeapWord*)obj;
6282     if (_span.contains(addr) &&
6283         !_bit_map->isMarked(addr)) {
6284       // mark bit map (object will become grey):
6285       // It is possible for several threads to be
6286       // trying to "claim" this object concurrently;
6287       // the unique thread that succeeds in marking the
6288       // object first will do the subsequent push on
6289       // to the work queue (or overflow list).
6290       if (_bit_map->par_mark(addr)) {
6291         // push on work_queue (which may not be empty), and trim the
6292         // queue to an appropriate length by applying this closure to
6293         // the oops in the oops popped from the stack (i.e. blacken the
6294         // grey objects)
6295         bool res = _work_queue->push(obj);
6296         assert(res, "Low water mark should be less than capacity?");
6297         trim_queue(_low_water_mark);
6298       } // Else, another thread claimed the object
6299     }
6300   }
6301 }
6302 
6303 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6304 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6305 
6306 // This closure is used to rescan the marked objects on the dirty cards
6307 // in the mod union table and the card table proper.
6308 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6309   oop p, MemRegion mr) {
6310 
6311   size_t size = 0;
6312   HeapWord* addr = (HeapWord*)p;
6313   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6314   assert(_span.contains(addr), "we are scanning the CMS generation");
6315   // check if it's time to yield
6316   if (do_yield_check()) {
6317     // We yielded for some foreground stop-world work,
6318     // and we have been asked to abort this ongoing preclean cycle.
6319     return 0;
6320   }
6321   if (_bitMap->isMarked(addr)) {
6322     // it's marked; is it potentially uninitialized?
6323     if (p->klass_or_null() != NULL) {
6324         // an initialized object; ignore mark word in verification below
6325         // since we are running concurrent with mutators
6326         assert(p->is_oop(true), "should be an oop");
6327         if (p->is_objArray()) {
6328           // objArrays are precisely marked; restrict scanning
6329           // to dirty cards only.
6330           size = CompactibleFreeListSpace::adjustObjectSize(
6331                    p->oop_iterate(_scanningClosure, mr));
6332         } else {
6333           // A non-array may have been imprecisely marked; we need
6334           // to scan object in its entirety.
6335           size = CompactibleFreeListSpace::adjustObjectSize(
6336                    p->oop_iterate(_scanningClosure));
6337         }
6338         #ifdef ASSERT
6339           size_t direct_size =
6340             CompactibleFreeListSpace::adjustObjectSize(p->size());
6341           assert(size == direct_size, "Inconsistency in size");
6342           assert(size >= 3, "Necessary for Printezis marks to work");
6343           if (!_bitMap->isMarked(addr+1)) {
6344             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6345           } else {
6346             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6347             assert(_bitMap->isMarked(addr+size-1),
6348                    "inconsistent Printezis mark");
6349           }
6350         #endif // ASSERT
6351     } else {
6352       // An uninitialized object.
6353       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6354       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6355       size = pointer_delta(nextOneAddr + 1, addr);
6356       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6357              "alignment problem");
6358       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6359       // will dirty the card when the klass pointer is installed in the
6360       // object (signaling the completion of initialization).
6361     }
6362   } else {
6363     // Either a not yet marked object or an uninitialized object
6364     if (p->klass_or_null() == NULL) {
6365       // An uninitialized object, skip to the next card, since
6366       // we may not be able to read its P-bits yet.
6367       assert(size == 0, "Initial value");
6368     } else {
6369       // An object not (yet) reached by marking: we merely need to
6370       // compute its size so as to go look at the next block.
6371       assert(p->is_oop(true), "should be an oop");
6372       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6373     }
6374   }
6375   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6376   return size;
6377 }
6378 
6379 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6380   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6381          "CMS thread should hold CMS token");
6382   assert_lock_strong(_freelistLock);
6383   assert_lock_strong(_bitMap->lock());
6384   // relinquish the free_list_lock and bitMaplock()
6385   _bitMap->lock()->unlock();
6386   _freelistLock->unlock();
6387   ConcurrentMarkSweepThread::desynchronize(true);
6388   _collector->stopTimer();
6389   if (PrintCMSStatistics != 0) {
6390     _collector->incrementYields();
6391   }
6392 
6393   // See the comment in coordinator_yield()
6394   for (unsigned i = 0; i < CMSYieldSleepCount &&
6395                    ConcurrentMarkSweepThread::should_yield() &&
6396                    !CMSCollector::foregroundGCIsActive(); ++i) {
6397     os::sleep(Thread::current(), 1, false);
6398   }
6399 
6400   ConcurrentMarkSweepThread::synchronize(true);
6401   _freelistLock->lock_without_safepoint_check();
6402   _bitMap->lock()->lock_without_safepoint_check();
6403   _collector->startTimer();
6404 }
6405 
6406 
6407 //////////////////////////////////////////////////////////////////
6408 // SurvivorSpacePrecleanClosure
6409 //////////////////////////////////////////////////////////////////
6410 // This (single-threaded) closure is used to preclean the oops in
6411 // the survivor spaces.
6412 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6413 
6414   HeapWord* addr = (HeapWord*)p;
6415   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6416   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6417   assert(p->klass_or_null() != NULL, "object should be initialized");
6418   // an initialized object; ignore mark word in verification below
6419   // since we are running concurrent with mutators
6420   assert(p->is_oop(true), "should be an oop");
6421   // Note that we do not yield while we iterate over
6422   // the interior oops of p, pushing the relevant ones
6423   // on our marking stack.
6424   size_t size = p->oop_iterate(_scanning_closure);
6425   do_yield_check();
6426   // Observe that below, we do not abandon the preclean
6427   // phase as soon as we should; rather we empty the
6428   // marking stack before returning. This is to satisfy
6429   // some existing assertions. In general, it may be a
6430   // good idea to abort immediately and complete the marking
6431   // from the grey objects at a later time.
6432   while (!_mark_stack->isEmpty()) {
6433     oop new_oop = _mark_stack->pop();
6434     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6435     assert(_bit_map->isMarked((HeapWord*)new_oop),
6436            "only grey objects on this stack");
6437     // iterate over the oops in this oop, marking and pushing
6438     // the ones in CMS heap (i.e. in _span).
6439     new_oop->oop_iterate(_scanning_closure);
6440     // check if it's time to yield
6441     do_yield_check();
6442   }
6443   unsigned int after_count =
6444     GenCollectedHeap::heap()->total_collections();
6445   bool abort = (_before_count != after_count) ||
6446                _collector->should_abort_preclean();
6447   return abort ? 0 : size;
6448 }
6449 
6450 void SurvivorSpacePrecleanClosure::do_yield_work() {
6451   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6452          "CMS thread should hold CMS token");
6453   assert_lock_strong(_bit_map->lock());
6454   // Relinquish the bit map lock
6455   _bit_map->lock()->unlock();
6456   ConcurrentMarkSweepThread::desynchronize(true);
6457   _collector->stopTimer();
6458   if (PrintCMSStatistics != 0) {
6459     _collector->incrementYields();
6460   }
6461 
6462   // See the comment in coordinator_yield()
6463   for (unsigned i = 0; i < CMSYieldSleepCount &&
6464                        ConcurrentMarkSweepThread::should_yield() &&
6465                        !CMSCollector::foregroundGCIsActive(); ++i) {
6466     os::sleep(Thread::current(), 1, false);
6467   }
6468 
6469   ConcurrentMarkSweepThread::synchronize(true);
6470   _bit_map->lock()->lock_without_safepoint_check();
6471   _collector->startTimer();
6472 }
6473 
6474 // This closure is used to rescan the marked objects on the dirty cards
6475 // in the mod union table and the card table proper. In the parallel
6476 // case, although the bitMap is shared, we do a single read so the
6477 // isMarked() query is "safe".
6478 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6479   // Ignore mark word because we are running concurrent with mutators
6480   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6481   HeapWord* addr = (HeapWord*)p;
6482   assert(_span.contains(addr), "we are scanning the CMS generation");
6483   bool is_obj_array = false;
6484   #ifdef ASSERT
6485     if (!_parallel) {
6486       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6487       assert(_collector->overflow_list_is_empty(),
6488              "overflow list should be empty");
6489 
6490     }
6491   #endif // ASSERT
6492   if (_bit_map->isMarked(addr)) {
6493     // Obj arrays are precisely marked, non-arrays are not;
6494     // so we scan objArrays precisely and non-arrays in their
6495     // entirety.
6496     if (p->is_objArray()) {
6497       is_obj_array = true;
6498       if (_parallel) {
6499         p->oop_iterate(_par_scan_closure, mr);
6500       } else {
6501         p->oop_iterate(_scan_closure, mr);
6502       }
6503     } else {
6504       if (_parallel) {
6505         p->oop_iterate(_par_scan_closure);
6506       } else {
6507         p->oop_iterate(_scan_closure);
6508       }
6509     }
6510   }
6511   #ifdef ASSERT
6512     if (!_parallel) {
6513       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6514       assert(_collector->overflow_list_is_empty(),
6515              "overflow list should be empty");
6516 
6517     }
6518   #endif // ASSERT
6519   return is_obj_array;
6520 }
6521 
6522 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6523                         MemRegion span,
6524                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6525                         bool should_yield, bool verifying):
6526   _collector(collector),
6527   _span(span),
6528   _bitMap(bitMap),
6529   _mut(&collector->_modUnionTable),
6530   _markStack(markStack),
6531   _yield(should_yield),
6532   _skipBits(0)
6533 {
6534   assert(_markStack->isEmpty(), "stack should be empty");
6535   _finger = _bitMap->startWord();
6536   _threshold = _finger;
6537   assert(_collector->_restart_addr == NULL, "Sanity check");
6538   assert(_span.contains(_finger), "Out of bounds _finger?");
6539   DEBUG_ONLY(_verifying = verifying;)
6540 }
6541 
6542 void MarkFromRootsClosure::reset(HeapWord* addr) {
6543   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6544   assert(_span.contains(addr), "Out of bounds _finger?");
6545   _finger = addr;
6546   _threshold = (HeapWord*)round_to(
6547                  (intptr_t)_finger, CardTableModRefBS::card_size);
6548 }
6549 
6550 // Should revisit to see if this should be restructured for
6551 // greater efficiency.
6552 bool MarkFromRootsClosure::do_bit(size_t offset) {
6553   if (_skipBits > 0) {
6554     _skipBits--;
6555     return true;
6556   }
6557   // convert offset into a HeapWord*
6558   HeapWord* addr = _bitMap->startWord() + offset;
6559   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6560          "address out of range");
6561   assert(_bitMap->isMarked(addr), "tautology");
6562   if (_bitMap->isMarked(addr+1)) {
6563     // this is an allocated but not yet initialized object
6564     assert(_skipBits == 0, "tautology");
6565     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6566     oop p = oop(addr);
6567     if (p->klass_or_null() == NULL) {
6568       DEBUG_ONLY(if (!_verifying) {)
6569         // We re-dirty the cards on which this object lies and increase
6570         // the _threshold so that we'll come back to scan this object
6571         // during the preclean or remark phase. (CMSCleanOnEnter)
6572         if (CMSCleanOnEnter) {
6573           size_t sz = _collector->block_size_using_printezis_bits(addr);
6574           HeapWord* end_card_addr   = (HeapWord*)round_to(
6575                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6576           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6577           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6578           // Bump _threshold to end_card_addr; note that
6579           // _threshold cannot possibly exceed end_card_addr, anyhow.
6580           // This prevents future clearing of the card as the scan proceeds
6581           // to the right.
6582           assert(_threshold <= end_card_addr,
6583                  "Because we are just scanning into this object");
6584           if (_threshold < end_card_addr) {
6585             _threshold = end_card_addr;
6586           }
6587           if (p->klass_or_null() != NULL) {
6588             // Redirty the range of cards...
6589             _mut->mark_range(redirty_range);
6590           } // ...else the setting of klass will dirty the card anyway.
6591         }
6592       DEBUG_ONLY(})
6593       return true;
6594     }
6595   }
6596   scanOopsInOop(addr);
6597   return true;
6598 }
6599 
6600 // We take a break if we've been at this for a while,
6601 // so as to avoid monopolizing the locks involved.
6602 void MarkFromRootsClosure::do_yield_work() {
6603   // First give up the locks, then yield, then re-lock
6604   // We should probably use a constructor/destructor idiom to
6605   // do this unlock/lock or modify the MutexUnlocker class to
6606   // serve our purpose. XXX
6607   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6608          "CMS thread should hold CMS token");
6609   assert_lock_strong(_bitMap->lock());
6610   _bitMap->lock()->unlock();
6611   ConcurrentMarkSweepThread::desynchronize(true);
6612   _collector->stopTimer();
6613   if (PrintCMSStatistics != 0) {
6614     _collector->incrementYields();
6615   }
6616 
6617   // See the comment in coordinator_yield()
6618   for (unsigned i = 0; i < CMSYieldSleepCount &&
6619                        ConcurrentMarkSweepThread::should_yield() &&
6620                        !CMSCollector::foregroundGCIsActive(); ++i) {
6621     os::sleep(Thread::current(), 1, false);
6622   }
6623 
6624   ConcurrentMarkSweepThread::synchronize(true);
6625   _bitMap->lock()->lock_without_safepoint_check();
6626   _collector->startTimer();
6627 }
6628 
6629 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6630   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6631   assert(_markStack->isEmpty(),
6632          "should drain stack to limit stack usage");
6633   // convert ptr to an oop preparatory to scanning
6634   oop obj = oop(ptr);
6635   // Ignore mark word in verification below, since we
6636   // may be running concurrent with mutators.
6637   assert(obj->is_oop(true), "should be an oop");
6638   assert(_finger <= ptr, "_finger runneth ahead");
6639   // advance the finger to right end of this object
6640   _finger = ptr + obj->size();
6641   assert(_finger > ptr, "we just incremented it above");
6642   // On large heaps, it may take us some time to get through
6643   // the marking phase. During
6644   // this time it's possible that a lot of mutations have
6645   // accumulated in the card table and the mod union table --
6646   // these mutation records are redundant until we have
6647   // actually traced into the corresponding card.
6648   // Here, we check whether advancing the finger would make
6649   // us cross into a new card, and if so clear corresponding
6650   // cards in the MUT (preclean them in the card-table in the
6651   // future).
6652 
6653   DEBUG_ONLY(if (!_verifying) {)
6654     // The clean-on-enter optimization is disabled by default,
6655     // until we fix 6178663.
6656     if (CMSCleanOnEnter && (_finger > _threshold)) {
6657       // [_threshold, _finger) represents the interval
6658       // of cards to be cleared  in MUT (or precleaned in card table).
6659       // The set of cards to be cleared is all those that overlap
6660       // with the interval [_threshold, _finger); note that
6661       // _threshold is always kept card-aligned but _finger isn't
6662       // always card-aligned.
6663       HeapWord* old_threshold = _threshold;
6664       assert(old_threshold == (HeapWord*)round_to(
6665               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6666              "_threshold should always be card-aligned");
6667       _threshold = (HeapWord*)round_to(
6668                      (intptr_t)_finger, CardTableModRefBS::card_size);
6669       MemRegion mr(old_threshold, _threshold);
6670       assert(!mr.is_empty(), "Control point invariant");
6671       assert(_span.contains(mr), "Should clear within span");
6672       _mut->clear_range(mr);
6673     }
6674   DEBUG_ONLY(})
6675   // Note: the finger doesn't advance while we drain
6676   // the stack below.
6677   PushOrMarkClosure pushOrMarkClosure(_collector,
6678                                       _span, _bitMap, _markStack,
6679                                       _finger, this);
6680   bool res = _markStack->push(obj);
6681   assert(res, "Empty non-zero size stack should have space for single push");
6682   while (!_markStack->isEmpty()) {
6683     oop new_oop = _markStack->pop();
6684     // Skip verifying header mark word below because we are
6685     // running concurrent with mutators.
6686     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6687     // now scan this oop's oops
6688     new_oop->oop_iterate(&pushOrMarkClosure);
6689     do_yield_check();
6690   }
6691   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6692 }
6693 
6694 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6695                        CMSCollector* collector, MemRegion span,
6696                        CMSBitMap* bit_map,
6697                        OopTaskQueue* work_queue,
6698                        CMSMarkStack*  overflow_stack):
6699   _collector(collector),
6700   _whole_span(collector->_span),
6701   _span(span),
6702   _bit_map(bit_map),
6703   _mut(&collector->_modUnionTable),
6704   _work_queue(work_queue),
6705   _overflow_stack(overflow_stack),
6706   _skip_bits(0),
6707   _task(task)
6708 {
6709   assert(_work_queue->size() == 0, "work_queue should be empty");
6710   _finger = span.start();
6711   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6712   assert(_span.contains(_finger), "Out of bounds _finger?");
6713 }
6714 
6715 // Should revisit to see if this should be restructured for
6716 // greater efficiency.
6717 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6718   if (_skip_bits > 0) {
6719     _skip_bits--;
6720     return true;
6721   }
6722   // convert offset into a HeapWord*
6723   HeapWord* addr = _bit_map->startWord() + offset;
6724   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6725          "address out of range");
6726   assert(_bit_map->isMarked(addr), "tautology");
6727   if (_bit_map->isMarked(addr+1)) {
6728     // this is an allocated object that might not yet be initialized
6729     assert(_skip_bits == 0, "tautology");
6730     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6731     oop p = oop(addr);
6732     if (p->klass_or_null() == NULL) {
6733       // in the case of Clean-on-Enter optimization, redirty card
6734       // and avoid clearing card by increasing  the threshold.
6735       return true;
6736     }
6737   }
6738   scan_oops_in_oop(addr);
6739   return true;
6740 }
6741 
6742 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6743   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6744   // Should we assert that our work queue is empty or
6745   // below some drain limit?
6746   assert(_work_queue->size() == 0,
6747          "should drain stack to limit stack usage");
6748   // convert ptr to an oop preparatory to scanning
6749   oop obj = oop(ptr);
6750   // Ignore mark word in verification below, since we
6751   // may be running concurrent with mutators.
6752   assert(obj->is_oop(true), "should be an oop");
6753   assert(_finger <= ptr, "_finger runneth ahead");
6754   // advance the finger to right end of this object
6755   _finger = ptr + obj->size();
6756   assert(_finger > ptr, "we just incremented it above");
6757   // On large heaps, it may take us some time to get through
6758   // the marking phase. During
6759   // this time it's possible that a lot of mutations have
6760   // accumulated in the card table and the mod union table --
6761   // these mutation records are redundant until we have
6762   // actually traced into the corresponding card.
6763   // Here, we check whether advancing the finger would make
6764   // us cross into a new card, and if so clear corresponding
6765   // cards in the MUT (preclean them in the card-table in the
6766   // future).
6767 
6768   // The clean-on-enter optimization is disabled by default,
6769   // until we fix 6178663.
6770   if (CMSCleanOnEnter && (_finger > _threshold)) {
6771     // [_threshold, _finger) represents the interval
6772     // of cards to be cleared  in MUT (or precleaned in card table).
6773     // The set of cards to be cleared is all those that overlap
6774     // with the interval [_threshold, _finger); note that
6775     // _threshold is always kept card-aligned but _finger isn't
6776     // always card-aligned.
6777     HeapWord* old_threshold = _threshold;
6778     assert(old_threshold == (HeapWord*)round_to(
6779             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6780            "_threshold should always be card-aligned");
6781     _threshold = (HeapWord*)round_to(
6782                    (intptr_t)_finger, CardTableModRefBS::card_size);
6783     MemRegion mr(old_threshold, _threshold);
6784     assert(!mr.is_empty(), "Control point invariant");
6785     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6786     _mut->clear_range(mr);
6787   }
6788 
6789   // Note: the local finger doesn't advance while we drain
6790   // the stack below, but the global finger sure can and will.
6791   HeapWord** gfa = _task->global_finger_addr();
6792   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6793                                       _span, _bit_map,
6794                                       _work_queue,
6795                                       _overflow_stack,
6796                                       _finger,
6797                                       gfa, this);
6798   bool res = _work_queue->push(obj);   // overflow could occur here
6799   assert(res, "Will hold once we use workqueues");
6800   while (true) {
6801     oop new_oop;
6802     if (!_work_queue->pop_local(new_oop)) {
6803       // We emptied our work_queue; check if there's stuff that can
6804       // be gotten from the overflow stack.
6805       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6806             _overflow_stack, _work_queue)) {
6807         do_yield_check();
6808         continue;
6809       } else {  // done
6810         break;
6811       }
6812     }
6813     // Skip verifying header mark word below because we are
6814     // running concurrent with mutators.
6815     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6816     // now scan this oop's oops
6817     new_oop->oop_iterate(&pushOrMarkClosure);
6818     do_yield_check();
6819   }
6820   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6821 }
6822 
6823 // Yield in response to a request from VM Thread or
6824 // from mutators.
6825 void Par_MarkFromRootsClosure::do_yield_work() {
6826   assert(_task != NULL, "sanity");
6827   _task->yield();
6828 }
6829 
6830 // A variant of the above used for verifying CMS marking work.
6831 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6832                         MemRegion span,
6833                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6834                         CMSMarkStack*  mark_stack):
6835   _collector(collector),
6836   _span(span),
6837   _verification_bm(verification_bm),
6838   _cms_bm(cms_bm),
6839   _mark_stack(mark_stack),
6840   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6841                       mark_stack)
6842 {
6843   assert(_mark_stack->isEmpty(), "stack should be empty");
6844   _finger = _verification_bm->startWord();
6845   assert(_collector->_restart_addr == NULL, "Sanity check");
6846   assert(_span.contains(_finger), "Out of bounds _finger?");
6847 }
6848 
6849 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6850   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6851   assert(_span.contains(addr), "Out of bounds _finger?");
6852   _finger = addr;
6853 }
6854 
6855 // Should revisit to see if this should be restructured for
6856 // greater efficiency.
6857 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6858   // convert offset into a HeapWord*
6859   HeapWord* addr = _verification_bm->startWord() + offset;
6860   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6861          "address out of range");
6862   assert(_verification_bm->isMarked(addr), "tautology");
6863   assert(_cms_bm->isMarked(addr), "tautology");
6864 
6865   assert(_mark_stack->isEmpty(),
6866          "should drain stack to limit stack usage");
6867   // convert addr to an oop preparatory to scanning
6868   oop obj = oop(addr);
6869   assert(obj->is_oop(), "should be an oop");
6870   assert(_finger <= addr, "_finger runneth ahead");
6871   // advance the finger to right end of this object
6872   _finger = addr + obj->size();
6873   assert(_finger > addr, "we just incremented it above");
6874   // Note: the finger doesn't advance while we drain
6875   // the stack below.
6876   bool res = _mark_stack->push(obj);
6877   assert(res, "Empty non-zero size stack should have space for single push");
6878   while (!_mark_stack->isEmpty()) {
6879     oop new_oop = _mark_stack->pop();
6880     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6881     // now scan this oop's oops
6882     new_oop->oop_iterate(&_pam_verify_closure);
6883   }
6884   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6885   return true;
6886 }
6887 
6888 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6889   CMSCollector* collector, MemRegion span,
6890   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6891   CMSMarkStack*  mark_stack):
6892   MetadataAwareOopClosure(collector->ref_processor()),
6893   _collector(collector),
6894   _span(span),
6895   _verification_bm(verification_bm),
6896   _cms_bm(cms_bm),
6897   _mark_stack(mark_stack)
6898 { }
6899 
6900 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6901 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6902 
6903 // Upon stack overflow, we discard (part of) the stack,
6904 // remembering the least address amongst those discarded
6905 // in CMSCollector's _restart_address.
6906 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6907   // Remember the least grey address discarded
6908   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6909   _collector->lower_restart_addr(ra);
6910   _mark_stack->reset();  // discard stack contents
6911   _mark_stack->expand(); // expand the stack if possible
6912 }
6913 
6914 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6915   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6916   HeapWord* addr = (HeapWord*)obj;
6917   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6918     // Oop lies in _span and isn't yet grey or black
6919     _verification_bm->mark(addr);            // now grey
6920     if (!_cms_bm->isMarked(addr)) {
6921       oop(addr)->print();
6922       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6923                              p2i(addr));
6924       fatal("... aborting");
6925     }
6926 
6927     if (!_mark_stack->push(obj)) { // stack overflow
6928       if (PrintCMSStatistics != 0) {
6929         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6930                                SIZE_FORMAT, _mark_stack->capacity());
6931       }
6932       assert(_mark_stack->isFull(), "Else push should have succeeded");
6933       handle_stack_overflow(addr);
6934     }
6935     // anything including and to the right of _finger
6936     // will be scanned as we iterate over the remainder of the
6937     // bit map
6938   }
6939 }
6940 
6941 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6942                      MemRegion span,
6943                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6944                      HeapWord* finger, MarkFromRootsClosure* parent) :
6945   MetadataAwareOopClosure(collector->ref_processor()),
6946   _collector(collector),
6947   _span(span),
6948   _bitMap(bitMap),
6949   _markStack(markStack),
6950   _finger(finger),
6951   _parent(parent)
6952 { }
6953 
6954 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6955                      MemRegion span,
6956                      CMSBitMap* bit_map,
6957                      OopTaskQueue* work_queue,
6958                      CMSMarkStack*  overflow_stack,
6959                      HeapWord* finger,
6960                      HeapWord** global_finger_addr,
6961                      Par_MarkFromRootsClosure* parent) :
6962   MetadataAwareOopClosure(collector->ref_processor()),
6963   _collector(collector),
6964   _whole_span(collector->_span),
6965   _span(span),
6966   _bit_map(bit_map),
6967   _work_queue(work_queue),
6968   _overflow_stack(overflow_stack),
6969   _finger(finger),
6970   _global_finger_addr(global_finger_addr),
6971   _parent(parent)
6972 { }
6973 
6974 // Assumes thread-safe access by callers, who are
6975 // responsible for mutual exclusion.
6976 void CMSCollector::lower_restart_addr(HeapWord* low) {
6977   assert(_span.contains(low), "Out of bounds addr");
6978   if (_restart_addr == NULL) {
6979     _restart_addr = low;
6980   } else {
6981     _restart_addr = MIN2(_restart_addr, low);
6982   }
6983 }
6984 
6985 // Upon stack overflow, we discard (part of) the stack,
6986 // remembering the least address amongst those discarded
6987 // in CMSCollector's _restart_address.
6988 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6989   // Remember the least grey address discarded
6990   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6991   _collector->lower_restart_addr(ra);
6992   _markStack->reset();  // discard stack contents
6993   _markStack->expand(); // expand the stack if possible
6994 }
6995 
6996 // Upon stack overflow, we discard (part of) the stack,
6997 // remembering the least address amongst those discarded
6998 // in CMSCollector's _restart_address.
6999 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7000   // We need to do this under a mutex to prevent other
7001   // workers from interfering with the work done below.
7002   MutexLockerEx ml(_overflow_stack->par_lock(),
7003                    Mutex::_no_safepoint_check_flag);
7004   // Remember the least grey address discarded
7005   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7006   _collector->lower_restart_addr(ra);
7007   _overflow_stack->reset();  // discard stack contents
7008   _overflow_stack->expand(); // expand the stack if possible
7009 }
7010 
7011 void PushOrMarkClosure::do_oop(oop obj) {
7012   // Ignore mark word because we are running concurrent with mutators.
7013   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7014   HeapWord* addr = (HeapWord*)obj;
7015   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7016     // Oop lies in _span and isn't yet grey or black
7017     _bitMap->mark(addr);            // now grey
7018     if (addr < _finger) {
7019       // the bit map iteration has already either passed, or
7020       // sampled, this bit in the bit map; we'll need to
7021       // use the marking stack to scan this oop's oops.
7022       bool simulate_overflow = false;
7023       NOT_PRODUCT(
7024         if (CMSMarkStackOverflowALot &&
7025             _collector->simulate_overflow()) {
7026           // simulate a stack overflow
7027           simulate_overflow = true;
7028         }
7029       )
7030       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7031         if (PrintCMSStatistics != 0) {
7032           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7033                                  SIZE_FORMAT, _markStack->capacity());
7034         }
7035         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7036         handle_stack_overflow(addr);
7037       }
7038     }
7039     // anything including and to the right of _finger
7040     // will be scanned as we iterate over the remainder of the
7041     // bit map
7042     do_yield_check();
7043   }
7044 }
7045 
7046 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7047 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7048 
7049 void Par_PushOrMarkClosure::do_oop(oop obj) {
7050   // Ignore mark word because we are running concurrent with mutators.
7051   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7052   HeapWord* addr = (HeapWord*)obj;
7053   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7054     // Oop lies in _span and isn't yet grey or black
7055     // We read the global_finger (volatile read) strictly after marking oop
7056     bool res = _bit_map->par_mark(addr);    // now grey
7057     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7058     // Should we push this marked oop on our stack?
7059     // -- if someone else marked it, nothing to do
7060     // -- if target oop is above global finger nothing to do
7061     // -- if target oop is in chunk and above local finger
7062     //      then nothing to do
7063     // -- else push on work queue
7064     if (   !res       // someone else marked it, they will deal with it
7065         || (addr >= *gfa)  // will be scanned in a later task
7066         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7067       return;
7068     }
7069     // the bit map iteration has already either passed, or
7070     // sampled, this bit in the bit map; we'll need to
7071     // use the marking stack to scan this oop's oops.
7072     bool simulate_overflow = false;
7073     NOT_PRODUCT(
7074       if (CMSMarkStackOverflowALot &&
7075           _collector->simulate_overflow()) {
7076         // simulate a stack overflow
7077         simulate_overflow = true;
7078       }
7079     )
7080     if (simulate_overflow ||
7081         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7082       // stack overflow
7083       if (PrintCMSStatistics != 0) {
7084         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7085                                SIZE_FORMAT, _overflow_stack->capacity());
7086       }
7087       // We cannot assert that the overflow stack is full because
7088       // it may have been emptied since.
7089       assert(simulate_overflow ||
7090              _work_queue->size() == _work_queue->max_elems(),
7091             "Else push should have succeeded");
7092       handle_stack_overflow(addr);
7093     }
7094     do_yield_check();
7095   }
7096 }
7097 
7098 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7099 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7100 
7101 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7102                                        MemRegion span,
7103                                        ReferenceProcessor* rp,
7104                                        CMSBitMap* bit_map,
7105                                        CMSBitMap* mod_union_table,
7106                                        CMSMarkStack*  mark_stack,
7107                                        bool           concurrent_precleaning):
7108   MetadataAwareOopClosure(rp),
7109   _collector(collector),
7110   _span(span),
7111   _bit_map(bit_map),
7112   _mod_union_table(mod_union_table),
7113   _mark_stack(mark_stack),
7114   _concurrent_precleaning(concurrent_precleaning)
7115 {
7116   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7117 }
7118 
7119 // Grey object rescan during pre-cleaning and second checkpoint phases --
7120 // the non-parallel version (the parallel version appears further below.)
7121 void PushAndMarkClosure::do_oop(oop obj) {
7122   // Ignore mark word verification. If during concurrent precleaning,
7123   // the object monitor may be locked. If during the checkpoint
7124   // phases, the object may already have been reached by a  different
7125   // path and may be at the end of the global overflow list (so
7126   // the mark word may be NULL).
7127   assert(obj->is_oop_or_null(true /* ignore mark word */),
7128          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7129   HeapWord* addr = (HeapWord*)obj;
7130   // Check if oop points into the CMS generation
7131   // and is not marked
7132   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7133     // a white object ...
7134     _bit_map->mark(addr);         // ... now grey
7135     // push on the marking stack (grey set)
7136     bool simulate_overflow = false;
7137     NOT_PRODUCT(
7138       if (CMSMarkStackOverflowALot &&
7139           _collector->simulate_overflow()) {
7140         // simulate a stack overflow
7141         simulate_overflow = true;
7142       }
7143     )
7144     if (simulate_overflow || !_mark_stack->push(obj)) {
7145       if (_concurrent_precleaning) {
7146          // During precleaning we can just dirty the appropriate card(s)
7147          // in the mod union table, thus ensuring that the object remains
7148          // in the grey set  and continue. In the case of object arrays
7149          // we need to dirty all of the cards that the object spans,
7150          // since the rescan of object arrays will be limited to the
7151          // dirty cards.
7152          // Note that no one can be interfering with us in this action
7153          // of dirtying the mod union table, so no locking or atomics
7154          // are required.
7155          if (obj->is_objArray()) {
7156            size_t sz = obj->size();
7157            HeapWord* end_card_addr = (HeapWord*)round_to(
7158                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7159            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7160            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7161            _mod_union_table->mark_range(redirty_range);
7162          } else {
7163            _mod_union_table->mark(addr);
7164          }
7165          _collector->_ser_pmc_preclean_ovflw++;
7166       } else {
7167          // During the remark phase, we need to remember this oop
7168          // in the overflow list.
7169          _collector->push_on_overflow_list(obj);
7170          _collector->_ser_pmc_remark_ovflw++;
7171       }
7172     }
7173   }
7174 }
7175 
7176 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7177                                                MemRegion span,
7178                                                ReferenceProcessor* rp,
7179                                                CMSBitMap* bit_map,
7180                                                OopTaskQueue* work_queue):
7181   MetadataAwareOopClosure(rp),
7182   _collector(collector),
7183   _span(span),
7184   _bit_map(bit_map),
7185   _work_queue(work_queue)
7186 {
7187   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7188 }
7189 
7190 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7191 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7192 
7193 // Grey object rescan during second checkpoint phase --
7194 // the parallel version.
7195 void Par_PushAndMarkClosure::do_oop(oop obj) {
7196   // In the assert below, we ignore the mark word because
7197   // this oop may point to an already visited object that is
7198   // on the overflow stack (in which case the mark word has
7199   // been hijacked for chaining into the overflow stack --
7200   // if this is the last object in the overflow stack then
7201   // its mark word will be NULL). Because this object may
7202   // have been subsequently popped off the global overflow
7203   // stack, and the mark word possibly restored to the prototypical
7204   // value, by the time we get to examined this failing assert in
7205   // the debugger, is_oop_or_null(false) may subsequently start
7206   // to hold.
7207   assert(obj->is_oop_or_null(true),
7208          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7209   HeapWord* addr = (HeapWord*)obj;
7210   // Check if oop points into the CMS generation
7211   // and is not marked
7212   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7213     // a white object ...
7214     // If we manage to "claim" the object, by being the
7215     // first thread to mark it, then we push it on our
7216     // marking stack
7217     if (_bit_map->par_mark(addr)) {     // ... now grey
7218       // push on work queue (grey set)
7219       bool simulate_overflow = false;
7220       NOT_PRODUCT(
7221         if (CMSMarkStackOverflowALot &&
7222             _collector->par_simulate_overflow()) {
7223           // simulate a stack overflow
7224           simulate_overflow = true;
7225         }
7226       )
7227       if (simulate_overflow || !_work_queue->push(obj)) {
7228         _collector->par_push_on_overflow_list(obj);
7229         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7230       }
7231     } // Else, some other thread got there first
7232   }
7233 }
7234 
7235 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7236 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7237 
7238 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7239   Mutex* bml = _collector->bitMapLock();
7240   assert_lock_strong(bml);
7241   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7242          "CMS thread should hold CMS token");
7243 
7244   bml->unlock();
7245   ConcurrentMarkSweepThread::desynchronize(true);
7246 
7247   _collector->stopTimer();
7248   if (PrintCMSStatistics != 0) {
7249     _collector->incrementYields();
7250   }
7251 
7252   // See the comment in coordinator_yield()
7253   for (unsigned i = 0; i < CMSYieldSleepCount &&
7254                        ConcurrentMarkSweepThread::should_yield() &&
7255                        !CMSCollector::foregroundGCIsActive(); ++i) {
7256     os::sleep(Thread::current(), 1, false);
7257   }
7258 
7259   ConcurrentMarkSweepThread::synchronize(true);
7260   bml->lock();
7261 
7262   _collector->startTimer();
7263 }
7264 
7265 bool CMSPrecleanRefsYieldClosure::should_return() {
7266   if (ConcurrentMarkSweepThread::should_yield()) {
7267     do_yield_work();
7268   }
7269   return _collector->foregroundGCIsActive();
7270 }
7271 
7272 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7273   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7274          "mr should be aligned to start at a card boundary");
7275   // We'd like to assert:
7276   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7277   //        "mr should be a range of cards");
7278   // However, that would be too strong in one case -- the last
7279   // partition ends at _unallocated_block which, in general, can be
7280   // an arbitrary boundary, not necessarily card aligned.
7281   if (PrintCMSStatistics != 0) {
7282     _num_dirty_cards +=
7283          mr.word_size()/CardTableModRefBS::card_size_in_words;
7284   }
7285   _space->object_iterate_mem(mr, &_scan_cl);
7286 }
7287 
7288 SweepClosure::SweepClosure(CMSCollector* collector,
7289                            ConcurrentMarkSweepGeneration* g,
7290                            CMSBitMap* bitMap, bool should_yield) :
7291   _collector(collector),
7292   _g(g),
7293   _sp(g->cmsSpace()),
7294   _limit(_sp->sweep_limit()),
7295   _freelistLock(_sp->freelistLock()),
7296   _bitMap(bitMap),
7297   _yield(should_yield),
7298   _inFreeRange(false),           // No free range at beginning of sweep
7299   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7300   _lastFreeRangeCoalesced(false),
7301   _freeFinger(g->used_region().start())
7302 {
7303   NOT_PRODUCT(
7304     _numObjectsFreed = 0;
7305     _numWordsFreed   = 0;
7306     _numObjectsLive = 0;
7307     _numWordsLive = 0;
7308     _numObjectsAlreadyFree = 0;
7309     _numWordsAlreadyFree = 0;
7310     _last_fc = NULL;
7311 
7312     _sp->initializeIndexedFreeListArrayReturnedBytes();
7313     _sp->dictionary()->initialize_dict_returned_bytes();
7314   )
7315   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7316          "sweep _limit out of bounds");
7317   if (CMSTraceSweeper) {
7318     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7319                         p2i(_limit));
7320   }
7321 }
7322 
7323 void SweepClosure::print_on(outputStream* st) const {
7324   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7325                 p2i(_sp->bottom()), p2i(_sp->end()));
7326   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7327   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7328   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7329   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7330                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7331 }
7332 
7333 #ifndef PRODUCT
7334 // Assertion checking only:  no useful work in product mode --
7335 // however, if any of the flags below become product flags,
7336 // you may need to review this code to see if it needs to be
7337 // enabled in product mode.
7338 SweepClosure::~SweepClosure() {
7339   assert_lock_strong(_freelistLock);
7340   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7341          "sweep _limit out of bounds");
7342   if (inFreeRange()) {
7343     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7344     print();
7345     ShouldNotReachHere();
7346   }
7347   if (Verbose && PrintGC) {
7348     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7349                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7350     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7351                            SIZE_FORMAT" bytes  "
7352       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7353       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7354       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7355     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7356                         * sizeof(HeapWord);
7357     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7358 
7359     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7360       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7361       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7362       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7363       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7364       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7365         indexListReturnedBytes);
7366       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7367         dict_returned_bytes);
7368     }
7369   }
7370   if (CMSTraceSweeper) {
7371     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7372                            p2i(_limit));
7373   }
7374 }
7375 #endif  // PRODUCT
7376 
7377 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7378     bool freeRangeInFreeLists) {
7379   if (CMSTraceSweeper) {
7380     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7381                p2i(freeFinger), freeRangeInFreeLists);
7382   }
7383   assert(!inFreeRange(), "Trampling existing free range");
7384   set_inFreeRange(true);
7385   set_lastFreeRangeCoalesced(false);
7386 
7387   set_freeFinger(freeFinger);
7388   set_freeRangeInFreeLists(freeRangeInFreeLists);
7389   if (CMSTestInFreeList) {
7390     if (freeRangeInFreeLists) {
7391       FreeChunk* fc = (FreeChunk*) freeFinger;
7392       assert(fc->is_free(), "A chunk on the free list should be free.");
7393       assert(fc->size() > 0, "Free range should have a size");
7394       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7395     }
7396   }
7397 }
7398 
7399 // Note that the sweeper runs concurrently with mutators. Thus,
7400 // it is possible for direct allocation in this generation to happen
7401 // in the middle of the sweep. Note that the sweeper also coalesces
7402 // contiguous free blocks. Thus, unless the sweeper and the allocator
7403 // synchronize appropriately freshly allocated blocks may get swept up.
7404 // This is accomplished by the sweeper locking the free lists while
7405 // it is sweeping. Thus blocks that are determined to be free are
7406 // indeed free. There is however one additional complication:
7407 // blocks that have been allocated since the final checkpoint and
7408 // mark, will not have been marked and so would be treated as
7409 // unreachable and swept up. To prevent this, the allocator marks
7410 // the bit map when allocating during the sweep phase. This leads,
7411 // however, to a further complication -- objects may have been allocated
7412 // but not yet initialized -- in the sense that the header isn't yet
7413 // installed. The sweeper can not then determine the size of the block
7414 // in order to skip over it. To deal with this case, we use a technique
7415 // (due to Printezis) to encode such uninitialized block sizes in the
7416 // bit map. Since the bit map uses a bit per every HeapWord, but the
7417 // CMS generation has a minimum object size of 3 HeapWords, it follows
7418 // that "normal marks" won't be adjacent in the bit map (there will
7419 // always be at least two 0 bits between successive 1 bits). We make use
7420 // of these "unused" bits to represent uninitialized blocks -- the bit
7421 // corresponding to the start of the uninitialized object and the next
7422 // bit are both set. Finally, a 1 bit marks the end of the object that
7423 // started with the two consecutive 1 bits to indicate its potentially
7424 // uninitialized state.
7425 
7426 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7427   FreeChunk* fc = (FreeChunk*)addr;
7428   size_t res;
7429 
7430   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7431   // than "addr == _limit" because although _limit was a block boundary when
7432   // we started the sweep, it may no longer be one because heap expansion
7433   // may have caused us to coalesce the block ending at the address _limit
7434   // with a newly expanded chunk (this happens when _limit was set to the
7435   // previous _end of the space), so we may have stepped past _limit:
7436   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7437   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7438     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7439            "sweep _limit out of bounds");
7440     assert(addr < _sp->end(), "addr out of bounds");
7441     // Flush any free range we might be holding as a single
7442     // coalesced chunk to the appropriate free list.
7443     if (inFreeRange()) {
7444       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7445              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7446       flush_cur_free_chunk(freeFinger(),
7447                            pointer_delta(addr, freeFinger()));
7448       if (CMSTraceSweeper) {
7449         gclog_or_tty->print("Sweep: last chunk: ");
7450         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7451                    "[coalesced:%d]\n",
7452                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7453                    lastFreeRangeCoalesced() ? 1 : 0);
7454       }
7455     }
7456 
7457     // help the iterator loop finish
7458     return pointer_delta(_sp->end(), addr);
7459   }
7460 
7461   assert(addr < _limit, "sweep invariant");
7462   // check if we should yield
7463   do_yield_check(addr);
7464   if (fc->is_free()) {
7465     // Chunk that is already free
7466     res = fc->size();
7467     do_already_free_chunk(fc);
7468     debug_only(_sp->verifyFreeLists());
7469     // If we flush the chunk at hand in lookahead_and_flush()
7470     // and it's coalesced with a preceding chunk, then the
7471     // process of "mangling" the payload of the coalesced block
7472     // will cause erasure of the size information from the
7473     // (erstwhile) header of all the coalesced blocks but the
7474     // first, so the first disjunct in the assert will not hold
7475     // in that specific case (in which case the second disjunct
7476     // will hold).
7477     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7478            "Otherwise the size info doesn't change at this step");
7479     NOT_PRODUCT(
7480       _numObjectsAlreadyFree++;
7481       _numWordsAlreadyFree += res;
7482     )
7483     NOT_PRODUCT(_last_fc = fc;)
7484   } else if (!_bitMap->isMarked(addr)) {
7485     // Chunk is fresh garbage
7486     res = do_garbage_chunk(fc);
7487     debug_only(_sp->verifyFreeLists());
7488     NOT_PRODUCT(
7489       _numObjectsFreed++;
7490       _numWordsFreed += res;
7491     )
7492   } else {
7493     // Chunk that is alive.
7494     res = do_live_chunk(fc);
7495     debug_only(_sp->verifyFreeLists());
7496     NOT_PRODUCT(
7497         _numObjectsLive++;
7498         _numWordsLive += res;
7499     )
7500   }
7501   return res;
7502 }
7503 
7504 // For the smart allocation, record following
7505 //  split deaths - a free chunk is removed from its free list because
7506 //      it is being split into two or more chunks.
7507 //  split birth - a free chunk is being added to its free list because
7508 //      a larger free chunk has been split and resulted in this free chunk.
7509 //  coal death - a free chunk is being removed from its free list because
7510 //      it is being coalesced into a large free chunk.
7511 //  coal birth - a free chunk is being added to its free list because
7512 //      it was created when two or more free chunks where coalesced into
7513 //      this free chunk.
7514 //
7515 // These statistics are used to determine the desired number of free
7516 // chunks of a given size.  The desired number is chosen to be relative
7517 // to the end of a CMS sweep.  The desired number at the end of a sweep
7518 // is the
7519 //      count-at-end-of-previous-sweep (an amount that was enough)
7520 //              - count-at-beginning-of-current-sweep  (the excess)
7521 //              + split-births  (gains in this size during interval)
7522 //              - split-deaths  (demands on this size during interval)
7523 // where the interval is from the end of one sweep to the end of the
7524 // next.
7525 //
7526 // When sweeping the sweeper maintains an accumulated chunk which is
7527 // the chunk that is made up of chunks that have been coalesced.  That
7528 // will be termed the left-hand chunk.  A new chunk of garbage that
7529 // is being considered for coalescing will be referred to as the
7530 // right-hand chunk.
7531 //
7532 // When making a decision on whether to coalesce a right-hand chunk with
7533 // the current left-hand chunk, the current count vs. the desired count
7534 // of the left-hand chunk is considered.  Also if the right-hand chunk
7535 // is near the large chunk at the end of the heap (see
7536 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7537 // left-hand chunk is coalesced.
7538 //
7539 // When making a decision about whether to split a chunk, the desired count
7540 // vs. the current count of the candidate to be split is also considered.
7541 // If the candidate is underpopulated (currently fewer chunks than desired)
7542 // a chunk of an overpopulated (currently more chunks than desired) size may
7543 // be chosen.  The "hint" associated with a free list, if non-null, points
7544 // to a free list which may be overpopulated.
7545 //
7546 
7547 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7548   const size_t size = fc->size();
7549   // Chunks that cannot be coalesced are not in the
7550   // free lists.
7551   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7552     assert(_sp->verify_chunk_in_free_list(fc),
7553       "free chunk should be in free lists");
7554   }
7555   // a chunk that is already free, should not have been
7556   // marked in the bit map
7557   HeapWord* const addr = (HeapWord*) fc;
7558   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7559   // Verify that the bit map has no bits marked between
7560   // addr and purported end of this block.
7561   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7562 
7563   // Some chunks cannot be coalesced under any circumstances.
7564   // See the definition of cantCoalesce().
7565   if (!fc->cantCoalesce()) {
7566     // This chunk can potentially be coalesced.
7567     if (_sp->adaptive_freelists()) {
7568       // All the work is done in
7569       do_post_free_or_garbage_chunk(fc, size);
7570     } else {  // Not adaptive free lists
7571       // this is a free chunk that can potentially be coalesced by the sweeper;
7572       if (!inFreeRange()) {
7573         // if the next chunk is a free block that can't be coalesced
7574         // it doesn't make sense to remove this chunk from the free lists
7575         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7576         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7577         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7578             nextChunk->is_free()               &&     // ... which is free...
7579             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7580           // nothing to do
7581         } else {
7582           // Potentially the start of a new free range:
7583           // Don't eagerly remove it from the free lists.
7584           // No need to remove it if it will just be put
7585           // back again.  (Also from a pragmatic point of view
7586           // if it is a free block in a region that is beyond
7587           // any allocated blocks, an assertion will fail)
7588           // Remember the start of a free run.
7589           initialize_free_range(addr, true);
7590           // end - can coalesce with next chunk
7591         }
7592       } else {
7593         // the midst of a free range, we are coalescing
7594         print_free_block_coalesced(fc);
7595         if (CMSTraceSweeper) {
7596           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7597         }
7598         // remove it from the free lists
7599         _sp->removeFreeChunkFromFreeLists(fc);
7600         set_lastFreeRangeCoalesced(true);
7601         // If the chunk is being coalesced and the current free range is
7602         // in the free lists, remove the current free range so that it
7603         // will be returned to the free lists in its entirety - all
7604         // the coalesced pieces included.
7605         if (freeRangeInFreeLists()) {
7606           FreeChunk* ffc = (FreeChunk*) freeFinger();
7607           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7608             "Size of free range is inconsistent with chunk size.");
7609           if (CMSTestInFreeList) {
7610             assert(_sp->verify_chunk_in_free_list(ffc),
7611               "free range is not in free lists");
7612           }
7613           _sp->removeFreeChunkFromFreeLists(ffc);
7614           set_freeRangeInFreeLists(false);
7615         }
7616       }
7617     }
7618     // Note that if the chunk is not coalescable (the else arm
7619     // below), we unconditionally flush, without needing to do
7620     // a "lookahead," as we do below.
7621     if (inFreeRange()) lookahead_and_flush(fc, size);
7622   } else {
7623     // Code path common to both original and adaptive free lists.
7624 
7625     // cant coalesce with previous block; this should be treated
7626     // as the end of a free run if any
7627     if (inFreeRange()) {
7628       // we kicked some butt; time to pick up the garbage
7629       assert(freeFinger() < addr, "freeFinger points too high");
7630       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7631     }
7632     // else, nothing to do, just continue
7633   }
7634 }
7635 
7636 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7637   // This is a chunk of garbage.  It is not in any free list.
7638   // Add it to a free list or let it possibly be coalesced into
7639   // a larger chunk.
7640   HeapWord* const addr = (HeapWord*) fc;
7641   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7642 
7643   if (_sp->adaptive_freelists()) {
7644     // Verify that the bit map has no bits marked between
7645     // addr and purported end of just dead object.
7646     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7647 
7648     do_post_free_or_garbage_chunk(fc, size);
7649   } else {
7650     if (!inFreeRange()) {
7651       // start of a new free range
7652       assert(size > 0, "A free range should have a size");
7653       initialize_free_range(addr, false);
7654     } else {
7655       // this will be swept up when we hit the end of the
7656       // free range
7657       if (CMSTraceSweeper) {
7658         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7659       }
7660       // If the chunk is being coalesced and the current free range is
7661       // in the free lists, remove the current free range so that it
7662       // will be returned to the free lists in its entirety - all
7663       // the coalesced pieces included.
7664       if (freeRangeInFreeLists()) {
7665         FreeChunk* ffc = (FreeChunk*)freeFinger();
7666         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7667           "Size of free range is inconsistent with chunk size.");
7668         if (CMSTestInFreeList) {
7669           assert(_sp->verify_chunk_in_free_list(ffc),
7670             "free range is not in free lists");
7671         }
7672         _sp->removeFreeChunkFromFreeLists(ffc);
7673         set_freeRangeInFreeLists(false);
7674       }
7675       set_lastFreeRangeCoalesced(true);
7676     }
7677     // this will be swept up when we hit the end of the free range
7678 
7679     // Verify that the bit map has no bits marked between
7680     // addr and purported end of just dead object.
7681     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7682   }
7683   assert(_limit >= addr + size,
7684          "A freshly garbage chunk can't possibly straddle over _limit");
7685   if (inFreeRange()) lookahead_and_flush(fc, size);
7686   return size;
7687 }
7688 
7689 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7690   HeapWord* addr = (HeapWord*) fc;
7691   // The sweeper has just found a live object. Return any accumulated
7692   // left hand chunk to the free lists.
7693   if (inFreeRange()) {
7694     assert(freeFinger() < addr, "freeFinger points too high");
7695     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7696   }
7697 
7698   // This object is live: we'd normally expect this to be
7699   // an oop, and like to assert the following:
7700   // assert(oop(addr)->is_oop(), "live block should be an oop");
7701   // However, as we commented above, this may be an object whose
7702   // header hasn't yet been initialized.
7703   size_t size;
7704   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7705   if (_bitMap->isMarked(addr + 1)) {
7706     // Determine the size from the bit map, rather than trying to
7707     // compute it from the object header.
7708     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7709     size = pointer_delta(nextOneAddr + 1, addr);
7710     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7711            "alignment problem");
7712 
7713 #ifdef ASSERT
7714       if (oop(addr)->klass_or_null() != NULL) {
7715         // Ignore mark word because we are running concurrent with mutators
7716         assert(oop(addr)->is_oop(true), "live block should be an oop");
7717         assert(size ==
7718                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7719                "P-mark and computed size do not agree");
7720       }
7721 #endif
7722 
7723   } else {
7724     // This should be an initialized object that's alive.
7725     assert(oop(addr)->klass_or_null() != NULL,
7726            "Should be an initialized object");
7727     // Ignore mark word because we are running concurrent with mutators
7728     assert(oop(addr)->is_oop(true), "live block should be an oop");
7729     // Verify that the bit map has no bits marked between
7730     // addr and purported end of this block.
7731     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7732     assert(size >= 3, "Necessary for Printezis marks to work");
7733     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7734     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7735   }
7736   return size;
7737 }
7738 
7739 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7740                                                  size_t chunkSize) {
7741   // do_post_free_or_garbage_chunk() should only be called in the case
7742   // of the adaptive free list allocator.
7743   const bool fcInFreeLists = fc->is_free();
7744   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7745   assert((HeapWord*)fc <= _limit, "sweep invariant");
7746   if (CMSTestInFreeList && fcInFreeLists) {
7747     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7748   }
7749 
7750   if (CMSTraceSweeper) {
7751     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7752   }
7753 
7754   HeapWord* const fc_addr = (HeapWord*) fc;
7755 
7756   bool coalesce;
7757   const size_t left  = pointer_delta(fc_addr, freeFinger());
7758   const size_t right = chunkSize;
7759   switch (FLSCoalescePolicy) {
7760     // numeric value forms a coalition aggressiveness metric
7761     case 0:  { // never coalesce
7762       coalesce = false;
7763       break;
7764     }
7765     case 1: { // coalesce if left & right chunks on overpopulated lists
7766       coalesce = _sp->coalOverPopulated(left) &&
7767                  _sp->coalOverPopulated(right);
7768       break;
7769     }
7770     case 2: { // coalesce if left chunk on overpopulated list (default)
7771       coalesce = _sp->coalOverPopulated(left);
7772       break;
7773     }
7774     case 3: { // coalesce if left OR right chunk on overpopulated list
7775       coalesce = _sp->coalOverPopulated(left) ||
7776                  _sp->coalOverPopulated(right);
7777       break;
7778     }
7779     case 4: { // always coalesce
7780       coalesce = true;
7781       break;
7782     }
7783     default:
7784      ShouldNotReachHere();
7785   }
7786 
7787   // Should the current free range be coalesced?
7788   // If the chunk is in a free range and either we decided to coalesce above
7789   // or the chunk is near the large block at the end of the heap
7790   // (isNearLargestChunk() returns true), then coalesce this chunk.
7791   const bool doCoalesce = inFreeRange()
7792                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7793   if (doCoalesce) {
7794     // Coalesce the current free range on the left with the new
7795     // chunk on the right.  If either is on a free list,
7796     // it must be removed from the list and stashed in the closure.
7797     if (freeRangeInFreeLists()) {
7798       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7799       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7800         "Size of free range is inconsistent with chunk size.");
7801       if (CMSTestInFreeList) {
7802         assert(_sp->verify_chunk_in_free_list(ffc),
7803           "Chunk is not in free lists");
7804       }
7805       _sp->coalDeath(ffc->size());
7806       _sp->removeFreeChunkFromFreeLists(ffc);
7807       set_freeRangeInFreeLists(false);
7808     }
7809     if (fcInFreeLists) {
7810       _sp->coalDeath(chunkSize);
7811       assert(fc->size() == chunkSize,
7812         "The chunk has the wrong size or is not in the free lists");
7813       _sp->removeFreeChunkFromFreeLists(fc);
7814     }
7815     set_lastFreeRangeCoalesced(true);
7816     print_free_block_coalesced(fc);
7817   } else {  // not in a free range and/or should not coalesce
7818     // Return the current free range and start a new one.
7819     if (inFreeRange()) {
7820       // In a free range but cannot coalesce with the right hand chunk.
7821       // Put the current free range into the free lists.
7822       flush_cur_free_chunk(freeFinger(),
7823                            pointer_delta(fc_addr, freeFinger()));
7824     }
7825     // Set up for new free range.  Pass along whether the right hand
7826     // chunk is in the free lists.
7827     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7828   }
7829 }
7830 
7831 // Lookahead flush:
7832 // If we are tracking a free range, and this is the last chunk that
7833 // we'll look at because its end crosses past _limit, we'll preemptively
7834 // flush it along with any free range we may be holding on to. Note that
7835 // this can be the case only for an already free or freshly garbage
7836 // chunk. If this block is an object, it can never straddle
7837 // over _limit. The "straddling" occurs when _limit is set at
7838 // the previous end of the space when this cycle started, and
7839 // a subsequent heap expansion caused the previously co-terminal
7840 // free block to be coalesced with the newly expanded portion,
7841 // thus rendering _limit a non-block-boundary making it dangerous
7842 // for the sweeper to step over and examine.
7843 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7844   assert(inFreeRange(), "Should only be called if currently in a free range.");
7845   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7846   assert(_sp->used_region().contains(eob - 1),
7847          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7848                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7849                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7850                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7851   if (eob >= _limit) {
7852     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7853     if (CMSTraceSweeper) {
7854       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7855                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7856                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7857                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7858     }
7859     // Return the storage we are tracking back into the free lists.
7860     if (CMSTraceSweeper) {
7861       gclog_or_tty->print_cr("Flushing ... ");
7862     }
7863     assert(freeFinger() < eob, "Error");
7864     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7865   }
7866 }
7867 
7868 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7869   assert(inFreeRange(), "Should only be called if currently in a free range.");
7870   assert(size > 0,
7871     "A zero sized chunk cannot be added to the free lists.");
7872   if (!freeRangeInFreeLists()) {
7873     if (CMSTestInFreeList) {
7874       FreeChunk* fc = (FreeChunk*) chunk;
7875       fc->set_size(size);
7876       assert(!_sp->verify_chunk_in_free_list(fc),
7877         "chunk should not be in free lists yet");
7878     }
7879     if (CMSTraceSweeper) {
7880       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7881                     p2i(chunk), size);
7882     }
7883     // A new free range is going to be starting.  The current
7884     // free range has not been added to the free lists yet or
7885     // was removed so add it back.
7886     // If the current free range was coalesced, then the death
7887     // of the free range was recorded.  Record a birth now.
7888     if (lastFreeRangeCoalesced()) {
7889       _sp->coalBirth(size);
7890     }
7891     _sp->addChunkAndRepairOffsetTable(chunk, size,
7892             lastFreeRangeCoalesced());
7893   } else if (CMSTraceSweeper) {
7894     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7895   }
7896   set_inFreeRange(false);
7897   set_freeRangeInFreeLists(false);
7898 }
7899 
7900 // We take a break if we've been at this for a while,
7901 // so as to avoid monopolizing the locks involved.
7902 void SweepClosure::do_yield_work(HeapWord* addr) {
7903   // Return current free chunk being used for coalescing (if any)
7904   // to the appropriate freelist.  After yielding, the next
7905   // free block encountered will start a coalescing range of
7906   // free blocks.  If the next free block is adjacent to the
7907   // chunk just flushed, they will need to wait for the next
7908   // sweep to be coalesced.
7909   if (inFreeRange()) {
7910     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7911   }
7912 
7913   // First give up the locks, then yield, then re-lock.
7914   // We should probably use a constructor/destructor idiom to
7915   // do this unlock/lock or modify the MutexUnlocker class to
7916   // serve our purpose. XXX
7917   assert_lock_strong(_bitMap->lock());
7918   assert_lock_strong(_freelistLock);
7919   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7920          "CMS thread should hold CMS token");
7921   _bitMap->lock()->unlock();
7922   _freelistLock->unlock();
7923   ConcurrentMarkSweepThread::desynchronize(true);
7924   _collector->stopTimer();
7925   if (PrintCMSStatistics != 0) {
7926     _collector->incrementYields();
7927   }
7928 
7929   // See the comment in coordinator_yield()
7930   for (unsigned i = 0; i < CMSYieldSleepCount &&
7931                        ConcurrentMarkSweepThread::should_yield() &&
7932                        !CMSCollector::foregroundGCIsActive(); ++i) {
7933     os::sleep(Thread::current(), 1, false);
7934   }
7935 
7936   ConcurrentMarkSweepThread::synchronize(true);
7937   _freelistLock->lock();
7938   _bitMap->lock()->lock_without_safepoint_check();
7939   _collector->startTimer();
7940 }
7941 
7942 #ifndef PRODUCT
7943 // This is actually very useful in a product build if it can
7944 // be called from the debugger.  Compile it into the product
7945 // as needed.
7946 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7947   return debug_cms_space->verify_chunk_in_free_list(fc);
7948 }
7949 #endif
7950 
7951 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7952   if (CMSTraceSweeper) {
7953     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7954                            p2i(fc), fc->size());
7955   }
7956 }
7957 
7958 // CMSIsAliveClosure
7959 bool CMSIsAliveClosure::do_object_b(oop obj) {
7960   HeapWord* addr = (HeapWord*)obj;
7961   return addr != NULL &&
7962          (!_span.contains(addr) || _bit_map->isMarked(addr));
7963 }
7964 
7965 
7966 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7967                       MemRegion span,
7968                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7969                       bool cpc):
7970   _collector(collector),
7971   _span(span),
7972   _bit_map(bit_map),
7973   _mark_stack(mark_stack),
7974   _concurrent_precleaning(cpc) {
7975   assert(!_span.is_empty(), "Empty span could spell trouble");
7976 }
7977 
7978 
7979 // CMSKeepAliveClosure: the serial version
7980 void CMSKeepAliveClosure::do_oop(oop obj) {
7981   HeapWord* addr = (HeapWord*)obj;
7982   if (_span.contains(addr) &&
7983       !_bit_map->isMarked(addr)) {
7984     _bit_map->mark(addr);
7985     bool simulate_overflow = false;
7986     NOT_PRODUCT(
7987       if (CMSMarkStackOverflowALot &&
7988           _collector->simulate_overflow()) {
7989         // simulate a stack overflow
7990         simulate_overflow = true;
7991       }
7992     )
7993     if (simulate_overflow || !_mark_stack->push(obj)) {
7994       if (_concurrent_precleaning) {
7995         // We dirty the overflown object and let the remark
7996         // phase deal with it.
7997         assert(_collector->overflow_list_is_empty(), "Error");
7998         // In the case of object arrays, we need to dirty all of
7999         // the cards that the object spans. No locking or atomics
8000         // are needed since no one else can be mutating the mod union
8001         // table.
8002         if (obj->is_objArray()) {
8003           size_t sz = obj->size();
8004           HeapWord* end_card_addr =
8005             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8006           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8007           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8008           _collector->_modUnionTable.mark_range(redirty_range);
8009         } else {
8010           _collector->_modUnionTable.mark(addr);
8011         }
8012         _collector->_ser_kac_preclean_ovflw++;
8013       } else {
8014         _collector->push_on_overflow_list(obj);
8015         _collector->_ser_kac_ovflw++;
8016       }
8017     }
8018   }
8019 }
8020 
8021 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8022 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8023 
8024 // CMSParKeepAliveClosure: a parallel version of the above.
8025 // The work queues are private to each closure (thread),
8026 // but (may be) available for stealing by other threads.
8027 void CMSParKeepAliveClosure::do_oop(oop obj) {
8028   HeapWord* addr = (HeapWord*)obj;
8029   if (_span.contains(addr) &&
8030       !_bit_map->isMarked(addr)) {
8031     // In general, during recursive tracing, several threads
8032     // may be concurrently getting here; the first one to
8033     // "tag" it, claims it.
8034     if (_bit_map->par_mark(addr)) {
8035       bool res = _work_queue->push(obj);
8036       assert(res, "Low water mark should be much less than capacity");
8037       // Do a recursive trim in the hope that this will keep
8038       // stack usage lower, but leave some oops for potential stealers
8039       trim_queue(_low_water_mark);
8040     } // Else, another thread got there first
8041   }
8042 }
8043 
8044 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8045 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8046 
8047 void CMSParKeepAliveClosure::trim_queue(uint max) {
8048   while (_work_queue->size() > max) {
8049     oop new_oop;
8050     if (_work_queue->pop_local(new_oop)) {
8051       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8052       assert(_bit_map->isMarked((HeapWord*)new_oop),
8053              "no white objects on this stack!");
8054       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8055       // iterate over the oops in this oop, marking and pushing
8056       // the ones in CMS heap (i.e. in _span).
8057       new_oop->oop_iterate(&_mark_and_push);
8058     }
8059   }
8060 }
8061 
8062 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8063                                 CMSCollector* collector,
8064                                 MemRegion span, CMSBitMap* bit_map,
8065                                 OopTaskQueue* work_queue):
8066   _collector(collector),
8067   _span(span),
8068   _bit_map(bit_map),
8069   _work_queue(work_queue) { }
8070 
8071 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8072   HeapWord* addr = (HeapWord*)obj;
8073   if (_span.contains(addr) &&
8074       !_bit_map->isMarked(addr)) {
8075     if (_bit_map->par_mark(addr)) {
8076       bool simulate_overflow = false;
8077       NOT_PRODUCT(
8078         if (CMSMarkStackOverflowALot &&
8079             _collector->par_simulate_overflow()) {
8080           // simulate a stack overflow
8081           simulate_overflow = true;
8082         }
8083       )
8084       if (simulate_overflow || !_work_queue->push(obj)) {
8085         _collector->par_push_on_overflow_list(obj);
8086         _collector->_par_kac_ovflw++;
8087       }
8088     } // Else another thread got there already
8089   }
8090 }
8091 
8092 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8093 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8094 
8095 //////////////////////////////////////////////////////////////////
8096 //  CMSExpansionCause                /////////////////////////////
8097 //////////////////////////////////////////////////////////////////
8098 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8099   switch (cause) {
8100     case _no_expansion:
8101       return "No expansion";
8102     case _satisfy_free_ratio:
8103       return "Free ratio";
8104     case _satisfy_promotion:
8105       return "Satisfy promotion";
8106     case _satisfy_allocation:
8107       return "allocation";
8108     case _allocate_par_lab:
8109       return "Par LAB";
8110     case _allocate_par_spooling_space:
8111       return "Par Spooling Space";
8112     case _adaptive_size_policy:
8113       return "Ergonomics";
8114     default:
8115       return "unknown";
8116   }
8117 }
8118 
8119 void CMSDrainMarkingStackClosure::do_void() {
8120   // the max number to take from overflow list at a time
8121   const size_t num = _mark_stack->capacity()/4;
8122   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8123          "Overflow list should be NULL during concurrent phases");
8124   while (!_mark_stack->isEmpty() ||
8125          // if stack is empty, check the overflow list
8126          _collector->take_from_overflow_list(num, _mark_stack)) {
8127     oop obj = _mark_stack->pop();
8128     HeapWord* addr = (HeapWord*)obj;
8129     assert(_span.contains(addr), "Should be within span");
8130     assert(_bit_map->isMarked(addr), "Should be marked");
8131     assert(obj->is_oop(), "Should be an oop");
8132     obj->oop_iterate(_keep_alive);
8133   }
8134 }
8135 
8136 void CMSParDrainMarkingStackClosure::do_void() {
8137   // drain queue
8138   trim_queue(0);
8139 }
8140 
8141 // Trim our work_queue so its length is below max at return
8142 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8143   while (_work_queue->size() > max) {
8144     oop new_oop;
8145     if (_work_queue->pop_local(new_oop)) {
8146       assert(new_oop->is_oop(), "Expected an oop");
8147       assert(_bit_map->isMarked((HeapWord*)new_oop),
8148              "no white objects on this stack!");
8149       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8150       // iterate over the oops in this oop, marking and pushing
8151       // the ones in CMS heap (i.e. in _span).
8152       new_oop->oop_iterate(&_mark_and_push);
8153     }
8154   }
8155 }
8156 
8157 ////////////////////////////////////////////////////////////////////
8158 // Support for Marking Stack Overflow list handling and related code
8159 ////////////////////////////////////////////////////////////////////
8160 // Much of the following code is similar in shape and spirit to the
8161 // code used in ParNewGC. We should try and share that code
8162 // as much as possible in the future.
8163 
8164 #ifndef PRODUCT
8165 // Debugging support for CMSStackOverflowALot
8166 
8167 // It's OK to call this multi-threaded;  the worst thing
8168 // that can happen is that we'll get a bunch of closely
8169 // spaced simulated overflows, but that's OK, in fact
8170 // probably good as it would exercise the overflow code
8171 // under contention.
8172 bool CMSCollector::simulate_overflow() {
8173   if (_overflow_counter-- <= 0) { // just being defensive
8174     _overflow_counter = CMSMarkStackOverflowInterval;
8175     return true;
8176   } else {
8177     return false;
8178   }
8179 }
8180 
8181 bool CMSCollector::par_simulate_overflow() {
8182   return simulate_overflow();
8183 }
8184 #endif
8185 
8186 // Single-threaded
8187 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8188   assert(stack->isEmpty(), "Expected precondition");
8189   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8190   size_t i = num;
8191   oop  cur = _overflow_list;
8192   const markOop proto = markOopDesc::prototype();
8193   NOT_PRODUCT(ssize_t n = 0;)
8194   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8195     next = oop(cur->mark());
8196     cur->set_mark(proto);   // until proven otherwise
8197     assert(cur->is_oop(), "Should be an oop");
8198     bool res = stack->push(cur);
8199     assert(res, "Bit off more than can chew?");
8200     NOT_PRODUCT(n++;)
8201   }
8202   _overflow_list = cur;
8203 #ifndef PRODUCT
8204   assert(_num_par_pushes >= n, "Too many pops?");
8205   _num_par_pushes -=n;
8206 #endif
8207   return !stack->isEmpty();
8208 }
8209 
8210 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8211 // (MT-safe) Get a prefix of at most "num" from the list.
8212 // The overflow list is chained through the mark word of
8213 // each object in the list. We fetch the entire list,
8214 // break off a prefix of the right size and return the
8215 // remainder. If other threads try to take objects from
8216 // the overflow list at that time, they will wait for
8217 // some time to see if data becomes available. If (and
8218 // only if) another thread places one or more object(s)
8219 // on the global list before we have returned the suffix
8220 // to the global list, we will walk down our local list
8221 // to find its end and append the global list to
8222 // our suffix before returning it. This suffix walk can
8223 // prove to be expensive (quadratic in the amount of traffic)
8224 // when there are many objects in the overflow list and
8225 // there is much producer-consumer contention on the list.
8226 // *NOTE*: The overflow list manipulation code here and
8227 // in ParNewGeneration:: are very similar in shape,
8228 // except that in the ParNew case we use the old (from/eden)
8229 // copy of the object to thread the list via its klass word.
8230 // Because of the common code, if you make any changes in
8231 // the code below, please check the ParNew version to see if
8232 // similar changes might be needed.
8233 // CR 6797058 has been filed to consolidate the common code.
8234 bool CMSCollector::par_take_from_overflow_list(size_t num,
8235                                                OopTaskQueue* work_q,
8236                                                int no_of_gc_threads) {
8237   assert(work_q->size() == 0, "First empty local work queue");
8238   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8239   if (_overflow_list == NULL) {
8240     return false;
8241   }
8242   // Grab the entire list; we'll put back a suffix
8243   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8244   Thread* tid = Thread::current();
8245   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8246   // set to ParallelGCThreads.
8247   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8248   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8249   // If the list is busy, we spin for a short while,
8250   // sleeping between attempts to get the list.
8251   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8252     os::sleep(tid, sleep_time_millis, false);
8253     if (_overflow_list == NULL) {
8254       // Nothing left to take
8255       return false;
8256     } else if (_overflow_list != BUSY) {
8257       // Try and grab the prefix
8258       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8259     }
8260   }
8261   // If the list was found to be empty, or we spun long
8262   // enough, we give up and return empty-handed. If we leave
8263   // the list in the BUSY state below, it must be the case that
8264   // some other thread holds the overflow list and will set it
8265   // to a non-BUSY state in the future.
8266   if (prefix == NULL || prefix == BUSY) {
8267      // Nothing to take or waited long enough
8268      if (prefix == NULL) {
8269        // Write back the NULL in case we overwrote it with BUSY above
8270        // and it is still the same value.
8271        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8272      }
8273      return false;
8274   }
8275   assert(prefix != NULL && prefix != BUSY, "Error");
8276   size_t i = num;
8277   oop cur = prefix;
8278   // Walk down the first "num" objects, unless we reach the end.
8279   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8280   if (cur->mark() == NULL) {
8281     // We have "num" or fewer elements in the list, so there
8282     // is nothing to return to the global list.
8283     // Write back the NULL in lieu of the BUSY we wrote
8284     // above, if it is still the same value.
8285     if (_overflow_list == BUSY) {
8286       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8287     }
8288   } else {
8289     // Chop off the suffix and return it to the global list.
8290     assert(cur->mark() != BUSY, "Error");
8291     oop suffix_head = cur->mark(); // suffix will be put back on global list
8292     cur->set_mark(NULL);           // break off suffix
8293     // It's possible that the list is still in the empty(busy) state
8294     // we left it in a short while ago; in that case we may be
8295     // able to place back the suffix without incurring the cost
8296     // of a walk down the list.
8297     oop observed_overflow_list = _overflow_list;
8298     oop cur_overflow_list = observed_overflow_list;
8299     bool attached = false;
8300     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8301       observed_overflow_list =
8302         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8303       if (cur_overflow_list == observed_overflow_list) {
8304         attached = true;
8305         break;
8306       } else cur_overflow_list = observed_overflow_list;
8307     }
8308     if (!attached) {
8309       // Too bad, someone else sneaked in (at least) an element; we'll need
8310       // to do a splice. Find tail of suffix so we can prepend suffix to global
8311       // list.
8312       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8313       oop suffix_tail = cur;
8314       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8315              "Tautology");
8316       observed_overflow_list = _overflow_list;
8317       do {
8318         cur_overflow_list = observed_overflow_list;
8319         if (cur_overflow_list != BUSY) {
8320           // Do the splice ...
8321           suffix_tail->set_mark(markOop(cur_overflow_list));
8322         } else { // cur_overflow_list == BUSY
8323           suffix_tail->set_mark(NULL);
8324         }
8325         // ... and try to place spliced list back on overflow_list ...
8326         observed_overflow_list =
8327           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8328       } while (cur_overflow_list != observed_overflow_list);
8329       // ... until we have succeeded in doing so.
8330     }
8331   }
8332 
8333   // Push the prefix elements on work_q
8334   assert(prefix != NULL, "control point invariant");
8335   const markOop proto = markOopDesc::prototype();
8336   oop next;
8337   NOT_PRODUCT(ssize_t n = 0;)
8338   for (cur = prefix; cur != NULL; cur = next) {
8339     next = oop(cur->mark());
8340     cur->set_mark(proto);   // until proven otherwise
8341     assert(cur->is_oop(), "Should be an oop");
8342     bool res = work_q->push(cur);
8343     assert(res, "Bit off more than we can chew?");
8344     NOT_PRODUCT(n++;)
8345   }
8346 #ifndef PRODUCT
8347   assert(_num_par_pushes >= n, "Too many pops?");
8348   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8349 #endif
8350   return true;
8351 }
8352 
8353 // Single-threaded
8354 void CMSCollector::push_on_overflow_list(oop p) {
8355   NOT_PRODUCT(_num_par_pushes++;)
8356   assert(p->is_oop(), "Not an oop");
8357   preserve_mark_if_necessary(p);
8358   p->set_mark((markOop)_overflow_list);
8359   _overflow_list = p;
8360 }
8361 
8362 // Multi-threaded; use CAS to prepend to overflow list
8363 void CMSCollector::par_push_on_overflow_list(oop p) {
8364   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8365   assert(p->is_oop(), "Not an oop");
8366   par_preserve_mark_if_necessary(p);
8367   oop observed_overflow_list = _overflow_list;
8368   oop cur_overflow_list;
8369   do {
8370     cur_overflow_list = observed_overflow_list;
8371     if (cur_overflow_list != BUSY) {
8372       p->set_mark(markOop(cur_overflow_list));
8373     } else {
8374       p->set_mark(NULL);
8375     }
8376     observed_overflow_list =
8377       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8378   } while (cur_overflow_list != observed_overflow_list);
8379 }
8380 #undef BUSY
8381 
8382 // Single threaded
8383 // General Note on GrowableArray: pushes may silently fail
8384 // because we are (temporarily) out of C-heap for expanding
8385 // the stack. The problem is quite ubiquitous and affects
8386 // a lot of code in the JVM. The prudent thing for GrowableArray
8387 // to do (for now) is to exit with an error. However, that may
8388 // be too draconian in some cases because the caller may be
8389 // able to recover without much harm. For such cases, we
8390 // should probably introduce a "soft_push" method which returns
8391 // an indication of success or failure with the assumption that
8392 // the caller may be able to recover from a failure; code in
8393 // the VM can then be changed, incrementally, to deal with such
8394 // failures where possible, thus, incrementally hardening the VM
8395 // in such low resource situations.
8396 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8397   _preserved_oop_stack.push(p);
8398   _preserved_mark_stack.push(m);
8399   assert(m == p->mark(), "Mark word changed");
8400   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8401          "bijection");
8402 }
8403 
8404 // Single threaded
8405 void CMSCollector::preserve_mark_if_necessary(oop p) {
8406   markOop m = p->mark();
8407   if (m->must_be_preserved(p)) {
8408     preserve_mark_work(p, m);
8409   }
8410 }
8411 
8412 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8413   markOop m = p->mark();
8414   if (m->must_be_preserved(p)) {
8415     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8416     // Even though we read the mark word without holding
8417     // the lock, we are assured that it will not change
8418     // because we "own" this oop, so no other thread can
8419     // be trying to push it on the overflow list; see
8420     // the assertion in preserve_mark_work() that checks
8421     // that m == p->mark().
8422     preserve_mark_work(p, m);
8423   }
8424 }
8425 
8426 // We should be able to do this multi-threaded,
8427 // a chunk of stack being a task (this is
8428 // correct because each oop only ever appears
8429 // once in the overflow list. However, it's
8430 // not very easy to completely overlap this with
8431 // other operations, so will generally not be done
8432 // until all work's been completed. Because we
8433 // expect the preserved oop stack (set) to be small,
8434 // it's probably fine to do this single-threaded.
8435 // We can explore cleverer concurrent/overlapped/parallel
8436 // processing of preserved marks if we feel the
8437 // need for this in the future. Stack overflow should
8438 // be so rare in practice and, when it happens, its
8439 // effect on performance so great that this will
8440 // likely just be in the noise anyway.
8441 void CMSCollector::restore_preserved_marks_if_any() {
8442   assert(SafepointSynchronize::is_at_safepoint(),
8443          "world should be stopped");
8444   assert(Thread::current()->is_ConcurrentGC_thread() ||
8445          Thread::current()->is_VM_thread(),
8446          "should be single-threaded");
8447   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8448          "bijection");
8449 
8450   while (!_preserved_oop_stack.is_empty()) {
8451     oop p = _preserved_oop_stack.pop();
8452     assert(p->is_oop(), "Should be an oop");
8453     assert(_span.contains(p), "oop should be in _span");
8454     assert(p->mark() == markOopDesc::prototype(),
8455            "Set when taken from overflow list");
8456     markOop m = _preserved_mark_stack.pop();
8457     p->set_mark(m);
8458   }
8459   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8460          "stacks were cleared above");
8461 }
8462 
8463 #ifndef PRODUCT
8464 bool CMSCollector::no_preserved_marks() const {
8465   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8466 }
8467 #endif
8468 
8469 // Transfer some number of overflown objects to usual marking
8470 // stack. Return true if some objects were transferred.
8471 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8472   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8473                     (size_t)ParGCDesiredObjsFromOverflowList);
8474 
8475   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8476   assert(_collector->overflow_list_is_empty() || res,
8477          "If list is not empty, we should have taken something");
8478   assert(!res || !_mark_stack->isEmpty(),
8479          "If we took something, it should now be on our stack");
8480   return res;
8481 }
8482 
8483 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8484   size_t res = _sp->block_size_no_stall(addr, _collector);
8485   if (_sp->block_is_obj(addr)) {
8486     if (_live_bit_map->isMarked(addr)) {
8487       // It can't have been dead in a previous cycle
8488       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8489     } else {
8490       _dead_bit_map->mark(addr);      // mark the dead object
8491     }
8492   }
8493   // Could be 0, if the block size could not be computed without stalling.
8494   return res;
8495 }
8496 
8497 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8498 
8499   switch (phase) {
8500     case CMSCollector::InitialMarking:
8501       initialize(true  /* fullGC */ ,
8502                  cause /* cause of the GC */,
8503                  true  /* recordGCBeginTime */,
8504                  true  /* recordPreGCUsage */,
8505                  false /* recordPeakUsage */,
8506                  false /* recordPostGCusage */,
8507                  true  /* recordAccumulatedGCTime */,
8508                  false /* recordGCEndTime */,
8509                  false /* countCollection */  );
8510       break;
8511 
8512     case CMSCollector::FinalMarking:
8513       initialize(true  /* fullGC */ ,
8514                  cause /* cause of the GC */,
8515                  false /* recordGCBeginTime */,
8516                  false /* recordPreGCUsage */,
8517                  false /* recordPeakUsage */,
8518                  false /* recordPostGCusage */,
8519                  true  /* recordAccumulatedGCTime */,
8520                  false /* recordGCEndTime */,
8521                  false /* countCollection */  );
8522       break;
8523 
8524     case CMSCollector::Sweeping:
8525       initialize(true  /* fullGC */ ,
8526                  cause /* cause of the GC */,
8527                  false /* recordGCBeginTime */,
8528                  false /* recordPreGCUsage */,
8529                  true  /* recordPeakUsage */,
8530                  true  /* recordPostGCusage */,
8531                  false /* recordAccumulatedGCTime */,
8532                  true  /* recordGCEndTime */,
8533                  true  /* countCollection */  );
8534       break;
8535 
8536     default:
8537       ShouldNotReachHere();
8538   }
8539 }