1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  27 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.hpp"
  28 #include "gc_implementation/parNew/parNewGeneration.hpp"
  29 #include "gc_implementation/parNew/parOopClosures.inline.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/copyFailedInfo.hpp"
  33 #include "gc_implementation/shared/gcHeapSummary.hpp"
  34 #include "gc_implementation/shared/gcTimer.hpp"
  35 #include "gc_implementation/shared/gcTrace.hpp"
  36 #include "gc_implementation/shared/gcTraceTime.hpp"
  37 #include "gc_implementation/shared/parGCAllocBuffer.inline.hpp"
  38 #include "gc_implementation/shared/spaceDecorator.hpp"
  39 #include "memory/defNewGeneration.inline.hpp"
  40 #include "memory/genCollectedHeap.hpp"
  41 #include "memory/genOopClosures.inline.hpp"
  42 #include "memory/generation.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/sharedHeap.hpp"
  46 #include "memory/space.hpp"
  47 #include "oops/objArrayOop.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/oop.pcgc.inline.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/handles.hpp"
  52 #include "runtime/handles.inline.hpp"
  53 #include "runtime/java.hpp"
  54 #include "runtime/thread.inline.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/globalDefinitions.hpp"
  57 #include "utilities/workgroup.hpp"
  58 
  59 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  60 
  61 #ifdef _MSC_VER
  62 #pragma warning( push )
  63 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  64 #endif
  65 ParScanThreadState::ParScanThreadState(Space* to_space_,
  66                                        ParNewGeneration* gen_,
  67                                        Generation* old_gen_,
  68                                        int thread_num_,
  69                                        ObjToScanQueueSet* work_queue_set_,
  70                                        Stack<oop, mtGC>* overflow_stacks_,
  71                                        size_t desired_plab_sz_,
  72                                        ParallelTaskTerminator& term_) :
  73   _to_space(to_space_), _old_gen(old_gen_), _young_gen(gen_), _thread_num(thread_num_),
  74   _work_queue(work_queue_set_->queue(thread_num_)), _to_space_full(false),
  75   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  76   _ageTable(false), // false ==> not the global age table, no perf data.
  77   _to_space_alloc_buffer(desired_plab_sz_),
  78   _to_space_closure(gen_, this), _old_gen_closure(gen_, this),
  79   _to_space_root_closure(gen_, this), _old_gen_root_closure(gen_, this),
  80   _older_gen_closure(gen_, this),
  81   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  82                       &_to_space_root_closure, gen_, &_old_gen_root_closure,
  83                       work_queue_set_, &term_),
  84   _is_alive_closure(gen_), _scan_weak_ref_closure(gen_, this),
  85   _keep_alive_closure(&_scan_weak_ref_closure),
  86   _strong_roots_time(0.0), _term_time(0.0)
  87 {
  88   #if TASKQUEUE_STATS
  89   _term_attempts = 0;
  90   _overflow_refills = 0;
  91   _overflow_refill_objs = 0;
  92   #endif // TASKQUEUE_STATS
  93 
  94   _survivor_chunk_array =
  95     (ChunkArray*) old_gen()->get_data_recorder(thread_num());
  96   _hash_seed = 17;  // Might want to take time-based random value.
  97   _start = os::elapsedTime();
  98   _old_gen_closure.set_generation(old_gen_);
  99   _old_gen_root_closure.set_generation(old_gen_);
 100 }
 101 #ifdef _MSC_VER
 102 #pragma warning( pop )
 103 #endif
 104 
 105 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 106                                               size_t plab_word_size) {
 107   ChunkArray* sca = survivor_chunk_array();
 108   if (sca != NULL) {
 109     // A non-null SCA implies that we want the PLAB data recorded.
 110     sca->record_sample(plab_start, plab_word_size);
 111   }
 112 }
 113 
 114 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 115   return new_obj->is_objArray() &&
 116          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 117          new_obj != old_obj;
 118 }
 119 
 120 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 121   assert(old->is_objArray(), "must be obj array");
 122   assert(old->is_forwarded(), "must be forwarded");
 123   assert(Universe::heap()->is_in_reserved(old), "must be in heap.");
 124   assert(!old_gen()->is_in(old), "must be in young generation.");
 125 
 126   objArrayOop obj = objArrayOop(old->forwardee());
 127   // Process ParGCArrayScanChunk elements now
 128   // and push the remainder back onto queue
 129   int start     = arrayOop(old)->length();
 130   int end       = obj->length();
 131   int remainder = end - start;
 132   assert(start <= end, "just checking");
 133   if (remainder > 2 * ParGCArrayScanChunk) {
 134     // Test above combines last partial chunk with a full chunk
 135     end = start + ParGCArrayScanChunk;
 136     arrayOop(old)->set_length(end);
 137     // Push remainder.
 138     bool ok = work_queue()->push(old);
 139     assert(ok, "just popped, push must be okay");
 140   } else {
 141     // Restore length so that it can be used if there
 142     // is a promotion failure and forwarding pointers
 143     // must be removed.
 144     arrayOop(old)->set_length(end);
 145   }
 146 
 147   // process our set of indices (include header in first chunk)
 148   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 149   if ((HeapWord *)obj < young_old_boundary()) {
 150     // object is in to_space
 151     obj->oop_iterate_range(&_to_space_closure, start, end);
 152   } else {
 153     // object is in old generation
 154     obj->oop_iterate_range(&_old_gen_closure, start, end);
 155   }
 156 }
 157 
 158 
 159 void ParScanThreadState::trim_queues(int max_size) {
 160   ObjToScanQueue* queue = work_queue();
 161   do {
 162     while (queue->size() > (juint)max_size) {
 163       oop obj_to_scan;
 164       if (queue->pop_local(obj_to_scan)) {
 165         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 166           if (obj_to_scan->is_objArray() &&
 167               obj_to_scan->is_forwarded() &&
 168               obj_to_scan->forwardee() != obj_to_scan) {
 169             scan_partial_array_and_push_remainder(obj_to_scan);
 170           } else {
 171             // object is in to_space
 172             obj_to_scan->oop_iterate(&_to_space_closure);
 173           }
 174         } else {
 175           // object is in old generation
 176           obj_to_scan->oop_iterate(&_old_gen_closure);
 177         }
 178       }
 179     }
 180     // For the  case of compressed oops, we have a private, non-shared
 181     // overflow stack, so we eagerly drain it so as to more evenly
 182     // distribute load early. Note: this may be good to do in
 183     // general rather than delay for the final stealing phase.
 184     // If applicable, we'll transfer a set of objects over to our
 185     // work queue, allowing them to be stolen and draining our
 186     // private overflow stack.
 187   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 188 }
 189 
 190 bool ParScanThreadState::take_from_overflow_stack() {
 191   assert(ParGCUseLocalOverflow, "Else should not call");
 192   assert(young_gen()->overflow_list() == NULL, "Error");
 193   ObjToScanQueue* queue = work_queue();
 194   Stack<oop, mtGC>* const of_stack = overflow_stack();
 195   const size_t num_overflow_elems = of_stack->size();
 196   const size_t space_available = queue->max_elems() - queue->size();
 197   const size_t num_take_elems = MIN3(space_available / 4,
 198                                      ParGCDesiredObjsFromOverflowList,
 199                                      num_overflow_elems);
 200   // Transfer the most recent num_take_elems from the overflow
 201   // stack to our work queue.
 202   for (size_t i = 0; i != num_take_elems; i++) {
 203     oop cur = of_stack->pop();
 204     oop obj_to_push = cur->forwardee();
 205     assert(Universe::heap()->is_in_reserved(cur), "Should be in heap");
 206     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 207     assert(Universe::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 208     if (should_be_partially_scanned(obj_to_push, cur)) {
 209       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 210       obj_to_push = cur;
 211     }
 212     bool ok = queue->push(obj_to_push);
 213     assert(ok, "Should have succeeded");
 214   }
 215   assert(young_gen()->overflow_list() == NULL, "Error");
 216   return num_take_elems > 0;  // was something transferred?
 217 }
 218 
 219 void ParScanThreadState::push_on_overflow_stack(oop p) {
 220   assert(ParGCUseLocalOverflow, "Else should not call");
 221   overflow_stack()->push(p);
 222   assert(young_gen()->overflow_list() == NULL, "Error");
 223 }
 224 
 225 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 226 
 227   // Otherwise, if the object is small enough, try to reallocate the
 228   // buffer.
 229   HeapWord* obj = NULL;
 230   if (!_to_space_full) {
 231     ParGCAllocBuffer* const plab = to_space_alloc_buffer();
 232     Space*            const sp   = to_space();
 233     if (word_sz * 100 <
 234         ParallelGCBufferWastePct * plab->word_sz()) {
 235       // Is small enough; abandon this buffer and start a new one.
 236       plab->retire();
 237       size_t buf_size = plab->word_sz();
 238       HeapWord* buf_space = sp->par_allocate(buf_size);
 239       if (buf_space == NULL) {
 240         const size_t min_bytes =
 241           ParGCAllocBuffer::min_size() << LogHeapWordSize;
 242         size_t free_bytes = sp->free();
 243         while(buf_space == NULL && free_bytes >= min_bytes) {
 244           buf_size = free_bytes >> LogHeapWordSize;
 245           assert(buf_size == (size_t)align_object_size(buf_size),
 246                  "Invariant");
 247           buf_space  = sp->par_allocate(buf_size);
 248           free_bytes = sp->free();
 249         }
 250       }
 251       if (buf_space != NULL) {
 252         plab->set_word_size(buf_size);
 253         plab->set_buf(buf_space);
 254         record_survivor_plab(buf_space, buf_size);
 255         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 256         // Note that we cannot compare buf_size < word_sz below
 257         // because of AlignmentReserve (see ParGCAllocBuffer::allocate()).
 258         assert(obj != NULL || plab->words_remaining() < word_sz,
 259                "Else should have been able to allocate");
 260         // It's conceivable that we may be able to use the
 261         // buffer we just grabbed for subsequent small requests
 262         // even if not for this one.
 263       } else {
 264         // We're used up.
 265         _to_space_full = true;
 266       }
 267 
 268     } else {
 269       // Too large; allocate the object individually.
 270       obj = sp->par_allocate(word_sz);
 271     }
 272   }
 273   return obj;
 274 }
 275 
 276 
 277 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj,
 278                                                 size_t word_sz) {
 279   // Is the alloc in the current alloc buffer?
 280   if (to_space_alloc_buffer()->contains(obj)) {
 281     assert(to_space_alloc_buffer()->contains(obj + word_sz - 1),
 282            "Should contain whole object.");
 283     to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 284   } else {
 285     CollectedHeap::fill_with_object(obj, word_sz);
 286   }
 287 }
 288 
 289 void ParScanThreadState::print_promotion_failure_size() {
 290   if (_promotion_failed_info.has_failed() && PrintPromotionFailure) {
 291     gclog_or_tty->print(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 292                         _thread_num, _promotion_failed_info.first_size());
 293   }
 294 }
 295 
 296 class ParScanThreadStateSet: private ResourceArray {
 297 public:
 298   // Initializes states for the specified number of threads;
 299   ParScanThreadStateSet(int                     num_threads,
 300                         Space&                  to_space,
 301                         ParNewGeneration&       gen,
 302                         Generation&             old_gen,
 303                         ObjToScanQueueSet&      queue_set,
 304                         Stack<oop, mtGC>*       overflow_stacks_,
 305                         size_t                  desired_plab_sz,
 306                         ParallelTaskTerminator& term);
 307 
 308   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 309 
 310   inline ParScanThreadState& thread_state(int i);
 311 
 312   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
 313   void reset(int active_workers, bool promotion_failed);
 314   void flush();
 315 
 316   #if TASKQUEUE_STATS
 317   static void
 318     print_termination_stats_hdr(outputStream* const st = gclog_or_tty);
 319   void print_termination_stats(outputStream* const st = gclog_or_tty);
 320   static void
 321     print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 322   void print_taskqueue_stats(outputStream* const st = gclog_or_tty);
 323   void reset_stats();
 324   #endif // TASKQUEUE_STATS
 325 
 326 private:
 327   ParallelTaskTerminator& _term;
 328   ParNewGeneration&       _gen;
 329   Generation&             _old_gen;
 330  public:
 331   bool is_valid(int id) const { return id < length(); }
 332   ParallelTaskTerminator* terminator() { return &_term; }
 333 };
 334 
 335 
 336 ParScanThreadStateSet::ParScanThreadStateSet(
 337   int num_threads, Space& to_space, ParNewGeneration& gen,
 338   Generation& old_gen, ObjToScanQueueSet& queue_set,
 339   Stack<oop, mtGC>* overflow_stacks,
 340   size_t desired_plab_sz, ParallelTaskTerminator& term)
 341   : ResourceArray(sizeof(ParScanThreadState), num_threads),
 342     _gen(gen), _old_gen(old_gen), _term(term)
 343 {
 344   assert(num_threads > 0, "sanity check!");
 345   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 346          "overflow_stack allocation mismatch");
 347   // Initialize states.
 348   for (int i = 0; i < num_threads; ++i) {
 349     new ((ParScanThreadState*)_data + i)
 350         ParScanThreadState(&to_space, &gen, &old_gen, i, &queue_set,
 351                            overflow_stacks, desired_plab_sz, term);
 352   }
 353 }
 354 
 355 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i)
 356 {
 357   assert(i >= 0 && i < length(), "sanity check!");
 358   return ((ParScanThreadState*)_data)[i];
 359 }
 360 
 361 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
 362   for (int i = 0; i < length(); ++i) {
 363     if (thread_state(i).promotion_failed()) {
 364       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
 365       thread_state(i).promotion_failed_info().reset();
 366     }
 367   }
 368 }
 369 
 370 void ParScanThreadStateSet::reset(int active_threads, bool promotion_failed)
 371 {
 372   _term.reset_for_reuse(active_threads);
 373   if (promotion_failed) {
 374     for (int i = 0; i < length(); ++i) {
 375       thread_state(i).print_promotion_failure_size();
 376     }
 377   }
 378 }
 379 
 380 #if TASKQUEUE_STATS
 381 void
 382 ParScanThreadState::reset_stats()
 383 {
 384   taskqueue_stats().reset();
 385   _term_attempts = 0;
 386   _overflow_refills = 0;
 387   _overflow_refill_objs = 0;
 388 }
 389 
 390 void ParScanThreadStateSet::reset_stats()
 391 {
 392   for (int i = 0; i < length(); ++i) {
 393     thread_state(i).reset_stats();
 394   }
 395 }
 396 
 397 void
 398 ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st)
 399 {
 400   st->print_raw_cr("GC Termination Stats");
 401   st->print_raw_cr("     elapsed  --strong roots-- "
 402                    "-------termination-------");
 403   st->print_raw_cr("thr     ms        ms       %   "
 404                    "    ms       %   attempts");
 405   st->print_raw_cr("--- --------- --------- ------ "
 406                    "--------- ------ --------");
 407 }
 408 
 409 void ParScanThreadStateSet::print_termination_stats(outputStream* const st)
 410 {
 411   print_termination_stats_hdr(st);
 412 
 413   for (int i = 0; i < length(); ++i) {
 414     const ParScanThreadState & pss = thread_state(i);
 415     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 416     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 417     const double term_ms = pss.term_time() * 1000.0;
 418     st->print_cr("%3d %9.2f %9.2f %6.2f "
 419                  "%9.2f %6.2f " SIZE_FORMAT_W(8),
 420                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 421                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 422   }
 423 }
 424 
 425 // Print stats related to work queue activity.
 426 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st)
 427 {
 428   st->print_raw_cr("GC Task Stats");
 429   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 430   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 431 }
 432 
 433 void ParScanThreadStateSet::print_taskqueue_stats(outputStream* const st)
 434 {
 435   print_taskqueue_stats_hdr(st);
 436 
 437   TaskQueueStats totals;
 438   for (int i = 0; i < length(); ++i) {
 439     const ParScanThreadState & pss = thread_state(i);
 440     const TaskQueueStats & stats = pss.taskqueue_stats();
 441     st->print("%3d ", i); stats.print(st); st->cr();
 442     totals += stats;
 443 
 444     if (pss.overflow_refills() > 0) {
 445       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 446                    SIZE_FORMAT_W(10) " overflow objects",
 447                    pss.overflow_refills(), pss.overflow_refill_objs());
 448     }
 449   }
 450   st->print("tot "); totals.print(st); st->cr();
 451 
 452   DEBUG_ONLY(totals.verify());
 453 }
 454 #endif // TASKQUEUE_STATS
 455 
 456 void ParScanThreadStateSet::flush()
 457 {
 458   // Work in this loop should be kept as lightweight as
 459   // possible since this might otherwise become a bottleneck
 460   // to scaling. Should we add heavy-weight work into this
 461   // loop, consider parallelizing the loop into the worker threads.
 462   for (int i = 0; i < length(); ++i) {
 463     ParScanThreadState& par_scan_state = thread_state(i);
 464 
 465     // Flush stats related to To-space PLAB activity and
 466     // retire the last buffer.
 467     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_gen.plab_stats());
 468 
 469     // Every thread has its own age table.  We need to merge
 470     // them all into one.
 471     ageTable *local_table = par_scan_state.age_table();
 472     _gen.age_table()->merge(local_table);
 473 
 474     // Inform old gen that we're done.
 475     _old_gen.par_promote_alloc_done(i);
 476     _old_gen.par_oop_since_save_marks_iterate_done(i);
 477   }
 478 
 479   if (UseConcMarkSweepGC) {
 480     // We need to call this even when ResizeOldPLAB is disabled
 481     // so as to avoid breaking some asserts. While we may be able
 482     // to avoid this by reorganizing the code a bit, I am loathe
 483     // to do that unless we find cases where ergo leads to bad
 484     // performance.
 485     CFLS_LAB::compute_desired_plab_size();
 486   }
 487 }
 488 
 489 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 490                                ParScanThreadState* par_scan_state) :
 491   OopsInKlassOrGenClosure(g), _par_scan_state(par_scan_state), _g(g)
 492 {
 493   assert(_g->level() == 0, "Optimized for youngest generation");
 494   _boundary = _g->reserved().end();
 495 }
 496 
 497 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 498 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 499 
 500 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 501 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 502 
 503 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 504 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 505 
 506 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 507 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 508 
 509 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 510                                              ParScanThreadState* par_scan_state)
 511   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 512 {}
 513 
 514 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 515 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 516 
 517 #ifdef WIN32
 518 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 519 #endif
 520 
 521 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 522     ParScanThreadState* par_scan_state_,
 523     ParScanWithoutBarrierClosure* to_space_closure_,
 524     ParScanWithBarrierClosure* old_gen_closure_,
 525     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 526     ParNewGeneration* par_gen_,
 527     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 528     ObjToScanQueueSet* task_queues_,
 529     ParallelTaskTerminator* terminator_) :
 530 
 531     _par_scan_state(par_scan_state_),
 532     _to_space_closure(to_space_closure_),
 533     _old_gen_closure(old_gen_closure_),
 534     _to_space_root_closure(to_space_root_closure_),
 535     _old_gen_root_closure(old_gen_root_closure_),
 536     _par_gen(par_gen_),
 537     _task_queues(task_queues_),
 538     _terminator(terminator_)
 539 {}
 540 
 541 void ParEvacuateFollowersClosure::do_void() {
 542   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 543 
 544   while (true) {
 545 
 546     // Scan to-space and old-gen objs until we run out of both.
 547     oop obj_to_scan;
 548     par_scan_state()->trim_queues(0);
 549 
 550     // We have no local work, attempt to steal from other threads.
 551 
 552     // attempt to steal work from promoted.
 553     if (task_queues()->steal(par_scan_state()->thread_num(),
 554                              par_scan_state()->hash_seed(),
 555                              obj_to_scan)) {
 556       bool res = work_q->push(obj_to_scan);
 557       assert(res, "Empty queue should have room for a push.");
 558 
 559       //   if successful, goto Start.
 560       continue;
 561 
 562       // try global overflow list.
 563     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 564       continue;
 565     }
 566 
 567     // Otherwise, offer termination.
 568     par_scan_state()->start_term_time();
 569     if (terminator()->offer_termination()) break;
 570     par_scan_state()->end_term_time();
 571   }
 572   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 573          "Broken overflow list?");
 574   // Finish the last termination pause.
 575   par_scan_state()->end_term_time();
 576 }
 577 
 578 ParNewGenTask::ParNewGenTask(ParNewGeneration* gen, Generation* old_gen,
 579                              HeapWord* young_old_boundary, ParScanThreadStateSet* state_set) :
 580     AbstractGangTask("ParNewGeneration collection"),
 581     _gen(gen), _old_gen(old_gen),
 582     _young_old_boundary(young_old_boundary),
 583     _state_set(state_set)
 584   {}
 585 
 586 // Reset the terminator for the given number of
 587 // active threads.
 588 void ParNewGenTask::set_for_termination(int active_workers) {
 589   _state_set->reset(active_workers, _gen->promotion_failed());
 590   // Should the heap be passed in?  There's only 1 for now so
 591   // grab it instead.
 592   GenCollectedHeap* gch = GenCollectedHeap::heap();
 593   gch->set_n_termination(active_workers);
 594 }
 595 
 596 void ParNewGenTask::work(uint worker_id) {
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   // Since this is being done in a separate thread, need new resource
 599   // and handle marks.
 600   ResourceMark rm;
 601   HandleMark hm;
 602   // We would need multiple old-gen queues otherwise.
 603   assert(gch->n_gens() == 2, "Par young collection currently only works with one older gen.");
 604 
 605   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 606   assert(_state_set->is_valid(worker_id), "Should not have been called");
 607 
 608   par_scan_state.set_young_old_boundary(_young_old_boundary);
 609 
 610   KlassScanClosure klass_scan_closure(&par_scan_state.to_space_root_closure(),
 611                                       gch->rem_set()->klass_rem_set());
 612   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 613                                            &par_scan_state.to_space_root_closure(),
 614                                            false);
 615 
 616   par_scan_state.start_strong_roots();
 617   gch->gen_process_roots(_gen->level(),
 618                          true,  // Process younger gens, if any,
 619                                 // as strong roots.
 620                          false, // no scope; this is parallel code
 621                          GenCollectedHeap::SO_ScavengeCodeCache,
 622                          GenCollectedHeap::StrongAndWeakRoots,
 623                          &par_scan_state.to_space_root_closure(),
 624                          &par_scan_state.older_gen_closure(),
 625                          &cld_scan_closure);
 626 
 627   par_scan_state.end_strong_roots();
 628 
 629   // "evacuate followers".
 630   par_scan_state.evacuate_followers_closure().do_void();
 631 }
 632 
 633 #ifdef _MSC_VER
 634 #pragma warning( push )
 635 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 636 #endif
 637 ParNewGeneration::
 638 ParNewGeneration(ReservedSpace rs, size_t initial_byte_size, int level)
 639   : DefNewGeneration(rs, initial_byte_size, level, "PCopy"),
 640   _overflow_list(NULL),
 641   _is_alive_closure(this),
 642   _plab_stats(YoungPLABSize, PLABWeight)
 643 {
 644   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 645   NOT_PRODUCT(_num_par_pushes = 0;)
 646   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 647   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 648 
 649   for (uint i1 = 0; i1 < ParallelGCThreads; i1++) {
 650     ObjToScanQueue *q = new ObjToScanQueue();
 651     guarantee(q != NULL, "work_queue Allocation failure.");
 652     _task_queues->register_queue(i1, q);
 653   }
 654 
 655   for (uint i2 = 0; i2 < ParallelGCThreads; i2++)
 656     _task_queues->queue(i2)->initialize();
 657 
 658   _overflow_stacks = NULL;
 659   if (ParGCUseLocalOverflow) {
 660 
 661     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal
 662     // with ','
 663     typedef Stack<oop, mtGC> GCOopStack;
 664 
 665     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 666     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 667       new (_overflow_stacks + i) Stack<oop, mtGC>();
 668     }
 669   }
 670 
 671   if (UsePerfData) {
 672     EXCEPTION_MARK;
 673     ResourceMark rm;
 674 
 675     const char* cname =
 676          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 677     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 678                                      ParallelGCThreads, CHECK);
 679   }
 680 }
 681 #ifdef _MSC_VER
 682 #pragma warning( pop )
 683 #endif
 684 
 685 // ParNewGeneration::
 686 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 687   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 688 
 689 template <class T>
 690 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 691 #ifdef ASSERT
 692   {
 693     assert(!oopDesc::is_null(*p), "expected non-null ref");
 694     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 695     // We never expect to see a null reference being processed
 696     // as a weak reference.
 697     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 698   }
 699 #endif // ASSERT
 700 
 701   _par_cl->do_oop_nv(p);
 702 
 703   if (Universe::heap()->is_in_reserved(p)) {
 704     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 705     _rs->write_ref_field_gc_par(p, obj);
 706   }
 707 }
 708 
 709 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 710 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 711 
 712 // ParNewGeneration::
 713 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 714   DefNewGeneration::KeepAliveClosure(cl) {}
 715 
 716 template <class T>
 717 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 718 #ifdef ASSERT
 719   {
 720     assert(!oopDesc::is_null(*p), "expected non-null ref");
 721     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 722     // We never expect to see a null reference being processed
 723     // as a weak reference.
 724     assert(obj->is_oop(), "expected an oop while scanning weak refs");
 725   }
 726 #endif // ASSERT
 727 
 728   _cl->do_oop_nv(p);
 729 
 730   if (Universe::heap()->is_in_reserved(p)) {
 731     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
 732     _rs->write_ref_field_gc_par(p, obj);
 733   }
 734 }
 735 
 736 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 737 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 738 
 739 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 740   T heap_oop = oopDesc::load_heap_oop(p);
 741   if (!oopDesc::is_null(heap_oop)) {
 742     oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 743     if ((HeapWord*)obj < _boundary) {
 744       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 745       oop new_obj = obj->is_forwarded()
 746                       ? obj->forwardee()
 747                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 748       oopDesc::encode_store_heap_oop_not_null(p, new_obj);
 749     }
 750     if (_gc_barrier) {
 751       // If p points to a younger generation, mark the card.
 752       if ((HeapWord*)obj < _gen_boundary) {
 753         _rs->write_ref_field_gc_par(p, obj);
 754       }
 755     }
 756   }
 757 }
 758 
 759 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 760 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 761 
 762 class ParNewRefProcTaskProxy: public AbstractGangTask {
 763   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 764 public:
 765   ParNewRefProcTaskProxy(ProcessTask& task,
 766                          ParNewGeneration& gen,
 767                          Generation& old_gen,
 768                          HeapWord* young_old_boundary,
 769                          ParScanThreadStateSet& state_set);
 770 
 771 private:
 772   virtual void work(uint worker_id);
 773   virtual void set_for_termination(int active_workers) {
 774     _state_set.terminator()->reset_for_reuse(active_workers);
 775   }
 776 private:
 777   ParNewGeneration&      _gen;
 778   ProcessTask&           _task;
 779   Generation&            _old_gen;
 780   HeapWord*              _young_old_boundary;
 781   ParScanThreadStateSet& _state_set;
 782 };
 783 
 784 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 785                                                ParNewGeneration& gen,
 786                                                Generation& old_gen,
 787                                                HeapWord* young_old_boundary,
 788                                                ParScanThreadStateSet& state_set)
 789   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 790     _gen(gen),
 791     _task(task),
 792     _old_gen(old_gen),
 793     _young_old_boundary(young_old_boundary),
 794     _state_set(state_set)
 795 {
 796 }
 797 
 798 void ParNewRefProcTaskProxy::work(uint worker_id)
 799 {
 800   ResourceMark rm;
 801   HandleMark hm;
 802   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 803   par_scan_state.set_young_old_boundary(_young_old_boundary);
 804   _task.work(worker_id, par_scan_state.is_alive_closure(),
 805              par_scan_state.keep_alive_closure(),
 806              par_scan_state.evacuate_followers_closure());
 807 }
 808 
 809 class ParNewRefEnqueueTaskProxy: public AbstractGangTask {
 810   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
 811   EnqueueTask& _task;
 812 
 813 public:
 814   ParNewRefEnqueueTaskProxy(EnqueueTask& task)
 815     : AbstractGangTask("ParNewGeneration parallel reference enqueue"),
 816       _task(task)
 817   { }
 818 
 819   virtual void work(uint worker_id)
 820   {
 821     _task.work(worker_id);
 822   }
 823 };
 824 
 825 
 826 void ParNewRefProcTaskExecutor::execute(ProcessTask& task)
 827 {
 828   GenCollectedHeap* gch = GenCollectedHeap::heap();
 829   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 830          "not a generational heap");
 831   FlexibleWorkGang* workers = gch->workers();
 832   assert(workers != NULL, "Need parallel worker threads.");
 833   _state_set.reset(workers->active_workers(), _generation.promotion_failed());
 834   ParNewRefProcTaskProxy rp_task(task, _generation, *_generation.next_gen(),
 835                                  _generation.reserved().end(), _state_set);
 836   workers->run_task(&rp_task);
 837   _state_set.reset(0 /* bad value in debug if not reset */,
 838                    _generation.promotion_failed());
 839 }
 840 
 841 void ParNewRefProcTaskExecutor::execute(EnqueueTask& task)
 842 {
 843   GenCollectedHeap* gch = GenCollectedHeap::heap();
 844   FlexibleWorkGang* workers = gch->workers();
 845   assert(workers != NULL, "Need parallel worker threads.");
 846   ParNewRefEnqueueTaskProxy enq_task(task);
 847   workers->run_task(&enq_task);
 848 }
 849 
 850 void ParNewRefProcTaskExecutor::set_single_threaded_mode()
 851 {
 852   _state_set.flush();
 853   GenCollectedHeap* gch = GenCollectedHeap::heap();
 854   gch->set_par_threads(0);  // 0 ==> non-parallel.
 855   gch->save_marks();
 856 }
 857 
 858 ScanClosureWithParBarrier::
 859 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 860   ScanClosure(g, gc_barrier) {}
 861 
 862 EvacuateFollowersClosureGeneral::
 863 EvacuateFollowersClosureGeneral(GenCollectedHeap* gch, int level,
 864                                 OopsInGenClosure* cur,
 865                                 OopsInGenClosure* older) :
 866   _gch(gch), _level(level),
 867   _scan_cur_or_nonheap(cur), _scan_older(older)
 868 {}
 869 
 870 void EvacuateFollowersClosureGeneral::do_void() {
 871   do {
 872     // Beware: this call will lead to closure applications via virtual
 873     // calls.
 874     _gch->oop_since_save_marks_iterate(_level,
 875                                        _scan_cur_or_nonheap,
 876                                        _scan_older);
 877   } while (!_gch->no_allocs_since_save_marks(_level));
 878 }
 879 
 880 
 881 // A Generation that does parallel young-gen collection.
 882 
 883 void ParNewGeneration::handle_promotion_failed(GenCollectedHeap* gch, ParScanThreadStateSet& thread_state_set) {
 884   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 885   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 886 
 887   remove_forwarding_pointers();
 888   if (PrintGCDetails) {
 889     gclog_or_tty->print(" (promotion failed)");
 890   }
 891   // All the spaces are in play for mark-sweep.
 892   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 893   from()->set_next_compaction_space(to());
 894   gch->set_incremental_collection_failed();
 895   // Inform the next generation that a promotion failure occurred.
 896   _old_gen->promotion_failure_occurred();
 897 
 898   // Trace promotion failure in the parallel GC threads
 899   thread_state_set.trace_promotion_failed(gc_tracer());
 900   // Single threaded code may have reported promotion failure to the global state
 901   if (_promotion_failed_info.has_failed()) {
 902     _gc_tracer.report_promotion_failed(_promotion_failed_info);
 903   }
 904   // Reset the PromotionFailureALot counters.
 905   NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 906 }
 907 
 908 void ParNewGeneration::collect(bool   full,
 909                                bool   clear_all_soft_refs,
 910                                size_t size,
 911                                bool   is_tlab) {
 912   assert(full || size > 0, "otherwise we don't want to collect");
 913 
 914   GenCollectedHeap* gch = GenCollectedHeap::heap();
 915 
 916   _gc_timer->register_gc_start();
 917 
 918   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 919     "not a CMS generational heap");
 920   AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 921   FlexibleWorkGang* workers = gch->workers();
 922   assert(workers != NULL, "Need workgang for parallel work");
 923   int active_workers =
 924       AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 925                                    workers->active_workers(),
 926                                    Threads::number_of_non_daemon_threads());
 927   workers->set_active_workers(active_workers);
 928   assert(gch->n_gens() == 2,
 929          "Par collection currently only works with single older gen.");
 930   _old_gen = gch->old_gen();
 931 
 932   // If the next generation is too full to accommodate worst-case promotion
 933   // from this generation, pass on collection; let the next generation
 934   // do it.
 935   if (!collection_attempt_is_safe()) {
 936     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 937     return;
 938   }
 939   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 940 
 941   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 942   gch->trace_heap_before_gc(gc_tracer());
 943 
 944   init_assuming_no_promotion_failure();
 945 
 946   if (UseAdaptiveSizePolicy) {
 947     set_survivor_overflow(false);
 948     size_policy->minor_collection_begin();
 949   }
 950 
 951   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, _gc_tracer.gc_id());
 952   // Capture heap used before collection (for printing).
 953   size_t gch_prev_used = gch->used();
 954 
 955   age_table()->clear();
 956   to()->clear(SpaceDecorator::Mangle);
 957 
 958   gch->save_marks();
 959   assert(workers != NULL, "Need parallel worker threads.");
 960   int n_workers = active_workers;
 961 
 962   // Set the correct parallelism (number of queues) in the reference processor
 963   ref_processor()->set_active_mt_degree(n_workers);
 964 
 965   // Always set the terminator for the active number of workers
 966   // because only those workers go through the termination protocol.
 967   ParallelTaskTerminator _term(n_workers, task_queues());
 968   ParScanThreadStateSet thread_state_set(workers->active_workers(),
 969                                          *to(), *this, *_old_gen, *task_queues(),
 970                                          _overflow_stacks, desired_plab_sz(), _term);
 971 
 972   ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set);
 973   gch->set_par_threads(n_workers);
 974   gch->rem_set()->prepare_for_younger_refs_iterate(true);
 975   // It turns out that even when we're using 1 thread, doing the work in a
 976   // separate thread causes wide variance in run times.  We can't help this
 977   // in the multi-threaded case, but we special-case n=1 here to get
 978   // repeatable measurements of the 1-thread overhead of the parallel code.
 979   if (n_workers > 1) {
 980     GenCollectedHeap::StrongRootsScope srs(gch);
 981     workers->run_task(&tsk);
 982   } else {
 983     GenCollectedHeap::StrongRootsScope srs(gch);
 984     tsk.work(0);
 985   }
 986   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 987                          promotion_failed());
 988 
 989   // Trace and reset failed promotion info.
 990   if (promotion_failed()) {
 991     thread_state_set.trace_promotion_failed(gc_tracer());
 992   }
 993 
 994   // Process (weak) reference objects found during scavenge.
 995   ReferenceProcessor* rp = ref_processor();
 996   IsAliveClosure is_alive(this);
 997   ScanWeakRefClosure scan_weak_ref(this);
 998   KeepAliveClosure keep_alive(&scan_weak_ref);
 999   ScanClosure               scan_without_gc_barrier(this, false);
1000   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
1001   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
1002   EvacuateFollowersClosureGeneral evacuate_followers(gch, _level,
1003     &scan_without_gc_barrier, &scan_with_gc_barrier);
1004   rp->setup_policy(clear_all_soft_refs);
1005   // Can  the mt_degree be set later (at run_task() time would be best)?
1006   rp->set_active_mt_degree(active_workers);
1007   ReferenceProcessorStats stats;
1008   if (rp->processing_is_mt()) {
1009     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1010     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1011                                               &evacuate_followers, &task_executor,
1012                                               _gc_timer, _gc_tracer.gc_id());
1013   } else {
1014     thread_state_set.flush();
1015     gch->set_par_threads(0);  // 0 ==> non-parallel.
1016     gch->save_marks();
1017     stats = rp->process_discovered_references(&is_alive, &keep_alive,
1018                                               &evacuate_followers, NULL,
1019                                               _gc_timer, _gc_tracer.gc_id());
1020   }
1021   _gc_tracer.report_gc_reference_stats(stats);
1022   if (!promotion_failed()) {
1023     // Swap the survivor spaces.
1024     eden()->clear(SpaceDecorator::Mangle);
1025     from()->clear(SpaceDecorator::Mangle);
1026     if (ZapUnusedHeapArea) {
1027       // This is now done here because of the piece-meal mangling which
1028       // can check for valid mangling at intermediate points in the
1029       // collection(s).  When a minor collection fails to collect
1030       // sufficient space resizing of the young generation can occur
1031       // an redistribute the spaces in the young generation.  Mangle
1032       // here so that unzapped regions don't get distributed to
1033       // other spaces.
1034       to()->mangle_unused_area();
1035     }
1036     swap_spaces();
1037 
1038     // A successful scavenge should restart the GC time limit count which is
1039     // for full GC's.
1040     size_policy->reset_gc_overhead_limit_count();
1041 
1042     assert(to()->is_empty(), "to space should be empty now");
1043 
1044     adjust_desired_tenuring_threshold();
1045   } else {
1046     handle_promotion_failed(gch, thread_state_set);
1047   }
1048   // set new iteration safe limit for the survivor spaces
1049   from()->set_concurrent_iteration_safe_limit(from()->top());
1050   to()->set_concurrent_iteration_safe_limit(to()->top());
1051 
1052   if (ResizePLAB) {
1053     plab_stats()->adjust_desired_plab_sz(n_workers);
1054   }
1055 
1056   if (PrintGC && !PrintGCDetails) {
1057     gch->print_heap_change(gch_prev_used);
1058   }
1059 
1060   TASKQUEUE_STATS_ONLY(if (PrintTerminationStats) thread_state_set.print_termination_stats());
1061   TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) thread_state_set.print_taskqueue_stats());
1062 
1063   if (UseAdaptiveSizePolicy) {
1064     size_policy->minor_collection_end(gch->gc_cause());
1065     size_policy->avg_survived()->sample(from()->used());
1066   }
1067 
1068   // We need to use a monotonically non-decreasing time in ms
1069   // or we will see time-warp warnings and os::javaTimeMillis()
1070   // does not guarantee monotonicity.
1071   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1072   update_time_of_last_gc(now);
1073 
1074   rp->set_enqueuing_is_done(true);
1075   if (rp->processing_is_mt()) {
1076     ParNewRefProcTaskExecutor task_executor(*this, thread_state_set);
1077     rp->enqueue_discovered_references(&task_executor);
1078   } else {
1079     rp->enqueue_discovered_references(NULL);
1080   }
1081   rp->verify_no_references_recorded();
1082 
1083   gch->trace_heap_after_gc(gc_tracer());
1084   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
1085 
1086   _gc_timer->register_gc_end();
1087 
1088   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1089 }
1090 
1091 static int sum;
1092 void ParNewGeneration::waste_some_time() {
1093   for (int i = 0; i < 100; i++) {
1094     sum += i;
1095   }
1096 }
1097 
1098 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1099 
1100 // Because of concurrency, there are times where an object for which
1101 // "is_forwarded()" is true contains an "interim" forwarding pointer
1102 // value.  Such a value will soon be overwritten with a real value.
1103 // This method requires "obj" to have a forwarding pointer, and waits, if
1104 // necessary for a real one to be inserted, and returns it.
1105 
1106 oop ParNewGeneration::real_forwardee(oop obj) {
1107   oop forward_ptr = obj->forwardee();
1108   if (forward_ptr != ClaimedForwardPtr) {
1109     return forward_ptr;
1110   } else {
1111     return real_forwardee_slow(obj);
1112   }
1113 }
1114 
1115 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1116   // Spin-read if it is claimed but not yet written by another thread.
1117   oop forward_ptr = obj->forwardee();
1118   while (forward_ptr == ClaimedForwardPtr) {
1119     waste_some_time();
1120     assert(obj->is_forwarded(), "precondition");
1121     forward_ptr = obj->forwardee();
1122   }
1123   return forward_ptr;
1124 }
1125 
1126 void ParNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
1127   if (m->must_be_preserved_for_promotion_failure(obj)) {
1128     // We should really have separate per-worker stacks, rather
1129     // than use locking of a common pair of stacks.
1130     MutexLocker ml(ParGCRareEvent_lock);
1131     preserve_mark(obj, m);
1132   }
1133 }
1134 
1135 // Multiple GC threads may try to promote an object.  If the object
1136 // is successfully promoted, a forwarding pointer will be installed in
1137 // the object in the young generation.  This method claims the right
1138 // to install the forwarding pointer before it copies the object,
1139 // thus avoiding the need to undo the copy as in
1140 // copy_to_survivor_space_avoiding_with_undo.
1141 
1142 oop ParNewGeneration::copy_to_survivor_space(
1143         ParScanThreadState* par_scan_state, oop old, size_t sz, markOop m) {
1144   // In the sequential version, this assert also says that the object is
1145   // not forwarded.  That might not be the case here.  It is the case that
1146   // the caller observed it to be not forwarded at some time in the past.
1147   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1148 
1149   // The sequential code read "old->age()" below.  That doesn't work here,
1150   // since the age is in the mark word, and that might be overwritten with
1151   // a forwarding pointer by a parallel thread.  So we must save the mark
1152   // word in a local and then analyze it.
1153   oopDesc dummyOld;
1154   dummyOld.set_mark(m);
1155   assert(!dummyOld.is_forwarded(),
1156          "should not be called with forwarding pointer mark word.");
1157 
1158   oop new_obj = NULL;
1159   oop forward_ptr;
1160 
1161   // Try allocating obj in to-space (unless too old)
1162   if (dummyOld.age() < tenuring_threshold()) {
1163     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1164     if (new_obj == NULL) {
1165       set_survivor_overflow(true);
1166     }
1167   }
1168 
1169   if (new_obj == NULL) {
1170     // Either to-space is full or we decided to promote
1171     // try allocating obj tenured
1172 
1173     // Attempt to install a null forwarding pointer (atomically),
1174     // to claim the right to install the real forwarding pointer.
1175     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1176     if (forward_ptr != NULL) {
1177       // someone else beat us to it.
1178         return real_forwardee(old);
1179     }
1180 
1181     if (!_promotion_failed) {
1182       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1183                                       old, m, sz);
1184     }
1185 
1186     if (new_obj == NULL) {
1187       // promotion failed, forward to self
1188       _promotion_failed = true;
1189       new_obj = old;
1190 
1191       preserve_mark_if_necessary(old, m);
1192       par_scan_state->register_promotion_failure(sz);
1193     }
1194 
1195     old->forward_to(new_obj);
1196     forward_ptr = NULL;
1197   } else {
1198     // Is in to-space; do copying ourselves.
1199     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1200     assert(Universe::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1201     forward_ptr = old->forward_to_atomic(new_obj);
1202     // Restore the mark word copied above.
1203     new_obj->set_mark(m);
1204     // Increment age if obj still in new generation
1205     new_obj->incr_age();
1206     par_scan_state->age_table()->add(new_obj, sz);
1207   }
1208   assert(new_obj != NULL, "just checking");
1209 
1210 #ifndef PRODUCT
1211   // This code must come after the CAS test, or it will print incorrect
1212   // information.
1213   if (TraceScavenge) {
1214     gclog_or_tty->print_cr("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1215        is_in_reserved(new_obj) ? "copying" : "tenuring",
1216        new_obj->klass()->internal_name(), (void *)old, (void *)new_obj, new_obj->size());
1217   }
1218 #endif
1219 
1220   if (forward_ptr == NULL) {
1221     oop obj_to_push = new_obj;
1222     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1223       // Length field used as index of next element to be scanned.
1224       // Real length can be obtained from real_forwardee()
1225       arrayOop(old)->set_length(0);
1226       obj_to_push = old;
1227       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1228              "push forwarded object");
1229     }
1230     // Push it on one of the queues of to-be-scanned objects.
1231     bool simulate_overflow = false;
1232     NOT_PRODUCT(
1233       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1234         // simulate a stack overflow
1235         simulate_overflow = true;
1236       }
1237     )
1238     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1239       // Add stats for overflow pushes.
1240       if (Verbose && PrintGCDetails) {
1241         gclog_or_tty->print("queue overflow!\n");
1242       }
1243       push_on_overflow_list(old, par_scan_state);
1244       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1245     }
1246 
1247     return new_obj;
1248   }
1249 
1250   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1251   // allocate it?
1252   if (is_in_reserved(new_obj)) {
1253     // Must be in to_space.
1254     assert(to()->is_in_reserved(new_obj), "Checking");
1255     if (forward_ptr == ClaimedForwardPtr) {
1256       // Wait to get the real forwarding pointer value.
1257       forward_ptr = real_forwardee(old);
1258     }
1259     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1260   }
1261 
1262   return forward_ptr;
1263 }
1264 
1265 #ifndef PRODUCT
1266 // It's OK to call this multi-threaded;  the worst thing
1267 // that can happen is that we'll get a bunch of closely
1268 // spaced simulated overflows, but that's OK, in fact
1269 // probably good as it would exercise the overflow code
1270 // under contention.
1271 bool ParNewGeneration::should_simulate_overflow() {
1272   if (_overflow_counter-- <= 0) { // just being defensive
1273     _overflow_counter = ParGCWorkQueueOverflowInterval;
1274     return true;
1275   } else {
1276     return false;
1277   }
1278 }
1279 #endif
1280 
1281 // In case we are using compressed oops, we need to be careful.
1282 // If the object being pushed is an object array, then its length
1283 // field keeps track of the "grey boundary" at which the next
1284 // incremental scan will be done (see ParGCArrayScanChunk).
1285 // When using compressed oops, this length field is kept in the
1286 // lower 32 bits of the erstwhile klass word and cannot be used
1287 // for the overflow chaining pointer (OCP below). As such the OCP
1288 // would itself need to be compressed into the top 32-bits in this
1289 // case. Unfortunately, see below, in the event that we have a
1290 // promotion failure, the node to be pushed on the list can be
1291 // outside of the Java heap, so the heap-based pointer compression
1292 // would not work (we would have potential aliasing between C-heap
1293 // and Java-heap pointers). For this reason, when using compressed
1294 // oops, we simply use a worker-thread-local, non-shared overflow
1295 // list in the form of a growable array, with a slightly different
1296 // overflow stack draining strategy. If/when we start using fat
1297 // stacks here, we can go back to using (fat) pointer chains
1298 // (although some performance comparisons would be useful since
1299 // single global lists have their own performance disadvantages
1300 // as we were made painfully aware not long ago, see 6786503).
1301 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1302 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1303   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1304   if (ParGCUseLocalOverflow) {
1305     // In the case of compressed oops, we use a private, not-shared
1306     // overflow stack.
1307     par_scan_state->push_on_overflow_stack(from_space_obj);
1308   } else {
1309     assert(!UseCompressedOops, "Error");
1310     // if the object has been forwarded to itself, then we cannot
1311     // use the klass pointer for the linked list.  Instead we have
1312     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1313     // XXX This is horribly inefficient when a promotion failure occurs
1314     // and should be fixed. XXX FIX ME !!!
1315 #ifndef PRODUCT
1316     Atomic::inc_ptr(&_num_par_pushes);
1317     assert(_num_par_pushes > 0, "Tautology");
1318 #endif
1319     if (from_space_obj->forwardee() == from_space_obj) {
1320       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1321       listhead->forward_to(from_space_obj);
1322       from_space_obj = listhead;
1323     }
1324     oop observed_overflow_list = _overflow_list;
1325     oop cur_overflow_list;
1326     do {
1327       cur_overflow_list = observed_overflow_list;
1328       if (cur_overflow_list != BUSY) {
1329         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1330       } else {
1331         from_space_obj->set_klass_to_list_ptr(NULL);
1332       }
1333       observed_overflow_list =
1334         (oop)Atomic::cmpxchg_ptr(from_space_obj, &_overflow_list, cur_overflow_list);
1335     } while (cur_overflow_list != observed_overflow_list);
1336   }
1337 }
1338 
1339 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1340   bool res;
1341 
1342   if (ParGCUseLocalOverflow) {
1343     res = par_scan_state->take_from_overflow_stack();
1344   } else {
1345     assert(!UseCompressedOops, "Error");
1346     res = take_from_overflow_list_work(par_scan_state);
1347   }
1348   return res;
1349 }
1350 
1351 
1352 // *NOTE*: The overflow list manipulation code here and
1353 // in CMSCollector:: are very similar in shape,
1354 // except that in the CMS case we thread the objects
1355 // directly into the list via their mark word, and do
1356 // not need to deal with special cases below related
1357 // to chunking of object arrays and promotion failure
1358 // handling.
1359 // CR 6797058 has been filed to attempt consolidation of
1360 // the common code.
1361 // Because of the common code, if you make any changes in
1362 // the code below, please check the CMS version to see if
1363 // similar changes might be needed.
1364 // See CMSCollector::par_take_from_overflow_list() for
1365 // more extensive documentation comments.
1366 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1367   ObjToScanQueue* work_q = par_scan_state->work_queue();
1368   // How many to take?
1369   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1370                                  (size_t)ParGCDesiredObjsFromOverflowList);
1371 
1372   assert(!UseCompressedOops, "Error");
1373   assert(par_scan_state->overflow_stack() == NULL, "Error");
1374   if (_overflow_list == NULL) return false;
1375 
1376   // Otherwise, there was something there; try claiming the list.
1377   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1378   // Trim off a prefix of at most objsFromOverflow items
1379   Thread* tid = Thread::current();
1380   size_t spin_count = (size_t)ParallelGCThreads;
1381   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1382   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1383     // someone grabbed it before we did ...
1384     // ... we spin for a short while...
1385     os::sleep(tid, sleep_time_millis, false);
1386     if (_overflow_list == NULL) {
1387       // nothing left to take
1388       return false;
1389     } else if (_overflow_list != BUSY) {
1390      // try and grab the prefix
1391      prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
1392     }
1393   }
1394   if (prefix == NULL || prefix == BUSY) {
1395      // Nothing to take or waited long enough
1396      if (prefix == NULL) {
1397        // Write back the NULL in case we overwrote it with BUSY above
1398        // and it is still the same value.
1399        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1400      }
1401      return false;
1402   }
1403   assert(prefix != NULL && prefix != BUSY, "Error");
1404   size_t i = 1;
1405   oop cur = prefix;
1406   while (i < objsFromOverflow && cur->klass_or_null() != NULL) {
1407     i++; cur = cur->list_ptr_from_klass();
1408   }
1409 
1410   // Reattach remaining (suffix) to overflow list
1411   if (cur->klass_or_null() == NULL) {
1412     // Write back the NULL in lieu of the BUSY we wrote
1413     // above and it is still the same value.
1414     if (_overflow_list == BUSY) {
1415       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
1416     }
1417   } else {
1418     assert(cur->klass_or_null() != (Klass*)(address)BUSY, "Error");
1419     oop suffix = cur->list_ptr_from_klass();       // suffix will be put back on global list
1420     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1421     // It's possible that the list is still in the empty(busy) state
1422     // we left it in a short while ago; in that case we may be
1423     // able to place back the suffix.
1424     oop observed_overflow_list = _overflow_list;
1425     oop cur_overflow_list = observed_overflow_list;
1426     bool attached = false;
1427     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1428       observed_overflow_list =
1429         (oop) Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1430       if (cur_overflow_list == observed_overflow_list) {
1431         attached = true;
1432         break;
1433       } else cur_overflow_list = observed_overflow_list;
1434     }
1435     if (!attached) {
1436       // Too bad, someone else got in in between; we'll need to do a splice.
1437       // Find the last item of suffix list
1438       oop last = suffix;
1439       while (last->klass_or_null() != NULL) {
1440         last = last->list_ptr_from_klass();
1441       }
1442       // Atomically prepend suffix to current overflow list
1443       observed_overflow_list = _overflow_list;
1444       do {
1445         cur_overflow_list = observed_overflow_list;
1446         if (cur_overflow_list != BUSY) {
1447           // Do the splice ...
1448           last->set_klass_to_list_ptr(cur_overflow_list);
1449         } else { // cur_overflow_list == BUSY
1450           last->set_klass_to_list_ptr(NULL);
1451         }
1452         observed_overflow_list =
1453           (oop)Atomic::cmpxchg_ptr(suffix, &_overflow_list, cur_overflow_list);
1454       } while (cur_overflow_list != observed_overflow_list);
1455     }
1456   }
1457 
1458   // Push objects on prefix list onto this thread's work queue
1459   assert(prefix != NULL && prefix != BUSY, "program logic");
1460   cur = prefix;
1461   ssize_t n = 0;
1462   while (cur != NULL) {
1463     oop obj_to_push = cur->forwardee();
1464     oop next        = cur->list_ptr_from_klass();
1465     cur->set_klass(obj_to_push->klass());
1466     // This may be an array object that is self-forwarded. In that case, the list pointer
1467     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1468     if (!is_in_reserved(cur)) {
1469       // This can become a scaling bottleneck when there is work queue overflow coincident
1470       // with promotion failure.
1471       oopDesc* f = cur;
1472       FREE_C_HEAP_ARRAY(oopDesc, f);
1473     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1474       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1475       obj_to_push = cur;
1476     }
1477     bool ok = work_q->push(obj_to_push);
1478     assert(ok, "Should have succeeded");
1479     cur = next;
1480     n++;
1481   }
1482   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1483 #ifndef PRODUCT
1484   assert(_num_par_pushes >= n, "Too many pops?");
1485   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
1486 #endif
1487   return true;
1488 }
1489 #undef BUSY
1490 
1491 void ParNewGeneration::ref_processor_init() {
1492   if (_ref_processor == NULL) {
1493     // Allocate and initialize a reference processor
1494     _ref_processor =
1495       new ReferenceProcessor(_reserved,                  // span
1496                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1497                              (int) ParallelGCThreads,    // mt processing degree
1498                              refs_discovery_is_mt(),     // mt discovery
1499                              (int) ParallelGCThreads,    // mt discovery degree
1500                              refs_discovery_is_atomic(), // atomic_discovery
1501                              NULL);                      // is_alive_non_header
1502   }
1503 }
1504 
1505 const char* ParNewGeneration::name() const {
1506   return "par new generation";
1507 }