/* * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP #define SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP #include "gc/g1/g1BlockOffsetTable.inline.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/heapRegion.hpp" #include "gc/shared/space.hpp" #include "oops/oop.inline.hpp" #include "runtime/atomic.inline.hpp" inline HeapWord* G1OffsetTableContigSpace::allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { HeapWord* obj = top(); size_t available = pointer_delta(end(), obj); size_t want_to_allocate = MIN2(available, desired_word_size); if (want_to_allocate >= min_word_size) { HeapWord* new_top = obj + want_to_allocate; set_top(new_top); assert(is_aligned(obj) && is_aligned(new_top), "checking alignment"); *actual_size = want_to_allocate; return obj; } else { return NULL; } } inline HeapWord* G1OffsetTableContigSpace::par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { do { HeapWord* obj = top(); size_t available = pointer_delta(end(), obj); size_t want_to_allocate = MIN2(available, desired_word_size); if (want_to_allocate >= min_word_size) { HeapWord* new_top = obj + want_to_allocate; HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj); // result can be one of two: // the old top value: the exchange succeeded // otherwise: the new value of the top is returned. if (result == obj) { assert(is_aligned(obj) && is_aligned(new_top), "checking alignment"); *actual_size = want_to_allocate; return obj; } } else { return NULL; } } while (true); } inline HeapWord* G1OffsetTableContigSpace::allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size); if (res != NULL) { _offsets.alloc_block(res, *actual_size); } return res; } inline HeapWord* G1OffsetTableContigSpace::allocate(size_t word_size) { size_t temp; return allocate(word_size, word_size, &temp); } inline HeapWord* G1OffsetTableContigSpace::par_allocate(size_t word_size) { size_t temp; return par_allocate(word_size, word_size, &temp); } // Because of the requirement of keeping "_offsets" up to date with the // allocations, we sequentialize these with a lock. Therefore, best if // this is used for larger LAB allocations only. inline HeapWord* G1OffsetTableContigSpace::par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_size) { MutexLocker x(&_par_alloc_lock); return allocate(min_word_size, desired_word_size, actual_size); } inline HeapWord* G1OffsetTableContigSpace::block_start(const void* p) { return _offsets.block_start(p); } inline HeapWord* G1OffsetTableContigSpace::block_start_const(const void* p) const { return _offsets.block_start_const(p); } inline bool HeapRegion::block_is_obj(const HeapWord* p) const { G1CollectedHeap* g1h = G1CollectedHeap::heap(); if (ClassUnloadingWithConcurrentMark) { return !g1h->is_obj_dead(oop(p), this); } return p < top(); } inline size_t HeapRegion::block_size(const HeapWord *addr) const { if (addr == top()) { return pointer_delta(end(), addr); } if (block_is_obj(addr)) { return oop(addr)->size(); } assert(ClassUnloadingWithConcurrentMark, "All blocks should be objects if G1 Class Unloading isn't used. " "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") " "addr: " PTR_FORMAT, p2i(bottom()), p2i(top()), p2i(end()), p2i(addr)); // Old regions' dead objects may have dead classes // We need to find the next live object in some other // manner than getting the oop size G1CollectedHeap* g1h = G1CollectedHeap::heap(); HeapWord* next = g1h->concurrent_mark()->prevMarkBitMap()-> getNextMarkedWordAddress(addr, prev_top_at_mark_start()); assert(next > addr, "must get the next live object"); return pointer_delta(next, addr); } inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return par_allocate_impl(min_word_size, desired_word_size, actual_word_size); } inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) { size_t temp; return allocate_no_bot_updates(word_size, word_size, &temp); } inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size) { assert(is_young(), "we can only skip BOT updates on young regions"); return allocate_impl(min_word_size, desired_word_size, actual_word_size); } inline void HeapRegion::note_start_of_marking() { _next_marked_bytes = 0; _next_top_at_mark_start = top(); } inline void HeapRegion::note_end_of_marking() { _prev_top_at_mark_start = _next_top_at_mark_start; _prev_marked_bytes = _next_marked_bytes; _next_marked_bytes = 0; assert(_prev_marked_bytes <= (size_t) pointer_delta(prev_top_at_mark_start(), bottom()) * HeapWordSize, "invariant"); } inline void HeapRegion::note_start_of_copying(bool during_initial_mark) { if (is_survivor()) { // This is how we always allocate survivors. assert(_next_top_at_mark_start == bottom(), "invariant"); } else { if (during_initial_mark) { // During initial-mark we'll explicitly mark any objects on old // regions that are pointed to by roots. Given that explicit // marks only make sense under NTAMS it'd be nice if we could // check that condition if we wanted to. Given that we don't // know where the top of this region will end up, we simply set // NTAMS to the end of the region so all marks will be below // NTAMS. We'll set it to the actual top when we retire this region. _next_top_at_mark_start = end(); } else { // We could have re-used this old region as to-space over a // couple of GCs since the start of the concurrent marking // cycle. This means that [bottom,NTAMS) will contain objects // copied up to and including initial-mark and [NTAMS, top) // will contain objects copied during the concurrent marking cycle. assert(top() >= _next_top_at_mark_start, "invariant"); } } } inline void HeapRegion::note_end_of_copying(bool during_initial_mark) { if (is_survivor()) { // This is how we always allocate survivors. assert(_next_top_at_mark_start == bottom(), "invariant"); } else { if (during_initial_mark) { // See the comment for note_start_of_copying() for the details // on this. assert(_next_top_at_mark_start == end(), "pre-condition"); _next_top_at_mark_start = top(); } else { // See the comment for note_start_of_copying() for the details // on this. assert(top() >= _next_top_at_mark_start, "invariant"); } } } inline bool HeapRegion::in_collection_set() const { return G1CollectedHeap::heap()->is_in_cset(this); } inline HeapRegion* HeapRegion::next_in_collection_set() const { assert(in_collection_set(), "should only invoke on member of CS."); assert(_next_in_special_set == NULL || _next_in_special_set->in_collection_set(), "Malformed CS."); return _next_in_special_set; } void HeapRegion::set_next_in_collection_set(HeapRegion* r) { assert(in_collection_set(), "should only invoke on member of CS."); assert(r == NULL || r->in_collection_set(), "Malformed CS."); _next_in_special_set = r; } #endif // SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP