1 //
   2 // Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Header information of the source block.
 461 // Method declarations/definitions which are used outside
 462 // the ad-scope can conveniently be defined here.
 463 //
 464 // To keep related declarations/definitions/uses close together,
 465 // we switch between source %{ }% and source_hpp %{ }% freely as needed.
 466 
 467 // Must be visible to the DFA in dfa_sparc.cpp
 468 extern bool can_branch_register( Node *bol, Node *cmp );
 469 
 470 extern bool use_block_zeroing(Node* count);
 471 
 472 // Macros to extract hi & lo halves from a long pair.
 473 // G0 is not part of any long pair, so assert on that.
 474 // Prevents accidentally using G1 instead of G0.
 475 #define LONG_HI_REG(x) (x)
 476 #define LONG_LO_REG(x) (x)
 477 
 478 class CallStubImpl {
 479 
 480   //--------------------------------------------------------------
 481   //---<  Used for optimization in Compile::Shorten_branches  >---
 482   //--------------------------------------------------------------
 483 
 484  public:
 485   // Size of call trampoline stub.
 486   static uint size_call_trampoline() {
 487     return 0; // no call trampolines on this platform
 488   }
 489 
 490   // number of relocations needed by a call trampoline stub
 491   static uint reloc_call_trampoline() {
 492     return 0; // no call trampolines on this platform
 493   }
 494 };
 495 
 496 class HandlerImpl {
 497 
 498  public:
 499 
 500   static int emit_exception_handler(CodeBuffer &cbuf);
 501   static int emit_deopt_handler(CodeBuffer& cbuf);
 502 
 503   static uint size_exception_handler() {
 504     if (TraceJumps) {
 505       return (400); // just a guess
 506     }
 507     return ( NativeJump::instruction_size ); // sethi;jmp;nop
 508   }
 509 
 510   static uint size_deopt_handler() {
 511     if (TraceJumps) {
 512       return (400); // just a guess
 513     }
 514     return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
 515   }
 516 };
 517 
 518 %}
 519 
 520 source %{
 521 #define __ _masm.
 522 
 523 // tertiary op of a LoadP or StoreP encoding
 524 #define REGP_OP true
 525 
 526 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 527 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 528 static Register reg_to_register_object(int register_encoding);
 529 
 530 // Used by the DFA in dfa_sparc.cpp.
 531 // Check for being able to use a V9 branch-on-register.  Requires a
 532 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 533 // extended.  Doesn't work following an integer ADD, for example, because of
 534 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 535 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 536 // replace them with zero, which could become sign-extension in a different OS
 537 // release.  There's no obvious reason why an interrupt will ever fill these
 538 // bits with non-zero junk (the registers are reloaded with standard LD
 539 // instructions which either zero-fill or sign-fill).
 540 bool can_branch_register( Node *bol, Node *cmp ) {
 541   if( !BranchOnRegister ) return false;
 542 #ifdef _LP64
 543   if( cmp->Opcode() == Op_CmpP )
 544     return true;  // No problems with pointer compares
 545 #endif
 546   if( cmp->Opcode() == Op_CmpL )
 547     return true;  // No problems with long compares
 548 
 549   if( !SparcV9RegsHiBitsZero ) return false;
 550   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 551       bol->as_Bool()->_test._test != BoolTest::eq )
 552      return false;
 553 
 554   // Check for comparing against a 'safe' value.  Any operation which
 555   // clears out the high word is safe.  Thus, loads and certain shifts
 556   // are safe, as are non-negative constants.  Any operation which
 557   // preserves zero bits in the high word is safe as long as each of its
 558   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 559   // inputs are safe.  At present, the only important case to recognize
 560   // seems to be loads.  Constants should fold away, and shifts &
 561   // logicals can use the 'cc' forms.
 562   Node *x = cmp->in(1);
 563   if( x->is_Load() ) return true;
 564   if( x->is_Phi() ) {
 565     for( uint i = 1; i < x->req(); i++ )
 566       if( !x->in(i)->is_Load() )
 567         return false;
 568     return true;
 569   }
 570   return false;
 571 }
 572 
 573 bool use_block_zeroing(Node* count) {
 574   // Use BIS for zeroing if count is not constant
 575   // or it is >= BlockZeroingLowLimit.
 576   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 577 }
 578 
 579 // ****************************************************************************
 580 
 581 // REQUIRED FUNCTIONALITY
 582 
 583 // !!!!! Special hack to get all type of calls to specify the byte offset
 584 //       from the start of the call to the point where the return address
 585 //       will point.
 586 //       The "return address" is the address of the call instruction, plus 8.
 587 
 588 int MachCallStaticJavaNode::ret_addr_offset() {
 589   int offset = NativeCall::instruction_size;  // call; delay slot
 590   if (_method_handle_invoke)
 591     offset += 4;  // restore SP
 592   return offset;
 593 }
 594 
 595 int MachCallDynamicJavaNode::ret_addr_offset() {
 596   int vtable_index = this->_vtable_index;
 597   if (vtable_index < 0) {
 598     // must be invalid_vtable_index, not nonvirtual_vtable_index
 599     assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
 600     return (NativeMovConstReg::instruction_size +
 601            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 602   } else {
 603     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 604     int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 605     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 606     int klass_load_size;
 607     if (UseCompressedClassPointers) {
 608       assert(Universe::heap() != NULL, "java heap should be initialized");
 609       klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
 610     } else {
 611       klass_load_size = 1*BytesPerInstWord;
 612     }
 613     if (Assembler::is_simm13(v_off)) {
 614       return klass_load_size +
 615              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 616              NativeCall::instruction_size);  // call; delay slot
 617     } else {
 618       return klass_load_size +
 619              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 620              NativeCall::instruction_size);  // call; delay slot
 621     }
 622   }
 623 }
 624 
 625 int MachCallRuntimeNode::ret_addr_offset() {
 626 #ifdef _LP64
 627   if (MacroAssembler::is_far_target(entry_point())) {
 628     return NativeFarCall::instruction_size;
 629   } else {
 630     return NativeCall::instruction_size;
 631   }
 632 #else
 633   return NativeCall::instruction_size;  // call; delay slot
 634 #endif
 635 }
 636 
 637 // Indicate if the safepoint node needs the polling page as an input.
 638 // Since Sparc does not have absolute addressing, it does.
 639 bool SafePointNode::needs_polling_address_input() {
 640   return true;
 641 }
 642 
 643 // emit an interrupt that is caught by the debugger (for debugging compiler)
 644 void emit_break(CodeBuffer &cbuf) {
 645   MacroAssembler _masm(&cbuf);
 646   __ breakpoint_trap();
 647 }
 648 
 649 #ifndef PRODUCT
 650 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 651   st->print("TA");
 652 }
 653 #endif
 654 
 655 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 656   emit_break(cbuf);
 657 }
 658 
 659 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 660   return MachNode::size(ra_);
 661 }
 662 
 663 // Traceable jump
 664 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 665   MacroAssembler _masm(&cbuf);
 666   Register rdest = reg_to_register_object(jump_target);
 667   __ JMP(rdest, 0);
 668   __ delayed()->nop();
 669 }
 670 
 671 // Traceable jump and set exception pc
 672 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 673   MacroAssembler _masm(&cbuf);
 674   Register rdest = reg_to_register_object(jump_target);
 675   __ JMP(rdest, 0);
 676   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 677 }
 678 
 679 void emit_nop(CodeBuffer &cbuf) {
 680   MacroAssembler _masm(&cbuf);
 681   __ nop();
 682 }
 683 
 684 void emit_illtrap(CodeBuffer &cbuf) {
 685   MacroAssembler _masm(&cbuf);
 686   __ illtrap(0);
 687 }
 688 
 689 
 690 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 691   assert(n->rule() != loadUB_rule, "");
 692 
 693   intptr_t offset = 0;
 694   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 695   const Node* addr = n->get_base_and_disp(offset, adr_type);
 696   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 697   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 698   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 699   atype = atype->add_offset(offset);
 700   assert(disp32 == offset, "wrong disp32");
 701   return atype->_offset;
 702 }
 703 
 704 
 705 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 706   assert(n->rule() != loadUB_rule, "");
 707 
 708   intptr_t offset = 0;
 709   Node* addr = n->in(2);
 710   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 711   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 712     Node* a = addr->in(2/*AddPNode::Address*/);
 713     Node* o = addr->in(3/*AddPNode::Offset*/);
 714     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 715     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 716     assert(atype->isa_oop_ptr(), "still an oop");
 717   }
 718   offset = atype->is_ptr()->_offset;
 719   if (offset != Type::OffsetBot)  offset += disp32;
 720   return offset;
 721 }
 722 
 723 static inline jdouble replicate_immI(int con, int count, int width) {
 724   // Load a constant replicated "count" times with width "width"
 725   assert(count*width == 8 && width <= 4, "sanity");
 726   int bit_width = width * 8;
 727   jlong val = con;
 728   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 729   for (int i = 0; i < count - 1; i++) {
 730     val |= (val << bit_width);
 731   }
 732   jdouble dval = *((jdouble*) &val);  // coerce to double type
 733   return dval;
 734 }
 735 
 736 static inline jdouble replicate_immF(float con) {
 737   // Replicate float con 2 times and pack into vector.
 738   int val = *((int*)&con);
 739   jlong lval = val;
 740   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 741   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 742   return dval;
 743 }
 744 
 745 // Standard Sparc opcode form2 field breakdown
 746 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 747   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 748   int op = (f30 << 30) |
 749            (f29 << 29) |
 750            (f25 << 25) |
 751            (f22 << 22) |
 752            (f20 << 20) |
 753            (f19 << 19) |
 754            (f0  <<  0);
 755   cbuf.insts()->emit_int32(op);
 756 }
 757 
 758 // Standard Sparc opcode form2 field breakdown
 759 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 760   f0 >>= 10;           // Drop 10 bits
 761   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 762   int op = (f30 << 30) |
 763            (f25 << 25) |
 764            (f22 << 22) |
 765            (f0  <<  0);
 766   cbuf.insts()->emit_int32(op);
 767 }
 768 
 769 // Standard Sparc opcode form3 field breakdown
 770 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 771   int op = (f30 << 30) |
 772            (f25 << 25) |
 773            (f19 << 19) |
 774            (f14 << 14) |
 775            (f5  <<  5) |
 776            (f0  <<  0);
 777   cbuf.insts()->emit_int32(op);
 778 }
 779 
 780 // Standard Sparc opcode form3 field breakdown
 781 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 782   simm13 &= (1<<13)-1; // Mask to 13 bits
 783   int op = (f30 << 30) |
 784            (f25 << 25) |
 785            (f19 << 19) |
 786            (f14 << 14) |
 787            (1   << 13) | // bit to indicate immediate-mode
 788            (simm13<<0);
 789   cbuf.insts()->emit_int32(op);
 790 }
 791 
 792 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 793   simm10 &= (1<<10)-1; // Mask to 10 bits
 794   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 795 }
 796 
 797 #ifdef ASSERT
 798 // Helper function for VerifyOops in emit_form3_mem_reg
 799 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 800   warning("VerifyOops encountered unexpected instruction:");
 801   n->dump(2);
 802   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 803 }
 804 #endif
 805 
 806 
 807 void emit_form3_mem_reg(CodeBuffer &cbuf, PhaseRegAlloc* ra, const MachNode* n, int primary, int tertiary,
 808                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 809 
 810 #ifdef ASSERT
 811   // The following code implements the +VerifyOops feature.
 812   // It verifies oop values which are loaded into or stored out of
 813   // the current method activation.  +VerifyOops complements techniques
 814   // like ScavengeALot, because it eagerly inspects oops in transit,
 815   // as they enter or leave the stack, as opposed to ScavengeALot,
 816   // which inspects oops "at rest", in the stack or heap, at safepoints.
 817   // For this reason, +VerifyOops can sometimes detect bugs very close
 818   // to their point of creation.  It can also serve as a cross-check
 819   // on the validity of oop maps, when used toegether with ScavengeALot.
 820 
 821   // It would be good to verify oops at other points, especially
 822   // when an oop is used as a base pointer for a load or store.
 823   // This is presently difficult, because it is hard to know when
 824   // a base address is biased or not.  (If we had such information,
 825   // it would be easy and useful to make a two-argument version of
 826   // verify_oop which unbiases the base, and performs verification.)
 827 
 828   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 829   bool is_verified_oop_base  = false;
 830   bool is_verified_oop_load  = false;
 831   bool is_verified_oop_store = false;
 832   int tmp_enc = -1;
 833   if (VerifyOops && src1_enc != R_SP_enc) {
 834     // classify the op, mainly for an assert check
 835     int st_op = 0, ld_op = 0;
 836     switch (primary) {
 837     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 838     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 839     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 840     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 841     case Assembler::std_op3:  st_op = Op_StoreL; break;
 842     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 843     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 844 
 845     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 846     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 847     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 848     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 849     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 850     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 851     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 852     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 853     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 854     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 855     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 856 
 857     default: ShouldNotReachHere();
 858     }
 859     if (tertiary == REGP_OP) {
 860       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 861       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 862       else                          ShouldNotReachHere();
 863       if (st_op) {
 864         // a store
 865         // inputs are (0:control, 1:memory, 2:address, 3:value)
 866         Node* n2 = n->in(3);
 867         if (n2 != NULL) {
 868           const Type* t = n2->bottom_type();
 869           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 870         }
 871       } else {
 872         // a load
 873         const Type* t = n->bottom_type();
 874         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 875       }
 876     }
 877 
 878     if (ld_op) {
 879       // a Load
 880       // inputs are (0:control, 1:memory, 2:address)
 881       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 882           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 883           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 884           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 885           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 886           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 887           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 888           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 889           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 890           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 891           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 892           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 893           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 894           !(n->rule() == loadUB_rule)) {
 895         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 896       }
 897     } else if (st_op) {
 898       // a Store
 899       // inputs are (0:control, 1:memory, 2:address, 3:value)
 900       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 901           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 902           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 903           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 904           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 905           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 906           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 907         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 908       }
 909     }
 910 
 911     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 912       Node* addr = n->in(2);
 913       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 914         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 915         if (atype != NULL) {
 916           intptr_t offset = get_offset_from_base(n, atype, disp32);
 917           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 918           if (offset != offset_2) {
 919             get_offset_from_base(n, atype, disp32);
 920             get_offset_from_base_2(n, atype, disp32);
 921           }
 922           assert(offset == offset_2, "different offsets");
 923           if (offset == disp32) {
 924             // we now know that src1 is a true oop pointer
 925             is_verified_oop_base = true;
 926             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 927               if( primary == Assembler::ldd_op3 ) {
 928                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 929               } else {
 930                 tmp_enc = dst_enc;
 931                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 932                 assert(src1_enc != dst_enc, "");
 933               }
 934             }
 935           }
 936           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 937                        || offset == oopDesc::mark_offset_in_bytes())) {
 938                       // loading the mark should not be allowed either, but
 939                       // we don't check this since it conflicts with InlineObjectHash
 940                       // usage of LoadINode to get the mark. We could keep the
 941                       // check if we create a new LoadMarkNode
 942             // but do not verify the object before its header is initialized
 943             ShouldNotReachHere();
 944           }
 945         }
 946       }
 947     }
 948   }
 949 #endif
 950 
 951   uint instr;
 952   instr = (Assembler::ldst_op << 30)
 953         | (dst_enc        << 25)
 954         | (primary        << 19)
 955         | (src1_enc       << 14);
 956 
 957   uint index = src2_enc;
 958   int disp = disp32;
 959 
 960   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc) {
 961     disp += STACK_BIAS;
 962     // Quick fix for JDK-8029668: check that stack offset fits, bailout if not
 963     if (!Assembler::is_simm13(disp)) {
 964       ra->C->record_method_not_compilable("unable to handle large constant offsets");
 965       return;
 966     }
 967   }
 968 
 969   // We should have a compiler bailout here rather than a guarantee.
 970   // Better yet would be some mechanism to handle variable-size matches correctly.
 971   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 972 
 973   if( disp == 0 ) {
 974     // use reg-reg form
 975     // bit 13 is already zero
 976     instr |= index;
 977   } else {
 978     // use reg-imm form
 979     instr |= 0x00002000;          // set bit 13 to one
 980     instr |= disp & 0x1FFF;
 981   }
 982 
 983   cbuf.insts()->emit_int32(instr);
 984 
 985 #ifdef ASSERT
 986   {
 987     MacroAssembler _masm(&cbuf);
 988     if (is_verified_oop_base) {
 989       __ verify_oop(reg_to_register_object(src1_enc));
 990     }
 991     if (is_verified_oop_store) {
 992       __ verify_oop(reg_to_register_object(dst_enc));
 993     }
 994     if (tmp_enc != -1) {
 995       __ mov(O7, reg_to_register_object(tmp_enc));
 996     }
 997     if (is_verified_oop_load) {
 998       __ verify_oop(reg_to_register_object(dst_enc));
 999     }
1000   }
1001 #endif
1002 }
1003 
1004 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
1005   // The method which records debug information at every safepoint
1006   // expects the call to be the first instruction in the snippet as
1007   // it creates a PcDesc structure which tracks the offset of a call
1008   // from the start of the codeBlob. This offset is computed as
1009   // code_end() - code_begin() of the code which has been emitted
1010   // so far.
1011   // In this particular case we have skirted around the problem by
1012   // putting the "mov" instruction in the delay slot but the problem
1013   // may bite us again at some other point and a cleaner/generic
1014   // solution using relocations would be needed.
1015   MacroAssembler _masm(&cbuf);
1016   __ set_inst_mark();
1017 
1018   // We flush the current window just so that there is a valid stack copy
1019   // the fact that the current window becomes active again instantly is
1020   // not a problem there is nothing live in it.
1021 
1022 #ifdef ASSERT
1023   int startpos = __ offset();
1024 #endif /* ASSERT */
1025 
1026   __ call((address)entry_point, rtype);
1027 
1028   if (preserve_g2)   __ delayed()->mov(G2, L7);
1029   else __ delayed()->nop();
1030 
1031   if (preserve_g2)   __ mov(L7, G2);
1032 
1033 #ifdef ASSERT
1034   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
1035 #ifdef _LP64
1036     // Trash argument dump slots.
1037     __ set(0xb0b8ac0db0b8ac0d, G1);
1038     __ mov(G1, G5);
1039     __ stx(G1, SP, STACK_BIAS + 0x80);
1040     __ stx(G1, SP, STACK_BIAS + 0x88);
1041     __ stx(G1, SP, STACK_BIAS + 0x90);
1042     __ stx(G1, SP, STACK_BIAS + 0x98);
1043     __ stx(G1, SP, STACK_BIAS + 0xA0);
1044     __ stx(G1, SP, STACK_BIAS + 0xA8);
1045 #else // _LP64
1046     // this is also a native call, so smash the first 7 stack locations,
1047     // and the various registers
1048 
1049     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1050     // while [SP+0x44..0x58] are the argument dump slots.
1051     __ set((intptr_t)0xbaadf00d, G1);
1052     __ mov(G1, G5);
1053     __ sllx(G1, 32, G1);
1054     __ or3(G1, G5, G1);
1055     __ mov(G1, G5);
1056     __ stx(G1, SP, 0x40);
1057     __ stx(G1, SP, 0x48);
1058     __ stx(G1, SP, 0x50);
1059     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1060 #endif // _LP64
1061   }
1062 #endif /*ASSERT*/
1063 }
1064 
1065 //=============================================================================
1066 // REQUIRED FUNCTIONALITY for encoding
1067 void emit_lo(CodeBuffer &cbuf, int val) {  }
1068 void emit_hi(CodeBuffer &cbuf, int val) {  }
1069 
1070 
1071 //=============================================================================
1072 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1073 
1074 int Compile::ConstantTable::calculate_table_base_offset() const {
1075   if (UseRDPCForConstantTableBase) {
1076     // The table base offset might be less but then it fits into
1077     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1078     return Assembler::min_simm13();
1079   } else {
1080     int offset = -(size() / 2);
1081     if (!Assembler::is_simm13(offset)) {
1082       offset = Assembler::min_simm13();
1083     }
1084     return offset;
1085   }
1086 }
1087 
1088 bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
1089 void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1090   ShouldNotReachHere();
1091 }
1092 
1093 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1094   Compile* C = ra_->C;
1095   Compile::ConstantTable& constant_table = C->constant_table();
1096   MacroAssembler _masm(&cbuf);
1097 
1098   Register r = as_Register(ra_->get_encode(this));
1099   CodeSection* consts_section = __ code()->consts();
1100   int consts_size = consts_section->align_at_start(consts_section->size());
1101   assert(constant_table.size() == consts_size, "must be: %d == %d", constant_table.size(), consts_size);
1102 
1103   if (UseRDPCForConstantTableBase) {
1104     // For the following RDPC logic to work correctly the consts
1105     // section must be allocated right before the insts section.  This
1106     // assert checks for that.  The layout and the SECT_* constants
1107     // are defined in src/share/vm/asm/codeBuffer.hpp.
1108     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1109     int insts_offset = __ offset();
1110 
1111     // Layout:
1112     //
1113     // |----------- consts section ------------|----------- insts section -----------...
1114     // |------ constant table -----|- padding -|------------------x----
1115     //                                                            \ current PC (RDPC instruction)
1116     // |<------------- consts_size ----------->|<- insts_offset ->|
1117     //                                                            \ table base
1118     // The table base offset is later added to the load displacement
1119     // so it has to be negative.
1120     int table_base_offset = -(consts_size + insts_offset);
1121     int disp;
1122 
1123     // If the displacement from the current PC to the constant table
1124     // base fits into simm13 we set the constant table base to the
1125     // current PC.
1126     if (Assembler::is_simm13(table_base_offset)) {
1127       constant_table.set_table_base_offset(table_base_offset);
1128       disp = 0;
1129     } else {
1130       // Otherwise we set the constant table base offset to the
1131       // maximum negative displacement of load instructions to keep
1132       // the disp as small as possible:
1133       //
1134       // |<------------- consts_size ----------->|<- insts_offset ->|
1135       // |<--------- min_simm13 --------->|<-------- disp --------->|
1136       //                                  \ table base
1137       table_base_offset = Assembler::min_simm13();
1138       constant_table.set_table_base_offset(table_base_offset);
1139       disp = (consts_size + insts_offset) + table_base_offset;
1140     }
1141 
1142     __ rdpc(r);
1143 
1144     if (disp != 0) {
1145       assert(r != O7, "need temporary");
1146       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1147     }
1148   }
1149   else {
1150     // Materialize the constant table base.
1151     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1152     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1153     AddressLiteral base(baseaddr, rspec);
1154     __ set(base, r);
1155   }
1156 }
1157 
1158 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1159   if (UseRDPCForConstantTableBase) {
1160     // This is really the worst case but generally it's only 1 instruction.
1161     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1162   } else {
1163     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1164   }
1165 }
1166 
1167 #ifndef PRODUCT
1168 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1169   char reg[128];
1170   ra_->dump_register(this, reg);
1171   if (UseRDPCForConstantTableBase) {
1172     st->print("RDPC   %s\t! constant table base", reg);
1173   } else {
1174     st->print("SET    &constanttable,%s\t! constant table base", reg);
1175   }
1176 }
1177 #endif
1178 
1179 
1180 //=============================================================================
1181 
1182 #ifndef PRODUCT
1183 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1184   Compile* C = ra_->C;
1185 
1186   for (int i = 0; i < OptoPrologueNops; i++) {
1187     st->print_cr("NOP"); st->print("\t");
1188   }
1189 
1190   if( VerifyThread ) {
1191     st->print_cr("Verify_Thread"); st->print("\t");
1192   }
1193 
1194   size_t framesize = C->frame_size_in_bytes();
1195   int bangsize = C->bang_size_in_bytes();
1196 
1197   // Calls to C2R adapters often do not accept exceptional returns.
1198   // We require that their callers must bang for them.  But be careful, because
1199   // some VM calls (such as call site linkage) can use several kilobytes of
1200   // stack.  But the stack safety zone should account for that.
1201   // See bugs 4446381, 4468289, 4497237.
1202   if (C->need_stack_bang(bangsize)) {
1203     st->print_cr("! stack bang (%d bytes)", bangsize); st->print("\t");
1204   }
1205 
1206   if (Assembler::is_simm13(-framesize)) {
1207     st->print   ("SAVE   R_SP,-" SIZE_FORMAT ",R_SP",framesize);
1208   } else {
1209     st->print_cr("SETHI  R_SP,hi%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1210     st->print_cr("ADD    R_G3,lo%%(-" SIZE_FORMAT "),R_G3",framesize); st->print("\t");
1211     st->print   ("SAVE   R_SP,R_G3,R_SP");
1212   }
1213 
1214 }
1215 #endif
1216 
1217 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1218   Compile* C = ra_->C;
1219   MacroAssembler _masm(&cbuf);
1220 
1221   for (int i = 0; i < OptoPrologueNops; i++) {
1222     __ nop();
1223   }
1224 
1225   __ verify_thread();
1226 
1227   size_t framesize = C->frame_size_in_bytes();
1228   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1229   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1230   int bangsize = C->bang_size_in_bytes();
1231 
1232   // Calls to C2R adapters often do not accept exceptional returns.
1233   // We require that their callers must bang for them.  But be careful, because
1234   // some VM calls (such as call site linkage) can use several kilobytes of
1235   // stack.  But the stack safety zone should account for that.
1236   // See bugs 4446381, 4468289, 4497237.
1237   if (C->need_stack_bang(bangsize)) {
1238     __ generate_stack_overflow_check(bangsize);
1239   }
1240 
1241   if (Assembler::is_simm13(-framesize)) {
1242     __ save(SP, -framesize, SP);
1243   } else {
1244     __ sethi(-framesize & ~0x3ff, G3);
1245     __ add(G3, -framesize & 0x3ff, G3);
1246     __ save(SP, G3, SP);
1247   }
1248   C->set_frame_complete( __ offset() );
1249 
1250   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1251     // NOTE: We set the table base offset here because users might be
1252     // emitted before MachConstantBaseNode.
1253     Compile::ConstantTable& constant_table = C->constant_table();
1254     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1255   }
1256 }
1257 
1258 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1259   return MachNode::size(ra_);
1260 }
1261 
1262 int MachPrologNode::reloc() const {
1263   return 10; // a large enough number
1264 }
1265 
1266 //=============================================================================
1267 #ifndef PRODUCT
1268 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1269   Compile* C = ra_->C;
1270 
1271   if(do_polling() && ra_->C->is_method_compilation()) {
1272     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1273 #ifdef _LP64
1274     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1275 #else
1276     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1277 #endif
1278   }
1279 
1280   if(do_polling()) {
1281     if (UseCBCond && !ra_->C->is_method_compilation()) {
1282       st->print("NOP\n\t");
1283     }
1284     st->print("RET\n\t");
1285   }
1286 
1287   st->print("RESTORE");
1288 }
1289 #endif
1290 
1291 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1292   MacroAssembler _masm(&cbuf);
1293   Compile* C = ra_->C;
1294 
1295   __ verify_thread();
1296 
1297   // If this does safepoint polling, then do it here
1298   if(do_polling() && ra_->C->is_method_compilation()) {
1299     AddressLiteral polling_page(os::get_polling_page());
1300     __ sethi(polling_page, L0);
1301     __ relocate(relocInfo::poll_return_type);
1302     __ ld_ptr(L0, 0, G0);
1303   }
1304 
1305   // If this is a return, then stuff the restore in the delay slot
1306   if(do_polling()) {
1307     if (UseCBCond && !ra_->C->is_method_compilation()) {
1308       // Insert extra padding for the case when the epilogue is preceded by
1309       // a cbcond jump, which can't be followed by a CTI instruction
1310       __ nop();
1311     }
1312     __ ret();
1313     __ delayed()->restore();
1314   } else {
1315     __ restore();
1316   }
1317 }
1318 
1319 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1320   return MachNode::size(ra_);
1321 }
1322 
1323 int MachEpilogNode::reloc() const {
1324   return 16; // a large enough number
1325 }
1326 
1327 const Pipeline * MachEpilogNode::pipeline() const {
1328   return MachNode::pipeline_class();
1329 }
1330 
1331 int MachEpilogNode::safepoint_offset() const {
1332   assert( do_polling(), "no return for this epilog node");
1333   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1334 }
1335 
1336 //=============================================================================
1337 
1338 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1339 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1340 static enum RC rc_class( OptoReg::Name reg ) {
1341   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1342   if (OptoReg::is_stack(reg)) return rc_stack;
1343   VMReg r = OptoReg::as_VMReg(reg);
1344   if (r->is_Register()) return rc_int;
1345   assert(r->is_FloatRegister(), "must be");
1346   return rc_float;
1347 }
1348 
1349 static int impl_helper(const MachNode* mach, CodeBuffer* cbuf, PhaseRegAlloc* ra, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1350   if (cbuf) {
1351     emit_form3_mem_reg(*cbuf, ra, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1352   }
1353 #ifndef PRODUCT
1354   else if (!do_size) {
1355     if (size != 0) st->print("\n\t");
1356     if (is_load) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1357     else         st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1358   }
1359 #endif
1360   return size+4;
1361 }
1362 
1363 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1364   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1365 #ifndef PRODUCT
1366   else if( !do_size ) {
1367     if( size != 0 ) st->print("\n\t");
1368     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1369   }
1370 #endif
1371   return size+4;
1372 }
1373 
1374 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1375                                         PhaseRegAlloc *ra_,
1376                                         bool do_size,
1377                                         outputStream* st ) const {
1378   // Get registers to move
1379   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1380   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1381   OptoReg::Name dst_second = ra_->get_reg_second(this );
1382   OptoReg::Name dst_first = ra_->get_reg_first(this );
1383 
1384   enum RC src_second_rc = rc_class(src_second);
1385   enum RC src_first_rc = rc_class(src_first);
1386   enum RC dst_second_rc = rc_class(dst_second);
1387   enum RC dst_first_rc = rc_class(dst_first);
1388 
1389   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1390 
1391   // Generate spill code!
1392   int size = 0;
1393 
1394   if( src_first == dst_first && src_second == dst_second )
1395     return size;            // Self copy, no move
1396 
1397   // --------------------------------------
1398   // Check for mem-mem move.  Load into unused float registers and fall into
1399   // the float-store case.
1400   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1401     int offset = ra_->reg2offset(src_first);
1402     // Further check for aligned-adjacent pair, so we can use a double load
1403     if( (src_first&1)==0 && src_first+1 == src_second ) {
1404       src_second    = OptoReg::Name(R_F31_num);
1405       src_second_rc = rc_float;
1406       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1407     } else {
1408       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1409     }
1410     src_first    = OptoReg::Name(R_F30_num);
1411     src_first_rc = rc_float;
1412   }
1413 
1414   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1415     int offset = ra_->reg2offset(src_second);
1416     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1417     src_second    = OptoReg::Name(R_F31_num);
1418     src_second_rc = rc_float;
1419   }
1420 
1421   // --------------------------------------
1422   // Check for float->int copy; requires a trip through memory
1423   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1424     int offset = frame::register_save_words*wordSize;
1425     if (cbuf) {
1426       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1427       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1428       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1429       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1430     }
1431 #ifndef PRODUCT
1432     else if (!do_size) {
1433       if (size != 0) st->print("\n\t");
1434       st->print(  "SUB    R_SP,16,R_SP\n");
1435       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1436       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1437       st->print("\tADD    R_SP,16,R_SP\n");
1438     }
1439 #endif
1440     size += 16;
1441   }
1442 
1443   // Check for float->int copy on T4
1444   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1445     // Further check for aligned-adjacent pair, so we can use a double move
1446     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1447       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1448     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1449   }
1450   // Check for int->float copy on T4
1451   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1452     // Further check for aligned-adjacent pair, so we can use a double move
1453     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1454       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1455     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1456   }
1457 
1458   // --------------------------------------
1459   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1460   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1461   // hardware does the flop for me.  Doubles are always aligned, so no problem
1462   // there.  Misaligned sources only come from native-long-returns (handled
1463   // special below).
1464 #ifndef _LP64
1465   if( src_first_rc == rc_int &&     // source is already big-endian
1466       src_second_rc != rc_bad &&    // 64-bit move
1467       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1468     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1469     // Do the big-endian flop.
1470     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1471     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1472   }
1473 #endif
1474 
1475   // --------------------------------------
1476   // Check for integer reg-reg copy
1477   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1478 #ifndef _LP64
1479     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1480       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1481       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1482       //       operand contains the least significant word of the 64-bit value and vice versa.
1483       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1484       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1485       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1486       if( cbuf ) {
1487         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1488         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1489         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1490 #ifndef PRODUCT
1491       } else if( !do_size ) {
1492         if( size != 0 ) st->print("\n\t");
1493         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1494         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1495         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1496 #endif
1497       }
1498       return size+12;
1499     }
1500     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1501       // returning a long value in I0/I1
1502       // a SpillCopy must be able to target a return instruction's reg_class
1503       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1504       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1505       //       operand contains the least significant word of the 64-bit value and vice versa.
1506       OptoReg::Name tdest = dst_first;
1507 
1508       if (src_first == dst_first) {
1509         tdest = OptoReg::Name(R_O7_num);
1510         size += 4;
1511       }
1512 
1513       if( cbuf ) {
1514         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1515         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1516         // ShrL_reg_imm6
1517         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1518         // ShrR_reg_imm6  src, 0, dst
1519         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1520         if (tdest != dst_first) {
1521           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1522         }
1523       }
1524 #ifndef PRODUCT
1525       else if( !do_size ) {
1526         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1527         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1528         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1529         if (tdest != dst_first) {
1530           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1531         }
1532       }
1533 #endif // PRODUCT
1534       return size+8;
1535     }
1536 #endif // !_LP64
1537     // Else normal reg-reg copy
1538     assert( src_second != dst_first, "smashed second before evacuating it" );
1539     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1540     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1541     // This moves an aligned adjacent pair.
1542     // See if we are done.
1543     if( src_first+1 == src_second && dst_first+1 == dst_second )
1544       return size;
1545   }
1546 
1547   // Check for integer store
1548   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1549     int offset = ra_->reg2offset(dst_first);
1550     // Further check for aligned-adjacent pair, so we can use a double store
1551     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1552       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1553     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1554   }
1555 
1556   // Check for integer load
1557   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1558     int offset = ra_->reg2offset(src_first);
1559     // Further check for aligned-adjacent pair, so we can use a double load
1560     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1561       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1562     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1563   }
1564 
1565   // Check for float reg-reg copy
1566   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1567     // Further check for aligned-adjacent pair, so we can use a double move
1568     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1569       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1570     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1571   }
1572 
1573   // Check for float store
1574   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1575     int offset = ra_->reg2offset(dst_first);
1576     // Further check for aligned-adjacent pair, so we can use a double store
1577     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1578       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1579     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1580   }
1581 
1582   // Check for float load
1583   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1584     int offset = ra_->reg2offset(src_first);
1585     // Further check for aligned-adjacent pair, so we can use a double load
1586     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1587       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1588     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1589   }
1590 
1591   // --------------------------------------------------------------------
1592   // Check for hi bits still needing moving.  Only happens for misaligned
1593   // arguments to native calls.
1594   if( src_second == dst_second )
1595     return size;               // Self copy; no move
1596   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1597 
1598 #ifndef _LP64
1599   // In the LP64 build, all registers can be moved as aligned/adjacent
1600   // pairs, so there's never any need to move the high bits separately.
1601   // The 32-bit builds have to deal with the 32-bit ABI which can force
1602   // all sorts of silly alignment problems.
1603 
1604   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1605   // 32-bits of a 64-bit register, but are needed in low bits of another
1606   // register (else it's a hi-bits-to-hi-bits copy which should have
1607   // happened already as part of a 64-bit move)
1608   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1609     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1610     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1611     // Shift src_second down to dst_second's low bits.
1612     if( cbuf ) {
1613       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1614 #ifndef PRODUCT
1615     } else if( !do_size ) {
1616       if( size != 0 ) st->print("\n\t");
1617       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1618 #endif
1619     }
1620     return size+4;
1621   }
1622 
1623   // Check for high word integer store.  Must down-shift the hi bits
1624   // into a temp register, then fall into the case of storing int bits.
1625   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1626     // Shift src_second down to dst_second's low bits.
1627     if( cbuf ) {
1628       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1629 #ifndef PRODUCT
1630     } else if( !do_size ) {
1631       if( size != 0 ) st->print("\n\t");
1632       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1633 #endif
1634     }
1635     size+=4;
1636     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1637   }
1638 
1639   // Check for high word integer load
1640   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1641     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1642 
1643   // Check for high word integer store
1644   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1645     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1646 
1647   // Check for high word float store
1648   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1649     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1650 
1651 #endif // !_LP64
1652 
1653   Unimplemented();
1654 }
1655 
1656 #ifndef PRODUCT
1657 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1658   implementation( NULL, ra_, false, st );
1659 }
1660 #endif
1661 
1662 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1663   implementation( &cbuf, ra_, false, NULL );
1664 }
1665 
1666 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1667   return implementation( NULL, ra_, true, NULL );
1668 }
1669 
1670 //=============================================================================
1671 #ifndef PRODUCT
1672 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1673   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1674 }
1675 #endif
1676 
1677 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1678   MacroAssembler _masm(&cbuf);
1679   for(int i = 0; i < _count; i += 1) {
1680     __ nop();
1681   }
1682 }
1683 
1684 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1685   return 4 * _count;
1686 }
1687 
1688 
1689 //=============================================================================
1690 #ifndef PRODUCT
1691 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1692   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1693   int reg = ra_->get_reg_first(this);
1694   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1695 }
1696 #endif
1697 
1698 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1699   MacroAssembler _masm(&cbuf);
1700   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1701   int reg = ra_->get_encode(this);
1702 
1703   if (Assembler::is_simm13(offset)) {
1704      __ add(SP, offset, reg_to_register_object(reg));
1705   } else {
1706      __ set(offset, O7);
1707      __ add(SP, O7, reg_to_register_object(reg));
1708   }
1709 }
1710 
1711 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1712   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1713   assert(ra_ == ra_->C->regalloc(), "sanity");
1714   return ra_->C->scratch_emit_size(this);
1715 }
1716 
1717 //=============================================================================
1718 #ifndef PRODUCT
1719 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1720   st->print_cr("\nUEP:");
1721 #ifdef    _LP64
1722   if (UseCompressedClassPointers) {
1723     assert(Universe::heap() != NULL, "java heap should be initialized");
1724     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1725     if (Universe::narrow_klass_base() != 0) {
1726       st->print_cr("\tSET    Universe::narrow_klass_base,R_G6_heap_base");
1727       if (Universe::narrow_klass_shift() != 0) {
1728         st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1729       }
1730       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1731       st->print_cr("\tSET    Universe::narrow_ptrs_base,R_G6_heap_base");
1732     } else {
1733       st->print_cr("\tSLL    R_G5,Universe::narrow_klass_shift,R_G5");
1734     }
1735   } else {
1736     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1737   }
1738   st->print_cr("\tCMP    R_G5,R_G3" );
1739   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1740 #else  // _LP64
1741   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1742   st->print_cr("\tCMP    R_G5,R_G3" );
1743   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1744 #endif // _LP64
1745 }
1746 #endif
1747 
1748 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1749   MacroAssembler _masm(&cbuf);
1750   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1751   Register temp_reg   = G3;
1752   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1753 
1754   // Load klass from receiver
1755   __ load_klass(O0, temp_reg);
1756   // Compare against expected klass
1757   __ cmp(temp_reg, G5_ic_reg);
1758   // Branch to miss code, checks xcc or icc depending
1759   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1760 }
1761 
1762 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1763   return MachNode::size(ra_);
1764 }
1765 
1766 
1767 //=============================================================================
1768 
1769 
1770 // Emit exception handler code.
1771 int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf) {
1772   Register temp_reg = G3;
1773   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1774   MacroAssembler _masm(&cbuf);
1775 
1776   address base = __ start_a_stub(size_exception_handler());
1777   if (base == NULL) {
1778     ciEnv::current()->record_failure("CodeCache is full");
1779     return 0;  // CodeBuffer::expand failed
1780   }
1781 
1782   int offset = __ offset();
1783 
1784   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1785   __ delayed()->nop();
1786 
1787   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1788 
1789   __ end_a_stub();
1790 
1791   return offset;
1792 }
1793 
1794 int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf) {
1795   // Can't use any of the current frame's registers as we may have deopted
1796   // at a poll and everything (including G3) can be live.
1797   Register temp_reg = L0;
1798   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1799   MacroAssembler _masm(&cbuf);
1800 
1801   address base = __ start_a_stub(size_deopt_handler());
1802   if (base == NULL) {
1803     ciEnv::current()->record_failure("CodeCache is full");
1804     return 0;  // CodeBuffer::expand failed
1805   }
1806 
1807   int offset = __ offset();
1808   __ save_frame(0);
1809   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1810   __ delayed()->restore();
1811 
1812   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1813 
1814   __ end_a_stub();
1815   return offset;
1816 
1817 }
1818 
1819 // Given a register encoding, produce a Integer Register object
1820 static Register reg_to_register_object(int register_encoding) {
1821   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1822   return as_Register(register_encoding);
1823 }
1824 
1825 // Given a register encoding, produce a single-precision Float Register object
1826 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1827   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1828   return as_SingleFloatRegister(register_encoding);
1829 }
1830 
1831 // Given a register encoding, produce a double-precision Float Register object
1832 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1833   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1834   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1835   return as_DoubleFloatRegister(register_encoding);
1836 }
1837 
1838 const bool Matcher::match_rule_supported(int opcode) {
1839   if (!has_match_rule(opcode))
1840     return false;
1841 
1842   switch (opcode) {
1843   case Op_CountLeadingZerosI:
1844   case Op_CountLeadingZerosL:
1845   case Op_CountTrailingZerosI:
1846   case Op_CountTrailingZerosL:
1847   case Op_PopCountI:
1848   case Op_PopCountL:
1849     if (!UsePopCountInstruction)
1850       return false;
1851   case Op_CompareAndSwapL:
1852 #ifdef _LP64
1853   case Op_CompareAndSwapP:
1854 #endif
1855     if (!VM_Version::supports_cx8())
1856       return false;
1857     break;
1858   }
1859 
1860   return true;  // Per default match rules are supported.
1861 }
1862 
1863 int Matcher::regnum_to_fpu_offset(int regnum) {
1864   return regnum - 32; // The FP registers are in the second chunk
1865 }
1866 
1867 #ifdef ASSERT
1868 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1869 #endif
1870 
1871 // Vector width in bytes
1872 const int Matcher::vector_width_in_bytes(BasicType bt) {
1873   assert(MaxVectorSize == 8, "");
1874   return 8;
1875 }
1876 
1877 // Vector ideal reg
1878 const int Matcher::vector_ideal_reg(int size) {
1879   assert(MaxVectorSize == 8, "");
1880   return Op_RegD;
1881 }
1882 
1883 const int Matcher::vector_shift_count_ideal_reg(int size) {
1884   fatal("vector shift is not supported");
1885   return Node::NotAMachineReg;
1886 }
1887 
1888 // Limits on vector size (number of elements) loaded into vector.
1889 const int Matcher::max_vector_size(const BasicType bt) {
1890   assert(is_java_primitive(bt), "only primitive type vectors");
1891   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1892 }
1893 
1894 const int Matcher::min_vector_size(const BasicType bt) {
1895   return max_vector_size(bt); // Same as max.
1896 }
1897 
1898 // SPARC doesn't support misaligned vectors store/load.
1899 const bool Matcher::misaligned_vectors_ok() {
1900   return false;
1901 }
1902 
1903 // Current (2013) SPARC platforms need to read original key
1904 // to construct decryption expanded key 
1905 const bool Matcher::pass_original_key_for_aes() {
1906   return true;
1907 }
1908 
1909 // USII supports fxtof through the whole range of number, USIII doesn't
1910 const bool Matcher::convL2FSupported(void) {
1911   return VM_Version::has_fast_fxtof();
1912 }
1913 
1914 // Is this branch offset short enough that a short branch can be used?
1915 //
1916 // NOTE: If the platform does not provide any short branch variants, then
1917 //       this method should return false for offset 0.
1918 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1919   // The passed offset is relative to address of the branch.
1920   // Don't need to adjust the offset.
1921   return UseCBCond && Assembler::is_simm12(offset);
1922 }
1923 
1924 const bool Matcher::isSimpleConstant64(jlong value) {
1925   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1926   // Depends on optimizations in MacroAssembler::setx.
1927   int hi = (int)(value >> 32);
1928   int lo = (int)(value & ~0);
1929   return (hi == 0) || (hi == -1) || (lo == 0);
1930 }
1931 
1932 // No scaling for the parameter the ClearArray node.
1933 const bool Matcher::init_array_count_is_in_bytes = true;
1934 
1935 // Threshold size for cleararray.
1936 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1937 
1938 // No additional cost for CMOVL.
1939 const int Matcher::long_cmove_cost() { return 0; }
1940 
1941 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1942 const int Matcher::float_cmove_cost() {
1943   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1944 }
1945 
1946 // Does the CPU require late expand (see block.cpp for description of late expand)?
1947 const bool Matcher::require_postalloc_expand = false;
1948 
1949 // Should the Matcher clone shifts on addressing modes, expecting them to
1950 // be subsumed into complex addressing expressions or compute them into
1951 // registers?  True for Intel but false for most RISCs
1952 const bool Matcher::clone_shift_expressions = false;
1953 
1954 // Do we need to mask the count passed to shift instructions or does
1955 // the cpu only look at the lower 5/6 bits anyway?
1956 const bool Matcher::need_masked_shift_count = false;
1957 
1958 bool Matcher::narrow_oop_use_complex_address() {
1959   NOT_LP64(ShouldNotCallThis());
1960   assert(UseCompressedOops, "only for compressed oops code");
1961   return false;
1962 }
1963 
1964 bool Matcher::narrow_klass_use_complex_address() {
1965   NOT_LP64(ShouldNotCallThis());
1966   assert(UseCompressedClassPointers, "only for compressed klass code");
1967   return false;
1968 }
1969 
1970 // Is it better to copy float constants, or load them directly from memory?
1971 // Intel can load a float constant from a direct address, requiring no
1972 // extra registers.  Most RISCs will have to materialize an address into a
1973 // register first, so they would do better to copy the constant from stack.
1974 const bool Matcher::rematerialize_float_constants = false;
1975 
1976 // If CPU can load and store mis-aligned doubles directly then no fixup is
1977 // needed.  Else we split the double into 2 integer pieces and move it
1978 // piece-by-piece.  Only happens when passing doubles into C code as the
1979 // Java calling convention forces doubles to be aligned.
1980 #ifdef _LP64
1981 const bool Matcher::misaligned_doubles_ok = true;
1982 #else
1983 const bool Matcher::misaligned_doubles_ok = false;
1984 #endif
1985 
1986 // No-op on SPARC.
1987 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1988 }
1989 
1990 // Advertise here if the CPU requires explicit rounding operations
1991 // to implement the UseStrictFP mode.
1992 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1993 
1994 // Are floats converted to double when stored to stack during deoptimization?
1995 // Sparc does not handle callee-save floats.
1996 bool Matcher::float_in_double() { return false; }
1997 
1998 // Do ints take an entire long register or just half?
1999 // Note that we if-def off of _LP64.
2000 // The relevant question is how the int is callee-saved.  In _LP64
2001 // the whole long is written but de-opt'ing will have to extract
2002 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
2003 #ifdef _LP64
2004 const bool Matcher::int_in_long = true;
2005 #else
2006 const bool Matcher::int_in_long = false;
2007 #endif
2008 
2009 // Return whether or not this register is ever used as an argument.  This
2010 // function is used on startup to build the trampoline stubs in generateOptoStub.
2011 // Registers not mentioned will be killed by the VM call in the trampoline, and
2012 // arguments in those registers not be available to the callee.
2013 bool Matcher::can_be_java_arg( int reg ) {
2014   // Standard sparc 6 args in registers
2015   if( reg == R_I0_num ||
2016       reg == R_I1_num ||
2017       reg == R_I2_num ||
2018       reg == R_I3_num ||
2019       reg == R_I4_num ||
2020       reg == R_I5_num ) return true;
2021 #ifdef _LP64
2022   // 64-bit builds can pass 64-bit pointers and longs in
2023   // the high I registers
2024   if( reg == R_I0H_num ||
2025       reg == R_I1H_num ||
2026       reg == R_I2H_num ||
2027       reg == R_I3H_num ||
2028       reg == R_I4H_num ||
2029       reg == R_I5H_num ) return true;
2030 
2031   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2032     return true;
2033   }
2034 
2035 #else
2036   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2037   // Longs cannot be passed in O regs, because O regs become I regs
2038   // after a 'save' and I regs get their high bits chopped off on
2039   // interrupt.
2040   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2041   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2042 #endif
2043   // A few float args in registers
2044   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2045 
2046   return false;
2047 }
2048 
2049 bool Matcher::is_spillable_arg( int reg ) {
2050   return can_be_java_arg(reg);
2051 }
2052 
2053 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2054   // Use hardware SDIVX instruction when it is
2055   // faster than a code which use multiply.
2056   return VM_Version::has_fast_idiv();
2057 }
2058 
2059 // Register for DIVI projection of divmodI
2060 RegMask Matcher::divI_proj_mask() {
2061   ShouldNotReachHere();
2062   return RegMask();
2063 }
2064 
2065 // Register for MODI projection of divmodI
2066 RegMask Matcher::modI_proj_mask() {
2067   ShouldNotReachHere();
2068   return RegMask();
2069 }
2070 
2071 // Register for DIVL projection of divmodL
2072 RegMask Matcher::divL_proj_mask() {
2073   ShouldNotReachHere();
2074   return RegMask();
2075 }
2076 
2077 // Register for MODL projection of divmodL
2078 RegMask Matcher::modL_proj_mask() {
2079   ShouldNotReachHere();
2080   return RegMask();
2081 }
2082 
2083 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2084   return L7_REGP_mask();
2085 }
2086 
2087 %}
2088 
2089 
2090 // The intptr_t operand types, defined by textual substitution.
2091 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2092 #ifdef _LP64
2093 #define immX      immL
2094 #define immX13    immL13
2095 #define immX13m7  immL13m7
2096 #define iRegX     iRegL
2097 #define g1RegX    g1RegL
2098 #else
2099 #define immX      immI
2100 #define immX13    immI13
2101 #define immX13m7  immI13m7
2102 #define iRegX     iRegI
2103 #define g1RegX    g1RegI
2104 #endif
2105 
2106 //----------ENCODING BLOCK-----------------------------------------------------
2107 // This block specifies the encoding classes used by the compiler to output
2108 // byte streams.  Encoding classes are parameterized macros used by
2109 // Machine Instruction Nodes in order to generate the bit encoding of the
2110 // instruction.  Operands specify their base encoding interface with the
2111 // interface keyword.  There are currently supported four interfaces,
2112 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2113 // operand to generate a function which returns its register number when
2114 // queried.   CONST_INTER causes an operand to generate a function which
2115 // returns the value of the constant when queried.  MEMORY_INTER causes an
2116 // operand to generate four functions which return the Base Register, the
2117 // Index Register, the Scale Value, and the Offset Value of the operand when
2118 // queried.  COND_INTER causes an operand to generate six functions which
2119 // return the encoding code (ie - encoding bits for the instruction)
2120 // associated with each basic boolean condition for a conditional instruction.
2121 //
2122 // Instructions specify two basic values for encoding.  Again, a function
2123 // is available to check if the constant displacement is an oop. They use the
2124 // ins_encode keyword to specify their encoding classes (which must be
2125 // a sequence of enc_class names, and their parameters, specified in
2126 // the encoding block), and they use the
2127 // opcode keyword to specify, in order, their primary, secondary, and
2128 // tertiary opcode.  Only the opcode sections which a particular instruction
2129 // needs for encoding need to be specified.
2130 encode %{
2131   enc_class enc_untested %{
2132 #ifdef ASSERT
2133     MacroAssembler _masm(&cbuf);
2134     __ untested("encoding");
2135 #endif
2136   %}
2137 
2138   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2139     emit_form3_mem_reg(cbuf, ra_, this, $primary, $tertiary,
2140                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2141   %}
2142 
2143   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2144     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2145                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2146   %}
2147 
2148   enc_class form3_mem_prefetch_read( memory mem ) %{
2149     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2150                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2151   %}
2152 
2153   enc_class form3_mem_prefetch_write( memory mem ) %{
2154     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1,
2155                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2156   %}
2157 
2158   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2159     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2160     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2161     guarantee($mem$$index == R_G0_enc, "double index?");
2162     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2163     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2164     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2165     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2166   %}
2167 
2168   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2169     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2170     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2171     guarantee($mem$$index == R_G0_enc, "double index?");
2172     // Load long with 2 instructions
2173     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2174     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2175   %}
2176 
2177   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2178   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2179     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2180     emit_form3_mem_reg(cbuf, ra_, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2181   %}
2182 
2183   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2184     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2185     if( $rs2$$reg != $rd$$reg )
2186       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2187   %}
2188 
2189   // Target lo half of long
2190   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2191     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2192     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2193       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2194   %}
2195 
2196   // Source lo half of long
2197   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2198     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2199     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2200       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2201   %}
2202 
2203   // Target hi half of long
2204   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2205     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2206   %}
2207 
2208   // Source lo half of long, and leave it sign extended.
2209   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2210     // Sign extend low half
2211     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2212   %}
2213 
2214   // Source hi half of long, and leave it sign extended.
2215   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2216     // Shift high half to low half
2217     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2218   %}
2219 
2220   // Source hi half of long
2221   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2222     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2223     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2224       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2225   %}
2226 
2227   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2228     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2229   %}
2230 
2231   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2232     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2233     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2234   %}
2235 
2236   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2237     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2238     // clear if nothing else is happening
2239     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2240     // blt,a,pn done
2241     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2242     // mov dst,-1 in delay slot
2243     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2244   %}
2245 
2246   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2247     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2248   %}
2249 
2250   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2251     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2252   %}
2253 
2254   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2255     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2256   %}
2257 
2258   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2259     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2260   %}
2261 
2262   enc_class move_return_pc_to_o1() %{
2263     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2264   %}
2265 
2266 #ifdef _LP64
2267   /* %%% merge with enc_to_bool */
2268   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2269     MacroAssembler _masm(&cbuf);
2270 
2271     Register   src_reg = reg_to_register_object($src$$reg);
2272     Register   dst_reg = reg_to_register_object($dst$$reg);
2273     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2274   %}
2275 #endif
2276 
2277   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2278     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2279     MacroAssembler _masm(&cbuf);
2280 
2281     Register   p_reg = reg_to_register_object($p$$reg);
2282     Register   q_reg = reg_to_register_object($q$$reg);
2283     Register   y_reg = reg_to_register_object($y$$reg);
2284     Register tmp_reg = reg_to_register_object($tmp$$reg);
2285 
2286     __ subcc( p_reg, q_reg,   p_reg );
2287     __ add  ( p_reg, y_reg, tmp_reg );
2288     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2289   %}
2290 
2291   enc_class form_d2i_helper(regD src, regF dst) %{
2292     // fcmp %fcc0,$src,$src
2293     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2294     // branch %fcc0 not-nan, predict taken
2295     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2296     // fdtoi $src,$dst
2297     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2298     // fitos $dst,$dst (if nan)
2299     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2300     // clear $dst (if nan)
2301     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2302     // carry on here...
2303   %}
2304 
2305   enc_class form_d2l_helper(regD src, regD dst) %{
2306     // fcmp %fcc0,$src,$src  check for NAN
2307     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2308     // branch %fcc0 not-nan, predict taken
2309     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2310     // fdtox $src,$dst   convert in delay slot
2311     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2312     // fxtod $dst,$dst  (if nan)
2313     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2314     // clear $dst (if nan)
2315     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2316     // carry on here...
2317   %}
2318 
2319   enc_class form_f2i_helper(regF src, regF dst) %{
2320     // fcmps %fcc0,$src,$src
2321     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2322     // branch %fcc0 not-nan, predict taken
2323     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2324     // fstoi $src,$dst
2325     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2326     // fitos $dst,$dst (if nan)
2327     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2328     // clear $dst (if nan)
2329     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2330     // carry on here...
2331   %}
2332 
2333   enc_class form_f2l_helper(regF src, regD dst) %{
2334     // fcmps %fcc0,$src,$src
2335     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2336     // branch %fcc0 not-nan, predict taken
2337     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2338     // fstox $src,$dst
2339     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2340     // fxtod $dst,$dst (if nan)
2341     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2342     // clear $dst (if nan)
2343     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2344     // carry on here...
2345   %}
2346 
2347   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2348   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2349   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2350   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2351 
2352   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2353 
2354   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2355   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2356 
2357   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2358     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2359   %}
2360 
2361   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2362     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2363   %}
2364 
2365   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2366     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2367   %}
2368 
2369   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2370     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2371   %}
2372 
2373   enc_class form3_convI2F(regF rs2, regF rd) %{
2374     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2375   %}
2376 
2377   // Encloding class for traceable jumps
2378   enc_class form_jmpl(g3RegP dest) %{
2379     emit_jmpl(cbuf, $dest$$reg);
2380   %}
2381 
2382   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2383     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2384   %}
2385 
2386   enc_class form2_nop() %{
2387     emit_nop(cbuf);
2388   %}
2389 
2390   enc_class form2_illtrap() %{
2391     emit_illtrap(cbuf);
2392   %}
2393 
2394 
2395   // Compare longs and convert into -1, 0, 1.
2396   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2397     // CMP $src1,$src2
2398     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2399     // blt,a,pn done
2400     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2401     // mov dst,-1 in delay slot
2402     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2403     // bgt,a,pn done
2404     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2405     // mov dst,1 in delay slot
2406     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2407     // CLR    $dst
2408     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2409   %}
2410 
2411   enc_class enc_PartialSubtypeCheck() %{
2412     MacroAssembler _masm(&cbuf);
2413     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2414     __ delayed()->nop();
2415   %}
2416 
2417   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2418     MacroAssembler _masm(&cbuf);
2419     Label* L = $labl$$label;
2420     Assembler::Predict predict_taken =
2421       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2422 
2423     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2424     __ delayed()->nop();
2425   %}
2426 
2427   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2428     MacroAssembler _masm(&cbuf);
2429     Label* L = $labl$$label;
2430     Assembler::Predict predict_taken =
2431       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2432 
2433     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2434     __ delayed()->nop();
2435   %}
2436 
2437   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2438     int op = (Assembler::arith_op << 30) |
2439              ($dst$$reg << 25) |
2440              (Assembler::movcc_op3 << 19) |
2441              (1 << 18) |                    // cc2 bit for 'icc'
2442              ($cmp$$cmpcode << 14) |
2443              (0 << 13) |                    // select register move
2444              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2445              ($src$$reg << 0);
2446     cbuf.insts()->emit_int32(op);
2447   %}
2448 
2449   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2450     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2451     int op = (Assembler::arith_op << 30) |
2452              ($dst$$reg << 25) |
2453              (Assembler::movcc_op3 << 19) |
2454              (1 << 18) |                    // cc2 bit for 'icc'
2455              ($cmp$$cmpcode << 14) |
2456              (1 << 13) |                    // select immediate move
2457              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2458              (simm11 << 0);
2459     cbuf.insts()->emit_int32(op);
2460   %}
2461 
2462   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2463     int op = (Assembler::arith_op << 30) |
2464              ($dst$$reg << 25) |
2465              (Assembler::movcc_op3 << 19) |
2466              (0 << 18) |                    // cc2 bit for 'fccX'
2467              ($cmp$$cmpcode << 14) |
2468              (0 << 13) |                    // select register move
2469              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2470              ($src$$reg << 0);
2471     cbuf.insts()->emit_int32(op);
2472   %}
2473 
2474   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2475     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2476     int op = (Assembler::arith_op << 30) |
2477              ($dst$$reg << 25) |
2478              (Assembler::movcc_op3 << 19) |
2479              (0 << 18) |                    // cc2 bit for 'fccX'
2480              ($cmp$$cmpcode << 14) |
2481              (1 << 13) |                    // select immediate move
2482              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2483              (simm11 << 0);
2484     cbuf.insts()->emit_int32(op);
2485   %}
2486 
2487   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2488     int op = (Assembler::arith_op << 30) |
2489              ($dst$$reg << 25) |
2490              (Assembler::fpop2_op3 << 19) |
2491              (0 << 18) |
2492              ($cmp$$cmpcode << 14) |
2493              (1 << 13) |                    // select register move
2494              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2495              ($primary << 5) |              // select single, double or quad
2496              ($src$$reg << 0);
2497     cbuf.insts()->emit_int32(op);
2498   %}
2499 
2500   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2501     int op = (Assembler::arith_op << 30) |
2502              ($dst$$reg << 25) |
2503              (Assembler::fpop2_op3 << 19) |
2504              (0 << 18) |
2505              ($cmp$$cmpcode << 14) |
2506              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2507              ($primary << 5) |              // select single, double or quad
2508              ($src$$reg << 0);
2509     cbuf.insts()->emit_int32(op);
2510   %}
2511 
2512   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2513   // the condition comes from opcode-field instead of an argument.
2514   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2515     int op = (Assembler::arith_op << 30) |
2516              ($dst$$reg << 25) |
2517              (Assembler::movcc_op3 << 19) |
2518              (1 << 18) |                    // cc2 bit for 'icc'
2519              ($primary << 14) |
2520              (0 << 13) |                    // select register move
2521              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2522              ($src$$reg << 0);
2523     cbuf.insts()->emit_int32(op);
2524   %}
2525 
2526   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2527     int op = (Assembler::arith_op << 30) |
2528              ($dst$$reg << 25) |
2529              (Assembler::movcc_op3 << 19) |
2530              (6 << 16) |                    // cc2 bit for 'xcc'
2531              ($primary << 14) |
2532              (0 << 13) |                    // select register move
2533              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2534              ($src$$reg << 0);
2535     cbuf.insts()->emit_int32(op);
2536   %}
2537 
2538   enc_class Set13( immI13 src, iRegI rd ) %{
2539     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2540   %}
2541 
2542   enc_class SetHi22( immI src, iRegI rd ) %{
2543     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2544   %}
2545 
2546   enc_class Set32( immI src, iRegI rd ) %{
2547     MacroAssembler _masm(&cbuf);
2548     __ set($src$$constant, reg_to_register_object($rd$$reg));
2549   %}
2550 
2551   enc_class call_epilog %{
2552     if( VerifyStackAtCalls ) {
2553       MacroAssembler _masm(&cbuf);
2554       int framesize = ra_->C->frame_size_in_bytes();
2555       Register temp_reg = G3;
2556       __ add(SP, framesize, temp_reg);
2557       __ cmp(temp_reg, FP);
2558       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2559     }
2560   %}
2561 
2562   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2563   // to G1 so the register allocator will not have to deal with the misaligned register
2564   // pair.
2565   enc_class adjust_long_from_native_call %{
2566 #ifndef _LP64
2567     if (returns_long()) {
2568       //    sllx  O0,32,O0
2569       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2570       //    srl   O1,0,O1
2571       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2572       //    or    O0,O1,G1
2573       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2574     }
2575 #endif
2576   %}
2577 
2578   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2579     // CALL directly to the runtime
2580     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2581     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2582                     /*preserve_g2=*/true);
2583   %}
2584 
2585   enc_class preserve_SP %{
2586     MacroAssembler _masm(&cbuf);
2587     __ mov(SP, L7_mh_SP_save);
2588   %}
2589 
2590   enc_class restore_SP %{
2591     MacroAssembler _masm(&cbuf);
2592     __ mov(L7_mh_SP_save, SP);
2593   %}
2594 
2595   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2596     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2597     // who we intended to call.
2598     if (!_method) {
2599       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2600     } else if (_optimized_virtual) {
2601       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2602     } else {
2603       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2604     }
2605     if (_method) {  // Emit stub for static call.
2606       address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
2607       // Stub does not fit into scratch buffer if TraceJumps is enabled
2608       if (stub == NULL && !(TraceJumps && Compile::current()->in_scratch_emit_size())) {
2609         ciEnv::current()->record_failure("CodeCache is full");
2610         return;
2611       } 
2612     }
2613   %}
2614 
2615   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2616     MacroAssembler _masm(&cbuf);
2617     __ set_inst_mark();
2618     int vtable_index = this->_vtable_index;
2619     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2620     if (vtable_index < 0) {
2621       // must be invalid_vtable_index, not nonvirtual_vtable_index
2622       assert(vtable_index == Method::invalid_vtable_index, "correct sentinel value");
2623       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2624       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2625       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2626       __ ic_call((address)$meth$$method);
2627     } else {
2628       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2629       // Just go thru the vtable
2630       // get receiver klass (receiver already checked for non-null)
2631       // If we end up going thru a c2i adapter interpreter expects method in G5
2632       int off = __ offset();
2633       __ load_klass(O0, G3_scratch);
2634       int klass_load_size;
2635       if (UseCompressedClassPointers) {
2636         assert(Universe::heap() != NULL, "java heap should be initialized");
2637         klass_load_size = MacroAssembler::instr_size_for_decode_klass_not_null() + 1*BytesPerInstWord;
2638       } else {
2639         klass_load_size = 1*BytesPerInstWord;
2640       }
2641       int entry_offset = InstanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2642       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2643       if (Assembler::is_simm13(v_off)) {
2644         __ ld_ptr(G3, v_off, G5_method);
2645       } else {
2646         // Generate 2 instructions
2647         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2648         __ or3(G5_method, v_off & 0x3ff, G5_method);
2649         // ld_ptr, set_hi, set
2650         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2651                "Unexpected instruction size(s)");
2652         __ ld_ptr(G3, G5_method, G5_method);
2653       }
2654       // NOTE: for vtable dispatches, the vtable entry will never be null.
2655       // However it may very well end up in handle_wrong_method if the
2656       // method is abstract for the particular class.
2657       __ ld_ptr(G5_method, in_bytes(Method::from_compiled_offset()), G3_scratch);
2658       // jump to target (either compiled code or c2iadapter)
2659       __ jmpl(G3_scratch, G0, O7);
2660       __ delayed()->nop();
2661     }
2662   %}
2663 
2664   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2665     MacroAssembler _masm(&cbuf);
2666 
2667     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2668     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2669                               // we might be calling a C2I adapter which needs it.
2670 
2671     assert(temp_reg != G5_ic_reg, "conflicting registers");
2672     // Load nmethod
2673     __ ld_ptr(G5_ic_reg, in_bytes(Method::from_compiled_offset()), temp_reg);
2674 
2675     // CALL to compiled java, indirect the contents of G3
2676     __ set_inst_mark();
2677     __ callr(temp_reg, G0);
2678     __ delayed()->nop();
2679   %}
2680 
2681 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2682     MacroAssembler _masm(&cbuf);
2683     Register Rdividend = reg_to_register_object($src1$$reg);
2684     Register Rdivisor = reg_to_register_object($src2$$reg);
2685     Register Rresult = reg_to_register_object($dst$$reg);
2686 
2687     __ sra(Rdivisor, 0, Rdivisor);
2688     __ sra(Rdividend, 0, Rdividend);
2689     __ sdivx(Rdividend, Rdivisor, Rresult);
2690 %}
2691 
2692 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2693     MacroAssembler _masm(&cbuf);
2694 
2695     Register Rdividend = reg_to_register_object($src1$$reg);
2696     int divisor = $imm$$constant;
2697     Register Rresult = reg_to_register_object($dst$$reg);
2698 
2699     __ sra(Rdividend, 0, Rdividend);
2700     __ sdivx(Rdividend, divisor, Rresult);
2701 %}
2702 
2703 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2704     MacroAssembler _masm(&cbuf);
2705     Register Rsrc1 = reg_to_register_object($src1$$reg);
2706     Register Rsrc2 = reg_to_register_object($src2$$reg);
2707     Register Rdst  = reg_to_register_object($dst$$reg);
2708 
2709     __ sra( Rsrc1, 0, Rsrc1 );
2710     __ sra( Rsrc2, 0, Rsrc2 );
2711     __ mulx( Rsrc1, Rsrc2, Rdst );
2712     __ srlx( Rdst, 32, Rdst );
2713 %}
2714 
2715 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2716     MacroAssembler _masm(&cbuf);
2717     Register Rdividend = reg_to_register_object($src1$$reg);
2718     Register Rdivisor = reg_to_register_object($src2$$reg);
2719     Register Rresult = reg_to_register_object($dst$$reg);
2720     Register Rscratch = reg_to_register_object($scratch$$reg);
2721 
2722     assert(Rdividend != Rscratch, "");
2723     assert(Rdivisor  != Rscratch, "");
2724 
2725     __ sra(Rdividend, 0, Rdividend);
2726     __ sra(Rdivisor, 0, Rdivisor);
2727     __ sdivx(Rdividend, Rdivisor, Rscratch);
2728     __ mulx(Rscratch, Rdivisor, Rscratch);
2729     __ sub(Rdividend, Rscratch, Rresult);
2730 %}
2731 
2732 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2733     MacroAssembler _masm(&cbuf);
2734 
2735     Register Rdividend = reg_to_register_object($src1$$reg);
2736     int divisor = $imm$$constant;
2737     Register Rresult = reg_to_register_object($dst$$reg);
2738     Register Rscratch = reg_to_register_object($scratch$$reg);
2739 
2740     assert(Rdividend != Rscratch, "");
2741 
2742     __ sra(Rdividend, 0, Rdividend);
2743     __ sdivx(Rdividend, divisor, Rscratch);
2744     __ mulx(Rscratch, divisor, Rscratch);
2745     __ sub(Rdividend, Rscratch, Rresult);
2746 %}
2747 
2748 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2749     MacroAssembler _masm(&cbuf);
2750 
2751     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2752     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2753 
2754     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2755 %}
2756 
2757 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2758     MacroAssembler _masm(&cbuf);
2759 
2760     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2761     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2762 
2763     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2764 %}
2765 
2766 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2767     MacroAssembler _masm(&cbuf);
2768 
2769     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2770     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2771 
2772     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2773 %}
2774 
2775 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2776     MacroAssembler _masm(&cbuf);
2777 
2778     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2779     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2780 
2781     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2782 %}
2783 
2784 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2785     MacroAssembler _masm(&cbuf);
2786 
2787     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2788     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2789 
2790     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2791 %}
2792 
2793 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2794     MacroAssembler _masm(&cbuf);
2795 
2796     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2797     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2798 
2799     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2800 %}
2801 
2802 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2803     MacroAssembler _masm(&cbuf);
2804 
2805     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2806     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2807 
2808     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2809 %}
2810 
2811 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2812     MacroAssembler _masm(&cbuf);
2813 
2814     Register Roop  = reg_to_register_object($oop$$reg);
2815     Register Rbox  = reg_to_register_object($box$$reg);
2816     Register Rscratch = reg_to_register_object($scratch$$reg);
2817     Register Rmark =    reg_to_register_object($scratch2$$reg);
2818 
2819     assert(Roop  != Rscratch, "");
2820     assert(Roop  != Rmark, "");
2821     assert(Rbox  != Rscratch, "");
2822     assert(Rbox  != Rmark, "");
2823 
2824     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2825 %}
2826 
2827 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2828     MacroAssembler _masm(&cbuf);
2829 
2830     Register Roop  = reg_to_register_object($oop$$reg);
2831     Register Rbox  = reg_to_register_object($box$$reg);
2832     Register Rscratch = reg_to_register_object($scratch$$reg);
2833     Register Rmark =    reg_to_register_object($scratch2$$reg);
2834 
2835     assert(Roop  != Rscratch, "");
2836     assert(Roop  != Rmark, "");
2837     assert(Rbox  != Rscratch, "");
2838     assert(Rbox  != Rmark, "");
2839 
2840     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2841   %}
2842 
2843   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2844     MacroAssembler _masm(&cbuf);
2845     Register Rmem = reg_to_register_object($mem$$reg);
2846     Register Rold = reg_to_register_object($old$$reg);
2847     Register Rnew = reg_to_register_object($new$$reg);
2848 
2849     __ cas_ptr(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2850     __ cmp( Rold, Rnew );
2851   %}
2852 
2853   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2854     Register Rmem = reg_to_register_object($mem$$reg);
2855     Register Rold = reg_to_register_object($old$$reg);
2856     Register Rnew = reg_to_register_object($new$$reg);
2857 
2858     MacroAssembler _masm(&cbuf);
2859     __ mov(Rnew, O7);
2860     __ casx(Rmem, Rold, O7);
2861     __ cmp( Rold, O7 );
2862   %}
2863 
2864   // raw int cas, used for compareAndSwap
2865   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2866     Register Rmem = reg_to_register_object($mem$$reg);
2867     Register Rold = reg_to_register_object($old$$reg);
2868     Register Rnew = reg_to_register_object($new$$reg);
2869 
2870     MacroAssembler _masm(&cbuf);
2871     __ mov(Rnew, O7);
2872     __ cas(Rmem, Rold, O7);
2873     __ cmp( Rold, O7 );
2874   %}
2875 
2876   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2877     Register Rres = reg_to_register_object($res$$reg);
2878 
2879     MacroAssembler _masm(&cbuf);
2880     __ mov(1, Rres);
2881     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2882   %}
2883 
2884   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2885     Register Rres = reg_to_register_object($res$$reg);
2886 
2887     MacroAssembler _masm(&cbuf);
2888     __ mov(1, Rres);
2889     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2890   %}
2891 
2892   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2893     MacroAssembler _masm(&cbuf);
2894     Register Rdst = reg_to_register_object($dst$$reg);
2895     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2896                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2897     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2898                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2899 
2900     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2901     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2902   %}
2903 
2904 
2905   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2906     Label Ldone, Lloop;
2907     MacroAssembler _masm(&cbuf);
2908 
2909     Register   str1_reg = reg_to_register_object($str1$$reg);
2910     Register   str2_reg = reg_to_register_object($str2$$reg);
2911     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2912     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2913     Register result_reg = reg_to_register_object($result$$reg);
2914 
2915     assert(result_reg != str1_reg &&
2916            result_reg != str2_reg &&
2917            result_reg != cnt1_reg &&
2918            result_reg != cnt2_reg ,
2919            "need different registers");
2920 
2921     // Compute the minimum of the string lengths(str1_reg) and the
2922     // difference of the string lengths (stack)
2923 
2924     // See if the lengths are different, and calculate min in str1_reg.
2925     // Stash diff in O7 in case we need it for a tie-breaker.
2926     Label Lskip;
2927     __ subcc(cnt1_reg, cnt2_reg, O7);
2928     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2929     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2930     // cnt2 is shorter, so use its count:
2931     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2932     __ bind(Lskip);
2933 
2934     // reallocate cnt1_reg, cnt2_reg, result_reg
2935     // Note:  limit_reg holds the string length pre-scaled by 2
2936     Register limit_reg =   cnt1_reg;
2937     Register  chr2_reg =   cnt2_reg;
2938     Register  chr1_reg = result_reg;
2939     // str{12} are the base pointers
2940 
2941     // Is the minimum length zero?
2942     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2943     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2944     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2945 
2946     // Load first characters
2947     __ lduh(str1_reg, 0, chr1_reg);
2948     __ lduh(str2_reg, 0, chr2_reg);
2949 
2950     // Compare first characters
2951     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2952     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2953     assert(chr1_reg == result_reg, "result must be pre-placed");
2954     __ delayed()->nop();
2955 
2956     {
2957       // Check after comparing first character to see if strings are equivalent
2958       Label LSkip2;
2959       // Check if the strings start at same location
2960       __ cmp(str1_reg, str2_reg);
2961       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2962       __ delayed()->nop();
2963 
2964       // Check if the length difference is zero (in O7)
2965       __ cmp(G0, O7);
2966       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2967       __ delayed()->mov(G0, result_reg);  // result is zero
2968 
2969       // Strings might not be equal
2970       __ bind(LSkip2);
2971     }
2972 
2973     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
2974     __ signx(limit_reg);
2975 
2976     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2977     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2978     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2979 
2980     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2981     __ add(str1_reg, limit_reg, str1_reg);
2982     __ add(str2_reg, limit_reg, str2_reg);
2983     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2984 
2985     // Compare the rest of the characters
2986     __ lduh(str1_reg, limit_reg, chr1_reg);
2987     __ bind(Lloop);
2988     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2989     __ lduh(str2_reg, limit_reg, chr2_reg);
2990     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2991     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2992     assert(chr1_reg == result_reg, "result must be pre-placed");
2993     __ delayed()->inccc(limit_reg, sizeof(jchar));
2994     // annul LDUH if branch is not taken to prevent access past end of string
2995     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
2996     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2997 
2998     // If strings are equal up to min length, return the length difference.
2999     __ mov(O7, result_reg);
3000 
3001     // Otherwise, return the difference between the first mismatched chars.
3002     __ bind(Ldone);
3003   %}
3004 
3005 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
3006     Label Lchar, Lchar_loop, Ldone;
3007     MacroAssembler _masm(&cbuf);
3008 
3009     Register   str1_reg = reg_to_register_object($str1$$reg);
3010     Register   str2_reg = reg_to_register_object($str2$$reg);
3011     Register    cnt_reg = reg_to_register_object($cnt$$reg);
3012     Register   tmp1_reg = O7;
3013     Register result_reg = reg_to_register_object($result$$reg);
3014 
3015     assert(result_reg != str1_reg &&
3016            result_reg != str2_reg &&
3017            result_reg !=  cnt_reg &&
3018            result_reg != tmp1_reg ,
3019            "need different registers");
3020 
3021     __ cmp(str1_reg, str2_reg); //same char[] ?
3022     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3023     __ delayed()->add(G0, 1, result_reg);
3024 
3025     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3026     __ delayed()->add(G0, 1, result_reg); // count == 0
3027 
3028     //rename registers
3029     Register limit_reg =    cnt_reg;
3030     Register  chr1_reg = result_reg;
3031     Register  chr2_reg =   tmp1_reg;
3032 
3033     // We have no guarantee that on 64 bit the higher half of limit_reg is 0
3034     __ signx(limit_reg);
3035 
3036     //check for alignment and position the pointers to the ends
3037     __ or3(str1_reg, str2_reg, chr1_reg);
3038     __ andcc(chr1_reg, 0x3, chr1_reg);
3039     // notZero means at least one not 4-byte aligned.
3040     // We could optimize the case when both arrays are not aligned
3041     // but it is not frequent case and it requires additional checks.
3042     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3043     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3044 
3045     // Compare char[] arrays aligned to 4 bytes.
3046     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3047                           chr1_reg, chr2_reg, Ldone);
3048     __ ba(Ldone);
3049     __ delayed()->add(G0, 1, result_reg);
3050 
3051     // char by char compare
3052     __ bind(Lchar);
3053     __ add(str1_reg, limit_reg, str1_reg);
3054     __ add(str2_reg, limit_reg, str2_reg);
3055     __ neg(limit_reg); //negate count
3056 
3057     __ lduh(str1_reg, limit_reg, chr1_reg);
3058     // Lchar_loop
3059     __ bind(Lchar_loop);
3060     __ lduh(str2_reg, limit_reg, chr2_reg);
3061     __ cmp(chr1_reg, chr2_reg);
3062     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3063     __ delayed()->mov(G0, result_reg); //not equal
3064     __ inccc(limit_reg, sizeof(jchar));
3065     // annul LDUH if branch is not taken to prevent access past end of string
3066     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3067     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3068 
3069     __ add(G0, 1, result_reg);  //equal
3070 
3071     __ bind(Ldone);
3072   %}
3073 
3074 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3075     Label Lvector, Ldone, Lloop;
3076     MacroAssembler _masm(&cbuf);
3077 
3078     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3079     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3080     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3081     Register   tmp2_reg = O7;
3082     Register result_reg = reg_to_register_object($result$$reg);
3083 
3084     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3085     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3086 
3087     // return true if the same array
3088     __ cmp(ary1_reg, ary2_reg);
3089     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3090     __ delayed()->add(G0, 1, result_reg); // equal
3091 
3092     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3093     __ delayed()->mov(G0, result_reg);    // not equal
3094 
3095     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3096     __ delayed()->mov(G0, result_reg);    // not equal
3097 
3098     //load the lengths of arrays
3099     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3100     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3101 
3102     // return false if the two arrays are not equal length
3103     __ cmp(tmp1_reg, tmp2_reg);
3104     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3105     __ delayed()->mov(G0, result_reg);     // not equal
3106 
3107     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3108     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3109 
3110     // load array addresses
3111     __ add(ary1_reg, base_offset, ary1_reg);
3112     __ add(ary2_reg, base_offset, ary2_reg);
3113 
3114     // renaming registers
3115     Register chr1_reg  =  result_reg; // for characters in ary1
3116     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3117     Register limit_reg =  tmp1_reg;   // length
3118 
3119     // set byte count
3120     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3121 
3122     // Compare char[] arrays aligned to 4 bytes.
3123     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3124                           chr1_reg, chr2_reg, Ldone);
3125     __ add(G0, 1, result_reg); // equals
3126 
3127     __ bind(Ldone);
3128   %}
3129 
3130   enc_class enc_rethrow() %{
3131     cbuf.set_insts_mark();
3132     Register temp_reg = G3;
3133     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3134     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3135     MacroAssembler _masm(&cbuf);
3136 #ifdef ASSERT
3137     __ save_frame(0);
3138     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3139     __ sethi(last_rethrow_addrlit, L1);
3140     Address addr(L1, last_rethrow_addrlit.low10());
3141     __ rdpc(L2);
3142     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3143     __ st_ptr(L2, addr);
3144     __ restore();
3145 #endif
3146     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3147     __ delayed()->nop();
3148   %}
3149 
3150   enc_class emit_mem_nop() %{
3151     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3152     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3153   %}
3154 
3155   enc_class emit_fadd_nop() %{
3156     // Generates the instruction FMOVS f31,f31
3157     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3158   %}
3159 
3160   enc_class emit_br_nop() %{
3161     // Generates the instruction BPN,PN .
3162     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3163   %}
3164 
3165   enc_class enc_membar_acquire %{
3166     MacroAssembler _masm(&cbuf);
3167     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3168   %}
3169 
3170   enc_class enc_membar_release %{
3171     MacroAssembler _masm(&cbuf);
3172     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3173   %}
3174 
3175   enc_class enc_membar_volatile %{
3176     MacroAssembler _masm(&cbuf);
3177     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3178   %}
3179 
3180 %}
3181 
3182 //----------FRAME--------------------------------------------------------------
3183 // Definition of frame structure and management information.
3184 //
3185 //  S T A C K   L A Y O U T    Allocators stack-slot number
3186 //                             |   (to get allocators register number
3187 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3188 //  r   CALLER     |        |
3189 //  o     |        +--------+      pad to even-align allocators stack-slot
3190 //  w     V        |  pad0  |        numbers; owned by CALLER
3191 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3192 //  h     ^        |   in   |  5
3193 //        |        |  args  |  4   Holes in incoming args owned by SELF
3194 //  |     |        |        |  3
3195 //  |     |        +--------+
3196 //  V     |        | old out|      Empty on Intel, window on Sparc
3197 //        |    old |preserve|      Must be even aligned.
3198 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3199 //        |        |   in   |  3   area for Intel ret address
3200 //     Owned by    |preserve|      Empty on Sparc.
3201 //       SELF      +--------+
3202 //        |        |  pad2  |  2   pad to align old SP
3203 //        |        +--------+  1
3204 //        |        | locks  |  0
3205 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3206 //        |        |  pad1  | 11   pad to align new SP
3207 //        |        +--------+
3208 //        |        |        | 10
3209 //        |        | spills |  9   spills
3210 //        V        |        |  8   (pad0 slot for callee)
3211 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3212 //        ^        |  out   |  7
3213 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3214 //     Owned by    +--------+
3215 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3216 //        |    new |preserve|      Must be even-aligned.
3217 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3218 //        |        |        |
3219 //
3220 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3221 //         known from SELF's arguments and the Java calling convention.
3222 //         Region 6-7 is determined per call site.
3223 // Note 2: If the calling convention leaves holes in the incoming argument
3224 //         area, those holes are owned by SELF.  Holes in the outgoing area
3225 //         are owned by the CALLEE.  Holes should not be nessecary in the
3226 //         incoming area, as the Java calling convention is completely under
3227 //         the control of the AD file.  Doubles can be sorted and packed to
3228 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3229 //         varargs C calling conventions.
3230 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3231 //         even aligned with pad0 as needed.
3232 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3233 //         region 6-11 is even aligned; it may be padded out more so that
3234 //         the region from SP to FP meets the minimum stack alignment.
3235 
3236 frame %{
3237   // What direction does stack grow in (assumed to be same for native & Java)
3238   stack_direction(TOWARDS_LOW);
3239 
3240   // These two registers define part of the calling convention
3241   // between compiled code and the interpreter.
3242   inline_cache_reg(R_G5);                // Inline Cache Register or Method* for I2C
3243   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3244 
3245   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3246   cisc_spilling_operand_name(indOffset);
3247 
3248   // Number of stack slots consumed by a Monitor enter
3249 #ifdef _LP64
3250   sync_stack_slots(2);
3251 #else
3252   sync_stack_slots(1);
3253 #endif
3254 
3255   // Compiled code's Frame Pointer
3256   frame_pointer(R_SP);
3257 
3258   // Stack alignment requirement
3259   stack_alignment(StackAlignmentInBytes);
3260   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3261   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3262 
3263   // Number of stack slots between incoming argument block and the start of
3264   // a new frame.  The PROLOG must add this many slots to the stack.  The
3265   // EPILOG must remove this many slots.
3266   in_preserve_stack_slots(0);
3267 
3268   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3269   // for calls to C.  Supports the var-args backing area for register parms.
3270   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3271 #ifdef _LP64
3272   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3273   varargs_C_out_slots_killed(12);
3274 #else
3275   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3276   varargs_C_out_slots_killed( 7);
3277 #endif
3278 
3279   // The after-PROLOG location of the return address.  Location of
3280   // return address specifies a type (REG or STACK) and a number
3281   // representing the register number (i.e. - use a register name) or
3282   // stack slot.
3283   return_addr(REG R_I7);          // Ret Addr is in register I7
3284 
3285   // Body of function which returns an OptoRegs array locating
3286   // arguments either in registers or in stack slots for calling
3287   // java
3288   calling_convention %{
3289     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3290 
3291   %}
3292 
3293   // Body of function which returns an OptoRegs array locating
3294   // arguments either in registers or in stack slots for calling
3295   // C.
3296   c_calling_convention %{
3297     // This is obviously always outgoing
3298     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3299   %}
3300 
3301   // Location of native (C/C++) and interpreter return values.  This is specified to
3302   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3303   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3304   // to and from the register pairs is done by the appropriate call and epilog
3305   // opcodes.  This simplifies the register allocator.
3306   c_return_value %{
3307     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3308 #ifdef     _LP64
3309     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3310     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3311     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3312     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3313 #else  // !_LP64
3314     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3315     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3316     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3317     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3318 #endif
3319     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3320                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3321   %}
3322 
3323   // Location of compiled Java return values.  Same as C
3324   return_value %{
3325     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3326 #ifdef     _LP64
3327     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3328     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3329     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3330     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3331 #else  // !_LP64
3332     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3333     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3334     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3335     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3336 #endif
3337     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3338                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3339   %}
3340 
3341 %}
3342 
3343 
3344 //----------ATTRIBUTES---------------------------------------------------------
3345 //----------Operand Attributes-------------------------------------------------
3346 op_attrib op_cost(1);          // Required cost attribute
3347 
3348 //----------Instruction Attributes---------------------------------------------
3349 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3350 ins_attrib ins_size(32);           // Required size attribute (in bits)
3351 
3352 // avoid_back_to_back attribute is an expression that must return
3353 // one of the following values defined in MachNode:
3354 // AVOID_NONE   - instruction can be placed anywhere
3355 // AVOID_BEFORE - instruction cannot be placed after an
3356 //                instruction with MachNode::AVOID_AFTER
3357 // AVOID_AFTER  - the next instruction cannot be the one 
3358 //                with MachNode::AVOID_BEFORE
3359 // AVOID_BEFORE_AND_AFTER - BEFORE and AFTER attributes at 
3360 //                          the same time                                
3361 ins_attrib ins_avoid_back_to_back(MachNode::AVOID_NONE);
3362 
3363 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3364                                    // non-matching short branch variant of some
3365                                                             // long branch?
3366 
3367 //----------OPERANDS-----------------------------------------------------------
3368 // Operand definitions must precede instruction definitions for correct parsing
3369 // in the ADLC because operands constitute user defined types which are used in
3370 // instruction definitions.
3371 
3372 //----------Simple Operands----------------------------------------------------
3373 // Immediate Operands
3374 // Integer Immediate: 32-bit
3375 operand immI() %{
3376   match(ConI);
3377 
3378   op_cost(0);
3379   // formats are generated automatically for constants and base registers
3380   format %{ %}
3381   interface(CONST_INTER);
3382 %}
3383 
3384 // Integer Immediate: 0-bit
3385 operand immI0() %{
3386   predicate(n->get_int() == 0);
3387   match(ConI);
3388   op_cost(0);
3389 
3390   format %{ %}
3391   interface(CONST_INTER);
3392 %}
3393 
3394 // Integer Immediate: 5-bit
3395 operand immI5() %{
3396   predicate(Assembler::is_simm5(n->get_int()));
3397   match(ConI);
3398   op_cost(0);
3399   format %{ %}
3400   interface(CONST_INTER);
3401 %}
3402 
3403 // Integer Immediate: 8-bit
3404 operand immI8() %{
3405   predicate(Assembler::is_simm8(n->get_int()));
3406   match(ConI);
3407   op_cost(0);
3408   format %{ %}
3409   interface(CONST_INTER);
3410 %}
3411 
3412 // Integer Immediate: the value 10
3413 operand immI10() %{
3414   predicate(n->get_int() == 10);
3415   match(ConI);
3416   op_cost(0);
3417 
3418   format %{ %}
3419   interface(CONST_INTER);
3420 %}
3421 
3422 // Integer Immediate: 11-bit
3423 operand immI11() %{
3424   predicate(Assembler::is_simm11(n->get_int()));
3425   match(ConI);
3426   op_cost(0);
3427   format %{ %}
3428   interface(CONST_INTER);
3429 %}
3430 
3431 // Integer Immediate: 13-bit
3432 operand immI13() %{
3433   predicate(Assembler::is_simm13(n->get_int()));
3434   match(ConI);
3435   op_cost(0);
3436 
3437   format %{ %}
3438   interface(CONST_INTER);
3439 %}
3440 
3441 // Integer Immediate: 13-bit minus 7
3442 operand immI13m7() %{
3443   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3444   match(ConI);
3445   op_cost(0);
3446 
3447   format %{ %}
3448   interface(CONST_INTER);
3449 %}
3450 
3451 // Integer Immediate: 16-bit
3452 operand immI16() %{
3453   predicate(Assembler::is_simm16(n->get_int()));
3454   match(ConI);
3455   op_cost(0);
3456   format %{ %}
3457   interface(CONST_INTER);
3458 %}
3459 
3460 // Integer Immediate: the values 1-31
3461 operand immI_1_31() %{
3462   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3463   match(ConI);
3464   op_cost(0);
3465 
3466   format %{ %}
3467   interface(CONST_INTER);
3468 %}
3469 
3470 // Integer Immediate: the values 32-63
3471 operand immI_32_63() %{
3472   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3473   match(ConI);
3474   op_cost(0);
3475 
3476   format %{ %}
3477   interface(CONST_INTER);
3478 %}
3479 
3480 // Immediates for special shifts (sign extend)
3481 
3482 // Integer Immediate: the value 16
3483 operand immI_16() %{
3484   predicate(n->get_int() == 16);
3485   match(ConI);
3486   op_cost(0);
3487 
3488   format %{ %}
3489   interface(CONST_INTER);
3490 %}
3491 
3492 // Integer Immediate: the value 24
3493 operand immI_24() %{
3494   predicate(n->get_int() == 24);
3495   match(ConI);
3496   op_cost(0);
3497 
3498   format %{ %}
3499   interface(CONST_INTER);
3500 %}
3501 // Integer Immediate: the value 255
3502 operand immI_255() %{
3503   predicate( n->get_int() == 255 );
3504   match(ConI);
3505   op_cost(0);
3506 
3507   format %{ %}
3508   interface(CONST_INTER);
3509 %}
3510 
3511 // Integer Immediate: the value 65535
3512 operand immI_65535() %{
3513   predicate(n->get_int() == 65535);
3514   match(ConI);
3515   op_cost(0);
3516 
3517   format %{ %}
3518   interface(CONST_INTER);
3519 %}
3520 
3521 // Integer Immediate: the values 0-31
3522 operand immU5() %{
3523   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3524   match(ConI);
3525   op_cost(0);
3526 
3527   format %{ %}
3528   interface(CONST_INTER);
3529 %}
3530 
3531 // Integer Immediate: 6-bit
3532 operand immU6() %{
3533   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3534   match(ConI);
3535   op_cost(0);
3536   format %{ %}
3537   interface(CONST_INTER);
3538 %}
3539 
3540 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3541 operand immU12() %{
3542   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3543   match(ConI);
3544   op_cost(0);
3545 
3546   format %{ %}
3547   interface(CONST_INTER);
3548 %}
3549 
3550 // Integer Immediate non-negative
3551 operand immU31()
3552 %{
3553   predicate(n->get_int() >= 0);
3554   match(ConI);
3555 
3556   op_cost(0);
3557   format %{ %}
3558   interface(CONST_INTER);
3559 %}
3560 
3561 // Long Immediate: the value FF
3562 operand immL_FF() %{
3563   predicate( n->get_long() == 0xFFL );
3564   match(ConL);
3565   op_cost(0);
3566 
3567   format %{ %}
3568   interface(CONST_INTER);
3569 %}
3570 
3571 // Long Immediate: the value FFFF
3572 operand immL_FFFF() %{
3573   predicate( n->get_long() == 0xFFFFL );
3574   match(ConL);
3575   op_cost(0);
3576 
3577   format %{ %}
3578   interface(CONST_INTER);
3579 %}
3580 
3581 // Pointer Immediate: 32 or 64-bit
3582 operand immP() %{
3583   match(ConP);
3584 
3585   op_cost(5);
3586   // formats are generated automatically for constants and base registers
3587   format %{ %}
3588   interface(CONST_INTER);
3589 %}
3590 
3591 #ifdef _LP64
3592 // Pointer Immediate: 64-bit
3593 operand immP_set() %{
3594   predicate(!VM_Version::is_niagara_plus());
3595   match(ConP);
3596 
3597   op_cost(5);
3598   // formats are generated automatically for constants and base registers
3599   format %{ %}
3600   interface(CONST_INTER);
3601 %}
3602 
3603 // Pointer Immediate: 64-bit
3604 // From Niagara2 processors on a load should be better than materializing.
3605 operand immP_load() %{
3606   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3607   match(ConP);
3608 
3609   op_cost(5);
3610   // formats are generated automatically for constants and base registers
3611   format %{ %}
3612   interface(CONST_INTER);
3613 %}
3614 
3615 // Pointer Immediate: 64-bit
3616 operand immP_no_oop_cheap() %{
3617   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3618   match(ConP);
3619 
3620   op_cost(5);
3621   // formats are generated automatically for constants and base registers
3622   format %{ %}
3623   interface(CONST_INTER);
3624 %}
3625 #endif
3626 
3627 operand immP13() %{
3628   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3629   match(ConP);
3630   op_cost(0);
3631 
3632   format %{ %}
3633   interface(CONST_INTER);
3634 %}
3635 
3636 operand immP0() %{
3637   predicate(n->get_ptr() == 0);
3638   match(ConP);
3639   op_cost(0);
3640 
3641   format %{ %}
3642   interface(CONST_INTER);
3643 %}
3644 
3645 operand immP_poll() %{
3646   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3647   match(ConP);
3648 
3649   // formats are generated automatically for constants and base registers
3650   format %{ %}
3651   interface(CONST_INTER);
3652 %}
3653 
3654 // Pointer Immediate
3655 operand immN()
3656 %{
3657   match(ConN);
3658 
3659   op_cost(10);
3660   format %{ %}
3661   interface(CONST_INTER);
3662 %}
3663 
3664 operand immNKlass()
3665 %{
3666   match(ConNKlass);
3667 
3668   op_cost(10);
3669   format %{ %}
3670   interface(CONST_INTER);
3671 %}
3672 
3673 // NULL Pointer Immediate
3674 operand immN0()
3675 %{
3676   predicate(n->get_narrowcon() == 0);
3677   match(ConN);
3678 
3679   op_cost(0);
3680   format %{ %}
3681   interface(CONST_INTER);
3682 %}
3683 
3684 operand immL() %{
3685   match(ConL);
3686   op_cost(40);
3687   // formats are generated automatically for constants and base registers
3688   format %{ %}
3689   interface(CONST_INTER);
3690 %}
3691 
3692 operand immL0() %{
3693   predicate(n->get_long() == 0L);
3694   match(ConL);
3695   op_cost(0);
3696   // formats are generated automatically for constants and base registers
3697   format %{ %}
3698   interface(CONST_INTER);
3699 %}
3700 
3701 // Integer Immediate: 5-bit
3702 operand immL5() %{
3703   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3704   match(ConL);
3705   op_cost(0);
3706   format %{ %}
3707   interface(CONST_INTER);
3708 %}
3709 
3710 // Long Immediate: 13-bit
3711 operand immL13() %{
3712   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3713   match(ConL);
3714   op_cost(0);
3715 
3716   format %{ %}
3717   interface(CONST_INTER);
3718 %}
3719 
3720 // Long Immediate: 13-bit minus 7
3721 operand immL13m7() %{
3722   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3723   match(ConL);
3724   op_cost(0);
3725 
3726   format %{ %}
3727   interface(CONST_INTER);
3728 %}
3729 
3730 // Long Immediate: low 32-bit mask
3731 operand immL_32bits() %{
3732   predicate(n->get_long() == 0xFFFFFFFFL);
3733   match(ConL);
3734   op_cost(0);
3735 
3736   format %{ %}
3737   interface(CONST_INTER);
3738 %}
3739 
3740 // Long Immediate: cheap (materialize in <= 3 instructions)
3741 operand immL_cheap() %{
3742   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3743   match(ConL);
3744   op_cost(0);
3745 
3746   format %{ %}
3747   interface(CONST_INTER);
3748 %}
3749 
3750 // Long Immediate: expensive (materialize in > 3 instructions)
3751 operand immL_expensive() %{
3752   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3753   match(ConL);
3754   op_cost(0);
3755 
3756   format %{ %}
3757   interface(CONST_INTER);
3758 %}
3759 
3760 // Double Immediate
3761 operand immD() %{
3762   match(ConD);
3763 
3764   op_cost(40);
3765   format %{ %}
3766   interface(CONST_INTER);
3767 %}
3768 
3769 // Double Immediate: +0.0d
3770 operand immD0() %{
3771   predicate(jlong_cast(n->getd()) == 0);
3772   match(ConD);
3773 
3774   op_cost(0);
3775   format %{ %}
3776   interface(CONST_INTER);
3777 %}
3778 
3779 // Float Immediate
3780 operand immF() %{
3781   match(ConF);
3782 
3783   op_cost(20);
3784   format %{ %}
3785   interface(CONST_INTER);
3786 %}
3787 
3788 // Float Immediate: +0.0f
3789 operand immF0() %{
3790   predicate(jint_cast(n->getf()) == 0);
3791   match(ConF);
3792 
3793   op_cost(0);
3794   format %{ %}
3795   interface(CONST_INTER);
3796 %}
3797 
3798 // Integer Register Operands
3799 // Integer Register
3800 operand iRegI() %{
3801   constraint(ALLOC_IN_RC(int_reg));
3802   match(RegI);
3803 
3804   match(notemp_iRegI);
3805   match(g1RegI);
3806   match(o0RegI);
3807   match(iRegIsafe);
3808 
3809   format %{ %}
3810   interface(REG_INTER);
3811 %}
3812 
3813 operand notemp_iRegI() %{
3814   constraint(ALLOC_IN_RC(notemp_int_reg));
3815   match(RegI);
3816 
3817   match(o0RegI);
3818 
3819   format %{ %}
3820   interface(REG_INTER);
3821 %}
3822 
3823 operand o0RegI() %{
3824   constraint(ALLOC_IN_RC(o0_regI));
3825   match(iRegI);
3826 
3827   format %{ %}
3828   interface(REG_INTER);
3829 %}
3830 
3831 // Pointer Register
3832 operand iRegP() %{
3833   constraint(ALLOC_IN_RC(ptr_reg));
3834   match(RegP);
3835 
3836   match(lock_ptr_RegP);
3837   match(g1RegP);
3838   match(g2RegP);
3839   match(g3RegP);
3840   match(g4RegP);
3841   match(i0RegP);
3842   match(o0RegP);
3843   match(o1RegP);
3844   match(l7RegP);
3845 
3846   format %{ %}
3847   interface(REG_INTER);
3848 %}
3849 
3850 operand sp_ptr_RegP() %{
3851   constraint(ALLOC_IN_RC(sp_ptr_reg));
3852   match(RegP);
3853   match(iRegP);
3854 
3855   format %{ %}
3856   interface(REG_INTER);
3857 %}
3858 
3859 operand lock_ptr_RegP() %{
3860   constraint(ALLOC_IN_RC(lock_ptr_reg));
3861   match(RegP);
3862   match(i0RegP);
3863   match(o0RegP);
3864   match(o1RegP);
3865   match(l7RegP);
3866 
3867   format %{ %}
3868   interface(REG_INTER);
3869 %}
3870 
3871 operand g1RegP() %{
3872   constraint(ALLOC_IN_RC(g1_regP));
3873   match(iRegP);
3874 
3875   format %{ %}
3876   interface(REG_INTER);
3877 %}
3878 
3879 operand g2RegP() %{
3880   constraint(ALLOC_IN_RC(g2_regP));
3881   match(iRegP);
3882 
3883   format %{ %}
3884   interface(REG_INTER);
3885 %}
3886 
3887 operand g3RegP() %{
3888   constraint(ALLOC_IN_RC(g3_regP));
3889   match(iRegP);
3890 
3891   format %{ %}
3892   interface(REG_INTER);
3893 %}
3894 
3895 operand g1RegI() %{
3896   constraint(ALLOC_IN_RC(g1_regI));
3897   match(iRegI);
3898 
3899   format %{ %}
3900   interface(REG_INTER);
3901 %}
3902 
3903 operand g3RegI() %{
3904   constraint(ALLOC_IN_RC(g3_regI));
3905   match(iRegI);
3906 
3907   format %{ %}
3908   interface(REG_INTER);
3909 %}
3910 
3911 operand g4RegI() %{
3912   constraint(ALLOC_IN_RC(g4_regI));
3913   match(iRegI);
3914 
3915   format %{ %}
3916   interface(REG_INTER);
3917 %}
3918 
3919 operand g4RegP() %{
3920   constraint(ALLOC_IN_RC(g4_regP));
3921   match(iRegP);
3922 
3923   format %{ %}
3924   interface(REG_INTER);
3925 %}
3926 
3927 operand i0RegP() %{
3928   constraint(ALLOC_IN_RC(i0_regP));
3929   match(iRegP);
3930 
3931   format %{ %}
3932   interface(REG_INTER);
3933 %}
3934 
3935 operand o0RegP() %{
3936   constraint(ALLOC_IN_RC(o0_regP));
3937   match(iRegP);
3938 
3939   format %{ %}
3940   interface(REG_INTER);
3941 %}
3942 
3943 operand o1RegP() %{
3944   constraint(ALLOC_IN_RC(o1_regP));
3945   match(iRegP);
3946 
3947   format %{ %}
3948   interface(REG_INTER);
3949 %}
3950 
3951 operand o2RegP() %{
3952   constraint(ALLOC_IN_RC(o2_regP));
3953   match(iRegP);
3954 
3955   format %{ %}
3956   interface(REG_INTER);
3957 %}
3958 
3959 operand o7RegP() %{
3960   constraint(ALLOC_IN_RC(o7_regP));
3961   match(iRegP);
3962 
3963   format %{ %}
3964   interface(REG_INTER);
3965 %}
3966 
3967 operand l7RegP() %{
3968   constraint(ALLOC_IN_RC(l7_regP));
3969   match(iRegP);
3970 
3971   format %{ %}
3972   interface(REG_INTER);
3973 %}
3974 
3975 operand o7RegI() %{
3976   constraint(ALLOC_IN_RC(o7_regI));
3977   match(iRegI);
3978 
3979   format %{ %}
3980   interface(REG_INTER);
3981 %}
3982 
3983 operand iRegN() %{
3984   constraint(ALLOC_IN_RC(int_reg));
3985   match(RegN);
3986 
3987   format %{ %}
3988   interface(REG_INTER);
3989 %}
3990 
3991 // Long Register
3992 operand iRegL() %{
3993   constraint(ALLOC_IN_RC(long_reg));
3994   match(RegL);
3995 
3996   format %{ %}
3997   interface(REG_INTER);
3998 %}
3999 
4000 operand o2RegL() %{
4001   constraint(ALLOC_IN_RC(o2_regL));
4002   match(iRegL);
4003 
4004   format %{ %}
4005   interface(REG_INTER);
4006 %}
4007 
4008 operand o7RegL() %{
4009   constraint(ALLOC_IN_RC(o7_regL));
4010   match(iRegL);
4011 
4012   format %{ %}
4013   interface(REG_INTER);
4014 %}
4015 
4016 operand g1RegL() %{
4017   constraint(ALLOC_IN_RC(g1_regL));
4018   match(iRegL);
4019 
4020   format %{ %}
4021   interface(REG_INTER);
4022 %}
4023 
4024 operand g3RegL() %{
4025   constraint(ALLOC_IN_RC(g3_regL));
4026   match(iRegL);
4027 
4028   format %{ %}
4029   interface(REG_INTER);
4030 %}
4031 
4032 // Int Register safe
4033 // This is 64bit safe
4034 operand iRegIsafe() %{
4035   constraint(ALLOC_IN_RC(long_reg));
4036 
4037   match(iRegI);
4038 
4039   format %{ %}
4040   interface(REG_INTER);
4041 %}
4042 
4043 // Condition Code Flag Register
4044 operand flagsReg() %{
4045   constraint(ALLOC_IN_RC(int_flags));
4046   match(RegFlags);
4047 
4048   format %{ "ccr" %} // both ICC and XCC
4049   interface(REG_INTER);
4050 %}
4051 
4052 // Condition Code Register, unsigned comparisons.
4053 operand flagsRegU() %{
4054   constraint(ALLOC_IN_RC(int_flags));
4055   match(RegFlags);
4056 
4057   format %{ "icc_U" %}
4058   interface(REG_INTER);
4059 %}
4060 
4061 // Condition Code Register, pointer comparisons.
4062 operand flagsRegP() %{
4063   constraint(ALLOC_IN_RC(int_flags));
4064   match(RegFlags);
4065 
4066 #ifdef _LP64
4067   format %{ "xcc_P" %}
4068 #else
4069   format %{ "icc_P" %}
4070 #endif
4071   interface(REG_INTER);
4072 %}
4073 
4074 // Condition Code Register, long comparisons.
4075 operand flagsRegL() %{
4076   constraint(ALLOC_IN_RC(int_flags));
4077   match(RegFlags);
4078 
4079   format %{ "xcc_L" %}
4080   interface(REG_INTER);
4081 %}
4082 
4083 // Condition Code Register, floating comparisons, unordered same as "less".
4084 operand flagsRegF() %{
4085   constraint(ALLOC_IN_RC(float_flags));
4086   match(RegFlags);
4087   match(flagsRegF0);
4088 
4089   format %{ %}
4090   interface(REG_INTER);
4091 %}
4092 
4093 operand flagsRegF0() %{
4094   constraint(ALLOC_IN_RC(float_flag0));
4095   match(RegFlags);
4096 
4097   format %{ %}
4098   interface(REG_INTER);
4099 %}
4100 
4101 
4102 // Condition Code Flag Register used by long compare
4103 operand flagsReg_long_LTGE() %{
4104   constraint(ALLOC_IN_RC(int_flags));
4105   match(RegFlags);
4106   format %{ "icc_LTGE" %}
4107   interface(REG_INTER);
4108 %}
4109 operand flagsReg_long_EQNE() %{
4110   constraint(ALLOC_IN_RC(int_flags));
4111   match(RegFlags);
4112   format %{ "icc_EQNE" %}
4113   interface(REG_INTER);
4114 %}
4115 operand flagsReg_long_LEGT() %{
4116   constraint(ALLOC_IN_RC(int_flags));
4117   match(RegFlags);
4118   format %{ "icc_LEGT" %}
4119   interface(REG_INTER);
4120 %}
4121 
4122 
4123 operand regD() %{
4124   constraint(ALLOC_IN_RC(dflt_reg));
4125   match(RegD);
4126 
4127   match(regD_low);
4128 
4129   format %{ %}
4130   interface(REG_INTER);
4131 %}
4132 
4133 operand regF() %{
4134   constraint(ALLOC_IN_RC(sflt_reg));
4135   match(RegF);
4136 
4137   format %{ %}
4138   interface(REG_INTER);
4139 %}
4140 
4141 operand regD_low() %{
4142   constraint(ALLOC_IN_RC(dflt_low_reg));
4143   match(regD);
4144 
4145   format %{ %}
4146   interface(REG_INTER);
4147 %}
4148 
4149 // Special Registers
4150 
4151 // Method Register
4152 operand inline_cache_regP(iRegP reg) %{
4153   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4154   match(reg);
4155   format %{ %}
4156   interface(REG_INTER);
4157 %}
4158 
4159 operand interpreter_method_oop_regP(iRegP reg) %{
4160   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4161   match(reg);
4162   format %{ %}
4163   interface(REG_INTER);
4164 %}
4165 
4166 
4167 //----------Complex Operands---------------------------------------------------
4168 // Indirect Memory Reference
4169 operand indirect(sp_ptr_RegP reg) %{
4170   constraint(ALLOC_IN_RC(sp_ptr_reg));
4171   match(reg);
4172 
4173   op_cost(100);
4174   format %{ "[$reg]" %}
4175   interface(MEMORY_INTER) %{
4176     base($reg);
4177     index(0x0);
4178     scale(0x0);
4179     disp(0x0);
4180   %}
4181 %}
4182 
4183 // Indirect with simm13 Offset
4184 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4185   constraint(ALLOC_IN_RC(sp_ptr_reg));
4186   match(AddP reg offset);
4187 
4188   op_cost(100);
4189   format %{ "[$reg + $offset]" %}
4190   interface(MEMORY_INTER) %{
4191     base($reg);
4192     index(0x0);
4193     scale(0x0);
4194     disp($offset);
4195   %}
4196 %}
4197 
4198 // Indirect with simm13 Offset minus 7
4199 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4200   constraint(ALLOC_IN_RC(sp_ptr_reg));
4201   match(AddP reg offset);
4202 
4203   op_cost(100);
4204   format %{ "[$reg + $offset]" %}
4205   interface(MEMORY_INTER) %{
4206     base($reg);
4207     index(0x0);
4208     scale(0x0);
4209     disp($offset);
4210   %}
4211 %}
4212 
4213 // Note:  Intel has a swapped version also, like this:
4214 //operand indOffsetX(iRegI reg, immP offset) %{
4215 //  constraint(ALLOC_IN_RC(int_reg));
4216 //  match(AddP offset reg);
4217 //
4218 //  op_cost(100);
4219 //  format %{ "[$reg + $offset]" %}
4220 //  interface(MEMORY_INTER) %{
4221 //    base($reg);
4222 //    index(0x0);
4223 //    scale(0x0);
4224 //    disp($offset);
4225 //  %}
4226 //%}
4227 //// However, it doesn't make sense for SPARC, since
4228 // we have no particularly good way to embed oops in
4229 // single instructions.
4230 
4231 // Indirect with Register Index
4232 operand indIndex(iRegP addr, iRegX index) %{
4233   constraint(ALLOC_IN_RC(ptr_reg));
4234   match(AddP addr index);
4235 
4236   op_cost(100);
4237   format %{ "[$addr + $index]" %}
4238   interface(MEMORY_INTER) %{
4239     base($addr);
4240     index($index);
4241     scale(0x0);
4242     disp(0x0);
4243   %}
4244 %}
4245 
4246 //----------Special Memory Operands--------------------------------------------
4247 // Stack Slot Operand - This operand is used for loading and storing temporary
4248 //                      values on the stack where a match requires a value to
4249 //                      flow through memory.
4250 operand stackSlotI(sRegI reg) %{
4251   constraint(ALLOC_IN_RC(stack_slots));
4252   op_cost(100);
4253   //match(RegI);
4254   format %{ "[$reg]" %}
4255   interface(MEMORY_INTER) %{
4256     base(0xE);   // R_SP
4257     index(0x0);
4258     scale(0x0);
4259     disp($reg);  // Stack Offset
4260   %}
4261 %}
4262 
4263 operand stackSlotP(sRegP reg) %{
4264   constraint(ALLOC_IN_RC(stack_slots));
4265   op_cost(100);
4266   //match(RegP);
4267   format %{ "[$reg]" %}
4268   interface(MEMORY_INTER) %{
4269     base(0xE);   // R_SP
4270     index(0x0);
4271     scale(0x0);
4272     disp($reg);  // Stack Offset
4273   %}
4274 %}
4275 
4276 operand stackSlotF(sRegF reg) %{
4277   constraint(ALLOC_IN_RC(stack_slots));
4278   op_cost(100);
4279   //match(RegF);
4280   format %{ "[$reg]" %}
4281   interface(MEMORY_INTER) %{
4282     base(0xE);   // R_SP
4283     index(0x0);
4284     scale(0x0);
4285     disp($reg);  // Stack Offset
4286   %}
4287 %}
4288 operand stackSlotD(sRegD reg) %{
4289   constraint(ALLOC_IN_RC(stack_slots));
4290   op_cost(100);
4291   //match(RegD);
4292   format %{ "[$reg]" %}
4293   interface(MEMORY_INTER) %{
4294     base(0xE);   // R_SP
4295     index(0x0);
4296     scale(0x0);
4297     disp($reg);  // Stack Offset
4298   %}
4299 %}
4300 operand stackSlotL(sRegL reg) %{
4301   constraint(ALLOC_IN_RC(stack_slots));
4302   op_cost(100);
4303   //match(RegL);
4304   format %{ "[$reg]" %}
4305   interface(MEMORY_INTER) %{
4306     base(0xE);   // R_SP
4307     index(0x0);
4308     scale(0x0);
4309     disp($reg);  // Stack Offset
4310   %}
4311 %}
4312 
4313 // Operands for expressing Control Flow
4314 // NOTE:  Label is a predefined operand which should not be redefined in
4315 //        the AD file.  It is generically handled within the ADLC.
4316 
4317 //----------Conditional Branch Operands----------------------------------------
4318 // Comparison Op  - This is the operation of the comparison, and is limited to
4319 //                  the following set of codes:
4320 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4321 //
4322 // Other attributes of the comparison, such as unsignedness, are specified
4323 // by the comparison instruction that sets a condition code flags register.
4324 // That result is represented by a flags operand whose subtype is appropriate
4325 // to the unsignedness (etc.) of the comparison.
4326 //
4327 // Later, the instruction which matches both the Comparison Op (a Bool) and
4328 // the flags (produced by the Cmp) specifies the coding of the comparison op
4329 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4330 
4331 operand cmpOp() %{
4332   match(Bool);
4333 
4334   format %{ "" %}
4335   interface(COND_INTER) %{
4336     equal(0x1);
4337     not_equal(0x9);
4338     less(0x3);
4339     greater_equal(0xB);
4340     less_equal(0x2);
4341     greater(0xA);
4342     overflow(0x7);
4343     no_overflow(0xF);
4344   %}
4345 %}
4346 
4347 // Comparison Op, unsigned
4348 operand cmpOpU() %{
4349   match(Bool);
4350   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4351             n->as_Bool()->_test._test != BoolTest::no_overflow);
4352 
4353   format %{ "u" %}
4354   interface(COND_INTER) %{
4355     equal(0x1);
4356     not_equal(0x9);
4357     less(0x5);
4358     greater_equal(0xD);
4359     less_equal(0x4);
4360     greater(0xC);
4361     overflow(0x7);
4362     no_overflow(0xF);
4363   %}
4364 %}
4365 
4366 // Comparison Op, pointer (same as unsigned)
4367 operand cmpOpP() %{
4368   match(Bool);
4369   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4370             n->as_Bool()->_test._test != BoolTest::no_overflow);
4371 
4372   format %{ "p" %}
4373   interface(COND_INTER) %{
4374     equal(0x1);
4375     not_equal(0x9);
4376     less(0x5);
4377     greater_equal(0xD);
4378     less_equal(0x4);
4379     greater(0xC);
4380     overflow(0x7);
4381     no_overflow(0xF);
4382   %}
4383 %}
4384 
4385 // Comparison Op, branch-register encoding
4386 operand cmpOp_reg() %{
4387   match(Bool);
4388   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4389             n->as_Bool()->_test._test != BoolTest::no_overflow);
4390 
4391   format %{ "" %}
4392   interface(COND_INTER) %{
4393     equal        (0x1);
4394     not_equal    (0x5);
4395     less         (0x3);
4396     greater_equal(0x7);
4397     less_equal   (0x2);
4398     greater      (0x6);
4399     overflow(0x7); // not supported
4400     no_overflow(0xF); // not supported
4401   %}
4402 %}
4403 
4404 // Comparison Code, floating, unordered same as less
4405 operand cmpOpF() %{
4406   match(Bool);
4407   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4408             n->as_Bool()->_test._test != BoolTest::no_overflow);
4409 
4410   format %{ "fl" %}
4411   interface(COND_INTER) %{
4412     equal(0x9);
4413     not_equal(0x1);
4414     less(0x3);
4415     greater_equal(0xB);
4416     less_equal(0xE);
4417     greater(0x6);
4418 
4419     overflow(0x7); // not supported
4420     no_overflow(0xF); // not supported
4421   %}
4422 %}
4423 
4424 // Used by long compare
4425 operand cmpOp_commute() %{
4426   match(Bool);
4427   predicate(n->as_Bool()->_test._test != BoolTest::overflow &&
4428             n->as_Bool()->_test._test != BoolTest::no_overflow);
4429 
4430   format %{ "" %}
4431   interface(COND_INTER) %{
4432     equal(0x1);
4433     not_equal(0x9);
4434     less(0xA);
4435     greater_equal(0x2);
4436     less_equal(0xB);
4437     greater(0x3);
4438     overflow(0x7);
4439     no_overflow(0xF);
4440   %}
4441 %}
4442 
4443 //----------OPERAND CLASSES----------------------------------------------------
4444 // Operand Classes are groups of operands that are used to simplify
4445 // instruction definitions by not requiring the AD writer to specify separate
4446 // instructions for every form of operand when the instruction accepts
4447 // multiple operand types with the same basic encoding and format.  The classic
4448 // case of this is memory operands.
4449 opclass memory( indirect, indOffset13, indIndex );
4450 opclass indIndexMemory( indIndex );
4451 
4452 //----------PIPELINE-----------------------------------------------------------
4453 pipeline %{
4454 
4455 //----------ATTRIBUTES---------------------------------------------------------
4456 attributes %{
4457   fixed_size_instructions;           // Fixed size instructions
4458   branch_has_delay_slot;             // Branch has delay slot following
4459   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4460   instruction_unit_size = 4;         // An instruction is 4 bytes long
4461   instruction_fetch_unit_size = 16;  // The processor fetches one line
4462   instruction_fetch_units = 1;       // of 16 bytes
4463 
4464   // List of nop instructions
4465   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4466 %}
4467 
4468 //----------RESOURCES----------------------------------------------------------
4469 // Resources are the functional units available to the machine
4470 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4471 
4472 //----------PIPELINE DESCRIPTION-----------------------------------------------
4473 // Pipeline Description specifies the stages in the machine's pipeline
4474 
4475 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4476 
4477 //----------PIPELINE CLASSES---------------------------------------------------
4478 // Pipeline Classes describe the stages in which input and output are
4479 // referenced by the hardware pipeline.
4480 
4481 // Integer ALU reg-reg operation
4482 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4483     single_instruction;
4484     dst   : E(write);
4485     src1  : R(read);
4486     src2  : R(read);
4487     IALU  : R;
4488 %}
4489 
4490 // Integer ALU reg-reg long operation
4491 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4492     instruction_count(2);
4493     dst   : E(write);
4494     src1  : R(read);
4495     src2  : R(read);
4496     IALU  : R;
4497     IALU  : R;
4498 %}
4499 
4500 // Integer ALU reg-reg long dependent operation
4501 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4502     instruction_count(1); multiple_bundles;
4503     dst   : E(write);
4504     src1  : R(read);
4505     src2  : R(read);
4506     cr    : E(write);
4507     IALU  : R(2);
4508 %}
4509 
4510 // Integer ALU reg-imm operaion
4511 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4512     single_instruction;
4513     dst   : E(write);
4514     src1  : R(read);
4515     IALU  : R;
4516 %}
4517 
4518 // Integer ALU reg-reg operation with condition code
4519 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4520     single_instruction;
4521     dst   : E(write);
4522     cr    : E(write);
4523     src1  : R(read);
4524     src2  : R(read);
4525     IALU  : R;
4526 %}
4527 
4528 // Integer ALU reg-imm operation with condition code
4529 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4530     single_instruction;
4531     dst   : E(write);
4532     cr    : E(write);
4533     src1  : R(read);
4534     IALU  : R;
4535 %}
4536 
4537 // Integer ALU zero-reg operation
4538 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4539     single_instruction;
4540     dst   : E(write);
4541     src2  : R(read);
4542     IALU  : R;
4543 %}
4544 
4545 // Integer ALU zero-reg operation with condition code only
4546 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4547     single_instruction;
4548     cr    : E(write);
4549     src   : R(read);
4550     IALU  : R;
4551 %}
4552 
4553 // Integer ALU reg-reg operation with condition code only
4554 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4555     single_instruction;
4556     cr    : E(write);
4557     src1  : R(read);
4558     src2  : R(read);
4559     IALU  : R;
4560 %}
4561 
4562 // Integer ALU reg-imm operation with condition code only
4563 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4564     single_instruction;
4565     cr    : E(write);
4566     src1  : R(read);
4567     IALU  : R;
4568 %}
4569 
4570 // Integer ALU reg-reg-zero operation with condition code only
4571 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4572     single_instruction;
4573     cr    : E(write);
4574     src1  : R(read);
4575     src2  : R(read);
4576     IALU  : R;
4577 %}
4578 
4579 // Integer ALU reg-imm-zero operation with condition code only
4580 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4581     single_instruction;
4582     cr    : E(write);
4583     src1  : R(read);
4584     IALU  : R;
4585 %}
4586 
4587 // Integer ALU reg-reg operation with condition code, src1 modified
4588 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4589     single_instruction;
4590     cr    : E(write);
4591     src1  : E(write);
4592     src1  : R(read);
4593     src2  : R(read);
4594     IALU  : R;
4595 %}
4596 
4597 // Integer ALU reg-imm operation with condition code, src1 modified
4598 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4599     single_instruction;
4600     cr    : E(write);
4601     src1  : E(write);
4602     src1  : R(read);
4603     IALU  : R;
4604 %}
4605 
4606 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4607     multiple_bundles;
4608     dst   : E(write)+4;
4609     cr    : E(write);
4610     src1  : R(read);
4611     src2  : R(read);
4612     IALU  : R(3);
4613     BR    : R(2);
4614 %}
4615 
4616 // Integer ALU operation
4617 pipe_class ialu_none(iRegI dst) %{
4618     single_instruction;
4619     dst   : E(write);
4620     IALU  : R;
4621 %}
4622 
4623 // Integer ALU reg operation
4624 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4625     single_instruction; may_have_no_code;
4626     dst   : E(write);
4627     src   : R(read);
4628     IALU  : R;
4629 %}
4630 
4631 // Integer ALU reg conditional operation
4632 // This instruction has a 1 cycle stall, and cannot execute
4633 // in the same cycle as the instruction setting the condition
4634 // code. We kludge this by pretending to read the condition code
4635 // 1 cycle earlier, and by marking the functional units as busy
4636 // for 2 cycles with the result available 1 cycle later than
4637 // is really the case.
4638 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4639     single_instruction;
4640     op2_out : C(write);
4641     op1     : R(read);
4642     cr      : R(read);       // This is really E, with a 1 cycle stall
4643     BR      : R(2);
4644     MS      : R(2);
4645 %}
4646 
4647 #ifdef _LP64
4648 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4649     instruction_count(1); multiple_bundles;
4650     dst     : C(write)+1;
4651     src     : R(read)+1;
4652     IALU    : R(1);
4653     BR      : E(2);
4654     MS      : E(2);
4655 %}
4656 #endif
4657 
4658 // Integer ALU reg operation
4659 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4660     single_instruction; may_have_no_code;
4661     dst   : E(write);
4662     src   : R(read);
4663     IALU  : R;
4664 %}
4665 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4666     single_instruction; may_have_no_code;
4667     dst   : E(write);
4668     src   : R(read);
4669     IALU  : R;
4670 %}
4671 
4672 // Two integer ALU reg operations
4673 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4674     instruction_count(2);
4675     dst   : E(write);
4676     src   : R(read);
4677     A0    : R;
4678     A1    : R;
4679 %}
4680 
4681 // Two integer ALU reg operations
4682 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4683     instruction_count(2); may_have_no_code;
4684     dst   : E(write);
4685     src   : R(read);
4686     A0    : R;
4687     A1    : R;
4688 %}
4689 
4690 // Integer ALU imm operation
4691 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4692     single_instruction;
4693     dst   : E(write);
4694     IALU  : R;
4695 %}
4696 
4697 // Integer ALU reg-reg with carry operation
4698 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4699     single_instruction;
4700     dst   : E(write);
4701     src1  : R(read);
4702     src2  : R(read);
4703     IALU  : R;
4704 %}
4705 
4706 // Integer ALU cc operation
4707 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4708     single_instruction;
4709     dst   : E(write);
4710     cc    : R(read);
4711     IALU  : R;
4712 %}
4713 
4714 // Integer ALU cc / second IALU operation
4715 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4716     instruction_count(1); multiple_bundles;
4717     dst   : E(write)+1;
4718     src   : R(read);
4719     IALU  : R;
4720 %}
4721 
4722 // Integer ALU cc / second IALU operation
4723 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4724     instruction_count(1); multiple_bundles;
4725     dst   : E(write)+1;
4726     p     : R(read);
4727     q     : R(read);
4728     IALU  : R;
4729 %}
4730 
4731 // Integer ALU hi-lo-reg operation
4732 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4733     instruction_count(1); multiple_bundles;
4734     dst   : E(write)+1;
4735     IALU  : R(2);
4736 %}
4737 
4738 // Float ALU hi-lo-reg operation (with temp)
4739 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4740     instruction_count(1); multiple_bundles;
4741     dst   : E(write)+1;
4742     IALU  : R(2);
4743 %}
4744 
4745 // Long Constant
4746 pipe_class loadConL( iRegL dst, immL src ) %{
4747     instruction_count(2); multiple_bundles;
4748     dst   : E(write)+1;
4749     IALU  : R(2);
4750     IALU  : R(2);
4751 %}
4752 
4753 // Pointer Constant
4754 pipe_class loadConP( iRegP dst, immP src ) %{
4755     instruction_count(0); multiple_bundles;
4756     fixed_latency(6);
4757 %}
4758 
4759 // Polling Address
4760 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4761 #ifdef _LP64
4762     instruction_count(0); multiple_bundles;
4763     fixed_latency(6);
4764 #else
4765     dst   : E(write);
4766     IALU  : R;
4767 #endif
4768 %}
4769 
4770 // Long Constant small
4771 pipe_class loadConLlo( iRegL dst, immL src ) %{
4772     instruction_count(2);
4773     dst   : E(write);
4774     IALU  : R;
4775     IALU  : R;
4776 %}
4777 
4778 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4779 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4780     instruction_count(1); multiple_bundles;
4781     src   : R(read);
4782     dst   : M(write)+1;
4783     IALU  : R;
4784     MS    : E;
4785 %}
4786 
4787 // Integer ALU nop operation
4788 pipe_class ialu_nop() %{
4789     single_instruction;
4790     IALU  : R;
4791 %}
4792 
4793 // Integer ALU nop operation
4794 pipe_class ialu_nop_A0() %{
4795     single_instruction;
4796     A0    : R;
4797 %}
4798 
4799 // Integer ALU nop operation
4800 pipe_class ialu_nop_A1() %{
4801     single_instruction;
4802     A1    : R;
4803 %}
4804 
4805 // Integer Multiply reg-reg operation
4806 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4807     single_instruction;
4808     dst   : E(write);
4809     src1  : R(read);
4810     src2  : R(read);
4811     MS    : R(5);
4812 %}
4813 
4814 // Integer Multiply reg-imm operation
4815 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4816     single_instruction;
4817     dst   : E(write);
4818     src1  : R(read);
4819     MS    : R(5);
4820 %}
4821 
4822 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4823     single_instruction;
4824     dst   : E(write)+4;
4825     src1  : R(read);
4826     src2  : R(read);
4827     MS    : R(6);
4828 %}
4829 
4830 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4831     single_instruction;
4832     dst   : E(write)+4;
4833     src1  : R(read);
4834     MS    : R(6);
4835 %}
4836 
4837 // Integer Divide reg-reg
4838 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4839     instruction_count(1); multiple_bundles;
4840     dst   : E(write);
4841     temp  : E(write);
4842     src1  : R(read);
4843     src2  : R(read);
4844     temp  : R(read);
4845     MS    : R(38);
4846 %}
4847 
4848 // Integer Divide reg-imm
4849 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4850     instruction_count(1); multiple_bundles;
4851     dst   : E(write);
4852     temp  : E(write);
4853     src1  : R(read);
4854     temp  : R(read);
4855     MS    : R(38);
4856 %}
4857 
4858 // Long Divide
4859 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4860     dst  : E(write)+71;
4861     src1 : R(read);
4862     src2 : R(read)+1;
4863     MS   : R(70);
4864 %}
4865 
4866 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4867     dst  : E(write)+71;
4868     src1 : R(read);
4869     MS   : R(70);
4870 %}
4871 
4872 // Floating Point Add Float
4873 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4874     single_instruction;
4875     dst   : X(write);
4876     src1  : E(read);
4877     src2  : E(read);
4878     FA    : R;
4879 %}
4880 
4881 // Floating Point Add Double
4882 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4883     single_instruction;
4884     dst   : X(write);
4885     src1  : E(read);
4886     src2  : E(read);
4887     FA    : R;
4888 %}
4889 
4890 // Floating Point Conditional Move based on integer flags
4891 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4892     single_instruction;
4893     dst   : X(write);
4894     src   : E(read);
4895     cr    : R(read);
4896     FA    : R(2);
4897     BR    : R(2);
4898 %}
4899 
4900 // Floating Point Conditional Move based on integer flags
4901 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4902     single_instruction;
4903     dst   : X(write);
4904     src   : E(read);
4905     cr    : R(read);
4906     FA    : R(2);
4907     BR    : R(2);
4908 %}
4909 
4910 // Floating Point Multiply Float
4911 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4912     single_instruction;
4913     dst   : X(write);
4914     src1  : E(read);
4915     src2  : E(read);
4916     FM    : R;
4917 %}
4918 
4919 // Floating Point Multiply Double
4920 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4921     single_instruction;
4922     dst   : X(write);
4923     src1  : E(read);
4924     src2  : E(read);
4925     FM    : R;
4926 %}
4927 
4928 // Floating Point Divide Float
4929 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4930     single_instruction;
4931     dst   : X(write);
4932     src1  : E(read);
4933     src2  : E(read);
4934     FM    : R;
4935     FDIV  : C(14);
4936 %}
4937 
4938 // Floating Point Divide Double
4939 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4940     single_instruction;
4941     dst   : X(write);
4942     src1  : E(read);
4943     src2  : E(read);
4944     FM    : R;
4945     FDIV  : C(17);
4946 %}
4947 
4948 // Floating Point Move/Negate/Abs Float
4949 pipe_class faddF_reg(regF dst, regF src) %{
4950     single_instruction;
4951     dst   : W(write);
4952     src   : E(read);
4953     FA    : R(1);
4954 %}
4955 
4956 // Floating Point Move/Negate/Abs Double
4957 pipe_class faddD_reg(regD dst, regD src) %{
4958     single_instruction;
4959     dst   : W(write);
4960     src   : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Point Convert F->D
4965 pipe_class fcvtF2D(regD dst, regF src) %{
4966     single_instruction;
4967     dst   : X(write);
4968     src   : E(read);
4969     FA    : R;
4970 %}
4971 
4972 // Floating Point Convert I->D
4973 pipe_class fcvtI2D(regD dst, regF src) %{
4974     single_instruction;
4975     dst   : X(write);
4976     src   : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Point Convert LHi->D
4981 pipe_class fcvtLHi2D(regD dst, regD src) %{
4982     single_instruction;
4983     dst   : X(write);
4984     src   : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Convert L->D
4989 pipe_class fcvtL2D(regD dst, regF src) %{
4990     single_instruction;
4991     dst   : X(write);
4992     src   : E(read);
4993     FA    : R;
4994 %}
4995 
4996 // Floating Point Convert L->F
4997 pipe_class fcvtL2F(regD dst, regF src) %{
4998     single_instruction;
4999     dst   : X(write);
5000     src   : E(read);
5001     FA    : R;
5002 %}
5003 
5004 // Floating Point Convert D->F
5005 pipe_class fcvtD2F(regD dst, regF src) %{
5006     single_instruction;
5007     dst   : X(write);
5008     src   : E(read);
5009     FA    : R;
5010 %}
5011 
5012 // Floating Point Convert I->L
5013 pipe_class fcvtI2L(regD dst, regF src) %{
5014     single_instruction;
5015     dst   : X(write);
5016     src   : E(read);
5017     FA    : R;
5018 %}
5019 
5020 // Floating Point Convert D->F
5021 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
5022     instruction_count(1); multiple_bundles;
5023     dst   : X(write)+6;
5024     src   : E(read);
5025     FA    : R;
5026 %}
5027 
5028 // Floating Point Convert D->L
5029 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
5030     instruction_count(1); multiple_bundles;
5031     dst   : X(write)+6;
5032     src   : E(read);
5033     FA    : R;
5034 %}
5035 
5036 // Floating Point Convert F->I
5037 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
5038     instruction_count(1); multiple_bundles;
5039     dst   : X(write)+6;
5040     src   : E(read);
5041     FA    : R;
5042 %}
5043 
5044 // Floating Point Convert F->L
5045 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
5046     instruction_count(1); multiple_bundles;
5047     dst   : X(write)+6;
5048     src   : E(read);
5049     FA    : R;
5050 %}
5051 
5052 // Floating Point Convert I->F
5053 pipe_class fcvtI2F(regF dst, regF src) %{
5054     single_instruction;
5055     dst   : X(write);
5056     src   : E(read);
5057     FA    : R;
5058 %}
5059 
5060 // Floating Point Compare
5061 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5062     single_instruction;
5063     cr    : X(write);
5064     src1  : E(read);
5065     src2  : E(read);
5066     FA    : R;
5067 %}
5068 
5069 // Floating Point Compare
5070 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5071     single_instruction;
5072     cr    : X(write);
5073     src1  : E(read);
5074     src2  : E(read);
5075     FA    : R;
5076 %}
5077 
5078 // Floating Add Nop
5079 pipe_class fadd_nop() %{
5080     single_instruction;
5081     FA  : R;
5082 %}
5083 
5084 // Integer Store to Memory
5085 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5086     single_instruction;
5087     mem   : R(read);
5088     src   : C(read);
5089     MS    : R;
5090 %}
5091 
5092 // Integer Store to Memory
5093 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5094     single_instruction;
5095     mem   : R(read);
5096     src   : C(read);
5097     MS    : R;
5098 %}
5099 
5100 // Integer Store Zero to Memory
5101 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5102     single_instruction;
5103     mem   : R(read);
5104     MS    : R;
5105 %}
5106 
5107 // Special Stack Slot Store
5108 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5109     single_instruction;
5110     stkSlot : R(read);
5111     src     : C(read);
5112     MS      : R;
5113 %}
5114 
5115 // Special Stack Slot Store
5116 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5117     instruction_count(2); multiple_bundles;
5118     stkSlot : R(read);
5119     src     : C(read);
5120     MS      : R(2);
5121 %}
5122 
5123 // Float Store
5124 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5125     single_instruction;
5126     mem : R(read);
5127     src : C(read);
5128     MS  : R;
5129 %}
5130 
5131 // Float Store
5132 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5133     single_instruction;
5134     mem : R(read);
5135     MS  : R;
5136 %}
5137 
5138 // Double Store
5139 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5140     instruction_count(1);
5141     mem : R(read);
5142     src : C(read);
5143     MS  : R;
5144 %}
5145 
5146 // Double Store
5147 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5148     single_instruction;
5149     mem : R(read);
5150     MS  : R;
5151 %}
5152 
5153 // Special Stack Slot Float Store
5154 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5155     single_instruction;
5156     stkSlot : R(read);
5157     src     : C(read);
5158     MS      : R;
5159 %}
5160 
5161 // Special Stack Slot Double Store
5162 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5163     single_instruction;
5164     stkSlot : R(read);
5165     src     : C(read);
5166     MS      : R;
5167 %}
5168 
5169 // Integer Load (when sign bit propagation not needed)
5170 pipe_class iload_mem(iRegI dst, memory mem) %{
5171     single_instruction;
5172     mem : R(read);
5173     dst : C(write);
5174     MS  : R;
5175 %}
5176 
5177 // Integer Load from stack operand
5178 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5179     single_instruction;
5180     mem : R(read);
5181     dst : C(write);
5182     MS  : R;
5183 %}
5184 
5185 // Integer Load (when sign bit propagation or masking is needed)
5186 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5187     single_instruction;
5188     mem : R(read);
5189     dst : M(write);
5190     MS  : R;
5191 %}
5192 
5193 // Float Load
5194 pipe_class floadF_mem(regF dst, memory mem) %{
5195     single_instruction;
5196     mem : R(read);
5197     dst : M(write);
5198     MS  : R;
5199 %}
5200 
5201 // Float Load
5202 pipe_class floadD_mem(regD dst, memory mem) %{
5203     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5204     mem : R(read);
5205     dst : M(write);
5206     MS  : R;
5207 %}
5208 
5209 // Float Load
5210 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5211     single_instruction;
5212     stkSlot : R(read);
5213     dst : M(write);
5214     MS  : R;
5215 %}
5216 
5217 // Float Load
5218 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5219     single_instruction;
5220     stkSlot : R(read);
5221     dst : M(write);
5222     MS  : R;
5223 %}
5224 
5225 // Memory Nop
5226 pipe_class mem_nop() %{
5227     single_instruction;
5228     MS  : R;
5229 %}
5230 
5231 pipe_class sethi(iRegP dst, immI src) %{
5232     single_instruction;
5233     dst  : E(write);
5234     IALU : R;
5235 %}
5236 
5237 pipe_class loadPollP(iRegP poll) %{
5238     single_instruction;
5239     poll : R(read);
5240     MS   : R;
5241 %}
5242 
5243 pipe_class br(Universe br, label labl) %{
5244     single_instruction_with_delay_slot;
5245     BR  : R;
5246 %}
5247 
5248 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5249     single_instruction_with_delay_slot;
5250     cr    : E(read);
5251     BR    : R;
5252 %}
5253 
5254 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5255     single_instruction_with_delay_slot;
5256     op1 : E(read);
5257     BR  : R;
5258     MS  : R;
5259 %}
5260 
5261 // Compare and branch
5262 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5263     instruction_count(2); has_delay_slot;
5264     cr    : E(write);
5265     src1  : R(read);
5266     src2  : R(read);
5267     IALU  : R;
5268     BR    : R;
5269 %}
5270 
5271 // Compare and branch
5272 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5273     instruction_count(2); has_delay_slot;
5274     cr    : E(write);
5275     src1  : R(read);
5276     IALU  : R;
5277     BR    : R;
5278 %}
5279 
5280 // Compare and branch using cbcond
5281 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5282     single_instruction;
5283     src1  : E(read);
5284     src2  : E(read);
5285     IALU  : R;
5286     BR    : R;
5287 %}
5288 
5289 // Compare and branch using cbcond
5290 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5291     single_instruction;
5292     src1  : E(read);
5293     IALU  : R;
5294     BR    : R;
5295 %}
5296 
5297 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5298     single_instruction_with_delay_slot;
5299     cr    : E(read);
5300     BR    : R;
5301 %}
5302 
5303 pipe_class br_nop() %{
5304     single_instruction;
5305     BR  : R;
5306 %}
5307 
5308 pipe_class simple_call(method meth) %{
5309     instruction_count(2); multiple_bundles; force_serialization;
5310     fixed_latency(100);
5311     BR  : R(1);
5312     MS  : R(1);
5313     A0  : R(1);
5314 %}
5315 
5316 pipe_class compiled_call(method meth) %{
5317     instruction_count(1); multiple_bundles; force_serialization;
5318     fixed_latency(100);
5319     MS  : R(1);
5320 %}
5321 
5322 pipe_class call(method meth) %{
5323     instruction_count(0); multiple_bundles; force_serialization;
5324     fixed_latency(100);
5325 %}
5326 
5327 pipe_class tail_call(Universe ignore, label labl) %{
5328     single_instruction; has_delay_slot;
5329     fixed_latency(100);
5330     BR  : R(1);
5331     MS  : R(1);
5332 %}
5333 
5334 pipe_class ret(Universe ignore) %{
5335     single_instruction; has_delay_slot;
5336     BR  : R(1);
5337     MS  : R(1);
5338 %}
5339 
5340 pipe_class ret_poll(g3RegP poll) %{
5341     instruction_count(3); has_delay_slot;
5342     poll : E(read);
5343     MS   : R;
5344 %}
5345 
5346 // The real do-nothing guy
5347 pipe_class empty( ) %{
5348     instruction_count(0);
5349 %}
5350 
5351 pipe_class long_memory_op() %{
5352     instruction_count(0); multiple_bundles; force_serialization;
5353     fixed_latency(25);
5354     MS  : R(1);
5355 %}
5356 
5357 // Check-cast
5358 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5359     array : R(read);
5360     match  : R(read);
5361     IALU   : R(2);
5362     BR     : R(2);
5363     MS     : R;
5364 %}
5365 
5366 // Convert FPU flags into +1,0,-1
5367 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5368     src1  : E(read);
5369     src2  : E(read);
5370     dst   : E(write);
5371     FA    : R;
5372     MS    : R(2);
5373     BR    : R(2);
5374 %}
5375 
5376 // Compare for p < q, and conditionally add y
5377 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5378     p     : E(read);
5379     q     : E(read);
5380     y     : E(read);
5381     IALU  : R(3)
5382 %}
5383 
5384 // Perform a compare, then move conditionally in a branch delay slot.
5385 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5386     src2   : E(read);
5387     srcdst : E(read);
5388     IALU   : R;
5389     BR     : R;
5390 %}
5391 
5392 // Define the class for the Nop node
5393 define %{
5394    MachNop = ialu_nop;
5395 %}
5396 
5397 %}
5398 
5399 //----------INSTRUCTIONS-------------------------------------------------------
5400 
5401 //------------Special Stack Slot instructions - no match rules-----------------
5402 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5403   // No match rule to avoid chain rule match.
5404   effect(DEF dst, USE src);
5405   ins_cost(MEMORY_REF_COST);
5406   size(4);
5407   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5408   opcode(Assembler::ldf_op3);
5409   ins_encode(simple_form3_mem_reg(src, dst));
5410   ins_pipe(floadF_stk);
5411 %}
5412 
5413 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5414   // No match rule to avoid chain rule match.
5415   effect(DEF dst, USE src);
5416   ins_cost(MEMORY_REF_COST);
5417   size(4);
5418   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5419   opcode(Assembler::lddf_op3);
5420   ins_encode(simple_form3_mem_reg(src, dst));
5421   ins_pipe(floadD_stk);
5422 %}
5423 
5424 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5425   // No match rule to avoid chain rule match.
5426   effect(DEF dst, USE src);
5427   ins_cost(MEMORY_REF_COST);
5428   size(4);
5429   format %{ "STF    $src,$dst\t! regF to stkI" %}
5430   opcode(Assembler::stf_op3);
5431   ins_encode(simple_form3_mem_reg(dst, src));
5432   ins_pipe(fstoreF_stk_reg);
5433 %}
5434 
5435 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5436   // No match rule to avoid chain rule match.
5437   effect(DEF dst, USE src);
5438   ins_cost(MEMORY_REF_COST);
5439   size(4);
5440   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5441   opcode(Assembler::stdf_op3);
5442   ins_encode(simple_form3_mem_reg(dst, src));
5443   ins_pipe(fstoreD_stk_reg);
5444 %}
5445 
5446 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5447   effect(DEF dst, USE src);
5448   ins_cost(MEMORY_REF_COST*2);
5449   size(8);
5450   format %{ "STW    $src,$dst.hi\t! long\n\t"
5451             "STW    R_G0,$dst.lo" %}
5452   opcode(Assembler::stw_op3);
5453   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5454   ins_pipe(lstoreI_stk_reg);
5455 %}
5456 
5457 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5458   // No match rule to avoid chain rule match.
5459   effect(DEF dst, USE src);
5460   ins_cost(MEMORY_REF_COST);
5461   size(4);
5462   format %{ "STX    $src,$dst\t! regL to stkD" %}
5463   opcode(Assembler::stx_op3);
5464   ins_encode(simple_form3_mem_reg( dst, src ) );
5465   ins_pipe(istore_stk_reg);
5466 %}
5467 
5468 //---------- Chain stack slots between similar types --------
5469 
5470 // Load integer from stack slot
5471 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5472   match(Set dst src);
5473   ins_cost(MEMORY_REF_COST);
5474 
5475   size(4);
5476   format %{ "LDUW   $src,$dst\t!stk" %}
5477   opcode(Assembler::lduw_op3);
5478   ins_encode(simple_form3_mem_reg( src, dst ) );
5479   ins_pipe(iload_mem);
5480 %}
5481 
5482 // Store integer to stack slot
5483 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5484   match(Set dst src);
5485   ins_cost(MEMORY_REF_COST);
5486 
5487   size(4);
5488   format %{ "STW    $src,$dst\t!stk" %}
5489   opcode(Assembler::stw_op3);
5490   ins_encode(simple_form3_mem_reg( dst, src ) );
5491   ins_pipe(istore_mem_reg);
5492 %}
5493 
5494 // Load long from stack slot
5495 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5496   match(Set dst src);
5497 
5498   ins_cost(MEMORY_REF_COST);
5499   size(4);
5500   format %{ "LDX    $src,$dst\t! long" %}
5501   opcode(Assembler::ldx_op3);
5502   ins_encode(simple_form3_mem_reg( src, dst ) );
5503   ins_pipe(iload_mem);
5504 %}
5505 
5506 // Store long to stack slot
5507 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5508   match(Set dst src);
5509 
5510   ins_cost(MEMORY_REF_COST);
5511   size(4);
5512   format %{ "STX    $src,$dst\t! long" %}
5513   opcode(Assembler::stx_op3);
5514   ins_encode(simple_form3_mem_reg( dst, src ) );
5515   ins_pipe(istore_mem_reg);
5516 %}
5517 
5518 #ifdef _LP64
5519 // Load pointer from stack slot, 64-bit encoding
5520 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5521   match(Set dst src);
5522   ins_cost(MEMORY_REF_COST);
5523   size(4);
5524   format %{ "LDX    $src,$dst\t!ptr" %}
5525   opcode(Assembler::ldx_op3);
5526   ins_encode(simple_form3_mem_reg( src, dst ) );
5527   ins_pipe(iload_mem);
5528 %}
5529 
5530 // Store pointer to stack slot
5531 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5532   match(Set dst src);
5533   ins_cost(MEMORY_REF_COST);
5534   size(4);
5535   format %{ "STX    $src,$dst\t!ptr" %}
5536   opcode(Assembler::stx_op3);
5537   ins_encode(simple_form3_mem_reg( dst, src ) );
5538   ins_pipe(istore_mem_reg);
5539 %}
5540 #else // _LP64
5541 // Load pointer from stack slot, 32-bit encoding
5542 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5543   match(Set dst src);
5544   ins_cost(MEMORY_REF_COST);
5545   format %{ "LDUW   $src,$dst\t!ptr" %}
5546   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5547   ins_encode(simple_form3_mem_reg( src, dst ) );
5548   ins_pipe(iload_mem);
5549 %}
5550 
5551 // Store pointer to stack slot
5552 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5553   match(Set dst src);
5554   ins_cost(MEMORY_REF_COST);
5555   format %{ "STW    $src,$dst\t!ptr" %}
5556   opcode(Assembler::stw_op3, Assembler::ldst_op);
5557   ins_encode(simple_form3_mem_reg( dst, src ) );
5558   ins_pipe(istore_mem_reg);
5559 %}
5560 #endif // _LP64
5561 
5562 //------------Special Nop instructions for bundling - no match rules-----------
5563 // Nop using the A0 functional unit
5564 instruct Nop_A0() %{
5565   ins_cost(0);
5566 
5567   format %{ "NOP    ! Alu Pipeline" %}
5568   opcode(Assembler::or_op3, Assembler::arith_op);
5569   ins_encode( form2_nop() );
5570   ins_pipe(ialu_nop_A0);
5571 %}
5572 
5573 // Nop using the A1 functional unit
5574 instruct Nop_A1( ) %{
5575   ins_cost(0);
5576 
5577   format %{ "NOP    ! Alu Pipeline" %}
5578   opcode(Assembler::or_op3, Assembler::arith_op);
5579   ins_encode( form2_nop() );
5580   ins_pipe(ialu_nop_A1);
5581 %}
5582 
5583 // Nop using the memory functional unit
5584 instruct Nop_MS( ) %{
5585   ins_cost(0);
5586 
5587   format %{ "NOP    ! Memory Pipeline" %}
5588   ins_encode( emit_mem_nop );
5589   ins_pipe(mem_nop);
5590 %}
5591 
5592 // Nop using the floating add functional unit
5593 instruct Nop_FA( ) %{
5594   ins_cost(0);
5595 
5596   format %{ "NOP    ! Floating Add Pipeline" %}
5597   ins_encode( emit_fadd_nop );
5598   ins_pipe(fadd_nop);
5599 %}
5600 
5601 // Nop using the branch functional unit
5602 instruct Nop_BR( ) %{
5603   ins_cost(0);
5604 
5605   format %{ "NOP    ! Branch Pipeline" %}
5606   ins_encode( emit_br_nop );
5607   ins_pipe(br_nop);
5608 %}
5609 
5610 //----------Load/Store/Move Instructions---------------------------------------
5611 //----------Load Instructions--------------------------------------------------
5612 // Load Byte (8bit signed)
5613 instruct loadB(iRegI dst, memory mem) %{
5614   match(Set dst (LoadB mem));
5615   ins_cost(MEMORY_REF_COST);
5616 
5617   size(4);
5618   format %{ "LDSB   $mem,$dst\t! byte" %}
5619   ins_encode %{
5620     __ ldsb($mem$$Address, $dst$$Register);
5621   %}
5622   ins_pipe(iload_mask_mem);
5623 %}
5624 
5625 // Load Byte (8bit signed) into a Long Register
5626 instruct loadB2L(iRegL dst, memory mem) %{
5627   match(Set dst (ConvI2L (LoadB mem)));
5628   ins_cost(MEMORY_REF_COST);
5629 
5630   size(4);
5631   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5632   ins_encode %{
5633     __ ldsb($mem$$Address, $dst$$Register);
5634   %}
5635   ins_pipe(iload_mask_mem);
5636 %}
5637 
5638 // Load Unsigned Byte (8bit UNsigned) into an int reg
5639 instruct loadUB(iRegI dst, memory mem) %{
5640   match(Set dst (LoadUB mem));
5641   ins_cost(MEMORY_REF_COST);
5642 
5643   size(4);
5644   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5645   ins_encode %{
5646     __ ldub($mem$$Address, $dst$$Register);
5647   %}
5648   ins_pipe(iload_mem);
5649 %}
5650 
5651 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5652 instruct loadUB2L(iRegL dst, memory mem) %{
5653   match(Set dst (ConvI2L (LoadUB mem)));
5654   ins_cost(MEMORY_REF_COST);
5655 
5656   size(4);
5657   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5658   ins_encode %{
5659     __ ldub($mem$$Address, $dst$$Register);
5660   %}
5661   ins_pipe(iload_mem);
5662 %}
5663 
5664 // Load Unsigned Byte (8 bit UNsigned) with 32-bit mask into Long Register
5665 instruct loadUB2L_immI(iRegL dst, memory mem, immI mask) %{
5666   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5667   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5668 
5669   size(2*4);
5670   format %{ "LDUB   $mem,$dst\t# ubyte & 32-bit mask -> long\n\t"
5671             "AND    $dst,right_n_bits($mask, 8),$dst" %}
5672   ins_encode %{
5673     __ ldub($mem$$Address, $dst$$Register);
5674     __ and3($dst$$Register, $mask$$constant & right_n_bits(8), $dst$$Register);
5675   %}
5676   ins_pipe(iload_mem);
5677 %}
5678 
5679 // Load Short (16bit signed)
5680 instruct loadS(iRegI dst, memory mem) %{
5681   match(Set dst (LoadS mem));
5682   ins_cost(MEMORY_REF_COST);
5683 
5684   size(4);
5685   format %{ "LDSH   $mem,$dst\t! short" %}
5686   ins_encode %{
5687     __ ldsh($mem$$Address, $dst$$Register);
5688   %}
5689   ins_pipe(iload_mask_mem);
5690 %}
5691 
5692 // Load Short (16 bit signed) to Byte (8 bit signed)
5693 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5694   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5695   ins_cost(MEMORY_REF_COST);
5696 
5697   size(4);
5698 
5699   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5700   ins_encode %{
5701     __ ldsb($mem$$Address, $dst$$Register, 1);
5702   %}
5703   ins_pipe(iload_mask_mem);
5704 %}
5705 
5706 // Load Short (16bit signed) into a Long Register
5707 instruct loadS2L(iRegL dst, memory mem) %{
5708   match(Set dst (ConvI2L (LoadS mem)));
5709   ins_cost(MEMORY_REF_COST);
5710 
5711   size(4);
5712   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5713   ins_encode %{
5714     __ ldsh($mem$$Address, $dst$$Register);
5715   %}
5716   ins_pipe(iload_mask_mem);
5717 %}
5718 
5719 // Load Unsigned Short/Char (16bit UNsigned)
5720 instruct loadUS(iRegI dst, memory mem) %{
5721   match(Set dst (LoadUS mem));
5722   ins_cost(MEMORY_REF_COST);
5723 
5724   size(4);
5725   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5726   ins_encode %{
5727     __ lduh($mem$$Address, $dst$$Register);
5728   %}
5729   ins_pipe(iload_mem);
5730 %}
5731 
5732 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5733 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5734   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5735   ins_cost(MEMORY_REF_COST);
5736 
5737   size(4);
5738   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5739   ins_encode %{
5740     __ ldsb($mem$$Address, $dst$$Register, 1);
5741   %}
5742   ins_pipe(iload_mask_mem);
5743 %}
5744 
5745 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5746 instruct loadUS2L(iRegL dst, memory mem) %{
5747   match(Set dst (ConvI2L (LoadUS mem)));
5748   ins_cost(MEMORY_REF_COST);
5749 
5750   size(4);
5751   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5752   ins_encode %{
5753     __ lduh($mem$$Address, $dst$$Register);
5754   %}
5755   ins_pipe(iload_mem);
5756 %}
5757 
5758 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5759 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5760   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5761   ins_cost(MEMORY_REF_COST);
5762 
5763   size(4);
5764   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5765   ins_encode %{
5766     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5767   %}
5768   ins_pipe(iload_mem);
5769 %}
5770 
5771 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5772 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5773   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5774   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5775 
5776   size(2*4);
5777   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5778             "AND    $dst,$mask,$dst" %}
5779   ins_encode %{
5780     Register Rdst = $dst$$Register;
5781     __ lduh($mem$$Address, Rdst);
5782     __ and3(Rdst, $mask$$constant, Rdst);
5783   %}
5784   ins_pipe(iload_mem);
5785 %}
5786 
5787 // Load Unsigned Short/Char (16bit UNsigned) with a 32-bit mask into a Long Register
5788 instruct loadUS2L_immI(iRegL dst, memory mem, immI mask, iRegL tmp) %{
5789   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5790   effect(TEMP dst, TEMP tmp);
5791   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5792 
5793   format %{ "LDUH   $mem,$dst\t! ushort/char & 32-bit mask -> long\n\t"
5794             "SET    right_n_bits($mask, 16),$tmp\n\t"
5795             "AND    $dst,$tmp,$dst" %}
5796   ins_encode %{
5797     Register Rdst = $dst$$Register;
5798     Register Rtmp = $tmp$$Register;
5799     __ lduh($mem$$Address, Rdst);
5800     __ set($mask$$constant & right_n_bits(16), Rtmp);
5801     __ and3(Rdst, Rtmp, Rdst);
5802   %}
5803   ins_pipe(iload_mem);
5804 %}
5805 
5806 // Load Integer
5807 instruct loadI(iRegI dst, memory mem) %{
5808   match(Set dst (LoadI mem));
5809   ins_cost(MEMORY_REF_COST);
5810 
5811   size(4);
5812   format %{ "LDUW   $mem,$dst\t! int" %}
5813   ins_encode %{
5814     __ lduw($mem$$Address, $dst$$Register);
5815   %}
5816   ins_pipe(iload_mem);
5817 %}
5818 
5819 // Load Integer to Byte (8 bit signed)
5820 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5821   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5822   ins_cost(MEMORY_REF_COST);
5823 
5824   size(4);
5825 
5826   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5827   ins_encode %{
5828     __ ldsb($mem$$Address, $dst$$Register, 3);
5829   %}
5830   ins_pipe(iload_mask_mem);
5831 %}
5832 
5833 // Load Integer to Unsigned Byte (8 bit UNsigned)
5834 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5835   match(Set dst (AndI (LoadI mem) mask));
5836   ins_cost(MEMORY_REF_COST);
5837 
5838   size(4);
5839 
5840   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5841   ins_encode %{
5842     __ ldub($mem$$Address, $dst$$Register, 3);
5843   %}
5844   ins_pipe(iload_mask_mem);
5845 %}
5846 
5847 // Load Integer to Short (16 bit signed)
5848 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5849   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5850   ins_cost(MEMORY_REF_COST);
5851 
5852   size(4);
5853 
5854   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5855   ins_encode %{
5856     __ ldsh($mem$$Address, $dst$$Register, 2);
5857   %}
5858   ins_pipe(iload_mask_mem);
5859 %}
5860 
5861 // Load Integer to Unsigned Short (16 bit UNsigned)
5862 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5863   match(Set dst (AndI (LoadI mem) mask));
5864   ins_cost(MEMORY_REF_COST);
5865 
5866   size(4);
5867 
5868   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5869   ins_encode %{
5870     __ lduh($mem$$Address, $dst$$Register, 2);
5871   %}
5872   ins_pipe(iload_mask_mem);
5873 %}
5874 
5875 // Load Integer into a Long Register
5876 instruct loadI2L(iRegL dst, memory mem) %{
5877   match(Set dst (ConvI2L (LoadI mem)));
5878   ins_cost(MEMORY_REF_COST);
5879 
5880   size(4);
5881   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5882   ins_encode %{
5883     __ ldsw($mem$$Address, $dst$$Register);
5884   %}
5885   ins_pipe(iload_mask_mem);
5886 %}
5887 
5888 // Load Integer with mask 0xFF into a Long Register
5889 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5890   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5891   ins_cost(MEMORY_REF_COST);
5892 
5893   size(4);
5894   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5895   ins_encode %{
5896     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5897   %}
5898   ins_pipe(iload_mem);
5899 %}
5900 
5901 // Load Integer with mask 0xFFFF into a Long Register
5902 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5903   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5904   ins_cost(MEMORY_REF_COST);
5905 
5906   size(4);
5907   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5908   ins_encode %{
5909     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5910   %}
5911   ins_pipe(iload_mem);
5912 %}
5913 
5914 // Load Integer with a 12-bit mask into a Long Register
5915 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5916   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5917   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5918 
5919   size(2*4);
5920   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5921             "AND    $dst,$mask,$dst" %}
5922   ins_encode %{
5923     Register Rdst = $dst$$Register;
5924     __ lduw($mem$$Address, Rdst);
5925     __ and3(Rdst, $mask$$constant, Rdst);
5926   %}
5927   ins_pipe(iload_mem);
5928 %}
5929 
5930 // Load Integer with a 31-bit mask into a Long Register
5931 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5932   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5933   effect(TEMP dst, TEMP tmp);
5934   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5935 
5936   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5937             "SET    $mask,$tmp\n\t"
5938             "AND    $dst,$tmp,$dst" %}
5939   ins_encode %{
5940     Register Rdst = $dst$$Register;
5941     Register Rtmp = $tmp$$Register;
5942     __ lduw($mem$$Address, Rdst);
5943     __ set($mask$$constant, Rtmp);
5944     __ and3(Rdst, Rtmp, Rdst);
5945   %}
5946   ins_pipe(iload_mem);
5947 %}
5948 
5949 // Load Unsigned Integer into a Long Register
5950 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5951   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5952   ins_cost(MEMORY_REF_COST);
5953 
5954   size(4);
5955   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5956   ins_encode %{
5957     __ lduw($mem$$Address, $dst$$Register);
5958   %}
5959   ins_pipe(iload_mem);
5960 %}
5961 
5962 // Load Long - aligned
5963 instruct loadL(iRegL dst, memory mem ) %{
5964   match(Set dst (LoadL mem));
5965   ins_cost(MEMORY_REF_COST);
5966 
5967   size(4);
5968   format %{ "LDX    $mem,$dst\t! long" %}
5969   ins_encode %{
5970     __ ldx($mem$$Address, $dst$$Register);
5971   %}
5972   ins_pipe(iload_mem);
5973 %}
5974 
5975 // Load Long - UNaligned
5976 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5977   match(Set dst (LoadL_unaligned mem));
5978   effect(KILL tmp);
5979   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5980   size(16);
5981   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5982           "\tLDUW   $mem  ,$dst\n"
5983           "\tSLLX   #32, $dst, $dst\n"
5984           "\tOR     $dst, R_O7, $dst" %}
5985   opcode(Assembler::lduw_op3);
5986   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5987   ins_pipe(iload_mem);
5988 %}
5989 
5990 // Load Range
5991 instruct loadRange(iRegI dst, memory mem) %{
5992   match(Set dst (LoadRange mem));
5993   ins_cost(MEMORY_REF_COST);
5994 
5995   size(4);
5996   format %{ "LDUW   $mem,$dst\t! range" %}
5997   opcode(Assembler::lduw_op3);
5998   ins_encode(simple_form3_mem_reg( mem, dst ) );
5999   ins_pipe(iload_mem);
6000 %}
6001 
6002 // Load Integer into %f register (for fitos/fitod)
6003 instruct loadI_freg(regF dst, memory mem) %{
6004   match(Set dst (LoadI mem));
6005   ins_cost(MEMORY_REF_COST);
6006   size(4);
6007 
6008   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
6009   opcode(Assembler::ldf_op3);
6010   ins_encode(simple_form3_mem_reg( mem, dst ) );
6011   ins_pipe(floadF_mem);
6012 %}
6013 
6014 // Load Pointer
6015 instruct loadP(iRegP dst, memory mem) %{
6016   match(Set dst (LoadP mem));
6017   ins_cost(MEMORY_REF_COST);
6018   size(4);
6019 
6020 #ifndef _LP64
6021   format %{ "LDUW   $mem,$dst\t! ptr" %}
6022   ins_encode %{
6023     __ lduw($mem$$Address, $dst$$Register);
6024   %}
6025 #else
6026   format %{ "LDX    $mem,$dst\t! ptr" %}
6027   ins_encode %{
6028     __ ldx($mem$$Address, $dst$$Register);
6029   %}
6030 #endif
6031   ins_pipe(iload_mem);
6032 %}
6033 
6034 // Load Compressed Pointer
6035 instruct loadN(iRegN dst, memory mem) %{
6036   match(Set dst (LoadN mem));
6037   ins_cost(MEMORY_REF_COST);
6038   size(4);
6039 
6040   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6041   ins_encode %{
6042     __ lduw($mem$$Address, $dst$$Register);
6043   %}
6044   ins_pipe(iload_mem);
6045 %}
6046 
6047 // Load Klass Pointer
6048 instruct loadKlass(iRegP dst, memory mem) %{
6049   match(Set dst (LoadKlass mem));
6050   ins_cost(MEMORY_REF_COST);
6051   size(4);
6052 
6053 #ifndef _LP64
6054   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6055   ins_encode %{
6056     __ lduw($mem$$Address, $dst$$Register);
6057   %}
6058 #else
6059   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6060   ins_encode %{
6061     __ ldx($mem$$Address, $dst$$Register);
6062   %}
6063 #endif
6064   ins_pipe(iload_mem);
6065 %}
6066 
6067 // Load narrow Klass Pointer
6068 instruct loadNKlass(iRegN dst, memory mem) %{
6069   match(Set dst (LoadNKlass mem));
6070   ins_cost(MEMORY_REF_COST);
6071   size(4);
6072 
6073   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6074   ins_encode %{
6075     __ lduw($mem$$Address, $dst$$Register);
6076   %}
6077   ins_pipe(iload_mem);
6078 %}
6079 
6080 // Load Double
6081 instruct loadD(regD dst, memory mem) %{
6082   match(Set dst (LoadD mem));
6083   ins_cost(MEMORY_REF_COST);
6084 
6085   size(4);
6086   format %{ "LDDF   $mem,$dst" %}
6087   opcode(Assembler::lddf_op3);
6088   ins_encode(simple_form3_mem_reg( mem, dst ) );
6089   ins_pipe(floadD_mem);
6090 %}
6091 
6092 // Load Double - UNaligned
6093 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6094   match(Set dst (LoadD_unaligned mem));
6095   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6096   size(8);
6097   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6098           "\tLDF    $mem+4,$dst.lo\t!" %}
6099   opcode(Assembler::ldf_op3);
6100   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6101   ins_pipe(iload_mem);
6102 %}
6103 
6104 // Load Float
6105 instruct loadF(regF dst, memory mem) %{
6106   match(Set dst (LoadF mem));
6107   ins_cost(MEMORY_REF_COST);
6108 
6109   size(4);
6110   format %{ "LDF    $mem,$dst" %}
6111   opcode(Assembler::ldf_op3);
6112   ins_encode(simple_form3_mem_reg( mem, dst ) );
6113   ins_pipe(floadF_mem);
6114 %}
6115 
6116 // Load Constant
6117 instruct loadConI( iRegI dst, immI src ) %{
6118   match(Set dst src);
6119   ins_cost(DEFAULT_COST * 3/2);
6120   format %{ "SET    $src,$dst" %}
6121   ins_encode( Set32(src, dst) );
6122   ins_pipe(ialu_hi_lo_reg);
6123 %}
6124 
6125 instruct loadConI13( iRegI dst, immI13 src ) %{
6126   match(Set dst src);
6127 
6128   size(4);
6129   format %{ "MOV    $src,$dst" %}
6130   ins_encode( Set13( src, dst ) );
6131   ins_pipe(ialu_imm);
6132 %}
6133 
6134 #ifndef _LP64
6135 instruct loadConP(iRegP dst, immP con) %{
6136   match(Set dst con);
6137   ins_cost(DEFAULT_COST * 3/2);
6138   format %{ "SET    $con,$dst\t!ptr" %}
6139   ins_encode %{
6140     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6141       intptr_t val = $con$$constant;
6142     if (constant_reloc == relocInfo::oop_type) {
6143       __ set_oop_constant((jobject) val, $dst$$Register);
6144     } else if (constant_reloc == relocInfo::metadata_type) {
6145       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6146     } else {          // non-oop pointers, e.g. card mark base, heap top
6147       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6148       __ set(val, $dst$$Register);
6149     }
6150   %}
6151   ins_pipe(loadConP);
6152 %}
6153 #else
6154 instruct loadConP_set(iRegP dst, immP_set con) %{
6155   match(Set dst con);
6156   ins_cost(DEFAULT_COST * 3/2);
6157   format %{ "SET    $con,$dst\t! ptr" %}
6158   ins_encode %{
6159     relocInfo::relocType constant_reloc = _opnds[1]->constant_reloc();
6160       intptr_t val = $con$$constant;
6161     if (constant_reloc == relocInfo::oop_type) {
6162       __ set_oop_constant((jobject) val, $dst$$Register);
6163     } else if (constant_reloc == relocInfo::metadata_type) {
6164       __ set_metadata_constant((Metadata*)val, $dst$$Register);
6165     } else {          // non-oop pointers, e.g. card mark base, heap top
6166       assert(constant_reloc == relocInfo::none, "unexpected reloc type");
6167       __ set(val, $dst$$Register);
6168     }
6169   %}
6170   ins_pipe(loadConP);
6171 %}
6172 
6173 instruct loadConP_load(iRegP dst, immP_load con) %{
6174   match(Set dst con);
6175   ins_cost(MEMORY_REF_COST);
6176   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6177   ins_encode %{
6178     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6179     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6180   %}
6181   ins_pipe(loadConP);
6182 %}
6183 
6184 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6185   match(Set dst con);
6186   ins_cost(DEFAULT_COST * 3/2);
6187   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6188   ins_encode %{
6189     if (_opnds[1]->constant_reloc() == relocInfo::metadata_type) {
6190       __ set_metadata_constant((Metadata*)$con$$constant, $dst$$Register);
6191     } else {
6192       __ set($con$$constant, $dst$$Register);
6193     }
6194   %}
6195   ins_pipe(loadConP);
6196 %}
6197 #endif // _LP64
6198 
6199 instruct loadConP0(iRegP dst, immP0 src) %{
6200   match(Set dst src);
6201 
6202   size(4);
6203   format %{ "CLR    $dst\t!ptr" %}
6204   ins_encode %{
6205     __ clr($dst$$Register);
6206   %}
6207   ins_pipe(ialu_imm);
6208 %}
6209 
6210 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6211   match(Set dst src);
6212   ins_cost(DEFAULT_COST);
6213   format %{ "SET    $src,$dst\t!ptr" %}
6214   ins_encode %{
6215     AddressLiteral polling_page(os::get_polling_page());
6216     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6217   %}
6218   ins_pipe(loadConP_poll);
6219 %}
6220 
6221 instruct loadConN0(iRegN dst, immN0 src) %{
6222   match(Set dst src);
6223 
6224   size(4);
6225   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6226   ins_encode %{
6227     __ clr($dst$$Register);
6228   %}
6229   ins_pipe(ialu_imm);
6230 %}
6231 
6232 instruct loadConN(iRegN dst, immN src) %{
6233   match(Set dst src);
6234   ins_cost(DEFAULT_COST * 3/2);
6235   format %{ "SET    $src,$dst\t! compressed ptr" %}
6236   ins_encode %{
6237     Register dst = $dst$$Register;
6238     __ set_narrow_oop((jobject)$src$$constant, dst);
6239   %}
6240   ins_pipe(ialu_hi_lo_reg);
6241 %}
6242 
6243 instruct loadConNKlass(iRegN dst, immNKlass src) %{
6244   match(Set dst src);
6245   ins_cost(DEFAULT_COST * 3/2);
6246   format %{ "SET    $src,$dst\t! compressed klass ptr" %}
6247   ins_encode %{
6248     Register dst = $dst$$Register;
6249     __ set_narrow_klass((Klass*)$src$$constant, dst);
6250   %}
6251   ins_pipe(ialu_hi_lo_reg);
6252 %}
6253 
6254 // Materialize long value (predicated by immL_cheap).
6255 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6256   match(Set dst con);
6257   effect(KILL tmp);
6258   ins_cost(DEFAULT_COST * 3);
6259   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6260   ins_encode %{
6261     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6262   %}
6263   ins_pipe(loadConL);
6264 %}
6265 
6266 // Load long value from constant table (predicated by immL_expensive).
6267 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6268   match(Set dst con);
6269   ins_cost(MEMORY_REF_COST);
6270   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6271   ins_encode %{
6272       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6273     __ ldx($constanttablebase, con_offset, $dst$$Register);
6274   %}
6275   ins_pipe(loadConL);
6276 %}
6277 
6278 instruct loadConL0( iRegL dst, immL0 src ) %{
6279   match(Set dst src);
6280   ins_cost(DEFAULT_COST);
6281   size(4);
6282   format %{ "CLR    $dst\t! long" %}
6283   ins_encode( Set13( src, dst ) );
6284   ins_pipe(ialu_imm);
6285 %}
6286 
6287 instruct loadConL13( iRegL dst, immL13 src ) %{
6288   match(Set dst src);
6289   ins_cost(DEFAULT_COST * 2);
6290 
6291   size(4);
6292   format %{ "MOV    $src,$dst\t! long" %}
6293   ins_encode( Set13( src, dst ) );
6294   ins_pipe(ialu_imm);
6295 %}
6296 
6297 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6298   match(Set dst con);
6299   effect(KILL tmp);
6300   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6301   ins_encode %{
6302       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6303     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6304   %}
6305   ins_pipe(loadConFD);
6306 %}
6307 
6308 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6309   match(Set dst con);
6310   effect(KILL tmp);
6311   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6312   ins_encode %{
6313     // XXX This is a quick fix for 6833573.
6314     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6315     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6316     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6317   %}
6318   ins_pipe(loadConFD);
6319 %}
6320 
6321 // Prefetch instructions for allocation.
6322 // Must be safe to execute with invalid address (cannot fault).
6323 
6324 instruct prefetchAlloc( memory mem ) %{
6325   predicate(AllocatePrefetchInstr == 0);
6326   match( PrefetchAllocation mem );
6327   ins_cost(MEMORY_REF_COST);
6328   size(4);
6329 
6330   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6331   opcode(Assembler::prefetch_op3);
6332   ins_encode( form3_mem_prefetch_write( mem ) );
6333   ins_pipe(iload_mem);
6334 %}
6335 
6336 // Use BIS instruction to prefetch for allocation.
6337 // Could fault, need space at the end of TLAB.
6338 instruct prefetchAlloc_bis( iRegP dst ) %{
6339   predicate(AllocatePrefetchInstr == 1);
6340   match( PrefetchAllocation dst );
6341   ins_cost(MEMORY_REF_COST);
6342   size(4);
6343 
6344   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6345   ins_encode %{
6346     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6347   %}
6348   ins_pipe(istore_mem_reg);
6349 %}
6350 
6351 // Next code is used for finding next cache line address to prefetch.
6352 #ifndef _LP64
6353 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6354   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6355   ins_cost(DEFAULT_COST);
6356   size(4);
6357 
6358   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6359   ins_encode %{
6360     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6361   %}
6362   ins_pipe(ialu_reg_imm);
6363 %}
6364 #else
6365 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6366   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6367   ins_cost(DEFAULT_COST);
6368   size(4);
6369 
6370   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6371   ins_encode %{
6372     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6373   %}
6374   ins_pipe(ialu_reg_imm);
6375 %}
6376 #endif
6377 
6378 //----------Store Instructions-------------------------------------------------
6379 // Store Byte
6380 instruct storeB(memory mem, iRegI src) %{
6381   match(Set mem (StoreB mem src));
6382   ins_cost(MEMORY_REF_COST);
6383 
6384   size(4);
6385   format %{ "STB    $src,$mem\t! byte" %}
6386   opcode(Assembler::stb_op3);
6387   ins_encode(simple_form3_mem_reg( mem, src ) );
6388   ins_pipe(istore_mem_reg);
6389 %}
6390 
6391 instruct storeB0(memory mem, immI0 src) %{
6392   match(Set mem (StoreB mem src));
6393   ins_cost(MEMORY_REF_COST);
6394 
6395   size(4);
6396   format %{ "STB    $src,$mem\t! byte" %}
6397   opcode(Assembler::stb_op3);
6398   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6399   ins_pipe(istore_mem_zero);
6400 %}
6401 
6402 instruct storeCM0(memory mem, immI0 src) %{
6403   match(Set mem (StoreCM mem src));
6404   ins_cost(MEMORY_REF_COST);
6405 
6406   size(4);
6407   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6408   opcode(Assembler::stb_op3);
6409   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6410   ins_pipe(istore_mem_zero);
6411 %}
6412 
6413 // Store Char/Short
6414 instruct storeC(memory mem, iRegI src) %{
6415   match(Set mem (StoreC mem src));
6416   ins_cost(MEMORY_REF_COST);
6417 
6418   size(4);
6419   format %{ "STH    $src,$mem\t! short" %}
6420   opcode(Assembler::sth_op3);
6421   ins_encode(simple_form3_mem_reg( mem, src ) );
6422   ins_pipe(istore_mem_reg);
6423 %}
6424 
6425 instruct storeC0(memory mem, immI0 src) %{
6426   match(Set mem (StoreC mem src));
6427   ins_cost(MEMORY_REF_COST);
6428 
6429   size(4);
6430   format %{ "STH    $src,$mem\t! short" %}
6431   opcode(Assembler::sth_op3);
6432   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6433   ins_pipe(istore_mem_zero);
6434 %}
6435 
6436 // Store Integer
6437 instruct storeI(memory mem, iRegI src) %{
6438   match(Set mem (StoreI mem src));
6439   ins_cost(MEMORY_REF_COST);
6440 
6441   size(4);
6442   format %{ "STW    $src,$mem" %}
6443   opcode(Assembler::stw_op3);
6444   ins_encode(simple_form3_mem_reg( mem, src ) );
6445   ins_pipe(istore_mem_reg);
6446 %}
6447 
6448 // Store Long
6449 instruct storeL(memory mem, iRegL src) %{
6450   match(Set mem (StoreL mem src));
6451   ins_cost(MEMORY_REF_COST);
6452   size(4);
6453   format %{ "STX    $src,$mem\t! long" %}
6454   opcode(Assembler::stx_op3);
6455   ins_encode(simple_form3_mem_reg( mem, src ) );
6456   ins_pipe(istore_mem_reg);
6457 %}
6458 
6459 instruct storeI0(memory mem, immI0 src) %{
6460   match(Set mem (StoreI mem src));
6461   ins_cost(MEMORY_REF_COST);
6462 
6463   size(4);
6464   format %{ "STW    $src,$mem" %}
6465   opcode(Assembler::stw_op3);
6466   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6467   ins_pipe(istore_mem_zero);
6468 %}
6469 
6470 instruct storeL0(memory mem, immL0 src) %{
6471   match(Set mem (StoreL mem src));
6472   ins_cost(MEMORY_REF_COST);
6473 
6474   size(4);
6475   format %{ "STX    $src,$mem" %}
6476   opcode(Assembler::stx_op3);
6477   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6478   ins_pipe(istore_mem_zero);
6479 %}
6480 
6481 // Store Integer from float register (used after fstoi)
6482 instruct storeI_Freg(memory mem, regF src) %{
6483   match(Set mem (StoreI mem src));
6484   ins_cost(MEMORY_REF_COST);
6485 
6486   size(4);
6487   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6488   opcode(Assembler::stf_op3);
6489   ins_encode(simple_form3_mem_reg( mem, src ) );
6490   ins_pipe(fstoreF_mem_reg);
6491 %}
6492 
6493 // Store Pointer
6494 instruct storeP(memory dst, sp_ptr_RegP src) %{
6495   match(Set dst (StoreP dst src));
6496   ins_cost(MEMORY_REF_COST);
6497   size(4);
6498 
6499 #ifndef _LP64
6500   format %{ "STW    $src,$dst\t! ptr" %}
6501   opcode(Assembler::stw_op3, 0, REGP_OP);
6502 #else
6503   format %{ "STX    $src,$dst\t! ptr" %}
6504   opcode(Assembler::stx_op3, 0, REGP_OP);
6505 #endif
6506   ins_encode( form3_mem_reg( dst, src ) );
6507   ins_pipe(istore_mem_spORreg);
6508 %}
6509 
6510 instruct storeP0(memory dst, immP0 src) %{
6511   match(Set dst (StoreP dst src));
6512   ins_cost(MEMORY_REF_COST);
6513   size(4);
6514 
6515 #ifndef _LP64
6516   format %{ "STW    $src,$dst\t! ptr" %}
6517   opcode(Assembler::stw_op3, 0, REGP_OP);
6518 #else
6519   format %{ "STX    $src,$dst\t! ptr" %}
6520   opcode(Assembler::stx_op3, 0, REGP_OP);
6521 #endif
6522   ins_encode( form3_mem_reg( dst, R_G0 ) );
6523   ins_pipe(istore_mem_zero);
6524 %}
6525 
6526 // Store Compressed Pointer
6527 instruct storeN(memory dst, iRegN src) %{
6528    match(Set dst (StoreN dst src));
6529    ins_cost(MEMORY_REF_COST);
6530    size(4);
6531 
6532    format %{ "STW    $src,$dst\t! compressed ptr" %}
6533    ins_encode %{
6534      Register base = as_Register($dst$$base);
6535      Register index = as_Register($dst$$index);
6536      Register src = $src$$Register;
6537      if (index != G0) {
6538        __ stw(src, base, index);
6539      } else {
6540        __ stw(src, base, $dst$$disp);
6541      }
6542    %}
6543    ins_pipe(istore_mem_spORreg);
6544 %}
6545 
6546 instruct storeNKlass(memory dst, iRegN src) %{
6547    match(Set dst (StoreNKlass dst src));
6548    ins_cost(MEMORY_REF_COST);
6549    size(4);
6550 
6551    format %{ "STW    $src,$dst\t! compressed klass ptr" %}
6552    ins_encode %{
6553      Register base = as_Register($dst$$base);
6554      Register index = as_Register($dst$$index);
6555      Register src = $src$$Register;
6556      if (index != G0) {
6557        __ stw(src, base, index);
6558      } else {
6559        __ stw(src, base, $dst$$disp);
6560      }
6561    %}
6562    ins_pipe(istore_mem_spORreg);
6563 %}
6564 
6565 instruct storeN0(memory dst, immN0 src) %{
6566    match(Set dst (StoreN dst src));
6567    ins_cost(MEMORY_REF_COST);
6568    size(4);
6569 
6570    format %{ "STW    $src,$dst\t! compressed ptr" %}
6571    ins_encode %{
6572      Register base = as_Register($dst$$base);
6573      Register index = as_Register($dst$$index);
6574      if (index != G0) {
6575        __ stw(0, base, index);
6576      } else {
6577        __ stw(0, base, $dst$$disp);
6578      }
6579    %}
6580    ins_pipe(istore_mem_zero);
6581 %}
6582 
6583 // Store Double
6584 instruct storeD( memory mem, regD src) %{
6585   match(Set mem (StoreD mem src));
6586   ins_cost(MEMORY_REF_COST);
6587 
6588   size(4);
6589   format %{ "STDF   $src,$mem" %}
6590   opcode(Assembler::stdf_op3);
6591   ins_encode(simple_form3_mem_reg( mem, src ) );
6592   ins_pipe(fstoreD_mem_reg);
6593 %}
6594 
6595 instruct storeD0( memory mem, immD0 src) %{
6596   match(Set mem (StoreD mem src));
6597   ins_cost(MEMORY_REF_COST);
6598 
6599   size(4);
6600   format %{ "STX    $src,$mem" %}
6601   opcode(Assembler::stx_op3);
6602   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6603   ins_pipe(fstoreD_mem_zero);
6604 %}
6605 
6606 // Store Float
6607 instruct storeF( memory mem, regF src) %{
6608   match(Set mem (StoreF mem src));
6609   ins_cost(MEMORY_REF_COST);
6610 
6611   size(4);
6612   format %{ "STF    $src,$mem" %}
6613   opcode(Assembler::stf_op3);
6614   ins_encode(simple_form3_mem_reg( mem, src ) );
6615   ins_pipe(fstoreF_mem_reg);
6616 %}
6617 
6618 instruct storeF0( memory mem, immF0 src) %{
6619   match(Set mem (StoreF mem src));
6620   ins_cost(MEMORY_REF_COST);
6621 
6622   size(4);
6623   format %{ "STW    $src,$mem\t! storeF0" %}
6624   opcode(Assembler::stw_op3);
6625   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6626   ins_pipe(fstoreF_mem_zero);
6627 %}
6628 
6629 // Convert oop pointer into compressed form
6630 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6631   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6632   match(Set dst (EncodeP src));
6633   format %{ "encode_heap_oop $src, $dst" %}
6634   ins_encode %{
6635     __ encode_heap_oop($src$$Register, $dst$$Register);
6636   %}
6637   ins_avoid_back_to_back(Universe::narrow_oop_base() == NULL ? AVOID_NONE : AVOID_BEFORE);
6638   ins_pipe(ialu_reg);
6639 %}
6640 
6641 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6642   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6643   match(Set dst (EncodeP src));
6644   format %{ "encode_heap_oop_not_null $src, $dst" %}
6645   ins_encode %{
6646     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6647   %}
6648   ins_pipe(ialu_reg);
6649 %}
6650 
6651 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6652   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6653             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6654   match(Set dst (DecodeN src));
6655   format %{ "decode_heap_oop $src, $dst" %}
6656   ins_encode %{
6657     __ decode_heap_oop($src$$Register, $dst$$Register);
6658   %}
6659   ins_pipe(ialu_reg);
6660 %}
6661 
6662 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6663   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6664             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6665   match(Set dst (DecodeN src));
6666   format %{ "decode_heap_oop_not_null $src, $dst" %}
6667   ins_encode %{
6668     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6669   %}
6670   ins_pipe(ialu_reg);
6671 %}
6672 
6673 instruct encodeKlass_not_null(iRegN dst, iRegP src) %{
6674   match(Set dst (EncodePKlass src));
6675   format %{ "encode_klass_not_null $src, $dst" %}
6676   ins_encode %{
6677     __ encode_klass_not_null($src$$Register, $dst$$Register);
6678   %}
6679   ins_pipe(ialu_reg);
6680 %}
6681 
6682 instruct decodeKlass_not_null(iRegP dst, iRegN src) %{
6683   match(Set dst (DecodeNKlass src));
6684   format %{ "decode_klass_not_null $src, $dst" %}
6685   ins_encode %{
6686     __ decode_klass_not_null($src$$Register, $dst$$Register);
6687   %}
6688   ins_pipe(ialu_reg);
6689 %}
6690 
6691 //----------MemBar Instructions-----------------------------------------------
6692 // Memory barrier flavors
6693 
6694 instruct membar_acquire() %{
6695   match(MemBarAcquire);
6696   match(LoadFence);
6697   ins_cost(4*MEMORY_REF_COST);
6698 
6699   size(0);
6700   format %{ "MEMBAR-acquire" %}
6701   ins_encode( enc_membar_acquire );
6702   ins_pipe(long_memory_op);
6703 %}
6704 
6705 instruct membar_acquire_lock() %{
6706   match(MemBarAcquireLock);
6707   ins_cost(0);
6708 
6709   size(0);
6710   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6711   ins_encode( );
6712   ins_pipe(empty);
6713 %}
6714 
6715 instruct membar_release() %{
6716   match(MemBarRelease);
6717   match(StoreFence);
6718   ins_cost(4*MEMORY_REF_COST);
6719 
6720   size(0);
6721   format %{ "MEMBAR-release" %}
6722   ins_encode( enc_membar_release );
6723   ins_pipe(long_memory_op);
6724 %}
6725 
6726 instruct membar_release_lock() %{
6727   match(MemBarReleaseLock);
6728   ins_cost(0);
6729 
6730   size(0);
6731   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6732   ins_encode( );
6733   ins_pipe(empty);
6734 %}
6735 
6736 instruct membar_volatile() %{
6737   match(MemBarVolatile);
6738   ins_cost(4*MEMORY_REF_COST);
6739 
6740   size(4);
6741   format %{ "MEMBAR-volatile" %}
6742   ins_encode( enc_membar_volatile );
6743   ins_pipe(long_memory_op);
6744 %}
6745 
6746 instruct unnecessary_membar_volatile() %{
6747   match(MemBarVolatile);
6748   predicate(Matcher::post_store_load_barrier(n));
6749   ins_cost(0);
6750 
6751   size(0);
6752   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6753   ins_encode( );
6754   ins_pipe(empty);
6755 %}
6756 
6757 instruct membar_storestore() %{
6758   match(MemBarStoreStore);
6759   ins_cost(0);
6760 
6761   size(0);
6762   format %{ "!MEMBAR-storestore (empty encoding)" %}
6763   ins_encode( );
6764   ins_pipe(empty);
6765 %}
6766 
6767 //----------Register Move Instructions-----------------------------------------
6768 instruct roundDouble_nop(regD dst) %{
6769   match(Set dst (RoundDouble dst));
6770   ins_cost(0);
6771   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6772   ins_encode( );
6773   ins_pipe(empty);
6774 %}
6775 
6776 
6777 instruct roundFloat_nop(regF dst) %{
6778   match(Set dst (RoundFloat dst));
6779   ins_cost(0);
6780   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6781   ins_encode( );
6782   ins_pipe(empty);
6783 %}
6784 
6785 
6786 // Cast Index to Pointer for unsafe natives
6787 instruct castX2P(iRegX src, iRegP dst) %{
6788   match(Set dst (CastX2P src));
6789 
6790   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6791   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6792   ins_pipe(ialu_reg);
6793 %}
6794 
6795 // Cast Pointer to Index for unsafe natives
6796 instruct castP2X(iRegP src, iRegX dst) %{
6797   match(Set dst (CastP2X src));
6798 
6799   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6800   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6801   ins_pipe(ialu_reg);
6802 %}
6803 
6804 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6805   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6806   match(Set stkSlot src);   // chain rule
6807   ins_cost(MEMORY_REF_COST);
6808   format %{ "STDF   $src,$stkSlot\t!stk" %}
6809   opcode(Assembler::stdf_op3);
6810   ins_encode(simple_form3_mem_reg(stkSlot, src));
6811   ins_pipe(fstoreD_stk_reg);
6812 %}
6813 
6814 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6815   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6816   match(Set dst stkSlot);   // chain rule
6817   ins_cost(MEMORY_REF_COST);
6818   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6819   opcode(Assembler::lddf_op3);
6820   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6821   ins_pipe(floadD_stk);
6822 %}
6823 
6824 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6825   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6826   match(Set stkSlot src);   // chain rule
6827   ins_cost(MEMORY_REF_COST);
6828   format %{ "STF   $src,$stkSlot\t!stk" %}
6829   opcode(Assembler::stf_op3);
6830   ins_encode(simple_form3_mem_reg(stkSlot, src));
6831   ins_pipe(fstoreF_stk_reg);
6832 %}
6833 
6834 //----------Conditional Move---------------------------------------------------
6835 // Conditional move
6836 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6837   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6838   ins_cost(150);
6839   format %{ "MOV$cmp $pcc,$src,$dst" %}
6840   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6841   ins_pipe(ialu_reg);
6842 %}
6843 
6844 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6845   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6846   ins_cost(140);
6847   format %{ "MOV$cmp $pcc,$src,$dst" %}
6848   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6849   ins_pipe(ialu_imm);
6850 %}
6851 
6852 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6853   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6854   ins_cost(150);
6855   size(4);
6856   format %{ "MOV$cmp  $icc,$src,$dst" %}
6857   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6858   ins_pipe(ialu_reg);
6859 %}
6860 
6861 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6862   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6863   ins_cost(140);
6864   size(4);
6865   format %{ "MOV$cmp  $icc,$src,$dst" %}
6866   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6867   ins_pipe(ialu_imm);
6868 %}
6869 
6870 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6871   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6872   ins_cost(150);
6873   size(4);
6874   format %{ "MOV$cmp  $icc,$src,$dst" %}
6875   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6876   ins_pipe(ialu_reg);
6877 %}
6878 
6879 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6880   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6881   ins_cost(140);
6882   size(4);
6883   format %{ "MOV$cmp  $icc,$src,$dst" %}
6884   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6885   ins_pipe(ialu_imm);
6886 %}
6887 
6888 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6889   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6890   ins_cost(150);
6891   size(4);
6892   format %{ "MOV$cmp $fcc,$src,$dst" %}
6893   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6894   ins_pipe(ialu_reg);
6895 %}
6896 
6897 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6898   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6899   ins_cost(140);
6900   size(4);
6901   format %{ "MOV$cmp $fcc,$src,$dst" %}
6902   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6903   ins_pipe(ialu_imm);
6904 %}
6905 
6906 // Conditional move for RegN. Only cmov(reg,reg).
6907 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6908   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6909   ins_cost(150);
6910   format %{ "MOV$cmp $pcc,$src,$dst" %}
6911   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6912   ins_pipe(ialu_reg);
6913 %}
6914 
6915 // This instruction also works with CmpN so we don't need cmovNN_reg.
6916 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6917   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6918   ins_cost(150);
6919   size(4);
6920   format %{ "MOV$cmp  $icc,$src,$dst" %}
6921   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6922   ins_pipe(ialu_reg);
6923 %}
6924 
6925 // This instruction also works with CmpN so we don't need cmovNN_reg.
6926 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6927   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6928   ins_cost(150);
6929   size(4);
6930   format %{ "MOV$cmp  $icc,$src,$dst" %}
6931   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6932   ins_pipe(ialu_reg);
6933 %}
6934 
6935 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6936   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6937   ins_cost(150);
6938   size(4);
6939   format %{ "MOV$cmp $fcc,$src,$dst" %}
6940   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6941   ins_pipe(ialu_reg);
6942 %}
6943 
6944 // Conditional move
6945 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6946   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6947   ins_cost(150);
6948   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6949   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6950   ins_pipe(ialu_reg);
6951 %}
6952 
6953 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6954   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6955   ins_cost(140);
6956   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6957   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6958   ins_pipe(ialu_imm);
6959 %}
6960 
6961 // This instruction also works with CmpN so we don't need cmovPN_reg.
6962 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6963   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6964   ins_cost(150);
6965 
6966   size(4);
6967   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6968   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6969   ins_pipe(ialu_reg);
6970 %}
6971 
6972 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6973   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6974   ins_cost(150);
6975 
6976   size(4);
6977   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6978   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6979   ins_pipe(ialu_reg);
6980 %}
6981 
6982 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6983   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6984   ins_cost(140);
6985 
6986   size(4);
6987   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6988   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6989   ins_pipe(ialu_imm);
6990 %}
6991 
6992 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6993   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6994   ins_cost(140);
6995 
6996   size(4);
6997   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6998   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6999   ins_pipe(ialu_imm);
7000 %}
7001 
7002 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
7003   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7004   ins_cost(150);
7005   size(4);
7006   format %{ "MOV$cmp $fcc,$src,$dst" %}
7007   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7008   ins_pipe(ialu_imm);
7009 %}
7010 
7011 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
7012   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
7013   ins_cost(140);
7014   size(4);
7015   format %{ "MOV$cmp $fcc,$src,$dst" %}
7016   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
7017   ins_pipe(ialu_imm);
7018 %}
7019 
7020 // Conditional move
7021 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
7022   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
7023   ins_cost(150);
7024   opcode(0x101);
7025   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7026   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7027   ins_pipe(int_conditional_float_move);
7028 %}
7029 
7030 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
7031   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7032   ins_cost(150);
7033 
7034   size(4);
7035   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7036   opcode(0x101);
7037   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7038   ins_pipe(int_conditional_float_move);
7039 %}
7040 
7041 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
7042   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
7043   ins_cost(150);
7044 
7045   size(4);
7046   format %{ "FMOVS$cmp $icc,$src,$dst" %}
7047   opcode(0x101);
7048   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7049   ins_pipe(int_conditional_float_move);
7050 %}
7051 
7052 // Conditional move,
7053 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7054   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7055   ins_cost(150);
7056   size(4);
7057   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7058   opcode(0x1);
7059   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7060   ins_pipe(int_conditional_double_move);
7061 %}
7062 
7063 // Conditional move
7064 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7065   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7066   ins_cost(150);
7067   size(4);
7068   opcode(0x102);
7069   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7070   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7071   ins_pipe(int_conditional_double_move);
7072 %}
7073 
7074 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7075   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7076   ins_cost(150);
7077 
7078   size(4);
7079   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7080   opcode(0x102);
7081   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7082   ins_pipe(int_conditional_double_move);
7083 %}
7084 
7085 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7086   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7087   ins_cost(150);
7088 
7089   size(4);
7090   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7091   opcode(0x102);
7092   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7093   ins_pipe(int_conditional_double_move);
7094 %}
7095 
7096 // Conditional move,
7097 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7098   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7099   ins_cost(150);
7100   size(4);
7101   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7102   opcode(0x2);
7103   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7104   ins_pipe(int_conditional_double_move);
7105 %}
7106 
7107 // Conditional move
7108 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7109   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7110   ins_cost(150);
7111   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7112   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7113   ins_pipe(ialu_reg);
7114 %}
7115 
7116 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7117   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7118   ins_cost(140);
7119   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7120   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7121   ins_pipe(ialu_imm);
7122 %}
7123 
7124 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7125   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7126   ins_cost(150);
7127 
7128   size(4);
7129   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7130   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7131   ins_pipe(ialu_reg);
7132 %}
7133 
7134 
7135 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7136   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7137   ins_cost(150);
7138 
7139   size(4);
7140   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7141   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7142   ins_pipe(ialu_reg);
7143 %}
7144 
7145 
7146 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7147   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7148   ins_cost(150);
7149 
7150   size(4);
7151   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7152   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7153   ins_pipe(ialu_reg);
7154 %}
7155 
7156 
7157 
7158 //----------OS and Locking Instructions----------------------------------------
7159 
7160 // This name is KNOWN by the ADLC and cannot be changed.
7161 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7162 // for this guy.
7163 instruct tlsLoadP(g2RegP dst) %{
7164   match(Set dst (ThreadLocal));
7165 
7166   size(0);
7167   ins_cost(0);
7168   format %{ "# TLS is in G2" %}
7169   ins_encode( /*empty encoding*/ );
7170   ins_pipe(ialu_none);
7171 %}
7172 
7173 instruct checkCastPP( iRegP dst ) %{
7174   match(Set dst (CheckCastPP dst));
7175 
7176   size(0);
7177   format %{ "# checkcastPP of $dst" %}
7178   ins_encode( /*empty encoding*/ );
7179   ins_pipe(empty);
7180 %}
7181 
7182 
7183 instruct castPP( iRegP dst ) %{
7184   match(Set dst (CastPP dst));
7185   format %{ "# castPP of $dst" %}
7186   ins_encode( /*empty encoding*/ );
7187   ins_pipe(empty);
7188 %}
7189 
7190 instruct castII( iRegI dst ) %{
7191   match(Set dst (CastII dst));
7192   format %{ "# castII of $dst" %}
7193   ins_encode( /*empty encoding*/ );
7194   ins_cost(0);
7195   ins_pipe(empty);
7196 %}
7197 
7198 //----------Arithmetic Instructions--------------------------------------------
7199 // Addition Instructions
7200 // Register Addition
7201 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7202   match(Set dst (AddI src1 src2));
7203 
7204   size(4);
7205   format %{ "ADD    $src1,$src2,$dst" %}
7206   ins_encode %{
7207     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7208   %}
7209   ins_pipe(ialu_reg_reg);
7210 %}
7211 
7212 // Immediate Addition
7213 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7214   match(Set dst (AddI src1 src2));
7215 
7216   size(4);
7217   format %{ "ADD    $src1,$src2,$dst" %}
7218   opcode(Assembler::add_op3, Assembler::arith_op);
7219   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7220   ins_pipe(ialu_reg_imm);
7221 %}
7222 
7223 // Pointer Register Addition
7224 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7225   match(Set dst (AddP src1 src2));
7226 
7227   size(4);
7228   format %{ "ADD    $src1,$src2,$dst" %}
7229   opcode(Assembler::add_op3, Assembler::arith_op);
7230   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7231   ins_pipe(ialu_reg_reg);
7232 %}
7233 
7234 // Pointer Immediate Addition
7235 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7236   match(Set dst (AddP src1 src2));
7237 
7238   size(4);
7239   format %{ "ADD    $src1,$src2,$dst" %}
7240   opcode(Assembler::add_op3, Assembler::arith_op);
7241   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7242   ins_pipe(ialu_reg_imm);
7243 %}
7244 
7245 // Long Addition
7246 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7247   match(Set dst (AddL src1 src2));
7248 
7249   size(4);
7250   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7251   opcode(Assembler::add_op3, Assembler::arith_op);
7252   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7253   ins_pipe(ialu_reg_reg);
7254 %}
7255 
7256 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7257   match(Set dst (AddL src1 con));
7258 
7259   size(4);
7260   format %{ "ADD    $src1,$con,$dst" %}
7261   opcode(Assembler::add_op3, Assembler::arith_op);
7262   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7263   ins_pipe(ialu_reg_imm);
7264 %}
7265 
7266 //----------Conditional_store--------------------------------------------------
7267 // Conditional-store of the updated heap-top.
7268 // Used during allocation of the shared heap.
7269 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7270 
7271 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7272 instruct loadPLocked(iRegP dst, memory mem) %{
7273   match(Set dst (LoadPLocked mem));
7274   ins_cost(MEMORY_REF_COST);
7275 
7276 #ifndef _LP64
7277   size(4);
7278   format %{ "LDUW   $mem,$dst\t! ptr" %}
7279   opcode(Assembler::lduw_op3, 0, REGP_OP);
7280 #else
7281   format %{ "LDX    $mem,$dst\t! ptr" %}
7282   opcode(Assembler::ldx_op3, 0, REGP_OP);
7283 #endif
7284   ins_encode( form3_mem_reg( mem, dst ) );
7285   ins_pipe(iload_mem);
7286 %}
7287 
7288 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7289   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7290   effect( KILL newval );
7291   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7292             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7293   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7294   ins_pipe( long_memory_op );
7295 %}
7296 
7297 // Conditional-store of an int value.
7298 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7299   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7300   effect( KILL newval );
7301   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7302             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7303   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7304   ins_pipe( long_memory_op );
7305 %}
7306 
7307 // Conditional-store of a long value.
7308 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7309   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7310   effect( KILL newval );
7311   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7312             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7313   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7314   ins_pipe( long_memory_op );
7315 %}
7316 
7317 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7318 
7319 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7320   predicate(VM_Version::supports_cx8());
7321   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7322   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7323   format %{
7324             "MOV    $newval,O7\n\t"
7325             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7326             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7327             "MOV    1,$res\n\t"
7328             "MOVne  xcc,R_G0,$res"
7329   %}
7330   ins_encode( enc_casx(mem_ptr, oldval, newval),
7331               enc_lflags_ne_to_boolean(res) );
7332   ins_pipe( long_memory_op );
7333 %}
7334 
7335 
7336 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7337   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7338   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7339   format %{
7340             "MOV    $newval,O7\n\t"
7341             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7342             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7343             "MOV    1,$res\n\t"
7344             "MOVne  icc,R_G0,$res"
7345   %}
7346   ins_encode( enc_casi(mem_ptr, oldval, newval),
7347               enc_iflags_ne_to_boolean(res) );
7348   ins_pipe( long_memory_op );
7349 %}
7350 
7351 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7352 #ifdef _LP64
7353   predicate(VM_Version::supports_cx8());
7354 #endif
7355   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7356   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7357   format %{
7358             "MOV    $newval,O7\n\t"
7359             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7360             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7361             "MOV    1,$res\n\t"
7362             "MOVne  xcc,R_G0,$res"
7363   %}
7364 #ifdef _LP64
7365   ins_encode( enc_casx(mem_ptr, oldval, newval),
7366               enc_lflags_ne_to_boolean(res) );
7367 #else
7368   ins_encode( enc_casi(mem_ptr, oldval, newval),
7369               enc_iflags_ne_to_boolean(res) );
7370 #endif
7371   ins_pipe( long_memory_op );
7372 %}
7373 
7374 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7375   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7376   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7377   format %{
7378             "MOV    $newval,O7\n\t"
7379             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7380             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7381             "MOV    1,$res\n\t"
7382             "MOVne  icc,R_G0,$res"
7383   %}
7384   ins_encode( enc_casi(mem_ptr, oldval, newval),
7385               enc_iflags_ne_to_boolean(res) );
7386   ins_pipe( long_memory_op );
7387 %}
7388 
7389 instruct xchgI( memory mem, iRegI newval) %{
7390   match(Set newval (GetAndSetI mem newval));
7391   format %{ "SWAP  [$mem],$newval" %}
7392   size(4);
7393   ins_encode %{
7394     __ swap($mem$$Address, $newval$$Register);
7395   %}
7396   ins_pipe( long_memory_op );
7397 %}
7398 
7399 #ifndef _LP64
7400 instruct xchgP( memory mem, iRegP newval) %{
7401   match(Set newval (GetAndSetP mem newval));
7402   format %{ "SWAP  [$mem],$newval" %}
7403   size(4);
7404   ins_encode %{
7405     __ swap($mem$$Address, $newval$$Register);
7406   %}
7407   ins_pipe( long_memory_op );
7408 %}
7409 #endif
7410 
7411 instruct xchgN( memory mem, iRegN newval) %{
7412   match(Set newval (GetAndSetN mem newval));
7413   format %{ "SWAP  [$mem],$newval" %}
7414   size(4);
7415   ins_encode %{
7416     __ swap($mem$$Address, $newval$$Register);
7417   %}
7418   ins_pipe( long_memory_op );
7419 %}
7420 
7421 //---------------------
7422 // Subtraction Instructions
7423 // Register Subtraction
7424 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7425   match(Set dst (SubI src1 src2));
7426 
7427   size(4);
7428   format %{ "SUB    $src1,$src2,$dst" %}
7429   opcode(Assembler::sub_op3, Assembler::arith_op);
7430   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7431   ins_pipe(ialu_reg_reg);
7432 %}
7433 
7434 // Immediate Subtraction
7435 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7436   match(Set dst (SubI src1 src2));
7437 
7438   size(4);
7439   format %{ "SUB    $src1,$src2,$dst" %}
7440   opcode(Assembler::sub_op3, Assembler::arith_op);
7441   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7442   ins_pipe(ialu_reg_imm);
7443 %}
7444 
7445 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7446   match(Set dst (SubI zero src2));
7447 
7448   size(4);
7449   format %{ "NEG    $src2,$dst" %}
7450   opcode(Assembler::sub_op3, Assembler::arith_op);
7451   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7452   ins_pipe(ialu_zero_reg);
7453 %}
7454 
7455 // Long subtraction
7456 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7457   match(Set dst (SubL src1 src2));
7458 
7459   size(4);
7460   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7461   opcode(Assembler::sub_op3, Assembler::arith_op);
7462   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7463   ins_pipe(ialu_reg_reg);
7464 %}
7465 
7466 // Immediate Subtraction
7467 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7468   match(Set dst (SubL src1 con));
7469 
7470   size(4);
7471   format %{ "SUB    $src1,$con,$dst\t! long" %}
7472   opcode(Assembler::sub_op3, Assembler::arith_op);
7473   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7474   ins_pipe(ialu_reg_imm);
7475 %}
7476 
7477 // Long negation
7478 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7479   match(Set dst (SubL zero src2));
7480 
7481   size(4);
7482   format %{ "NEG    $src2,$dst\t! long" %}
7483   opcode(Assembler::sub_op3, Assembler::arith_op);
7484   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7485   ins_pipe(ialu_zero_reg);
7486 %}
7487 
7488 // Multiplication Instructions
7489 // Integer Multiplication
7490 // Register Multiplication
7491 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7492   match(Set dst (MulI src1 src2));
7493 
7494   size(4);
7495   format %{ "MULX   $src1,$src2,$dst" %}
7496   opcode(Assembler::mulx_op3, Assembler::arith_op);
7497   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7498   ins_pipe(imul_reg_reg);
7499 %}
7500 
7501 // Immediate Multiplication
7502 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7503   match(Set dst (MulI src1 src2));
7504 
7505   size(4);
7506   format %{ "MULX   $src1,$src2,$dst" %}
7507   opcode(Assembler::mulx_op3, Assembler::arith_op);
7508   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7509   ins_pipe(imul_reg_imm);
7510 %}
7511 
7512 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7513   match(Set dst (MulL src1 src2));
7514   ins_cost(DEFAULT_COST * 5);
7515   size(4);
7516   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7517   opcode(Assembler::mulx_op3, Assembler::arith_op);
7518   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7519   ins_pipe(mulL_reg_reg);
7520 %}
7521 
7522 // Immediate Multiplication
7523 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7524   match(Set dst (MulL src1 src2));
7525   ins_cost(DEFAULT_COST * 5);
7526   size(4);
7527   format %{ "MULX   $src1,$src2,$dst" %}
7528   opcode(Assembler::mulx_op3, Assembler::arith_op);
7529   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7530   ins_pipe(mulL_reg_imm);
7531 %}
7532 
7533 // Integer Division
7534 // Register Division
7535 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7536   match(Set dst (DivI src1 src2));
7537   ins_cost((2+71)*DEFAULT_COST);
7538 
7539   format %{ "SRA     $src2,0,$src2\n\t"
7540             "SRA     $src1,0,$src1\n\t"
7541             "SDIVX   $src1,$src2,$dst" %}
7542   ins_encode( idiv_reg( src1, src2, dst ) );
7543   ins_pipe(sdiv_reg_reg);
7544 %}
7545 
7546 // Immediate Division
7547 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7548   match(Set dst (DivI src1 src2));
7549   ins_cost((2+71)*DEFAULT_COST);
7550 
7551   format %{ "SRA     $src1,0,$src1\n\t"
7552             "SDIVX   $src1,$src2,$dst" %}
7553   ins_encode( idiv_imm( src1, src2, dst ) );
7554   ins_pipe(sdiv_reg_imm);
7555 %}
7556 
7557 //----------Div-By-10-Expansion------------------------------------------------
7558 // Extract hi bits of a 32x32->64 bit multiply.
7559 // Expand rule only, not matched
7560 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7561   effect( DEF dst, USE src1, USE src2 );
7562   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7563             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7564   ins_encode( enc_mul_hi(dst,src1,src2));
7565   ins_pipe(sdiv_reg_reg);
7566 %}
7567 
7568 // Magic constant, reciprocal of 10
7569 instruct loadConI_x66666667(iRegIsafe dst) %{
7570   effect( DEF dst );
7571 
7572   size(8);
7573   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7574   ins_encode( Set32(0x66666667, dst) );
7575   ins_pipe(ialu_hi_lo_reg);
7576 %}
7577 
7578 // Register Shift Right Arithmetic Long by 32-63
7579 instruct sra_31( iRegI dst, iRegI src ) %{
7580   effect( DEF dst, USE src );
7581   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7582   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7583   ins_pipe(ialu_reg_reg);
7584 %}
7585 
7586 // Arithmetic Shift Right by 8-bit immediate
7587 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7588   effect( DEF dst, USE src );
7589   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7590   opcode(Assembler::sra_op3, Assembler::arith_op);
7591   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7592   ins_pipe(ialu_reg_imm);
7593 %}
7594 
7595 // Integer DIV with 10
7596 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7597   match(Set dst (DivI src div));
7598   ins_cost((6+6)*DEFAULT_COST);
7599   expand %{
7600     iRegIsafe tmp1;               // Killed temps;
7601     iRegIsafe tmp2;               // Killed temps;
7602     iRegI tmp3;                   // Killed temps;
7603     iRegI tmp4;                   // Killed temps;
7604     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7605     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7606     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7607     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7608     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7609   %}
7610 %}
7611 
7612 // Register Long Division
7613 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7614   match(Set dst (DivL src1 src2));
7615   ins_cost(DEFAULT_COST*71);
7616   size(4);
7617   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7618   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7619   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7620   ins_pipe(divL_reg_reg);
7621 %}
7622 
7623 // Register Long Division
7624 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7625   match(Set dst (DivL src1 src2));
7626   ins_cost(DEFAULT_COST*71);
7627   size(4);
7628   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7629   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7630   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7631   ins_pipe(divL_reg_imm);
7632 %}
7633 
7634 // Integer Remainder
7635 // Register Remainder
7636 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7637   match(Set dst (ModI src1 src2));
7638   effect( KILL ccr, KILL temp);
7639 
7640   format %{ "SREM   $src1,$src2,$dst" %}
7641   ins_encode( irem_reg(src1, src2, dst, temp) );
7642   ins_pipe(sdiv_reg_reg);
7643 %}
7644 
7645 // Immediate Remainder
7646 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7647   match(Set dst (ModI src1 src2));
7648   effect( KILL ccr, KILL temp);
7649 
7650   format %{ "SREM   $src1,$src2,$dst" %}
7651   ins_encode( irem_imm(src1, src2, dst, temp) );
7652   ins_pipe(sdiv_reg_imm);
7653 %}
7654 
7655 // Register Long Remainder
7656 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7657   effect(DEF dst, USE src1, USE src2);
7658   size(4);
7659   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7660   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7661   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7662   ins_pipe(divL_reg_reg);
7663 %}
7664 
7665 // Register Long Division
7666 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7667   effect(DEF dst, USE src1, USE src2);
7668   size(4);
7669   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7670   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7671   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7672   ins_pipe(divL_reg_imm);
7673 %}
7674 
7675 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7676   effect(DEF dst, USE src1, USE src2);
7677   size(4);
7678   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7679   opcode(Assembler::mulx_op3, Assembler::arith_op);
7680   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7681   ins_pipe(mulL_reg_reg);
7682 %}
7683 
7684 // Immediate Multiplication
7685 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7686   effect(DEF dst, USE src1, USE src2);
7687   size(4);
7688   format %{ "MULX   $src1,$src2,$dst" %}
7689   opcode(Assembler::mulx_op3, Assembler::arith_op);
7690   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7691   ins_pipe(mulL_reg_imm);
7692 %}
7693 
7694 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7695   effect(DEF dst, USE src1, USE src2);
7696   size(4);
7697   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7698   opcode(Assembler::sub_op3, Assembler::arith_op);
7699   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7700   ins_pipe(ialu_reg_reg);
7701 %}
7702 
7703 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7704   effect(DEF dst, USE src1, USE src2);
7705   size(4);
7706   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7707   opcode(Assembler::sub_op3, Assembler::arith_op);
7708   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7709   ins_pipe(ialu_reg_reg);
7710 %}
7711 
7712 // Register Long Remainder
7713 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7714   match(Set dst (ModL src1 src2));
7715   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7716   expand %{
7717     iRegL tmp1;
7718     iRegL tmp2;
7719     divL_reg_reg_1(tmp1, src1, src2);
7720     mulL_reg_reg_1(tmp2, tmp1, src2);
7721     subL_reg_reg_1(dst,  src1, tmp2);
7722   %}
7723 %}
7724 
7725 // Register Long Remainder
7726 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7727   match(Set dst (ModL src1 src2));
7728   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7729   expand %{
7730     iRegL tmp1;
7731     iRegL tmp2;
7732     divL_reg_imm13_1(tmp1, src1, src2);
7733     mulL_reg_imm13_1(tmp2, tmp1, src2);
7734     subL_reg_reg_2  (dst,  src1, tmp2);
7735   %}
7736 %}
7737 
7738 // Integer Shift Instructions
7739 // Register Shift Left
7740 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7741   match(Set dst (LShiftI src1 src2));
7742 
7743   size(4);
7744   format %{ "SLL    $src1,$src2,$dst" %}
7745   opcode(Assembler::sll_op3, Assembler::arith_op);
7746   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7747   ins_pipe(ialu_reg_reg);
7748 %}
7749 
7750 // Register Shift Left Immediate
7751 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7752   match(Set dst (LShiftI src1 src2));
7753 
7754   size(4);
7755   format %{ "SLL    $src1,$src2,$dst" %}
7756   opcode(Assembler::sll_op3, Assembler::arith_op);
7757   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7758   ins_pipe(ialu_reg_imm);
7759 %}
7760 
7761 // Register Shift Left
7762 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7763   match(Set dst (LShiftL src1 src2));
7764 
7765   size(4);
7766   format %{ "SLLX   $src1,$src2,$dst" %}
7767   opcode(Assembler::sllx_op3, Assembler::arith_op);
7768   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7769   ins_pipe(ialu_reg_reg);
7770 %}
7771 
7772 // Register Shift Left Immediate
7773 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7774   match(Set dst (LShiftL src1 src2));
7775 
7776   size(4);
7777   format %{ "SLLX   $src1,$src2,$dst" %}
7778   opcode(Assembler::sllx_op3, Assembler::arith_op);
7779   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7780   ins_pipe(ialu_reg_imm);
7781 %}
7782 
7783 // Register Arithmetic Shift Right
7784 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7785   match(Set dst (RShiftI src1 src2));
7786   size(4);
7787   format %{ "SRA    $src1,$src2,$dst" %}
7788   opcode(Assembler::sra_op3, Assembler::arith_op);
7789   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7790   ins_pipe(ialu_reg_reg);
7791 %}
7792 
7793 // Register Arithmetic Shift Right Immediate
7794 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7795   match(Set dst (RShiftI src1 src2));
7796 
7797   size(4);
7798   format %{ "SRA    $src1,$src2,$dst" %}
7799   opcode(Assembler::sra_op3, Assembler::arith_op);
7800   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7801   ins_pipe(ialu_reg_imm);
7802 %}
7803 
7804 // Register Shift Right Arithmatic Long
7805 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7806   match(Set dst (RShiftL src1 src2));
7807 
7808   size(4);
7809   format %{ "SRAX   $src1,$src2,$dst" %}
7810   opcode(Assembler::srax_op3, Assembler::arith_op);
7811   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7812   ins_pipe(ialu_reg_reg);
7813 %}
7814 
7815 // Register Shift Left Immediate
7816 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7817   match(Set dst (RShiftL src1 src2));
7818 
7819   size(4);
7820   format %{ "SRAX   $src1,$src2,$dst" %}
7821   opcode(Assembler::srax_op3, Assembler::arith_op);
7822   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7823   ins_pipe(ialu_reg_imm);
7824 %}
7825 
7826 // Register Shift Right
7827 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7828   match(Set dst (URShiftI src1 src2));
7829 
7830   size(4);
7831   format %{ "SRL    $src1,$src2,$dst" %}
7832   opcode(Assembler::srl_op3, Assembler::arith_op);
7833   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7834   ins_pipe(ialu_reg_reg);
7835 %}
7836 
7837 // Register Shift Right Immediate
7838 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7839   match(Set dst (URShiftI src1 src2));
7840 
7841   size(4);
7842   format %{ "SRL    $src1,$src2,$dst" %}
7843   opcode(Assembler::srl_op3, Assembler::arith_op);
7844   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7845   ins_pipe(ialu_reg_imm);
7846 %}
7847 
7848 // Register Shift Right
7849 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7850   match(Set dst (URShiftL src1 src2));
7851 
7852   size(4);
7853   format %{ "SRLX   $src1,$src2,$dst" %}
7854   opcode(Assembler::srlx_op3, Assembler::arith_op);
7855   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7856   ins_pipe(ialu_reg_reg);
7857 %}
7858 
7859 // Register Shift Right Immediate
7860 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7861   match(Set dst (URShiftL src1 src2));
7862 
7863   size(4);
7864   format %{ "SRLX   $src1,$src2,$dst" %}
7865   opcode(Assembler::srlx_op3, Assembler::arith_op);
7866   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7867   ins_pipe(ialu_reg_imm);
7868 %}
7869 
7870 // Register Shift Right Immediate with a CastP2X
7871 #ifdef _LP64
7872 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7873   match(Set dst (URShiftL (CastP2X src1) src2));
7874   size(4);
7875   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7876   opcode(Assembler::srlx_op3, Assembler::arith_op);
7877   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7878   ins_pipe(ialu_reg_imm);
7879 %}
7880 #else
7881 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7882   match(Set dst (URShiftI (CastP2X src1) src2));
7883   size(4);
7884   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7885   opcode(Assembler::srl_op3, Assembler::arith_op);
7886   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7887   ins_pipe(ialu_reg_imm);
7888 %}
7889 #endif
7890 
7891 
7892 //----------Floating Point Arithmetic Instructions-----------------------------
7893 
7894 //  Add float single precision
7895 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7896   match(Set dst (AddF src1 src2));
7897 
7898   size(4);
7899   format %{ "FADDS  $src1,$src2,$dst" %}
7900   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7901   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7902   ins_pipe(faddF_reg_reg);
7903 %}
7904 
7905 //  Add float double precision
7906 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7907   match(Set dst (AddD src1 src2));
7908 
7909   size(4);
7910   format %{ "FADDD  $src1,$src2,$dst" %}
7911   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7912   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7913   ins_pipe(faddD_reg_reg);
7914 %}
7915 
7916 //  Sub float single precision
7917 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7918   match(Set dst (SubF src1 src2));
7919 
7920   size(4);
7921   format %{ "FSUBS  $src1,$src2,$dst" %}
7922   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7923   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7924   ins_pipe(faddF_reg_reg);
7925 %}
7926 
7927 //  Sub float double precision
7928 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7929   match(Set dst (SubD src1 src2));
7930 
7931   size(4);
7932   format %{ "FSUBD  $src1,$src2,$dst" %}
7933   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7934   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7935   ins_pipe(faddD_reg_reg);
7936 %}
7937 
7938 //  Mul float single precision
7939 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7940   match(Set dst (MulF src1 src2));
7941 
7942   size(4);
7943   format %{ "FMULS  $src1,$src2,$dst" %}
7944   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7945   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7946   ins_pipe(fmulF_reg_reg);
7947 %}
7948 
7949 //  Mul float double precision
7950 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7951   match(Set dst (MulD src1 src2));
7952 
7953   size(4);
7954   format %{ "FMULD  $src1,$src2,$dst" %}
7955   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7956   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7957   ins_pipe(fmulD_reg_reg);
7958 %}
7959 
7960 //  Div float single precision
7961 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7962   match(Set dst (DivF src1 src2));
7963 
7964   size(4);
7965   format %{ "FDIVS  $src1,$src2,$dst" %}
7966   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7967   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7968   ins_pipe(fdivF_reg_reg);
7969 %}
7970 
7971 //  Div float double precision
7972 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7973   match(Set dst (DivD src1 src2));
7974 
7975   size(4);
7976   format %{ "FDIVD  $src1,$src2,$dst" %}
7977   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7978   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7979   ins_pipe(fdivD_reg_reg);
7980 %}
7981 
7982 //  Absolute float double precision
7983 instruct absD_reg(regD dst, regD src) %{
7984   match(Set dst (AbsD src));
7985 
7986   format %{ "FABSd  $src,$dst" %}
7987   ins_encode(fabsd(dst, src));
7988   ins_pipe(faddD_reg);
7989 %}
7990 
7991 //  Absolute float single precision
7992 instruct absF_reg(regF dst, regF src) %{
7993   match(Set dst (AbsF src));
7994 
7995   format %{ "FABSs  $src,$dst" %}
7996   ins_encode(fabss(dst, src));
7997   ins_pipe(faddF_reg);
7998 %}
7999 
8000 instruct negF_reg(regF dst, regF src) %{
8001   match(Set dst (NegF src));
8002 
8003   size(4);
8004   format %{ "FNEGs  $src,$dst" %}
8005   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
8006   ins_encode(form3_opf_rs2F_rdF(src, dst));
8007   ins_pipe(faddF_reg);
8008 %}
8009 
8010 instruct negD_reg(regD dst, regD src) %{
8011   match(Set dst (NegD src));
8012 
8013   format %{ "FNEGd  $src,$dst" %}
8014   ins_encode(fnegd(dst, src));
8015   ins_pipe(faddD_reg);
8016 %}
8017 
8018 //  Sqrt float double precision
8019 instruct sqrtF_reg_reg(regF dst, regF src) %{
8020   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
8021 
8022   size(4);
8023   format %{ "FSQRTS $src,$dst" %}
8024   ins_encode(fsqrts(dst, src));
8025   ins_pipe(fdivF_reg_reg);
8026 %}
8027 
8028 //  Sqrt float double precision
8029 instruct sqrtD_reg_reg(regD dst, regD src) %{
8030   match(Set dst (SqrtD src));
8031 
8032   size(4);
8033   format %{ "FSQRTD $src,$dst" %}
8034   ins_encode(fsqrtd(dst, src));
8035   ins_pipe(fdivD_reg_reg);
8036 %}
8037 
8038 //----------Logical Instructions-----------------------------------------------
8039 // And Instructions
8040 // Register And
8041 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8042   match(Set dst (AndI src1 src2));
8043 
8044   size(4);
8045   format %{ "AND    $src1,$src2,$dst" %}
8046   opcode(Assembler::and_op3, Assembler::arith_op);
8047   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8048   ins_pipe(ialu_reg_reg);
8049 %}
8050 
8051 // Immediate And
8052 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8053   match(Set dst (AndI src1 src2));
8054 
8055   size(4);
8056   format %{ "AND    $src1,$src2,$dst" %}
8057   opcode(Assembler::and_op3, Assembler::arith_op);
8058   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8059   ins_pipe(ialu_reg_imm);
8060 %}
8061 
8062 // Register And Long
8063 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8064   match(Set dst (AndL src1 src2));
8065 
8066   ins_cost(DEFAULT_COST);
8067   size(4);
8068   format %{ "AND    $src1,$src2,$dst\t! long" %}
8069   opcode(Assembler::and_op3, Assembler::arith_op);
8070   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8071   ins_pipe(ialu_reg_reg);
8072 %}
8073 
8074 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8075   match(Set dst (AndL src1 con));
8076 
8077   ins_cost(DEFAULT_COST);
8078   size(4);
8079   format %{ "AND    $src1,$con,$dst\t! long" %}
8080   opcode(Assembler::and_op3, Assembler::arith_op);
8081   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8082   ins_pipe(ialu_reg_imm);
8083 %}
8084 
8085 // Or Instructions
8086 // Register Or
8087 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8088   match(Set dst (OrI src1 src2));
8089 
8090   size(4);
8091   format %{ "OR     $src1,$src2,$dst" %}
8092   opcode(Assembler::or_op3, Assembler::arith_op);
8093   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8094   ins_pipe(ialu_reg_reg);
8095 %}
8096 
8097 // Immediate Or
8098 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8099   match(Set dst (OrI src1 src2));
8100 
8101   size(4);
8102   format %{ "OR     $src1,$src2,$dst" %}
8103   opcode(Assembler::or_op3, Assembler::arith_op);
8104   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8105   ins_pipe(ialu_reg_imm);
8106 %}
8107 
8108 // Register Or Long
8109 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8110   match(Set dst (OrL src1 src2));
8111 
8112   ins_cost(DEFAULT_COST);
8113   size(4);
8114   format %{ "OR     $src1,$src2,$dst\t! long" %}
8115   opcode(Assembler::or_op3, Assembler::arith_op);
8116   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8117   ins_pipe(ialu_reg_reg);
8118 %}
8119 
8120 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8121   match(Set dst (OrL src1 con));
8122   ins_cost(DEFAULT_COST*2);
8123 
8124   ins_cost(DEFAULT_COST);
8125   size(4);
8126   format %{ "OR     $src1,$con,$dst\t! long" %}
8127   opcode(Assembler::or_op3, Assembler::arith_op);
8128   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8129   ins_pipe(ialu_reg_imm);
8130 %}
8131 
8132 #ifndef _LP64
8133 
8134 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8135 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8136   match(Set dst (OrI src1 (CastP2X src2)));
8137 
8138   size(4);
8139   format %{ "OR     $src1,$src2,$dst" %}
8140   opcode(Assembler::or_op3, Assembler::arith_op);
8141   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8142   ins_pipe(ialu_reg_reg);
8143 %}
8144 
8145 #else
8146 
8147 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8148   match(Set dst (OrL src1 (CastP2X src2)));
8149 
8150   ins_cost(DEFAULT_COST);
8151   size(4);
8152   format %{ "OR     $src1,$src2,$dst\t! long" %}
8153   opcode(Assembler::or_op3, Assembler::arith_op);
8154   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8155   ins_pipe(ialu_reg_reg);
8156 %}
8157 
8158 #endif
8159 
8160 // Xor Instructions
8161 // Register Xor
8162 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8163   match(Set dst (XorI src1 src2));
8164 
8165   size(4);
8166   format %{ "XOR    $src1,$src2,$dst" %}
8167   opcode(Assembler::xor_op3, Assembler::arith_op);
8168   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8169   ins_pipe(ialu_reg_reg);
8170 %}
8171 
8172 // Immediate Xor
8173 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8174   match(Set dst (XorI src1 src2));
8175 
8176   size(4);
8177   format %{ "XOR    $src1,$src2,$dst" %}
8178   opcode(Assembler::xor_op3, Assembler::arith_op);
8179   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8180   ins_pipe(ialu_reg_imm);
8181 %}
8182 
8183 // Register Xor Long
8184 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8185   match(Set dst (XorL src1 src2));
8186 
8187   ins_cost(DEFAULT_COST);
8188   size(4);
8189   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8190   opcode(Assembler::xor_op3, Assembler::arith_op);
8191   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8192   ins_pipe(ialu_reg_reg);
8193 %}
8194 
8195 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8196   match(Set dst (XorL src1 con));
8197 
8198   ins_cost(DEFAULT_COST);
8199   size(4);
8200   format %{ "XOR    $src1,$con,$dst\t! long" %}
8201   opcode(Assembler::xor_op3, Assembler::arith_op);
8202   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8203   ins_pipe(ialu_reg_imm);
8204 %}
8205 
8206 //----------Convert to Boolean-------------------------------------------------
8207 // Nice hack for 32-bit tests but doesn't work for
8208 // 64-bit pointers.
8209 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8210   match(Set dst (Conv2B src));
8211   effect( KILL ccr );
8212   ins_cost(DEFAULT_COST*2);
8213   format %{ "CMP    R_G0,$src\n\t"
8214             "ADDX   R_G0,0,$dst" %}
8215   ins_encode( enc_to_bool( src, dst ) );
8216   ins_pipe(ialu_reg_ialu);
8217 %}
8218 
8219 #ifndef _LP64
8220 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8221   match(Set dst (Conv2B src));
8222   effect( KILL ccr );
8223   ins_cost(DEFAULT_COST*2);
8224   format %{ "CMP    R_G0,$src\n\t"
8225             "ADDX   R_G0,0,$dst" %}
8226   ins_encode( enc_to_bool( src, dst ) );
8227   ins_pipe(ialu_reg_ialu);
8228 %}
8229 #else
8230 instruct convP2B( iRegI dst, iRegP src ) %{
8231   match(Set dst (Conv2B src));
8232   ins_cost(DEFAULT_COST*2);
8233   format %{ "MOV    $src,$dst\n\t"
8234             "MOVRNZ $src,1,$dst" %}
8235   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8236   ins_pipe(ialu_clr_and_mover);
8237 %}
8238 #endif
8239 
8240 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8241   match(Set dst (CmpLTMask src zero));
8242   effect(KILL ccr);
8243   size(4);
8244   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8245   ins_encode %{
8246     __ sra($src$$Register, 31, $dst$$Register);
8247   %}
8248   ins_pipe(ialu_reg_imm);
8249 %}
8250 
8251 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8252   match(Set dst (CmpLTMask p q));
8253   effect( KILL ccr );
8254   ins_cost(DEFAULT_COST*4);
8255   format %{ "CMP    $p,$q\n\t"
8256             "MOV    #0,$dst\n\t"
8257             "BLT,a  .+8\n\t"
8258             "MOV    #-1,$dst" %}
8259   ins_encode( enc_ltmask(p,q,dst) );
8260   ins_pipe(ialu_reg_reg_ialu);
8261 %}
8262 
8263 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8264   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8265   effect(KILL ccr, TEMP tmp);
8266   ins_cost(DEFAULT_COST*3);
8267 
8268   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8269             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8270             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8271   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8272   ins_pipe(cadd_cmpltmask);
8273 %}
8274 
8275 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8276   match(Set p (AndI (CmpLTMask p q) y));
8277   effect(KILL ccr);
8278   ins_cost(DEFAULT_COST*3);
8279 
8280   format %{ "CMP  $p,$q\n\t"
8281             "MOV  $y,$p\n\t"
8282             "MOVge G0,$p" %}
8283   ins_encode %{
8284     __ cmp($p$$Register, $q$$Register);
8285     __ mov($y$$Register, $p$$Register);
8286     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8287   %}
8288   ins_pipe(ialu_reg_reg_ialu);
8289 %}
8290 
8291 //-----------------------------------------------------------------
8292 // Direct raw moves between float and general registers using VIS3.
8293 
8294 //  ins_pipe(faddF_reg);
8295 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8296   predicate(UseVIS >= 3);
8297   match(Set dst (MoveF2I src));
8298 
8299   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8300   ins_encode %{
8301     __ movstouw($src$$FloatRegister, $dst$$Register);
8302   %}
8303   ins_pipe(ialu_reg_reg);
8304 %}
8305 
8306 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8307   predicate(UseVIS >= 3);
8308   match(Set dst (MoveI2F src));
8309 
8310   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8311   ins_encode %{
8312     __ movwtos($src$$Register, $dst$$FloatRegister);
8313   %}
8314   ins_pipe(ialu_reg_reg);
8315 %}
8316 
8317 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8318   predicate(UseVIS >= 3);
8319   match(Set dst (MoveD2L src));
8320 
8321   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8322   ins_encode %{
8323     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8324   %}
8325   ins_pipe(ialu_reg_reg);
8326 %}
8327 
8328 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8329   predicate(UseVIS >= 3);
8330   match(Set dst (MoveL2D src));
8331 
8332   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8333   ins_encode %{
8334     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8335   %}
8336   ins_pipe(ialu_reg_reg);
8337 %}
8338 
8339 
8340 // Raw moves between float and general registers using stack.
8341 
8342 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8343   match(Set dst (MoveF2I src));
8344   effect(DEF dst, USE src);
8345   ins_cost(MEMORY_REF_COST);
8346 
8347   size(4);
8348   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8349   opcode(Assembler::lduw_op3);
8350   ins_encode(simple_form3_mem_reg( src, dst ) );
8351   ins_pipe(iload_mem);
8352 %}
8353 
8354 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8355   match(Set dst (MoveI2F src));
8356   effect(DEF dst, USE src);
8357   ins_cost(MEMORY_REF_COST);
8358 
8359   size(4);
8360   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8361   opcode(Assembler::ldf_op3);
8362   ins_encode(simple_form3_mem_reg(src, dst));
8363   ins_pipe(floadF_stk);
8364 %}
8365 
8366 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8367   match(Set dst (MoveD2L src));
8368   effect(DEF dst, USE src);
8369   ins_cost(MEMORY_REF_COST);
8370 
8371   size(4);
8372   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8373   opcode(Assembler::ldx_op3);
8374   ins_encode(simple_form3_mem_reg( src, dst ) );
8375   ins_pipe(iload_mem);
8376 %}
8377 
8378 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8379   match(Set dst (MoveL2D src));
8380   effect(DEF dst, USE src);
8381   ins_cost(MEMORY_REF_COST);
8382 
8383   size(4);
8384   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8385   opcode(Assembler::lddf_op3);
8386   ins_encode(simple_form3_mem_reg(src, dst));
8387   ins_pipe(floadD_stk);
8388 %}
8389 
8390 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8391   match(Set dst (MoveF2I src));
8392   effect(DEF dst, USE src);
8393   ins_cost(MEMORY_REF_COST);
8394 
8395   size(4);
8396   format %{ "STF   $src,$dst\t! MoveF2I" %}
8397   opcode(Assembler::stf_op3);
8398   ins_encode(simple_form3_mem_reg(dst, src));
8399   ins_pipe(fstoreF_stk_reg);
8400 %}
8401 
8402 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8403   match(Set dst (MoveI2F src));
8404   effect(DEF dst, USE src);
8405   ins_cost(MEMORY_REF_COST);
8406 
8407   size(4);
8408   format %{ "STW    $src,$dst\t! MoveI2F" %}
8409   opcode(Assembler::stw_op3);
8410   ins_encode(simple_form3_mem_reg( dst, src ) );
8411   ins_pipe(istore_mem_reg);
8412 %}
8413 
8414 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8415   match(Set dst (MoveD2L src));
8416   effect(DEF dst, USE src);
8417   ins_cost(MEMORY_REF_COST);
8418 
8419   size(4);
8420   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8421   opcode(Assembler::stdf_op3);
8422   ins_encode(simple_form3_mem_reg(dst, src));
8423   ins_pipe(fstoreD_stk_reg);
8424 %}
8425 
8426 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8427   match(Set dst (MoveL2D src));
8428   effect(DEF dst, USE src);
8429   ins_cost(MEMORY_REF_COST);
8430 
8431   size(4);
8432   format %{ "STX    $src,$dst\t! MoveL2D" %}
8433   opcode(Assembler::stx_op3);
8434   ins_encode(simple_form3_mem_reg( dst, src ) );
8435   ins_pipe(istore_mem_reg);
8436 %}
8437 
8438 
8439 //----------Arithmetic Conversion Instructions---------------------------------
8440 // The conversions operations are all Alpha sorted.  Please keep it that way!
8441 
8442 instruct convD2F_reg(regF dst, regD src) %{
8443   match(Set dst (ConvD2F src));
8444   size(4);
8445   format %{ "FDTOS  $src,$dst" %}
8446   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8447   ins_encode(form3_opf_rs2D_rdF(src, dst));
8448   ins_pipe(fcvtD2F);
8449 %}
8450 
8451 
8452 // Convert a double to an int in a float register.
8453 // If the double is a NAN, stuff a zero in instead.
8454 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8455   effect(DEF dst, USE src, KILL fcc0);
8456   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8457             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8458             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8459             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8460             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8461       "skip:" %}
8462   ins_encode(form_d2i_helper(src,dst));
8463   ins_pipe(fcvtD2I);
8464 %}
8465 
8466 instruct convD2I_stk(stackSlotI dst, regD src) %{
8467   match(Set dst (ConvD2I src));
8468   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8469   expand %{
8470     regF tmp;
8471     convD2I_helper(tmp, src);
8472     regF_to_stkI(dst, tmp);
8473   %}
8474 %}
8475 
8476 instruct convD2I_reg(iRegI dst, regD src) %{
8477   predicate(UseVIS >= 3);
8478   match(Set dst (ConvD2I src));
8479   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8480   expand %{
8481     regF tmp;
8482     convD2I_helper(tmp, src);
8483     MoveF2I_reg_reg(dst, tmp);
8484   %}
8485 %}
8486 
8487 
8488 // Convert a double to a long in a double register.
8489 // If the double is a NAN, stuff a zero in instead.
8490 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8491   effect(DEF dst, USE src, KILL fcc0);
8492   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8493             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8494             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8495             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8496             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8497       "skip:" %}
8498   ins_encode(form_d2l_helper(src,dst));
8499   ins_pipe(fcvtD2L);
8500 %}
8501 
8502 instruct convD2L_stk(stackSlotL dst, regD src) %{
8503   match(Set dst (ConvD2L src));
8504   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8505   expand %{
8506     regD tmp;
8507     convD2L_helper(tmp, src);
8508     regD_to_stkL(dst, tmp);
8509   %}
8510 %}
8511 
8512 instruct convD2L_reg(iRegL dst, regD src) %{
8513   predicate(UseVIS >= 3);
8514   match(Set dst (ConvD2L src));
8515   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8516   expand %{
8517     regD tmp;
8518     convD2L_helper(tmp, src);
8519     MoveD2L_reg_reg(dst, tmp);
8520   %}
8521 %}
8522 
8523 
8524 instruct convF2D_reg(regD dst, regF src) %{
8525   match(Set dst (ConvF2D src));
8526   format %{ "FSTOD  $src,$dst" %}
8527   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8528   ins_encode(form3_opf_rs2F_rdD(src, dst));
8529   ins_pipe(fcvtF2D);
8530 %}
8531 
8532 
8533 // Convert a float to an int in a float register.
8534 // If the float is a NAN, stuff a zero in instead.
8535 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8536   effect(DEF dst, USE src, KILL fcc0);
8537   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8538             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8539             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8540             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8541             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8542       "skip:" %}
8543   ins_encode(form_f2i_helper(src,dst));
8544   ins_pipe(fcvtF2I);
8545 %}
8546 
8547 instruct convF2I_stk(stackSlotI dst, regF src) %{
8548   match(Set dst (ConvF2I src));
8549   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8550   expand %{
8551     regF tmp;
8552     convF2I_helper(tmp, src);
8553     regF_to_stkI(dst, tmp);
8554   %}
8555 %}
8556 
8557 instruct convF2I_reg(iRegI dst, regF src) %{
8558   predicate(UseVIS >= 3);
8559   match(Set dst (ConvF2I src));
8560   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8561   expand %{
8562     regF tmp;
8563     convF2I_helper(tmp, src);
8564     MoveF2I_reg_reg(dst, tmp);
8565   %}
8566 %}
8567 
8568 
8569 // Convert a float to a long in a float register.
8570 // If the float is a NAN, stuff a zero in instead.
8571 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8572   effect(DEF dst, USE src, KILL fcc0);
8573   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8574             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8575             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8576             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8577             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8578       "skip:" %}
8579   ins_encode(form_f2l_helper(src,dst));
8580   ins_pipe(fcvtF2L);
8581 %}
8582 
8583 instruct convF2L_stk(stackSlotL dst, regF src) %{
8584   match(Set dst (ConvF2L src));
8585   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8586   expand %{
8587     regD tmp;
8588     convF2L_helper(tmp, src);
8589     regD_to_stkL(dst, tmp);
8590   %}
8591 %}
8592 
8593 instruct convF2L_reg(iRegL dst, regF src) %{
8594   predicate(UseVIS >= 3);
8595   match(Set dst (ConvF2L src));
8596   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8597   expand %{
8598     regD tmp;
8599     convF2L_helper(tmp, src);
8600     MoveD2L_reg_reg(dst, tmp);
8601   %}
8602 %}
8603 
8604 
8605 instruct convI2D_helper(regD dst, regF tmp) %{
8606   effect(USE tmp, DEF dst);
8607   format %{ "FITOD  $tmp,$dst" %}
8608   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8609   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8610   ins_pipe(fcvtI2D);
8611 %}
8612 
8613 instruct convI2D_stk(stackSlotI src, regD dst) %{
8614   match(Set dst (ConvI2D src));
8615   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8616   expand %{
8617     regF tmp;
8618     stkI_to_regF(tmp, src);
8619     convI2D_helper(dst, tmp);
8620   %}
8621 %}
8622 
8623 instruct convI2D_reg(regD_low dst, iRegI src) %{
8624   predicate(UseVIS >= 3);
8625   match(Set dst (ConvI2D src));
8626   expand %{
8627     regF tmp;
8628     MoveI2F_reg_reg(tmp, src);
8629     convI2D_helper(dst, tmp);
8630   %}
8631 %}
8632 
8633 instruct convI2D_mem(regD_low dst, memory mem) %{
8634   match(Set dst (ConvI2D (LoadI mem)));
8635   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8636   size(8);
8637   format %{ "LDF    $mem,$dst\n\t"
8638             "FITOD  $dst,$dst" %}
8639   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8640   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8641   ins_pipe(floadF_mem);
8642 %}
8643 
8644 
8645 instruct convI2F_helper(regF dst, regF tmp) %{
8646   effect(DEF dst, USE tmp);
8647   format %{ "FITOS  $tmp,$dst" %}
8648   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8649   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8650   ins_pipe(fcvtI2F);
8651 %}
8652 
8653 instruct convI2F_stk(regF dst, stackSlotI src) %{
8654   match(Set dst (ConvI2F src));
8655   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8656   expand %{
8657     regF tmp;
8658     stkI_to_regF(tmp,src);
8659     convI2F_helper(dst, tmp);
8660   %}
8661 %}
8662 
8663 instruct convI2F_reg(regF dst, iRegI src) %{
8664   predicate(UseVIS >= 3);
8665   match(Set dst (ConvI2F src));
8666   ins_cost(DEFAULT_COST);
8667   expand %{
8668     regF tmp;
8669     MoveI2F_reg_reg(tmp, src);
8670     convI2F_helper(dst, tmp);
8671   %}
8672 %}
8673 
8674 instruct convI2F_mem( regF dst, memory mem ) %{
8675   match(Set dst (ConvI2F (LoadI mem)));
8676   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8677   size(8);
8678   format %{ "LDF    $mem,$dst\n\t"
8679             "FITOS  $dst,$dst" %}
8680   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8681   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8682   ins_pipe(floadF_mem);
8683 %}
8684 
8685 
8686 instruct convI2L_reg(iRegL dst, iRegI src) %{
8687   match(Set dst (ConvI2L src));
8688   size(4);
8689   format %{ "SRA    $src,0,$dst\t! int->long" %}
8690   opcode(Assembler::sra_op3, Assembler::arith_op);
8691   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8692   ins_pipe(ialu_reg_reg);
8693 %}
8694 
8695 // Zero-extend convert int to long
8696 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8697   match(Set dst (AndL (ConvI2L src) mask) );
8698   size(4);
8699   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8700   opcode(Assembler::srl_op3, Assembler::arith_op);
8701   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8702   ins_pipe(ialu_reg_reg);
8703 %}
8704 
8705 // Zero-extend long
8706 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8707   match(Set dst (AndL src mask) );
8708   size(4);
8709   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8710   opcode(Assembler::srl_op3, Assembler::arith_op);
8711   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8712   ins_pipe(ialu_reg_reg);
8713 %}
8714 
8715 
8716 //-----------
8717 // Long to Double conversion using V8 opcodes.
8718 // Still useful because cheetah traps and becomes
8719 // amazingly slow for some common numbers.
8720 
8721 // Magic constant, 0x43300000
8722 instruct loadConI_x43300000(iRegI dst) %{
8723   effect(DEF dst);
8724   size(4);
8725   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8726   ins_encode(SetHi22(0x43300000, dst));
8727   ins_pipe(ialu_none);
8728 %}
8729 
8730 // Magic constant, 0x41f00000
8731 instruct loadConI_x41f00000(iRegI dst) %{
8732   effect(DEF dst);
8733   size(4);
8734   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8735   ins_encode(SetHi22(0x41f00000, dst));
8736   ins_pipe(ialu_none);
8737 %}
8738 
8739 // Construct a double from two float halves
8740 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8741   effect(DEF dst, USE src1, USE src2);
8742   size(8);
8743   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8744             "FMOVS  $src2.lo,$dst.lo" %}
8745   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8746   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8747   ins_pipe(faddD_reg_reg);
8748 %}
8749 
8750 // Convert integer in high half of a double register (in the lower half of
8751 // the double register file) to double
8752 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8753   effect(DEF dst, USE src);
8754   size(4);
8755   format %{ "FITOD  $src,$dst" %}
8756   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8757   ins_encode(form3_opf_rs2D_rdD(src, dst));
8758   ins_pipe(fcvtLHi2D);
8759 %}
8760 
8761 // Add float double precision
8762 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8763   effect(DEF dst, USE src1, USE src2);
8764   size(4);
8765   format %{ "FADDD  $src1,$src2,$dst" %}
8766   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8767   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8768   ins_pipe(faddD_reg_reg);
8769 %}
8770 
8771 // Sub float double precision
8772 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8773   effect(DEF dst, USE src1, USE src2);
8774   size(4);
8775   format %{ "FSUBD  $src1,$src2,$dst" %}
8776   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8777   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8778   ins_pipe(faddD_reg_reg);
8779 %}
8780 
8781 // Mul float double precision
8782 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8783   effect(DEF dst, USE src1, USE src2);
8784   size(4);
8785   format %{ "FMULD  $src1,$src2,$dst" %}
8786   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8787   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8788   ins_pipe(fmulD_reg_reg);
8789 %}
8790 
8791 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8792   match(Set dst (ConvL2D src));
8793   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8794 
8795   expand %{
8796     regD_low   tmpsrc;
8797     iRegI      ix43300000;
8798     iRegI      ix41f00000;
8799     stackSlotL lx43300000;
8800     stackSlotL lx41f00000;
8801     regD_low   dx43300000;
8802     regD       dx41f00000;
8803     regD       tmp1;
8804     regD_low   tmp2;
8805     regD       tmp3;
8806     regD       tmp4;
8807 
8808     stkL_to_regD(tmpsrc, src);
8809 
8810     loadConI_x43300000(ix43300000);
8811     loadConI_x41f00000(ix41f00000);
8812     regI_to_stkLHi(lx43300000, ix43300000);
8813     regI_to_stkLHi(lx41f00000, ix41f00000);
8814     stkL_to_regD(dx43300000, lx43300000);
8815     stkL_to_regD(dx41f00000, lx41f00000);
8816 
8817     convI2D_regDHi_regD(tmp1, tmpsrc);
8818     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8819     subD_regD_regD(tmp3, tmp2, dx43300000);
8820     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8821     addD_regD_regD(dst, tmp3, tmp4);
8822   %}
8823 %}
8824 
8825 // Long to Double conversion using fast fxtof
8826 instruct convL2D_helper(regD dst, regD tmp) %{
8827   effect(DEF dst, USE tmp);
8828   size(4);
8829   format %{ "FXTOD  $tmp,$dst" %}
8830   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8831   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8832   ins_pipe(fcvtL2D);
8833 %}
8834 
8835 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8836   predicate(VM_Version::has_fast_fxtof());
8837   match(Set dst (ConvL2D src));
8838   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8839   expand %{
8840     regD tmp;
8841     stkL_to_regD(tmp, src);
8842     convL2D_helper(dst, tmp);
8843   %}
8844 %}
8845 
8846 instruct convL2D_reg(regD dst, iRegL src) %{
8847   predicate(UseVIS >= 3);
8848   match(Set dst (ConvL2D src));
8849   expand %{
8850     regD tmp;
8851     MoveL2D_reg_reg(tmp, src);
8852     convL2D_helper(dst, tmp);
8853   %}
8854 %}
8855 
8856 // Long to Float conversion using fast fxtof
8857 instruct convL2F_helper(regF dst, regD tmp) %{
8858   effect(DEF dst, USE tmp);
8859   size(4);
8860   format %{ "FXTOS  $tmp,$dst" %}
8861   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8862   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8863   ins_pipe(fcvtL2F);
8864 %}
8865 
8866 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8867   match(Set dst (ConvL2F src));
8868   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8869   expand %{
8870     regD tmp;
8871     stkL_to_regD(tmp, src);
8872     convL2F_helper(dst, tmp);
8873   %}
8874 %}
8875 
8876 instruct convL2F_reg(regF dst, iRegL src) %{
8877   predicate(UseVIS >= 3);
8878   match(Set dst (ConvL2F src));
8879   ins_cost(DEFAULT_COST);
8880   expand %{
8881     regD tmp;
8882     MoveL2D_reg_reg(tmp, src);
8883     convL2F_helper(dst, tmp);
8884   %}
8885 %}
8886 
8887 //-----------
8888 
8889 instruct convL2I_reg(iRegI dst, iRegL src) %{
8890   match(Set dst (ConvL2I src));
8891 #ifndef _LP64
8892   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8893   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8894   ins_pipe(ialu_move_reg_I_to_L);
8895 #else
8896   size(4);
8897   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8898   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8899   ins_pipe(ialu_reg);
8900 #endif
8901 %}
8902 
8903 // Register Shift Right Immediate
8904 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8905   match(Set dst (ConvL2I (RShiftL src cnt)));
8906 
8907   size(4);
8908   format %{ "SRAX   $src,$cnt,$dst" %}
8909   opcode(Assembler::srax_op3, Assembler::arith_op);
8910   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8911   ins_pipe(ialu_reg_imm);
8912 %}
8913 
8914 //----------Control Flow Instructions------------------------------------------
8915 // Compare Instructions
8916 // Compare Integers
8917 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8918   match(Set icc (CmpI op1 op2));
8919   effect( DEF icc, USE op1, USE op2 );
8920 
8921   size(4);
8922   format %{ "CMP    $op1,$op2" %}
8923   opcode(Assembler::subcc_op3, Assembler::arith_op);
8924   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8925   ins_pipe(ialu_cconly_reg_reg);
8926 %}
8927 
8928 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8929   match(Set icc (CmpU op1 op2));
8930 
8931   size(4);
8932   format %{ "CMP    $op1,$op2\t! unsigned" %}
8933   opcode(Assembler::subcc_op3, Assembler::arith_op);
8934   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8935   ins_pipe(ialu_cconly_reg_reg);
8936 %}
8937 
8938 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8939   match(Set icc (CmpI op1 op2));
8940   effect( DEF icc, USE op1 );
8941 
8942   size(4);
8943   format %{ "CMP    $op1,$op2" %}
8944   opcode(Assembler::subcc_op3, Assembler::arith_op);
8945   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8946   ins_pipe(ialu_cconly_reg_imm);
8947 %}
8948 
8949 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8950   match(Set icc (CmpI (AndI op1 op2) zero));
8951 
8952   size(4);
8953   format %{ "BTST   $op2,$op1" %}
8954   opcode(Assembler::andcc_op3, Assembler::arith_op);
8955   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8956   ins_pipe(ialu_cconly_reg_reg_zero);
8957 %}
8958 
8959 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8960   match(Set icc (CmpI (AndI op1 op2) zero));
8961 
8962   size(4);
8963   format %{ "BTST   $op2,$op1" %}
8964   opcode(Assembler::andcc_op3, Assembler::arith_op);
8965   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8966   ins_pipe(ialu_cconly_reg_imm_zero);
8967 %}
8968 
8969 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8970   match(Set xcc (CmpL op1 op2));
8971   effect( DEF xcc, USE op1, USE op2 );
8972 
8973   size(4);
8974   format %{ "CMP    $op1,$op2\t\t! long" %}
8975   opcode(Assembler::subcc_op3, Assembler::arith_op);
8976   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8977   ins_pipe(ialu_cconly_reg_reg);
8978 %}
8979 
8980 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8981   match(Set xcc (CmpL op1 con));
8982   effect( DEF xcc, USE op1, USE con );
8983 
8984   size(4);
8985   format %{ "CMP    $op1,$con\t\t! long" %}
8986   opcode(Assembler::subcc_op3, Assembler::arith_op);
8987   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8988   ins_pipe(ialu_cconly_reg_reg);
8989 %}
8990 
8991 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8992   match(Set xcc (CmpL (AndL op1 op2) zero));
8993   effect( DEF xcc, USE op1, USE op2 );
8994 
8995   size(4);
8996   format %{ "BTST   $op1,$op2\t\t! long" %}
8997   opcode(Assembler::andcc_op3, Assembler::arith_op);
8998   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8999   ins_pipe(ialu_cconly_reg_reg);
9000 %}
9001 
9002 // useful for checking the alignment of a pointer:
9003 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
9004   match(Set xcc (CmpL (AndL op1 con) zero));
9005   effect( DEF xcc, USE op1, USE con );
9006 
9007   size(4);
9008   format %{ "BTST   $op1,$con\t\t! long" %}
9009   opcode(Assembler::andcc_op3, Assembler::arith_op);
9010   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
9011   ins_pipe(ialu_cconly_reg_reg);
9012 %}
9013 
9014 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
9015   match(Set icc (CmpU op1 op2));
9016 
9017   size(4);
9018   format %{ "CMP    $op1,$op2\t! unsigned" %}
9019   opcode(Assembler::subcc_op3, Assembler::arith_op);
9020   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9021   ins_pipe(ialu_cconly_reg_imm);
9022 %}
9023 
9024 // Compare Pointers
9025 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
9026   match(Set pcc (CmpP op1 op2));
9027 
9028   size(4);
9029   format %{ "CMP    $op1,$op2\t! ptr" %}
9030   opcode(Assembler::subcc_op3, Assembler::arith_op);
9031   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9032   ins_pipe(ialu_cconly_reg_reg);
9033 %}
9034 
9035 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9036   match(Set pcc (CmpP op1 op2));
9037 
9038   size(4);
9039   format %{ "CMP    $op1,$op2\t! ptr" %}
9040   opcode(Assembler::subcc_op3, Assembler::arith_op);
9041   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9042   ins_pipe(ialu_cconly_reg_imm);
9043 %}
9044 
9045 // Compare Narrow oops
9046 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9047   match(Set icc (CmpN op1 op2));
9048 
9049   size(4);
9050   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9051   opcode(Assembler::subcc_op3, Assembler::arith_op);
9052   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9053   ins_pipe(ialu_cconly_reg_reg);
9054 %}
9055 
9056 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9057   match(Set icc (CmpN op1 op2));
9058 
9059   size(4);
9060   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9061   opcode(Assembler::subcc_op3, Assembler::arith_op);
9062   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9063   ins_pipe(ialu_cconly_reg_imm);
9064 %}
9065 
9066 //----------Max and Min--------------------------------------------------------
9067 // Min Instructions
9068 // Conditional move for min
9069 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9070   effect( USE_DEF op2, USE op1, USE icc );
9071 
9072   size(4);
9073   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9074   opcode(Assembler::less);
9075   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9076   ins_pipe(ialu_reg_flags);
9077 %}
9078 
9079 // Min Register with Register.
9080 instruct minI_eReg(iRegI op1, iRegI op2) %{
9081   match(Set op2 (MinI op1 op2));
9082   ins_cost(DEFAULT_COST*2);
9083   expand %{
9084     flagsReg icc;
9085     compI_iReg(icc,op1,op2);
9086     cmovI_reg_lt(op2,op1,icc);
9087   %}
9088 %}
9089 
9090 // Max Instructions
9091 // Conditional move for max
9092 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9093   effect( USE_DEF op2, USE op1, USE icc );
9094   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9095   opcode(Assembler::greater);
9096   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9097   ins_pipe(ialu_reg_flags);
9098 %}
9099 
9100 // Max Register with Register
9101 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9102   match(Set op2 (MaxI op1 op2));
9103   ins_cost(DEFAULT_COST*2);
9104   expand %{
9105     flagsReg icc;
9106     compI_iReg(icc,op1,op2);
9107     cmovI_reg_gt(op2,op1,icc);
9108   %}
9109 %}
9110 
9111 
9112 //----------Float Compares----------------------------------------------------
9113 // Compare floating, generate condition code
9114 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9115   match(Set fcc (CmpF src1 src2));
9116 
9117   size(4);
9118   format %{ "FCMPs  $fcc,$src1,$src2" %}
9119   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9120   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9121   ins_pipe(faddF_fcc_reg_reg_zero);
9122 %}
9123 
9124 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9125   match(Set fcc (CmpD src1 src2));
9126 
9127   size(4);
9128   format %{ "FCMPd  $fcc,$src1,$src2" %}
9129   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9130   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9131   ins_pipe(faddD_fcc_reg_reg_zero);
9132 %}
9133 
9134 
9135 // Compare floating, generate -1,0,1
9136 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9137   match(Set dst (CmpF3 src1 src2));
9138   effect(KILL fcc0);
9139   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9140   format %{ "fcmpl  $dst,$src1,$src2" %}
9141   // Primary = float
9142   opcode( true );
9143   ins_encode( floating_cmp( dst, src1, src2 ) );
9144   ins_pipe( floating_cmp );
9145 %}
9146 
9147 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9148   match(Set dst (CmpD3 src1 src2));
9149   effect(KILL fcc0);
9150   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9151   format %{ "dcmpl  $dst,$src1,$src2" %}
9152   // Primary = double (not float)
9153   opcode( false );
9154   ins_encode( floating_cmp( dst, src1, src2 ) );
9155   ins_pipe( floating_cmp );
9156 %}
9157 
9158 //----------Branches---------------------------------------------------------
9159 // Jump
9160 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9161 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9162   match(Jump switch_val);
9163   effect(TEMP table);
9164 
9165   ins_cost(350);
9166 
9167   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9168              "LD     [O7 + $switch_val], O7\n\t"
9169              "JUMP   O7" %}
9170   ins_encode %{
9171     // Calculate table address into a register.
9172     Register table_reg;
9173     Register label_reg = O7;
9174     // If we are calculating the size of this instruction don't trust
9175     // zero offsets because they might change when
9176     // MachConstantBaseNode decides to optimize the constant table
9177     // base.
9178     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9179       table_reg = $constanttablebase;
9180     } else {
9181       table_reg = O7;
9182       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9183       __ add($constanttablebase, con_offset, table_reg);
9184     }
9185 
9186     // Jump to base address + switch value
9187     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9188     __ jmp(label_reg, G0);
9189     __ delayed()->nop();
9190   %}
9191   ins_pipe(ialu_reg_reg);
9192 %}
9193 
9194 // Direct Branch.  Use V8 version with longer range.
9195 instruct branch(label labl) %{
9196   match(Goto);
9197   effect(USE labl);
9198 
9199   size(8);
9200   ins_cost(BRANCH_COST);
9201   format %{ "BA     $labl" %}
9202   ins_encode %{
9203     Label* L = $labl$$label;
9204     __ ba(*L);
9205     __ delayed()->nop();
9206   %}
9207   ins_avoid_back_to_back(AVOID_BEFORE);
9208   ins_pipe(br);
9209 %}
9210 
9211 // Direct Branch, short with no delay slot
9212 instruct branch_short(label labl) %{
9213   match(Goto);
9214   predicate(UseCBCond);
9215   effect(USE labl);
9216 
9217   size(4);
9218   ins_cost(BRANCH_COST);
9219   format %{ "BA     $labl\t! short branch" %}
9220   ins_encode %{
9221     Label* L = $labl$$label;
9222     assert(__ use_cbcond(*L), "back to back cbcond");
9223     __ ba_short(*L);
9224   %}
9225   ins_short_branch(1);
9226   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9227   ins_pipe(cbcond_reg_imm);
9228 %}
9229 
9230 // Conditional Direct Branch
9231 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9232   match(If cmp icc);
9233   effect(USE labl);
9234 
9235   size(8);
9236   ins_cost(BRANCH_COST);
9237   format %{ "BP$cmp   $icc,$labl" %}
9238   // Prim = bits 24-22, Secnd = bits 31-30
9239   ins_encode( enc_bp( labl, cmp, icc ) );
9240   ins_avoid_back_to_back(AVOID_BEFORE);
9241   ins_pipe(br_cc);
9242 %}
9243 
9244 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9245   match(If cmp icc);
9246   effect(USE labl);
9247 
9248   ins_cost(BRANCH_COST);
9249   format %{ "BP$cmp  $icc,$labl" %}
9250   // Prim = bits 24-22, Secnd = bits 31-30
9251   ins_encode( enc_bp( labl, cmp, icc ) );
9252   ins_avoid_back_to_back(AVOID_BEFORE);
9253   ins_pipe(br_cc);
9254 %}
9255 
9256 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9257   match(If cmp pcc);
9258   effect(USE labl);
9259 
9260   size(8);
9261   ins_cost(BRANCH_COST);
9262   format %{ "BP$cmp  $pcc,$labl" %}
9263   ins_encode %{
9264     Label* L = $labl$$label;
9265     Assembler::Predict predict_taken =
9266       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9267 
9268     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9269     __ delayed()->nop();
9270   %}
9271   ins_avoid_back_to_back(AVOID_BEFORE);
9272   ins_pipe(br_cc);
9273 %}
9274 
9275 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9276   match(If cmp fcc);
9277   effect(USE labl);
9278 
9279   size(8);
9280   ins_cost(BRANCH_COST);
9281   format %{ "FBP$cmp $fcc,$labl" %}
9282   ins_encode %{
9283     Label* L = $labl$$label;
9284     Assembler::Predict predict_taken =
9285       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9286 
9287     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9288     __ delayed()->nop();
9289   %}
9290   ins_avoid_back_to_back(AVOID_BEFORE);
9291   ins_pipe(br_fcc);
9292 %}
9293 
9294 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9295   match(CountedLoopEnd cmp icc);
9296   effect(USE labl);
9297 
9298   size(8);
9299   ins_cost(BRANCH_COST);
9300   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9301   // Prim = bits 24-22, Secnd = bits 31-30
9302   ins_encode( enc_bp( labl, cmp, icc ) );
9303   ins_avoid_back_to_back(AVOID_BEFORE);
9304   ins_pipe(br_cc);
9305 %}
9306 
9307 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9308   match(CountedLoopEnd cmp icc);
9309   effect(USE labl);
9310 
9311   size(8);
9312   ins_cost(BRANCH_COST);
9313   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9314   // Prim = bits 24-22, Secnd = bits 31-30
9315   ins_encode( enc_bp( labl, cmp, icc ) );
9316   ins_avoid_back_to_back(AVOID_BEFORE);
9317   ins_pipe(br_cc);
9318 %}
9319 
9320 // Compare and branch instructions
9321 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9322   match(If cmp (CmpI op1 op2));
9323   effect(USE labl, KILL icc);
9324 
9325   size(12);
9326   ins_cost(BRANCH_COST);
9327   format %{ "CMP    $op1,$op2\t! int\n\t"
9328             "BP$cmp   $labl" %}
9329   ins_encode %{
9330     Label* L = $labl$$label;
9331     Assembler::Predict predict_taken =
9332       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9333     __ cmp($op1$$Register, $op2$$Register);
9334     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9335     __ delayed()->nop();
9336   %}
9337   ins_pipe(cmp_br_reg_reg);
9338 %}
9339 
9340 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9341   match(If cmp (CmpI op1 op2));
9342   effect(USE labl, KILL icc);
9343 
9344   size(12);
9345   ins_cost(BRANCH_COST);
9346   format %{ "CMP    $op1,$op2\t! int\n\t"
9347             "BP$cmp   $labl" %}
9348   ins_encode %{
9349     Label* L = $labl$$label;
9350     Assembler::Predict predict_taken =
9351       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9352     __ cmp($op1$$Register, $op2$$constant);
9353     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9354     __ delayed()->nop();
9355   %}
9356   ins_pipe(cmp_br_reg_imm);
9357 %}
9358 
9359 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9360   match(If cmp (CmpU op1 op2));
9361   effect(USE labl, KILL icc);
9362 
9363   size(12);
9364   ins_cost(BRANCH_COST);
9365   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9366             "BP$cmp  $labl" %}
9367   ins_encode %{
9368     Label* L = $labl$$label;
9369     Assembler::Predict predict_taken =
9370       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9371     __ cmp($op1$$Register, $op2$$Register);
9372     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9373     __ delayed()->nop();
9374   %}
9375   ins_pipe(cmp_br_reg_reg);
9376 %}
9377 
9378 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9379   match(If cmp (CmpU op1 op2));
9380   effect(USE labl, KILL icc);
9381 
9382   size(12);
9383   ins_cost(BRANCH_COST);
9384   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9385             "BP$cmp  $labl" %}
9386   ins_encode %{
9387     Label* L = $labl$$label;
9388     Assembler::Predict predict_taken =
9389       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9390     __ cmp($op1$$Register, $op2$$constant);
9391     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9392     __ delayed()->nop();
9393   %}
9394   ins_pipe(cmp_br_reg_imm);
9395 %}
9396 
9397 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9398   match(If cmp (CmpL op1 op2));
9399   effect(USE labl, KILL xcc);
9400 
9401   size(12);
9402   ins_cost(BRANCH_COST);
9403   format %{ "CMP    $op1,$op2\t! long\n\t"
9404             "BP$cmp   $labl" %}
9405   ins_encode %{
9406     Label* L = $labl$$label;
9407     Assembler::Predict predict_taken =
9408       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9409     __ cmp($op1$$Register, $op2$$Register);
9410     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9411     __ delayed()->nop();
9412   %}
9413   ins_pipe(cmp_br_reg_reg);
9414 %}
9415 
9416 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9417   match(If cmp (CmpL op1 op2));
9418   effect(USE labl, KILL xcc);
9419 
9420   size(12);
9421   ins_cost(BRANCH_COST);
9422   format %{ "CMP    $op1,$op2\t! long\n\t"
9423             "BP$cmp   $labl" %}
9424   ins_encode %{
9425     Label* L = $labl$$label;
9426     Assembler::Predict predict_taken =
9427       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9428     __ cmp($op1$$Register, $op2$$constant);
9429     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9430     __ delayed()->nop();
9431   %}
9432   ins_pipe(cmp_br_reg_imm);
9433 %}
9434 
9435 // Compare Pointers and branch
9436 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9437   match(If cmp (CmpP op1 op2));
9438   effect(USE labl, KILL pcc);
9439 
9440   size(12);
9441   ins_cost(BRANCH_COST);
9442   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9443             "B$cmp   $labl" %}
9444   ins_encode %{
9445     Label* L = $labl$$label;
9446     Assembler::Predict predict_taken =
9447       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9448     __ cmp($op1$$Register, $op2$$Register);
9449     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9450     __ delayed()->nop();
9451   %}
9452   ins_pipe(cmp_br_reg_reg);
9453 %}
9454 
9455 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9456   match(If cmp (CmpP op1 null));
9457   effect(USE labl, KILL pcc);
9458 
9459   size(12);
9460   ins_cost(BRANCH_COST);
9461   format %{ "CMP    $op1,0\t! ptr\n\t"
9462             "B$cmp   $labl" %}
9463   ins_encode %{
9464     Label* L = $labl$$label;
9465     Assembler::Predict predict_taken =
9466       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9467     __ cmp($op1$$Register, G0);
9468     // bpr() is not used here since it has shorter distance.
9469     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9470     __ delayed()->nop();
9471   %}
9472   ins_pipe(cmp_br_reg_reg);
9473 %}
9474 
9475 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9476   match(If cmp (CmpN op1 op2));
9477   effect(USE labl, KILL icc);
9478 
9479   size(12);
9480   ins_cost(BRANCH_COST);
9481   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9482             "BP$cmp   $labl" %}
9483   ins_encode %{
9484     Label* L = $labl$$label;
9485     Assembler::Predict predict_taken =
9486       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9487     __ cmp($op1$$Register, $op2$$Register);
9488     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9489     __ delayed()->nop();
9490   %}
9491   ins_pipe(cmp_br_reg_reg);
9492 %}
9493 
9494 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9495   match(If cmp (CmpN op1 null));
9496   effect(USE labl, KILL icc);
9497 
9498   size(12);
9499   ins_cost(BRANCH_COST);
9500   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9501             "BP$cmp   $labl" %}
9502   ins_encode %{
9503     Label* L = $labl$$label;
9504     Assembler::Predict predict_taken =
9505       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9506     __ cmp($op1$$Register, G0);
9507     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9508     __ delayed()->nop();
9509   %}
9510   ins_pipe(cmp_br_reg_reg);
9511 %}
9512 
9513 // Loop back branch
9514 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9515   match(CountedLoopEnd cmp (CmpI op1 op2));
9516   effect(USE labl, KILL icc);
9517 
9518   size(12);
9519   ins_cost(BRANCH_COST);
9520   format %{ "CMP    $op1,$op2\t! int\n\t"
9521             "BP$cmp   $labl\t! Loop end" %}
9522   ins_encode %{
9523     Label* L = $labl$$label;
9524     Assembler::Predict predict_taken =
9525       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9526     __ cmp($op1$$Register, $op2$$Register);
9527     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9528     __ delayed()->nop();
9529   %}
9530   ins_pipe(cmp_br_reg_reg);
9531 %}
9532 
9533 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9534   match(CountedLoopEnd cmp (CmpI op1 op2));
9535   effect(USE labl, KILL icc);
9536 
9537   size(12);
9538   ins_cost(BRANCH_COST);
9539   format %{ "CMP    $op1,$op2\t! int\n\t"
9540             "BP$cmp   $labl\t! Loop end" %}
9541   ins_encode %{
9542     Label* L = $labl$$label;
9543     Assembler::Predict predict_taken =
9544       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9545     __ cmp($op1$$Register, $op2$$constant);
9546     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9547     __ delayed()->nop();
9548   %}
9549   ins_pipe(cmp_br_reg_imm);
9550 %}
9551 
9552 // Short compare and branch instructions
9553 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9554   match(If cmp (CmpI op1 op2));
9555   predicate(UseCBCond);
9556   effect(USE labl, KILL icc);
9557 
9558   size(4);
9559   ins_cost(BRANCH_COST);
9560   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9561   ins_encode %{
9562     Label* L = $labl$$label;
9563     assert(__ use_cbcond(*L), "back to back cbcond");
9564     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9565   %}
9566   ins_short_branch(1);
9567   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9568   ins_pipe(cbcond_reg_reg);
9569 %}
9570 
9571 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9572   match(If cmp (CmpI op1 op2));
9573   predicate(UseCBCond);
9574   effect(USE labl, KILL icc);
9575 
9576   size(4);
9577   ins_cost(BRANCH_COST);
9578   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9579   ins_encode %{
9580     Label* L = $labl$$label;
9581     assert(__ use_cbcond(*L), "back to back cbcond");
9582     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9583   %}
9584   ins_short_branch(1);
9585   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9586   ins_pipe(cbcond_reg_imm);
9587 %}
9588 
9589 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9590   match(If cmp (CmpU op1 op2));
9591   predicate(UseCBCond);
9592   effect(USE labl, KILL icc);
9593 
9594   size(4);
9595   ins_cost(BRANCH_COST);
9596   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9597   ins_encode %{
9598     Label* L = $labl$$label;
9599     assert(__ use_cbcond(*L), "back to back cbcond");
9600     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9601   %}
9602   ins_short_branch(1);
9603   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9604   ins_pipe(cbcond_reg_reg);
9605 %}
9606 
9607 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9608   match(If cmp (CmpU op1 op2));
9609   predicate(UseCBCond);
9610   effect(USE labl, KILL icc);
9611 
9612   size(4);
9613   ins_cost(BRANCH_COST);
9614   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9615   ins_encode %{
9616     Label* L = $labl$$label;
9617     assert(__ use_cbcond(*L), "back to back cbcond");
9618     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9619   %}
9620   ins_short_branch(1);
9621   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9622   ins_pipe(cbcond_reg_imm);
9623 %}
9624 
9625 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9626   match(If cmp (CmpL op1 op2));
9627   predicate(UseCBCond);
9628   effect(USE labl, KILL xcc);
9629 
9630   size(4);
9631   ins_cost(BRANCH_COST);
9632   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9633   ins_encode %{
9634     Label* L = $labl$$label;
9635     assert(__ use_cbcond(*L), "back to back cbcond");
9636     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9637   %}
9638   ins_short_branch(1);
9639   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9640   ins_pipe(cbcond_reg_reg);
9641 %}
9642 
9643 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9644   match(If cmp (CmpL op1 op2));
9645   predicate(UseCBCond);
9646   effect(USE labl, KILL xcc);
9647 
9648   size(4);
9649   ins_cost(BRANCH_COST);
9650   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9651   ins_encode %{
9652     Label* L = $labl$$label;
9653     assert(__ use_cbcond(*L), "back to back cbcond");
9654     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9655   %}
9656   ins_short_branch(1);
9657   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9658   ins_pipe(cbcond_reg_imm);
9659 %}
9660 
9661 // Compare Pointers and branch
9662 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9663   match(If cmp (CmpP op1 op2));
9664   predicate(UseCBCond);
9665   effect(USE labl, KILL pcc);
9666 
9667   size(4);
9668   ins_cost(BRANCH_COST);
9669 #ifdef _LP64
9670   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9671 #else
9672   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9673 #endif
9674   ins_encode %{
9675     Label* L = $labl$$label;
9676     assert(__ use_cbcond(*L), "back to back cbcond");
9677     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9678   %}
9679   ins_short_branch(1);
9680   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9681   ins_pipe(cbcond_reg_reg);
9682 %}
9683 
9684 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9685   match(If cmp (CmpP op1 null));
9686   predicate(UseCBCond);
9687   effect(USE labl, KILL pcc);
9688 
9689   size(4);
9690   ins_cost(BRANCH_COST);
9691 #ifdef _LP64
9692   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9693 #else
9694   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9695 #endif
9696   ins_encode %{
9697     Label* L = $labl$$label;
9698     assert(__ use_cbcond(*L), "back to back cbcond");
9699     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9700   %}
9701   ins_short_branch(1);
9702   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9703   ins_pipe(cbcond_reg_reg);
9704 %}
9705 
9706 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9707   match(If cmp (CmpN op1 op2));
9708   predicate(UseCBCond);
9709   effect(USE labl, KILL icc);
9710 
9711   size(4);
9712   ins_cost(BRANCH_COST);
9713   format %{ "CWB$cmp  $op1,$op2,$labl\t! compressed ptr" %}
9714   ins_encode %{
9715     Label* L = $labl$$label;
9716     assert(__ use_cbcond(*L), "back to back cbcond");
9717     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9718   %}
9719   ins_short_branch(1);
9720   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9721   ins_pipe(cbcond_reg_reg);
9722 %}
9723 
9724 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9725   match(If cmp (CmpN op1 null));
9726   predicate(UseCBCond);
9727   effect(USE labl, KILL icc);
9728 
9729   size(4);
9730   ins_cost(BRANCH_COST);
9731   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9732   ins_encode %{
9733     Label* L = $labl$$label;
9734     assert(__ use_cbcond(*L), "back to back cbcond");
9735     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9736   %}
9737   ins_short_branch(1);
9738   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9739   ins_pipe(cbcond_reg_reg);
9740 %}
9741 
9742 // Loop back branch
9743 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9744   match(CountedLoopEnd cmp (CmpI op1 op2));
9745   predicate(UseCBCond);
9746   effect(USE labl, KILL icc);
9747 
9748   size(4);
9749   ins_cost(BRANCH_COST);
9750   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9751   ins_encode %{
9752     Label* L = $labl$$label;
9753     assert(__ use_cbcond(*L), "back to back cbcond");
9754     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9755   %}
9756   ins_short_branch(1);
9757   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9758   ins_pipe(cbcond_reg_reg);
9759 %}
9760 
9761 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9762   match(CountedLoopEnd cmp (CmpI op1 op2));
9763   predicate(UseCBCond);
9764   effect(USE labl, KILL icc);
9765 
9766   size(4);
9767   ins_cost(BRANCH_COST);
9768   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9769   ins_encode %{
9770     Label* L = $labl$$label;
9771     assert(__ use_cbcond(*L), "back to back cbcond");
9772     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9773   %}
9774   ins_short_branch(1);
9775   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9776   ins_pipe(cbcond_reg_imm);
9777 %}
9778 
9779 // Branch-on-register tests all 64 bits.  We assume that values
9780 // in 64-bit registers always remains zero or sign extended
9781 // unless our code munges the high bits.  Interrupts can chop
9782 // the high order bits to zero or sign at any time.
9783 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9784   match(If cmp (CmpI op1 zero));
9785   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9786   effect(USE labl);
9787 
9788   size(8);
9789   ins_cost(BRANCH_COST);
9790   format %{ "BR$cmp   $op1,$labl" %}
9791   ins_encode( enc_bpr( labl, cmp, op1 ) );
9792   ins_avoid_back_to_back(AVOID_BEFORE);
9793   ins_pipe(br_reg);
9794 %}
9795 
9796 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9797   match(If cmp (CmpP op1 null));
9798   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9799   effect(USE labl);
9800 
9801   size(8);
9802   ins_cost(BRANCH_COST);
9803   format %{ "BR$cmp   $op1,$labl" %}
9804   ins_encode( enc_bpr( labl, cmp, op1 ) );
9805   ins_avoid_back_to_back(AVOID_BEFORE);
9806   ins_pipe(br_reg);
9807 %}
9808 
9809 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9810   match(If cmp (CmpL op1 zero));
9811   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9812   effect(USE labl);
9813 
9814   size(8);
9815   ins_cost(BRANCH_COST);
9816   format %{ "BR$cmp   $op1,$labl" %}
9817   ins_encode( enc_bpr( labl, cmp, op1 ) );
9818   ins_avoid_back_to_back(AVOID_BEFORE);
9819   ins_pipe(br_reg);
9820 %}
9821 
9822 
9823 // ============================================================================
9824 // Long Compare
9825 //
9826 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9827 // is tricky.  The flavor of compare used depends on whether we are testing
9828 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9829 // The GE test is the negated LT test.  The LE test can be had by commuting
9830 // the operands (yielding a GE test) and then negating; negate again for the
9831 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9832 // NE test is negated from that.
9833 
9834 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9835 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9836 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9837 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9838 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9839 // foo match ends up with the wrong leaf.  One fix is to not match both
9840 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9841 // both forms beat the trinary form of long-compare and both are very useful
9842 // on Intel which has so few registers.
9843 
9844 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9845   match(If cmp xcc);
9846   effect(USE labl);
9847 
9848   size(8);
9849   ins_cost(BRANCH_COST);
9850   format %{ "BP$cmp   $xcc,$labl" %}
9851   ins_encode %{
9852     Label* L = $labl$$label;
9853     Assembler::Predict predict_taken =
9854       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9855 
9856     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9857     __ delayed()->nop();
9858   %}
9859   ins_avoid_back_to_back(AVOID_BEFORE);
9860   ins_pipe(br_cc);
9861 %}
9862 
9863 // Manifest a CmpL3 result in an integer register.  Very painful.
9864 // This is the test to avoid.
9865 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9866   match(Set dst (CmpL3 src1 src2) );
9867   effect( KILL ccr );
9868   ins_cost(6*DEFAULT_COST);
9869   size(24);
9870   format %{ "CMP    $src1,$src2\t\t! long\n"
9871           "\tBLT,a,pn done\n"
9872           "\tMOV    -1,$dst\t! delay slot\n"
9873           "\tBGT,a,pn done\n"
9874           "\tMOV    1,$dst\t! delay slot\n"
9875           "\tCLR    $dst\n"
9876     "done:"     %}
9877   ins_encode( cmpl_flag(src1,src2,dst) );
9878   ins_pipe(cmpL_reg);
9879 %}
9880 
9881 // Conditional move
9882 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9883   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9884   ins_cost(150);
9885   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9886   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9887   ins_pipe(ialu_reg);
9888 %}
9889 
9890 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9891   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9892   ins_cost(140);
9893   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9894   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9895   ins_pipe(ialu_imm);
9896 %}
9897 
9898 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9899   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9900   ins_cost(150);
9901   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9902   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9903   ins_pipe(ialu_reg);
9904 %}
9905 
9906 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9907   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9908   ins_cost(140);
9909   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9910   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9911   ins_pipe(ialu_imm);
9912 %}
9913 
9914 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9915   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9916   ins_cost(150);
9917   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9918   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9919   ins_pipe(ialu_reg);
9920 %}
9921 
9922 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9923   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9924   ins_cost(150);
9925   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9926   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9927   ins_pipe(ialu_reg);
9928 %}
9929 
9930 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9931   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9932   ins_cost(140);
9933   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9934   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9935   ins_pipe(ialu_imm);
9936 %}
9937 
9938 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9939   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9940   ins_cost(150);
9941   opcode(0x101);
9942   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9943   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9944   ins_pipe(int_conditional_float_move);
9945 %}
9946 
9947 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
9948   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
9949   ins_cost(150);
9950   opcode(0x102);
9951   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
9952   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9953   ins_pipe(int_conditional_float_move);
9954 %}
9955 
9956 // ============================================================================
9957 // Safepoint Instruction
9958 instruct safePoint_poll(iRegP poll) %{
9959   match(SafePoint poll);
9960   effect(USE poll);
9961 
9962   size(4);
9963 #ifdef _LP64
9964   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
9965 #else
9966   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
9967 #endif
9968   ins_encode %{
9969     __ relocate(relocInfo::poll_type);
9970     __ ld_ptr($poll$$Register, 0, G0);
9971   %}
9972   ins_pipe(loadPollP);
9973 %}
9974 
9975 // ============================================================================
9976 // Call Instructions
9977 // Call Java Static Instruction
9978 instruct CallStaticJavaDirect( method meth ) %{
9979   match(CallStaticJava);
9980   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
9981   effect(USE meth);
9982 
9983   size(8);
9984   ins_cost(CALL_COST);
9985   format %{ "CALL,static  ; NOP ==> " %}
9986   ins_encode( Java_Static_Call( meth ), call_epilog );
9987   ins_avoid_back_to_back(AVOID_BEFORE);
9988   ins_pipe(simple_call);
9989 %}
9990 
9991 // Call Java Static Instruction (method handle version)
9992 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
9993   match(CallStaticJava);
9994   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
9995   effect(USE meth, KILL l7_mh_SP_save);
9996 
9997   size(16);
9998   ins_cost(CALL_COST);
9999   format %{ "CALL,static/MethodHandle" %}
10000   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10001   ins_pipe(simple_call);
10002 %}
10003 
10004 // Call Java Dynamic Instruction
10005 instruct CallDynamicJavaDirect( method meth ) %{
10006   match(CallDynamicJava);
10007   effect(USE meth);
10008 
10009   ins_cost(CALL_COST);
10010   format %{ "SET    (empty),R_G5\n\t"
10011             "CALL,dynamic  ; NOP ==> " %}
10012   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10013   ins_pipe(call);
10014 %}
10015 
10016 // Call Runtime Instruction
10017 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10018   match(CallRuntime);
10019   effect(USE meth, KILL l7);
10020   ins_cost(CALL_COST);
10021   format %{ "CALL,runtime" %}
10022   ins_encode( Java_To_Runtime( meth ),
10023               call_epilog, adjust_long_from_native_call );
10024   ins_avoid_back_to_back(AVOID_BEFORE);
10025   ins_pipe(simple_call);
10026 %}
10027 
10028 // Call runtime without safepoint - same as CallRuntime
10029 instruct CallLeafDirect(method meth, l7RegP l7) %{
10030   match(CallLeaf);
10031   effect(USE meth, KILL l7);
10032   ins_cost(CALL_COST);
10033   format %{ "CALL,runtime leaf" %}
10034   ins_encode( Java_To_Runtime( meth ),
10035               call_epilog,
10036               adjust_long_from_native_call );
10037   ins_avoid_back_to_back(AVOID_BEFORE);
10038   ins_pipe(simple_call);
10039 %}
10040 
10041 // Call runtime without safepoint - same as CallLeaf
10042 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10043   match(CallLeafNoFP);
10044   effect(USE meth, KILL l7);
10045   ins_cost(CALL_COST);
10046   format %{ "CALL,runtime leaf nofp" %}
10047   ins_encode( Java_To_Runtime( meth ),
10048               call_epilog,
10049               adjust_long_from_native_call );
10050   ins_avoid_back_to_back(AVOID_BEFORE);
10051   ins_pipe(simple_call);
10052 %}
10053 
10054 // Tail Call; Jump from runtime stub to Java code.
10055 // Also known as an 'interprocedural jump'.
10056 // Target of jump will eventually return to caller.
10057 // TailJump below removes the return address.
10058 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10059   match(TailCall jump_target method_oop );
10060 
10061   ins_cost(CALL_COST);
10062   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10063   ins_encode(form_jmpl(jump_target));
10064   ins_avoid_back_to_back(AVOID_BEFORE);
10065   ins_pipe(tail_call);
10066 %}
10067 
10068 
10069 // Return Instruction
10070 instruct Ret() %{
10071   match(Return);
10072 
10073   // The epilogue node did the ret already.
10074   size(0);
10075   format %{ "! return" %}
10076   ins_encode();
10077   ins_pipe(empty);
10078 %}
10079 
10080 
10081 // Tail Jump; remove the return address; jump to target.
10082 // TailCall above leaves the return address around.
10083 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10084 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10085 // "restore" before this instruction (in Epilogue), we need to materialize it
10086 // in %i0.
10087 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10088   match( TailJump jump_target ex_oop );
10089   ins_cost(CALL_COST);
10090   format %{ "! discard R_O7\n\t"
10091             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10092   ins_encode(form_jmpl_set_exception_pc(jump_target));
10093   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10094   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10095   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10096   ins_avoid_back_to_back(AVOID_BEFORE);
10097   ins_pipe(tail_call);
10098 %}
10099 
10100 // Create exception oop: created by stack-crawling runtime code.
10101 // Created exception is now available to this handler, and is setup
10102 // just prior to jumping to this handler.  No code emitted.
10103 instruct CreateException( o0RegP ex_oop )
10104 %{
10105   match(Set ex_oop (CreateEx));
10106   ins_cost(0);
10107 
10108   size(0);
10109   // use the following format syntax
10110   format %{ "! exception oop is in R_O0; no code emitted" %}
10111   ins_encode();
10112   ins_pipe(empty);
10113 %}
10114 
10115 
10116 // Rethrow exception:
10117 // The exception oop will come in the first argument position.
10118 // Then JUMP (not call) to the rethrow stub code.
10119 instruct RethrowException()
10120 %{
10121   match(Rethrow);
10122   ins_cost(CALL_COST);
10123 
10124   // use the following format syntax
10125   format %{ "Jmp    rethrow_stub" %}
10126   ins_encode(enc_rethrow);
10127   ins_avoid_back_to_back(AVOID_BEFORE);
10128   ins_pipe(tail_call);
10129 %}
10130 
10131 
10132 // Die now
10133 instruct ShouldNotReachHere( )
10134 %{
10135   match(Halt);
10136   ins_cost(CALL_COST);
10137 
10138   size(4);
10139   // Use the following format syntax
10140   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10141   ins_encode( form2_illtrap() );
10142   ins_pipe(tail_call);
10143 %}
10144 
10145 // ============================================================================
10146 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10147 // array for an instance of the superklass.  Set a hidden internal cache on a
10148 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10149 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10150 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10151   match(Set index (PartialSubtypeCheck sub super));
10152   effect( KILL pcc, KILL o7 );
10153   ins_cost(DEFAULT_COST*10);
10154   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10155   ins_encode( enc_PartialSubtypeCheck() );
10156   ins_avoid_back_to_back(AVOID_BEFORE);
10157   ins_pipe(partial_subtype_check_pipe);
10158 %}
10159 
10160 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10161   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10162   effect( KILL idx, KILL o7 );
10163   ins_cost(DEFAULT_COST*10);
10164   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10165   ins_encode( enc_PartialSubtypeCheck() );
10166   ins_avoid_back_to_back(AVOID_BEFORE);
10167   ins_pipe(partial_subtype_check_pipe);
10168 %}
10169 
10170 
10171 // ============================================================================
10172 // inlined locking and unlocking
10173 
10174 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10175   match(Set pcc (FastLock object box));
10176 
10177   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10178   ins_cost(100);
10179 
10180   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10181   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10182   ins_pipe(long_memory_op);
10183 %}
10184 
10185 
10186 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10187   match(Set pcc (FastUnlock object box));
10188   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10189   ins_cost(100);
10190 
10191   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10192   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10193   ins_pipe(long_memory_op);
10194 %}
10195 
10196 // The encodings are generic.
10197 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10198   predicate(!use_block_zeroing(n->in(2)) );
10199   match(Set dummy (ClearArray cnt base));
10200   effect(TEMP temp, KILL ccr);
10201   ins_cost(300);
10202   format %{ "MOV    $cnt,$temp\n"
10203     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10204     "        BRge   loop\t\t! Clearing loop\n"
10205     "        STX    G0,[$base+$temp]\t! delay slot" %}
10206 
10207   ins_encode %{
10208     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10209     Register nof_bytes_arg    = $cnt$$Register;
10210     Register nof_bytes_tmp    = $temp$$Register;
10211     Register base_pointer_arg = $base$$Register;
10212 
10213     Label loop;
10214     __ mov(nof_bytes_arg, nof_bytes_tmp);
10215 
10216     // Loop and clear, walking backwards through the array.
10217     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10218     __ bind(loop);
10219     __ deccc(nof_bytes_tmp, 8);
10220     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10221     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10222     // %%%% this mini-loop must not cross a cache boundary!
10223   %}
10224   ins_pipe(long_memory_op);
10225 %}
10226 
10227 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10228   predicate(use_block_zeroing(n->in(2)));
10229   match(Set dummy (ClearArray cnt base));
10230   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10231   ins_cost(300);
10232   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10233 
10234   ins_encode %{
10235 
10236     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10237     Register to    = $base$$Register;
10238     Register count = $cnt$$Register;
10239 
10240     Label Ldone;
10241     __ nop(); // Separate short branches
10242     // Use BIS for zeroing (temp is not used).
10243     __ bis_zeroing(to, count, G0, Ldone);
10244     __ bind(Ldone);
10245 
10246   %}
10247   ins_pipe(long_memory_op);
10248 %}
10249 
10250 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10251   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10252   match(Set dummy (ClearArray cnt base));
10253   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10254   ins_cost(300);
10255   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10256 
10257   ins_encode %{
10258 
10259     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10260     Register to    = $base$$Register;
10261     Register count = $cnt$$Register;
10262     Register temp  = $tmp$$Register;
10263 
10264     Label Ldone;
10265     __ nop(); // Separate short branches
10266     // Use BIS for zeroing
10267     __ bis_zeroing(to, count, temp, Ldone);
10268     __ bind(Ldone);
10269 
10270   %}
10271   ins_pipe(long_memory_op);
10272 %}
10273 
10274 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10275                         o7RegI tmp, flagsReg ccr) %{
10276   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10277   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10278   ins_cost(300);
10279   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10280   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10281   ins_pipe(long_memory_op);
10282 %}
10283 
10284 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10285                        o7RegI tmp, flagsReg ccr) %{
10286   match(Set result (StrEquals (Binary str1 str2) cnt));
10287   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10288   ins_cost(300);
10289   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10290   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10291   ins_pipe(long_memory_op);
10292 %}
10293 
10294 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10295                       o7RegI tmp2, flagsReg ccr) %{
10296   match(Set result (AryEq ary1 ary2));
10297   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10298   ins_cost(300);
10299   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10300   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10301   ins_pipe(long_memory_op);
10302 %}
10303 
10304 
10305 //---------- Zeros Count Instructions ------------------------------------------
10306 
10307 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10308   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10309   match(Set dst (CountLeadingZerosI src));
10310   effect(TEMP dst, TEMP tmp, KILL cr);
10311 
10312   // x |= (x >> 1);
10313   // x |= (x >> 2);
10314   // x |= (x >> 4);
10315   // x |= (x >> 8);
10316   // x |= (x >> 16);
10317   // return (WORDBITS - popc(x));
10318   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10319             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10320             "OR      $dst,$tmp,$dst\n\t"
10321             "SRL     $dst,2,$tmp\n\t"
10322             "OR      $dst,$tmp,$dst\n\t"
10323             "SRL     $dst,4,$tmp\n\t"
10324             "OR      $dst,$tmp,$dst\n\t"
10325             "SRL     $dst,8,$tmp\n\t"
10326             "OR      $dst,$tmp,$dst\n\t"
10327             "SRL     $dst,16,$tmp\n\t"
10328             "OR      $dst,$tmp,$dst\n\t"
10329             "POPC    $dst,$dst\n\t"
10330             "MOV     32,$tmp\n\t"
10331             "SUB     $tmp,$dst,$dst" %}
10332   ins_encode %{
10333     Register Rdst = $dst$$Register;
10334     Register Rsrc = $src$$Register;
10335     Register Rtmp = $tmp$$Register;
10336     __ srl(Rsrc, 1,    Rtmp);
10337     __ srl(Rsrc, 0,    Rdst);
10338     __ or3(Rdst, Rtmp, Rdst);
10339     __ srl(Rdst, 2,    Rtmp);
10340     __ or3(Rdst, Rtmp, Rdst);
10341     __ srl(Rdst, 4,    Rtmp);
10342     __ or3(Rdst, Rtmp, Rdst);
10343     __ srl(Rdst, 8,    Rtmp);
10344     __ or3(Rdst, Rtmp, Rdst);
10345     __ srl(Rdst, 16,   Rtmp);
10346     __ or3(Rdst, Rtmp, Rdst);
10347     __ popc(Rdst, Rdst);
10348     __ mov(BitsPerInt, Rtmp);
10349     __ sub(Rtmp, Rdst, Rdst);
10350   %}
10351   ins_pipe(ialu_reg);
10352 %}
10353 
10354 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10355   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10356   match(Set dst (CountLeadingZerosL src));
10357   effect(TEMP dst, TEMP tmp, KILL cr);
10358 
10359   // x |= (x >> 1);
10360   // x |= (x >> 2);
10361   // x |= (x >> 4);
10362   // x |= (x >> 8);
10363   // x |= (x >> 16);
10364   // x |= (x >> 32);
10365   // return (WORDBITS - popc(x));
10366   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10367             "OR      $src,$tmp,$dst\n\t"
10368             "SRLX    $dst,2,$tmp\n\t"
10369             "OR      $dst,$tmp,$dst\n\t"
10370             "SRLX    $dst,4,$tmp\n\t"
10371             "OR      $dst,$tmp,$dst\n\t"
10372             "SRLX    $dst,8,$tmp\n\t"
10373             "OR      $dst,$tmp,$dst\n\t"
10374             "SRLX    $dst,16,$tmp\n\t"
10375             "OR      $dst,$tmp,$dst\n\t"
10376             "SRLX    $dst,32,$tmp\n\t"
10377             "OR      $dst,$tmp,$dst\n\t"
10378             "POPC    $dst,$dst\n\t"
10379             "MOV     64,$tmp\n\t"
10380             "SUB     $tmp,$dst,$dst" %}
10381   ins_encode %{
10382     Register Rdst = $dst$$Register;
10383     Register Rsrc = $src$$Register;
10384     Register Rtmp = $tmp$$Register;
10385     __ srlx(Rsrc, 1,    Rtmp);
10386     __ or3( Rsrc, Rtmp, Rdst);
10387     __ srlx(Rdst, 2,    Rtmp);
10388     __ or3( Rdst, Rtmp, Rdst);
10389     __ srlx(Rdst, 4,    Rtmp);
10390     __ or3( Rdst, Rtmp, Rdst);
10391     __ srlx(Rdst, 8,    Rtmp);
10392     __ or3( Rdst, Rtmp, Rdst);
10393     __ srlx(Rdst, 16,   Rtmp);
10394     __ or3( Rdst, Rtmp, Rdst);
10395     __ srlx(Rdst, 32,   Rtmp);
10396     __ or3( Rdst, Rtmp, Rdst);
10397     __ popc(Rdst, Rdst);
10398     __ mov(BitsPerLong, Rtmp);
10399     __ sub(Rtmp, Rdst, Rdst);
10400   %}
10401   ins_pipe(ialu_reg);
10402 %}
10403 
10404 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10405   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10406   match(Set dst (CountTrailingZerosI src));
10407   effect(TEMP dst, KILL cr);
10408 
10409   // return popc(~x & (x - 1));
10410   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10411             "ANDN    $dst,$src,$dst\n\t"
10412             "SRL     $dst,R_G0,$dst\n\t"
10413             "POPC    $dst,$dst" %}
10414   ins_encode %{
10415     Register Rdst = $dst$$Register;
10416     Register Rsrc = $src$$Register;
10417     __ sub(Rsrc, 1, Rdst);
10418     __ andn(Rdst, Rsrc, Rdst);
10419     __ srl(Rdst, G0, Rdst);
10420     __ popc(Rdst, Rdst);
10421   %}
10422   ins_pipe(ialu_reg);
10423 %}
10424 
10425 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10426   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10427   match(Set dst (CountTrailingZerosL src));
10428   effect(TEMP dst, KILL cr);
10429 
10430   // return popc(~x & (x - 1));
10431   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10432             "ANDN    $dst,$src,$dst\n\t"
10433             "POPC    $dst,$dst" %}
10434   ins_encode %{
10435     Register Rdst = $dst$$Register;
10436     Register Rsrc = $src$$Register;
10437     __ sub(Rsrc, 1, Rdst);
10438     __ andn(Rdst, Rsrc, Rdst);
10439     __ popc(Rdst, Rdst);
10440   %}
10441   ins_pipe(ialu_reg);
10442 %}
10443 
10444 
10445 //---------- Population Count Instructions -------------------------------------
10446 
10447 instruct popCountI(iRegIsafe dst, iRegI src) %{
10448   predicate(UsePopCountInstruction);
10449   match(Set dst (PopCountI src));
10450 
10451   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10452             "POPC   $dst, $dst" %}
10453   ins_encode %{
10454     __ srl($src$$Register, G0, $dst$$Register);
10455     __ popc($dst$$Register, $dst$$Register);
10456   %}
10457   ins_pipe(ialu_reg);
10458 %}
10459 
10460 // Note: Long.bitCount(long) returns an int.
10461 instruct popCountL(iRegIsafe dst, iRegL src) %{
10462   predicate(UsePopCountInstruction);
10463   match(Set dst (PopCountL src));
10464 
10465   format %{ "POPC   $src, $dst" %}
10466   ins_encode %{
10467     __ popc($src$$Register, $dst$$Register);
10468   %}
10469   ins_pipe(ialu_reg);
10470 %}
10471 
10472 
10473 // ============================================================================
10474 //------------Bytes reverse--------------------------------------------------
10475 
10476 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10477   match(Set dst (ReverseBytesI src));
10478 
10479   // Op cost is artificially doubled to make sure that load or store
10480   // instructions are preferred over this one which requires a spill
10481   // onto a stack slot.
10482   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10483   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10484 
10485   ins_encode %{
10486     __ set($src$$disp + STACK_BIAS, O7);
10487     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10488   %}
10489   ins_pipe( iload_mem );
10490 %}
10491 
10492 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10493   match(Set dst (ReverseBytesL src));
10494 
10495   // Op cost is artificially doubled to make sure that load or store
10496   // instructions are preferred over this one which requires a spill
10497   // onto a stack slot.
10498   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10499   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10500 
10501   ins_encode %{
10502     __ set($src$$disp + STACK_BIAS, O7);
10503     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10504   %}
10505   ins_pipe( iload_mem );
10506 %}
10507 
10508 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10509   match(Set dst (ReverseBytesUS src));
10510 
10511   // Op cost is artificially doubled to make sure that load or store
10512   // instructions are preferred over this one which requires a spill
10513   // onto a stack slot.
10514   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10515   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10516 
10517   ins_encode %{
10518     // the value was spilled as an int so bias the load
10519     __ set($src$$disp + STACK_BIAS + 2, O7);
10520     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10521   %}
10522   ins_pipe( iload_mem );
10523 %}
10524 
10525 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10526   match(Set dst (ReverseBytesS src));
10527 
10528   // Op cost is artificially doubled to make sure that load or store
10529   // instructions are preferred over this one which requires a spill
10530   // onto a stack slot.
10531   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10532   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10533 
10534   ins_encode %{
10535     // the value was spilled as an int so bias the load
10536     __ set($src$$disp + STACK_BIAS + 2, O7);
10537     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10538   %}
10539   ins_pipe( iload_mem );
10540 %}
10541 
10542 // Load Integer reversed byte order
10543 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10544   match(Set dst (ReverseBytesI (LoadI src)));
10545 
10546   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10547   size(4);
10548   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10549 
10550   ins_encode %{
10551     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10552   %}
10553   ins_pipe(iload_mem);
10554 %}
10555 
10556 // Load Long - aligned and reversed
10557 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10558   match(Set dst (ReverseBytesL (LoadL src)));
10559 
10560   ins_cost(MEMORY_REF_COST);
10561   size(4);
10562   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10563 
10564   ins_encode %{
10565     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10566   %}
10567   ins_pipe(iload_mem);
10568 %}
10569 
10570 // Load unsigned short / char reversed byte order
10571 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10572   match(Set dst (ReverseBytesUS (LoadUS src)));
10573 
10574   ins_cost(MEMORY_REF_COST);
10575   size(4);
10576   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10577 
10578   ins_encode %{
10579     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10580   %}
10581   ins_pipe(iload_mem);
10582 %}
10583 
10584 // Load short reversed byte order
10585 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10586   match(Set dst (ReverseBytesS (LoadS src)));
10587 
10588   ins_cost(MEMORY_REF_COST);
10589   size(4);
10590   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10591 
10592   ins_encode %{
10593     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10594   %}
10595   ins_pipe(iload_mem);
10596 %}
10597 
10598 // Store Integer reversed byte order
10599 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10600   match(Set dst (StoreI dst (ReverseBytesI src)));
10601 
10602   ins_cost(MEMORY_REF_COST);
10603   size(4);
10604   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10605 
10606   ins_encode %{
10607     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10608   %}
10609   ins_pipe(istore_mem_reg);
10610 %}
10611 
10612 // Store Long reversed byte order
10613 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10614   match(Set dst (StoreL dst (ReverseBytesL src)));
10615 
10616   ins_cost(MEMORY_REF_COST);
10617   size(4);
10618   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10619 
10620   ins_encode %{
10621     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10622   %}
10623   ins_pipe(istore_mem_reg);
10624 %}
10625 
10626 // Store unsighed short/char reversed byte order
10627 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10628   match(Set dst (StoreC dst (ReverseBytesUS src)));
10629 
10630   ins_cost(MEMORY_REF_COST);
10631   size(4);
10632   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10633 
10634   ins_encode %{
10635     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10636   %}
10637   ins_pipe(istore_mem_reg);
10638 %}
10639 
10640 // Store short reversed byte order
10641 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10642   match(Set dst (StoreC dst (ReverseBytesS src)));
10643 
10644   ins_cost(MEMORY_REF_COST);
10645   size(4);
10646   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10647 
10648   ins_encode %{
10649     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10650   %}
10651   ins_pipe(istore_mem_reg);
10652 %}
10653 
10654 // ====================VECTOR INSTRUCTIONS=====================================
10655 
10656 // Load Aligned Packed values into a Double Register
10657 instruct loadV8(regD dst, memory mem) %{
10658   predicate(n->as_LoadVector()->memory_size() == 8);
10659   match(Set dst (LoadVector mem));
10660   ins_cost(MEMORY_REF_COST);
10661   size(4);
10662   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10663   ins_encode %{
10664     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10665   %}
10666   ins_pipe(floadD_mem);
10667 %}
10668 
10669 // Store Vector in Double register to memory
10670 instruct storeV8(memory mem, regD src) %{
10671   predicate(n->as_StoreVector()->memory_size() == 8);
10672   match(Set mem (StoreVector mem src));
10673   ins_cost(MEMORY_REF_COST);
10674   size(4);
10675   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10676   ins_encode %{
10677     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10678   %}
10679   ins_pipe(fstoreD_mem_reg);
10680 %}
10681 
10682 // Store Zero into vector in memory
10683 instruct storeV8B_zero(memory mem, immI0 zero) %{
10684   predicate(n->as_StoreVector()->memory_size() == 8);
10685   match(Set mem (StoreVector mem (ReplicateB zero)));
10686   ins_cost(MEMORY_REF_COST);
10687   size(4);
10688   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10689   ins_encode %{
10690     __ stx(G0, $mem$$Address);
10691   %}
10692   ins_pipe(fstoreD_mem_zero);
10693 %}
10694 
10695 instruct storeV4S_zero(memory mem, immI0 zero) %{
10696   predicate(n->as_StoreVector()->memory_size() == 8);
10697   match(Set mem (StoreVector mem (ReplicateS zero)));
10698   ins_cost(MEMORY_REF_COST);
10699   size(4);
10700   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10701   ins_encode %{
10702     __ stx(G0, $mem$$Address);
10703   %}
10704   ins_pipe(fstoreD_mem_zero);
10705 %}
10706 
10707 instruct storeV2I_zero(memory mem, immI0 zero) %{
10708   predicate(n->as_StoreVector()->memory_size() == 8);
10709   match(Set mem (StoreVector mem (ReplicateI zero)));
10710   ins_cost(MEMORY_REF_COST);
10711   size(4);
10712   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10713   ins_encode %{
10714     __ stx(G0, $mem$$Address);
10715   %}
10716   ins_pipe(fstoreD_mem_zero);
10717 %}
10718 
10719 instruct storeV2F_zero(memory mem, immF0 zero) %{
10720   predicate(n->as_StoreVector()->memory_size() == 8);
10721   match(Set mem (StoreVector mem (ReplicateF zero)));
10722   ins_cost(MEMORY_REF_COST);
10723   size(4);
10724   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10725   ins_encode %{
10726     __ stx(G0, $mem$$Address);
10727   %}
10728   ins_pipe(fstoreD_mem_zero);
10729 %}
10730 
10731 // Replicate scalar to packed byte values into Double register
10732 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10733   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10734   match(Set dst (ReplicateB src));
10735   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10736   format %{ "SLLX  $src,56,$tmp\n\t"
10737             "SRLX  $tmp, 8,$tmp2\n\t"
10738             "OR    $tmp,$tmp2,$tmp\n\t"
10739             "SRLX  $tmp,16,$tmp2\n\t"
10740             "OR    $tmp,$tmp2,$tmp\n\t"
10741             "SRLX  $tmp,32,$tmp2\n\t"
10742             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10743             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10744   ins_encode %{
10745     Register Rsrc = $src$$Register;
10746     Register Rtmp = $tmp$$Register;
10747     Register Rtmp2 = $tmp2$$Register;
10748     __ sllx(Rsrc,    56, Rtmp);
10749     __ srlx(Rtmp,     8, Rtmp2);
10750     __ or3 (Rtmp, Rtmp2, Rtmp);
10751     __ srlx(Rtmp,    16, Rtmp2);
10752     __ or3 (Rtmp, Rtmp2, Rtmp);
10753     __ srlx(Rtmp,    32, Rtmp2);
10754     __ or3 (Rtmp, Rtmp2, Rtmp);
10755     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10756   %}
10757   ins_pipe(ialu_reg);
10758 %}
10759 
10760 // Replicate scalar to packed byte values into Double stack
10761 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10762   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10763   match(Set dst (ReplicateB src));
10764   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10765   format %{ "SLLX  $src,56,$tmp\n\t"
10766             "SRLX  $tmp, 8,$tmp2\n\t"
10767             "OR    $tmp,$tmp2,$tmp\n\t"
10768             "SRLX  $tmp,16,$tmp2\n\t"
10769             "OR    $tmp,$tmp2,$tmp\n\t"
10770             "SRLX  $tmp,32,$tmp2\n\t"
10771             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10772             "STX   $tmp,$dst\t! regL to stkD" %}
10773   ins_encode %{
10774     Register Rsrc = $src$$Register;
10775     Register Rtmp = $tmp$$Register;
10776     Register Rtmp2 = $tmp2$$Register;
10777     __ sllx(Rsrc,    56, Rtmp);
10778     __ srlx(Rtmp,     8, Rtmp2);
10779     __ or3 (Rtmp, Rtmp2, Rtmp);
10780     __ srlx(Rtmp,    16, Rtmp2);
10781     __ or3 (Rtmp, Rtmp2, Rtmp);
10782     __ srlx(Rtmp,    32, Rtmp2);
10783     __ or3 (Rtmp, Rtmp2, Rtmp);
10784     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10785     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10786   %}
10787   ins_pipe(ialu_reg);
10788 %}
10789 
10790 // Replicate scalar constant to packed byte values in Double register
10791 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10792   predicate(n->as_Vector()->length() == 8);
10793   match(Set dst (ReplicateB con));
10794   effect(KILL tmp);
10795   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10796   ins_encode %{
10797     // XXX This is a quick fix for 6833573.
10798     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10799     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10800     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10801   %}
10802   ins_pipe(loadConFD);
10803 %}
10804 
10805 // Replicate scalar to packed char/short values into Double register
10806 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10807   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10808   match(Set dst (ReplicateS src));
10809   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10810   format %{ "SLLX  $src,48,$tmp\n\t"
10811             "SRLX  $tmp,16,$tmp2\n\t"
10812             "OR    $tmp,$tmp2,$tmp\n\t"
10813             "SRLX  $tmp,32,$tmp2\n\t"
10814             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10815             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10816   ins_encode %{
10817     Register Rsrc = $src$$Register;
10818     Register Rtmp = $tmp$$Register;
10819     Register Rtmp2 = $tmp2$$Register;
10820     __ sllx(Rsrc,    48, Rtmp);
10821     __ srlx(Rtmp,    16, Rtmp2);
10822     __ or3 (Rtmp, Rtmp2, Rtmp);
10823     __ srlx(Rtmp,    32, Rtmp2);
10824     __ or3 (Rtmp, Rtmp2, Rtmp);
10825     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10826   %}
10827   ins_pipe(ialu_reg);
10828 %}
10829 
10830 // Replicate scalar to packed char/short values into Double stack
10831 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10832   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10833   match(Set dst (ReplicateS src));
10834   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10835   format %{ "SLLX  $src,48,$tmp\n\t"
10836             "SRLX  $tmp,16,$tmp2\n\t"
10837             "OR    $tmp,$tmp2,$tmp\n\t"
10838             "SRLX  $tmp,32,$tmp2\n\t"
10839             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10840             "STX   $tmp,$dst\t! regL to stkD" %}
10841   ins_encode %{
10842     Register Rsrc = $src$$Register;
10843     Register Rtmp = $tmp$$Register;
10844     Register Rtmp2 = $tmp2$$Register;
10845     __ sllx(Rsrc,    48, Rtmp);
10846     __ srlx(Rtmp,    16, Rtmp2);
10847     __ or3 (Rtmp, Rtmp2, Rtmp);
10848     __ srlx(Rtmp,    32, Rtmp2);
10849     __ or3 (Rtmp, Rtmp2, Rtmp);
10850     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10851     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10852   %}
10853   ins_pipe(ialu_reg);
10854 %}
10855 
10856 // Replicate scalar constant to packed char/short values in Double register
10857 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10858   predicate(n->as_Vector()->length() == 4);
10859   match(Set dst (ReplicateS con));
10860   effect(KILL tmp);
10861   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10862   ins_encode %{
10863     // XXX This is a quick fix for 6833573.
10864     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10865     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10866     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10867   %}
10868   ins_pipe(loadConFD);
10869 %}
10870 
10871 // Replicate scalar to packed int values into Double register
10872 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10873   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10874   match(Set dst (ReplicateI src));
10875   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10876   format %{ "SLLX  $src,32,$tmp\n\t"
10877             "SRLX  $tmp,32,$tmp2\n\t"
10878             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10879             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10880   ins_encode %{
10881     Register Rsrc = $src$$Register;
10882     Register Rtmp = $tmp$$Register;
10883     Register Rtmp2 = $tmp2$$Register;
10884     __ sllx(Rsrc,    32, Rtmp);
10885     __ srlx(Rtmp,    32, Rtmp2);
10886     __ or3 (Rtmp, Rtmp2, Rtmp);
10887     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10888   %}
10889   ins_pipe(ialu_reg);
10890 %}
10891 
10892 // Replicate scalar to packed int values into Double stack
10893 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10894   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10895   match(Set dst (ReplicateI src));
10896   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10897   format %{ "SLLX  $src,32,$tmp\n\t"
10898             "SRLX  $tmp,32,$tmp2\n\t"
10899             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10900             "STX   $tmp,$dst\t! regL to stkD" %}
10901   ins_encode %{
10902     Register Rsrc = $src$$Register;
10903     Register Rtmp = $tmp$$Register;
10904     Register Rtmp2 = $tmp2$$Register;
10905     __ sllx(Rsrc,    32, Rtmp);
10906     __ srlx(Rtmp,    32, Rtmp2);
10907     __ or3 (Rtmp, Rtmp2, Rtmp);
10908     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10909     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10910   %}
10911   ins_pipe(ialu_reg);
10912 %}
10913 
10914 // Replicate scalar zero constant to packed int values in Double register
10915 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10916   predicate(n->as_Vector()->length() == 2);
10917   match(Set dst (ReplicateI con));
10918   effect(KILL tmp);
10919   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10920   ins_encode %{
10921     // XXX This is a quick fix for 6833573.
10922     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10923     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10924     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10925   %}
10926   ins_pipe(loadConFD);
10927 %}
10928 
10929 // Replicate scalar to packed float values into Double stack
10930 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10931   predicate(n->as_Vector()->length() == 2);
10932   match(Set dst (ReplicateF src));
10933   ins_cost(MEMORY_REF_COST*2);
10934   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10935             "STF    $src,$dst.lo" %}
10936   opcode(Assembler::stf_op3);
10937   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10938   ins_pipe(fstoreF_stk_reg);
10939 %}
10940 
10941 // Replicate scalar zero constant to packed float values in Double register
10942 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10943   predicate(n->as_Vector()->length() == 2);
10944   match(Set dst (ReplicateF con));
10945   effect(KILL tmp);
10946   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10947   ins_encode %{
10948     // XXX This is a quick fix for 6833573.
10949     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10950     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10951     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10952   %}
10953   ins_pipe(loadConFD);
10954 %}
10955 
10956 //----------PEEPHOLE RULES-----------------------------------------------------
10957 // These must follow all instruction definitions as they use the names
10958 // defined in the instructions definitions.
10959 //
10960 // peepmatch ( root_instr_name [preceding_instruction]* );
10961 //
10962 // peepconstraint %{
10963 // (instruction_number.operand_name relational_op instruction_number.operand_name
10964 //  [, ...] );
10965 // // instruction numbers are zero-based using left to right order in peepmatch
10966 //
10967 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
10968 // // provide an instruction_number.operand_name for each operand that appears
10969 // // in the replacement instruction's match rule
10970 //
10971 // ---------VM FLAGS---------------------------------------------------------
10972 //
10973 // All peephole optimizations can be turned off using -XX:-OptoPeephole
10974 //
10975 // Each peephole rule is given an identifying number starting with zero and
10976 // increasing by one in the order seen by the parser.  An individual peephole
10977 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
10978 // on the command-line.
10979 //
10980 // ---------CURRENT LIMITATIONS----------------------------------------------
10981 //
10982 // Only match adjacent instructions in same basic block
10983 // Only equality constraints
10984 // Only constraints between operands, not (0.dest_reg == EAX_enc)
10985 // Only one replacement instruction
10986 //
10987 // ---------EXAMPLE----------------------------------------------------------
10988 //
10989 // // pertinent parts of existing instructions in architecture description
10990 // instruct movI(eRegI dst, eRegI src) %{
10991 //   match(Set dst (CopyI src));
10992 // %}
10993 //
10994 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
10995 //   match(Set dst (AddI dst src));
10996 //   effect(KILL cr);
10997 // %}
10998 //
10999 // // Change (inc mov) to lea
11000 // peephole %{
11001 //   // increment preceeded by register-register move
11002 //   peepmatch ( incI_eReg movI );
11003 //   // require that the destination register of the increment
11004 //   // match the destination register of the move
11005 //   peepconstraint ( 0.dst == 1.dst );
11006 //   // construct a replacement instruction that sets
11007 //   // the destination to ( move's source register + one )
11008 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
11009 // %}
11010 //
11011 
11012 // // Change load of spilled value to only a spill
11013 // instruct storeI(memory mem, eRegI src) %{
11014 //   match(Set mem (StoreI mem src));
11015 // %}
11016 //
11017 // instruct loadI(eRegI dst, memory mem) %{
11018 //   match(Set dst (LoadI mem));
11019 // %}
11020 //
11021 // peephole %{
11022 //   peepmatch ( loadI storeI );
11023 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
11024 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
11025 // %}
11026 
11027 //----------SMARTSPILL RULES---------------------------------------------------
11028 // These must follow all instruction definitions as they use the names
11029 // defined in the instructions definitions.
11030 //
11031 // SPARC will probably not have any of these rules due to RISC instruction set.
11032 
11033 //----------PIPELINE-----------------------------------------------------------
11034 // Rules which define the behavior of the target architectures pipeline.