1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeBlob.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/dependencies.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "gc/shared/gcLocker.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/iterator.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/verifyOopClosure.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/icache.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/sweeper.hpp"
  50 #include "services/memoryService.hpp"
  51 #include "trace/tracing.hpp"
  52 #include "utilities/xmlstream.hpp"
  53 #ifdef COMPILER1
  54 #include "c1/c1_Compilation.hpp"
  55 #include "c1/c1_Compiler.hpp"
  56 #endif
  57 #ifdef COMPILER2
  58 #include "opto/c2compiler.hpp"
  59 #include "opto/compile.hpp"
  60 #include "opto/node.hpp"
  61 #endif
  62 
  63 // Helper class for printing in CodeCache
  64 class CodeBlob_sizes {
  65  private:
  66   int count;
  67   int total_size;
  68   int header_size;
  69   int code_size;
  70   int stub_size;
  71   int relocation_size;
  72   int scopes_oop_size;
  73   int scopes_metadata_size;
  74   int scopes_data_size;
  75   int scopes_pcs_size;
  76 
  77  public:
  78   CodeBlob_sizes() {
  79     count            = 0;
  80     total_size       = 0;
  81     header_size      = 0;
  82     code_size        = 0;
  83     stub_size        = 0;
  84     relocation_size  = 0;
  85     scopes_oop_size  = 0;
  86     scopes_metadata_size  = 0;
  87     scopes_data_size = 0;
  88     scopes_pcs_size  = 0;
  89   }
  90 
  91   int total()                                    { return total_size; }
  92   bool is_empty()                                { return count == 0; }
  93 
  94   void print(const char* title) {
  95     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
  96                   count,
  97                   title,
  98                   (int)(total() / K),
  99                   header_size             * 100 / total_size,
 100                   relocation_size         * 100 / total_size,
 101                   code_size               * 100 / total_size,
 102                   stub_size               * 100 / total_size,
 103                   scopes_oop_size         * 100 / total_size,
 104                   scopes_metadata_size    * 100 / total_size,
 105                   scopes_data_size        * 100 / total_size,
 106                   scopes_pcs_size         * 100 / total_size);
 107   }
 108 
 109   void add(CodeBlob* cb) {
 110     count++;
 111     total_size       += cb->size();
 112     header_size      += cb->header_size();
 113     relocation_size  += cb->relocation_size();
 114     if (cb->is_nmethod()) {
 115       nmethod* nm = cb->as_nmethod_or_null();
 116       code_size        += nm->insts_size();
 117       stub_size        += nm->stub_size();
 118 
 119       scopes_oop_size  += nm->oops_size();
 120       scopes_metadata_size  += nm->metadata_size();
 121       scopes_data_size += nm->scopes_data_size();
 122       scopes_pcs_size  += nm->scopes_pcs_size();
 123     } else {
 124       code_size        += cb->code_size();
 125     }
 126   }
 127 };
 128 
 129 // Iterate over all CodeHeaps
 130 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 131 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 132 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 133 
 134 address CodeCache::_low_bound = 0;
 135 address CodeCache::_high_bound = 0;
 136 int CodeCache::_number_of_blobs = 0;
 137 int CodeCache::_number_of_adapters = 0;
 138 int CodeCache::_number_of_nmethods = 0;
 139 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 140 bool CodeCache::_needs_cache_clean = false;
 141 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 142 int CodeCache::_codemem_full_count = 0;
 143 
 144 // Initialize array of CodeHeaps
 145 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 146 
 147 void CodeCache::initialize_heaps() {
 148   // Determine size of compiler buffers
 149   size_t code_buffers_size = 0;
 150 #ifdef COMPILER1
 151   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 152   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 153   code_buffers_size += c1_count * Compiler::code_buffer_size();
 154 #endif
 155 #ifdef COMPILER2
 156   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 157   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 158   // Initial size of constant table (this may be increased if a compiled method needs more space)
 159   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 160 #endif
 161 
 162   // Calculate default CodeHeap sizes if not set by user
 163   if (!FLAG_IS_CMDLINE(NonNMethodCodeHeapSize) && !FLAG_IS_CMDLINE(ProfiledCodeHeapSize)
 164       && !FLAG_IS_CMDLINE(NonProfiledCodeHeapSize)) {
 165     // Increase default NonNMethodCodeHeapSize to account for compiler buffers
 166     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + code_buffers_size);
 167 
 168     // Check if we have enough space for the non-nmethod code heap
 169     if (ReservedCodeCacheSize > NonNMethodCodeHeapSize) {
 170       // Use the default value for NonNMethodCodeHeapSize and one half of the
 171       // remaining size for non-profiled methods and one half for profiled methods
 172       size_t remaining_size = ReservedCodeCacheSize - NonNMethodCodeHeapSize;
 173       size_t profiled_size = remaining_size / 2;
 174       size_t non_profiled_size = remaining_size - profiled_size;
 175       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 176       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 177     } else {
 178       // Use all space for the non-nmethod heap and set other heaps to minimal size
 179       FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, ReservedCodeCacheSize - os::vm_page_size() * 2);
 180       FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, os::vm_page_size());
 181       FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, os::vm_page_size());
 182     }
 183   }
 184 
 185   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 186   if(!heap_available(CodeBlobType::MethodProfiled)) {
 187     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, NonProfiledCodeHeapSize + ProfiledCodeHeapSize);
 188     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
 189   }
 190   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 191   if(!heap_available(CodeBlobType::MethodNonProfiled)) {
 192     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, NonNMethodCodeHeapSize + NonProfiledCodeHeapSize);
 193     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
 194   }
 195 
 196   // Make sure we have enough space for VM internal code
 197   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 198   if (NonNMethodCodeHeapSize < (min_code_cache_size + code_buffers_size)) {
 199     vm_exit_during_initialization("Not enough space in non-nmethod code heap to run VM.");
 200   }
 201   guarantee(NonProfiledCodeHeapSize + ProfiledCodeHeapSize + NonNMethodCodeHeapSize <= ReservedCodeCacheSize, "Size check");
 202 
 203   // Align CodeHeaps
 204   size_t alignment = heap_alignment();
 205   size_t non_method_size = align_size_up(NonNMethodCodeHeapSize, alignment);
 206   size_t profiled_size   = align_size_down(ProfiledCodeHeapSize, alignment);
 207 
 208   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 209   // parts for the individual heaps. The memory layout looks like this:
 210   // ---------- high -----------
 211   //    Non-profiled nmethods
 212   //      Profiled nmethods
 213   //         Non-nmethods
 214   // ---------- low ------------
 215   ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 216   ReservedSpace non_method_space    = rs.first_part(non_method_size);
 217   ReservedSpace rest                = rs.last_part(non_method_size);
 218   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 219   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 220 
 221   // Non-nmethods (stubs, adapters, ...)
 222   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 223   // Tier 2 and tier 3 (profiled) methods
 224   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 225   // Tier 1 and tier 4 (non-profiled) methods and native methods
 226   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 227 }
 228 
 229 size_t CodeCache::heap_alignment() {
 230   // If large page support is enabled, align code heaps according to large
 231   // page size to make sure that code cache is covered by large pages.
 232   const size_t page_size = os::can_execute_large_page_memory() ?
 233              os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8) :
 234              os::vm_page_size();
 235   return MAX2(page_size, (size_t) os::vm_allocation_granularity());
 236 }
 237 
 238 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 239   // Determine alignment
 240   const size_t page_size = os::can_execute_large_page_memory() ?
 241           MIN2(os::page_size_for_region_aligned(InitialCodeCacheSize, 8),
 242                os::page_size_for_region_aligned(size, 8)) :
 243           os::vm_page_size();
 244   const size_t granularity = os::vm_allocation_granularity();
 245   const size_t r_align = MAX2(page_size, granularity);
 246   const size_t r_size = align_size_up(size, r_align);
 247   const size_t rs_align = page_size == (size_t) os::vm_page_size() ? 0 :
 248     MAX2(page_size, granularity);
 249 
 250   ReservedCodeSpace rs(r_size, rs_align, rs_align > 0);
 251 
 252   // Initialize bounds
 253   _low_bound = (address)rs.base();
 254   _high_bound = _low_bound + rs.size();
 255 
 256   return rs;
 257 }
 258 
 259 bool CodeCache::heap_available(int code_blob_type) {
 260   if (!SegmentedCodeCache) {
 261     // No segmentation: use a single code heap
 262     return (code_blob_type == CodeBlobType::All);
 263   } else if (Arguments::mode() == Arguments::_int) {
 264     // Interpreter only: we don't need any method code heaps
 265     return (code_blob_type == CodeBlobType::NonNMethod);
 266   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 267     // Tiered compilation: use all code heaps
 268     return (code_blob_type < CodeBlobType::All);
 269   } else {
 270     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 271     return (code_blob_type == CodeBlobType::NonNMethod) ||
 272            (code_blob_type == CodeBlobType::MethodNonProfiled);
 273   }
 274 }
 275 
 276 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 277   switch(code_blob_type) {
 278   case CodeBlobType::NonNMethod:
 279     return "NonNMethodCodeHeapSize";
 280     break;
 281   case CodeBlobType::MethodNonProfiled:
 282     return "NonProfiledCodeHeapSize";
 283     break;
 284   case CodeBlobType::MethodProfiled:
 285     return "ProfiledCodeHeapSize";
 286     break;
 287   }
 288   ShouldNotReachHere();
 289   return NULL;
 290 }
 291 
 292 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 293   // Check if heap is needed
 294   if (!heap_available(code_blob_type)) {
 295     return;
 296   }
 297 
 298   // Create CodeHeap
 299   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 300   _heaps->append(heap);
 301 
 302   // Reserve Space
 303   size_t size_initial = MIN2(InitialCodeCacheSize, rs.size());
 304   size_initial = round_to(size_initial, os::vm_page_size());
 305   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 306     vm_exit_during_initialization("Could not reserve enough space for code cache");
 307   }
 308 
 309   // Register the CodeHeap
 310   MemoryService::add_code_heap_memory_pool(heap, name);
 311 }
 312 
 313 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 314   assert(cb != NULL, "CodeBlob is null");
 315   FOR_ALL_HEAPS(heap) {
 316     if ((*heap)->contains(cb)) {
 317       return *heap;
 318     }
 319   }
 320   ShouldNotReachHere();
 321   return NULL;
 322 }
 323 
 324 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 325   FOR_ALL_HEAPS(heap) {
 326     if ((*heap)->accepts(code_blob_type)) {
 327       return *heap;
 328     }
 329   }
 330   return NULL;
 331 }
 332 
 333 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 334   assert_locked_or_safepoint(CodeCache_lock);
 335   assert(heap != NULL, "heap is null");
 336   return (CodeBlob*)heap->first();
 337 }
 338 
 339 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 340   if (heap_available(code_blob_type)) {
 341     return first_blob(get_code_heap(code_blob_type));
 342   } else {
 343     return NULL;
 344   }
 345 }
 346 
 347 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 348   assert_locked_or_safepoint(CodeCache_lock);
 349   assert(heap != NULL, "heap is null");
 350   return (CodeBlob*)heap->next(cb);
 351 }
 352 
 353 CodeBlob* CodeCache::next_blob(CodeBlob* cb) {
 354   return next_blob(get_code_heap(cb), cb);
 355 }
 356 
 357 /**
 358  * Do not seize the CodeCache lock here--if the caller has not
 359  * already done so, we are going to lose bigtime, since the code
 360  * cache will contain a garbage CodeBlob until the caller can
 361  * run the constructor for the CodeBlob subclass he is busy
 362  * instantiating.
 363  */
 364 CodeBlob* CodeCache::allocate(int size, int code_blob_type, bool strict) {
 365   // Possibly wakes up the sweeper thread.
 366   NMethodSweeper::notify(code_blob_type);
 367   assert_locked_or_safepoint(CodeCache_lock);
 368   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 369   if (size <= 0) {
 370     return NULL;
 371   }
 372   CodeBlob* cb = NULL;
 373 
 374   // Get CodeHeap for the given CodeBlobType
 375   CodeHeap* heap = get_code_heap(code_blob_type);
 376   assert(heap != NULL, "heap is null");
 377 
 378   while (true) {
 379     cb = (CodeBlob*)heap->allocate(size);
 380     if (cb != NULL) break;
 381     if (!heap->expand_by(CodeCacheExpansionSize)) {
 382       // Expansion failed
 383       if (SegmentedCodeCache && !strict) {
 384         // Fallback solution: Try to store code in another code heap.
 385         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 386         // and force stack scanning if less than 10% of the code heap are free.
 387         int type = code_blob_type;
 388         switch (type) {
 389         case CodeBlobType::NonNMethod:
 390           type = CodeBlobType::MethodNonProfiled;
 391           strict = false;   // Allow recursive search for other heaps
 392           break;
 393         case CodeBlobType::MethodProfiled:
 394           type = CodeBlobType::MethodNonProfiled;
 395           strict = true;
 396           break;
 397         case CodeBlobType::MethodNonProfiled:
 398           type = CodeBlobType::MethodProfiled;
 399           strict = true;
 400           break;
 401         }
 402         if (heap_available(type)) {
 403           return allocate(size, type, strict);
 404         }
 405       }
 406       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 407       CompileBroker::handle_full_code_cache(code_blob_type);
 408       return NULL;
 409     }
 410     if (PrintCodeCacheExtension) {
 411       ResourceMark rm;
 412       if (_heaps->length() >= 1) {
 413         tty->print("%s", heap->name());
 414       } else {
 415         tty->print("CodeCache");
 416       }
 417       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 418                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 419                     (address)heap->high() - (address)heap->low_boundary());
 420     }
 421   }
 422   print_trace("allocation", cb, size);
 423   _number_of_blobs++;
 424   return cb;
 425 }
 426 
 427 void CodeCache::free(CodeBlob* cb) {
 428   assert_locked_or_safepoint(CodeCache_lock);
 429 
 430   print_trace("free", cb);
 431   if (cb->is_nmethod()) {
 432     _number_of_nmethods--;
 433     if (((nmethod *)cb)->has_dependencies()) {
 434       _number_of_nmethods_with_dependencies--;
 435     }
 436   }
 437   if (cb->is_adapter_blob()) {
 438     _number_of_adapters--;
 439   }
 440   _number_of_blobs--;
 441 
 442   // Get heap for given CodeBlob and deallocate
 443   get_code_heap(cb)->deallocate(cb);
 444 
 445   assert(_number_of_blobs >= 0, "sanity check");
 446 }
 447 
 448 void CodeCache::commit(CodeBlob* cb) {
 449   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 450   assert_locked_or_safepoint(CodeCache_lock);
 451   if (cb->is_nmethod()) {
 452     _number_of_nmethods++;
 453     if (((nmethod *)cb)->has_dependencies()) {
 454       _number_of_nmethods_with_dependencies++;
 455     }
 456   }
 457   if (cb->is_adapter_blob()) {
 458     _number_of_adapters++;
 459   }
 460 
 461   // flush the hardware I-cache
 462   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 463 }
 464 
 465 bool CodeCache::contains(void *p) {
 466   // It should be ok to call contains without holding a lock
 467   FOR_ALL_HEAPS(heap) {
 468     if ((*heap)->contains(p)) {
 469       return true;
 470     }
 471   }
 472   return false;
 473 }
 474 
 475 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 476 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 477 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 478 CodeBlob* CodeCache::find_blob(void* start) {
 479   CodeBlob* result = find_blob_unsafe(start);
 480   // We could potentially look up non_entrant methods
 481   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || is_error_reported(), "unsafe access to zombie method");
 482   return result;
 483 }
 484 
 485 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 486 // what you are doing)
 487 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 488   // NMT can walk the stack before code cache is created
 489   if (_heaps == NULL || _heaps->is_empty()) return NULL;
 490 
 491   FOR_ALL_HEAPS(heap) {
 492     CodeBlob* result = (CodeBlob*) (*heap)->find_start(start);
 493     if (result != NULL && result->blob_contains((address)start)) {
 494       return result;
 495     }
 496   }
 497   return NULL;
 498 }
 499 
 500 nmethod* CodeCache::find_nmethod(void* start) {
 501   CodeBlob* cb = find_blob(start);
 502   assert(cb->is_nmethod(), "did not find an nmethod");
 503   return (nmethod*)cb;
 504 }
 505 
 506 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 507   assert_locked_or_safepoint(CodeCache_lock);
 508   FOR_ALL_HEAPS(heap) {
 509     FOR_ALL_BLOBS(cb, *heap) {
 510       f(cb);
 511     }
 512   }
 513 }
 514 
 515 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 516   assert_locked_or_safepoint(CodeCache_lock);
 517   NMethodIterator iter;
 518   while(iter.next()) {
 519     f(iter.method());
 520   }
 521 }
 522 
 523 void CodeCache::alive_nmethods_do(void f(nmethod* nm)) {
 524   assert_locked_or_safepoint(CodeCache_lock);
 525   NMethodIterator iter;
 526   while(iter.next_alive()) {
 527     f(iter.method());
 528   }
 529 }
 530 
 531 int CodeCache::alignment_unit() {
 532   return (int)_heaps->first()->alignment_unit();
 533 }
 534 
 535 int CodeCache::alignment_offset() {
 536   return (int)_heaps->first()->alignment_offset();
 537 }
 538 
 539 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 540 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 541   assert_locked_or_safepoint(CodeCache_lock);
 542   NMethodIterator iter;
 543   while(iter.next_alive()) {
 544     iter.method()->do_unloading(is_alive, unloading_occurred);
 545   }
 546 }
 547 
 548 void CodeCache::blobs_do(CodeBlobClosure* f) {
 549   assert_locked_or_safepoint(CodeCache_lock);
 550   FOR_ALL_HEAPS(heap) {
 551     FOR_ALL_BLOBS(cb, *heap) {
 552       if (cb->is_alive()) {
 553         f->do_code_blob(cb);
 554 
 555 #ifdef ASSERT
 556         if (cb->is_nmethod())
 557         ((nmethod*)cb)->verify_scavenge_root_oops();
 558 #endif //ASSERT
 559       }
 560     }
 561   }
 562 }
 563 
 564 // Walk the list of methods which might contain non-perm oops.
 565 void CodeCache::scavenge_root_nmethods_do(CodeBlobClosure* f) {
 566   assert_locked_or_safepoint(CodeCache_lock);
 567 
 568   if (UseG1GC) {
 569     return;
 570   }
 571 
 572   debug_only(mark_scavenge_root_nmethods());
 573 
 574   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 575     debug_only(cur->clear_scavenge_root_marked());
 576     assert(cur->scavenge_root_not_marked(), "");
 577     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 578 
 579     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 580 #ifndef PRODUCT
 581     if (TraceScavenge) {
 582       cur->print_on(tty, is_live ? "scavenge root" : "dead scavenge root"); tty->cr();
 583     }
 584 #endif //PRODUCT
 585     if (is_live) {
 586       // Perform cur->oops_do(f), maybe just once per nmethod.
 587       f->do_code_blob(cur);
 588     }
 589   }
 590 
 591   // Check for stray marks.
 592   debug_only(verify_perm_nmethods(NULL));
 593 }
 594 
 595 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 596   assert_locked_or_safepoint(CodeCache_lock);
 597 
 598   if (UseG1GC) {
 599     return;
 600   }
 601 
 602   nm->set_on_scavenge_root_list();
 603   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 604   set_scavenge_root_nmethods(nm);
 605   print_trace("add_scavenge_root", nm);
 606 }
 607 
 608 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 609   assert_locked_or_safepoint(CodeCache_lock);
 610 
 611   if (UseG1GC) {
 612     return;
 613   }
 614 
 615   print_trace("drop_scavenge_root", nm);
 616   nmethod* last = NULL;
 617   nmethod* cur = scavenge_root_nmethods();
 618   while (cur != NULL) {
 619     nmethod* next = cur->scavenge_root_link();
 620     if (cur == nm) {
 621       if (last != NULL)
 622             last->set_scavenge_root_link(next);
 623       else  set_scavenge_root_nmethods(next);
 624       nm->set_scavenge_root_link(NULL);
 625       nm->clear_on_scavenge_root_list();
 626       return;
 627     }
 628     last = cur;
 629     cur = next;
 630   }
 631   assert(false, "should have been on list");
 632 }
 633 
 634 void CodeCache::prune_scavenge_root_nmethods() {
 635   assert_locked_or_safepoint(CodeCache_lock);
 636 
 637   if (UseG1GC) {
 638     return;
 639   }
 640 
 641   debug_only(mark_scavenge_root_nmethods());
 642 
 643   nmethod* last = NULL;
 644   nmethod* cur = scavenge_root_nmethods();
 645   while (cur != NULL) {
 646     nmethod* next = cur->scavenge_root_link();
 647     debug_only(cur->clear_scavenge_root_marked());
 648     assert(cur->scavenge_root_not_marked(), "");
 649     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 650 
 651     if (!cur->is_zombie() && !cur->is_unloaded()
 652         && cur->detect_scavenge_root_oops()) {
 653       // Keep it.  Advance 'last' to prevent deletion.
 654       last = cur;
 655     } else {
 656       // Prune it from the list, so we don't have to look at it any more.
 657       print_trace("prune_scavenge_root", cur);
 658       cur->set_scavenge_root_link(NULL);
 659       cur->clear_on_scavenge_root_list();
 660       if (last != NULL)
 661             last->set_scavenge_root_link(next);
 662       else  set_scavenge_root_nmethods(next);
 663     }
 664     cur = next;
 665   }
 666 
 667   // Check for stray marks.
 668   debug_only(verify_perm_nmethods(NULL));
 669 }
 670 
 671 #ifndef PRODUCT
 672 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 673   if (UseG1GC) {
 674     return;
 675   }
 676 
 677   // While we are here, verify the integrity of the list.
 678   mark_scavenge_root_nmethods();
 679   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 680     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 681     cur->clear_scavenge_root_marked();
 682   }
 683   verify_perm_nmethods(f);
 684 }
 685 
 686 // Temporarily mark nmethods that are claimed to be on the non-perm list.
 687 void CodeCache::mark_scavenge_root_nmethods() {
 688   NMethodIterator iter;
 689   while(iter.next_alive()) {
 690     nmethod* nm = iter.method();
 691     assert(nm->scavenge_root_not_marked(), "clean state");
 692     if (nm->on_scavenge_root_list())
 693       nm->set_scavenge_root_marked();
 694   }
 695 }
 696 
 697 // If the closure is given, run it on the unlisted nmethods.
 698 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 699 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 700   NMethodIterator iter;
 701   while(iter.next_alive()) {
 702     nmethod* nm = iter.method();
 703     bool call_f = (f_or_null != NULL);
 704     assert(nm->scavenge_root_not_marked(), "must be already processed");
 705     if (nm->on_scavenge_root_list())
 706       call_f = false;  // don't show this one to the client
 707     nm->verify_scavenge_root_oops();
 708     if (call_f)  f_or_null->do_code_blob(nm);
 709   }
 710 }
 711 #endif //PRODUCT
 712 
 713 void CodeCache::verify_clean_inline_caches() {
 714 #ifdef ASSERT
 715   NMethodIterator iter;
 716   while(iter.next_alive()) {
 717     nmethod* nm = iter.method();
 718     assert(!nm->is_unloaded(), "Tautology");
 719     nm->verify_clean_inline_caches();
 720     nm->verify();
 721   }
 722 #endif
 723 }
 724 
 725 void CodeCache::verify_icholder_relocations() {
 726 #ifdef ASSERT
 727   // make sure that we aren't leaking icholders
 728   int count = 0;
 729   FOR_ALL_HEAPS(heap) {
 730     FOR_ALL_BLOBS(cb, *heap) {
 731       if (cb->is_nmethod()) {
 732         nmethod* nm = (nmethod*)cb;
 733         count += nm->verify_icholder_relocations();
 734       }
 735     }
 736   }
 737 
 738   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 739          CompiledICHolder::live_count(), "must agree");
 740 #endif
 741 }
 742 
 743 void CodeCache::gc_prologue() {
 744 }
 745 
 746 void CodeCache::gc_epilogue() {
 747   assert_locked_or_safepoint(CodeCache_lock);
 748   NOT_DEBUG(if (needs_cache_clean())) {
 749     NMethodIterator iter;
 750     while(iter.next_alive()) {
 751       nmethod* nm = iter.method();
 752       assert(!nm->is_unloaded(), "Tautology");
 753       DEBUG_ONLY(if (needs_cache_clean())) {
 754         nm->cleanup_inline_caches();
 755       }
 756       DEBUG_ONLY(nm->verify());
 757       DEBUG_ONLY(nm->verify_oop_relocations());
 758     }
 759   }
 760   set_needs_cache_clean(false);
 761   prune_scavenge_root_nmethods();
 762 
 763   verify_icholder_relocations();
 764 }
 765 
 766 void CodeCache::verify_oops() {
 767   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 768   VerifyOopClosure voc;
 769   NMethodIterator iter;
 770   while(iter.next_alive()) {
 771     nmethod* nm = iter.method();
 772     nm->oops_do(&voc);
 773     nm->verify_oop_relocations();
 774   }
 775 }
 776 
 777 size_t CodeCache::capacity() {
 778   size_t cap = 0;
 779   FOR_ALL_HEAPS(heap) {
 780     cap += (*heap)->capacity();
 781   }
 782   return cap;
 783 }
 784 
 785 size_t CodeCache::unallocated_capacity(int code_blob_type) {
 786   CodeHeap* heap = get_code_heap(code_blob_type);
 787   return (heap != NULL) ? heap->unallocated_capacity() : 0;
 788 }
 789 
 790 size_t CodeCache::unallocated_capacity() {
 791   size_t unallocated_cap = 0;
 792   FOR_ALL_HEAPS(heap) {
 793     unallocated_cap += (*heap)->unallocated_capacity();
 794   }
 795   return unallocated_cap;
 796 }
 797 
 798 size_t CodeCache::max_capacity() {
 799   size_t max_cap = 0;
 800   FOR_ALL_HEAPS(heap) {
 801     max_cap += (*heap)->max_capacity();
 802   }
 803   return max_cap;
 804 }
 805 
 806 /**
 807  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
 808  * is free, reverse_free_ratio() returns 4.
 809  */
 810 double CodeCache::reverse_free_ratio(int code_blob_type) {
 811   CodeHeap* heap = get_code_heap(code_blob_type);
 812   if (heap == NULL) {
 813     return 0;
 814   }
 815 
 816   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
 817   double max_capacity = (double)heap->max_capacity();
 818   double result = max_capacity / unallocated_capacity;
 819   assert (max_capacity >= unallocated_capacity, "Must be");
 820   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
 821   return result;
 822 }
 823 
 824 size_t CodeCache::bytes_allocated_in_freelists() {
 825   size_t allocated_bytes = 0;
 826   FOR_ALL_HEAPS(heap) {
 827     allocated_bytes += (*heap)->allocated_in_freelist();
 828   }
 829   return allocated_bytes;
 830 }
 831 
 832 int CodeCache::allocated_segments() {
 833   int number_of_segments = 0;
 834   FOR_ALL_HEAPS(heap) {
 835     number_of_segments += (*heap)->allocated_segments();
 836   }
 837   return number_of_segments;
 838 }
 839 
 840 size_t CodeCache::freelists_length() {
 841   size_t length = 0;
 842   FOR_ALL_HEAPS(heap) {
 843     length += (*heap)->freelist_length();
 844   }
 845   return length;
 846 }
 847 
 848 void icache_init();
 849 
 850 void CodeCache::initialize() {
 851   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
 852 #ifdef COMPILER2
 853   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
 854 #endif
 855   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
 856   // This was originally just a check of the alignment, causing failure, instead, round
 857   // the code cache to the page size.  In particular, Solaris is moving to a larger
 858   // default page size.
 859   CodeCacheExpansionSize = round_to(CodeCacheExpansionSize, os::vm_page_size());
 860 
 861   if (SegmentedCodeCache) {
 862     // Use multiple code heaps
 863     initialize_heaps();
 864   } else {
 865     // Use a single code heap
 866     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
 867     add_heap(rs, "CodeCache", CodeBlobType::All);
 868   }
 869 
 870   // Initialize ICache flush mechanism
 871   // This service is needed for os::register_code_area
 872   icache_init();
 873 
 874   // Give OS a chance to register generated code area.
 875   // This is used on Windows 64 bit platforms to register
 876   // Structured Exception Handlers for our generated code.
 877   os::register_code_area((char*)low_bound(), (char*)high_bound());
 878 }
 879 
 880 void codeCache_init() {
 881   CodeCache::initialize();
 882 }
 883 
 884 //------------------------------------------------------------------------------------------------
 885 
 886 int CodeCache::number_of_nmethods_with_dependencies() {
 887   return _number_of_nmethods_with_dependencies;
 888 }
 889 
 890 void CodeCache::clear_inline_caches() {
 891   assert_locked_or_safepoint(CodeCache_lock);
 892   NMethodIterator iter;
 893   while(iter.next_alive()) {
 894     iter.method()->clear_inline_caches();
 895   }
 896 }
 897 
 898 // Keeps track of time spent for checking dependencies
 899 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
 900 
 901 int CodeCache::mark_for_deoptimization(DepChange& changes) {
 902   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 903   int number_of_marked_CodeBlobs = 0;
 904 
 905   // search the hierarchy looking for nmethods which are affected by the loading of this class
 906 
 907   // then search the interfaces this class implements looking for nmethods
 908   // which might be dependent of the fact that an interface only had one
 909   // implementor.
 910   // nmethod::check_all_dependencies works only correctly, if no safepoint
 911   // can happen
 912   No_Safepoint_Verifier nsv;
 913   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
 914     Klass* d = str.klass();
 915     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
 916   }
 917 
 918 #ifndef PRODUCT
 919   if (VerifyDependencies) {
 920     // Object pointers are used as unique identifiers for dependency arguments. This
 921     // is only possible if no safepoint, i.e., GC occurs during the verification code.
 922     dependentCheckTime.start();
 923     nmethod::check_all_dependencies(changes);
 924     dependentCheckTime.stop();
 925   }
 926 #endif
 927 
 928   return number_of_marked_CodeBlobs;
 929 }
 930 
 931 
 932 #ifdef HOTSWAP
 933 int CodeCache::mark_for_evol_deoptimization(instanceKlassHandle dependee) {
 934   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 935   int number_of_marked_CodeBlobs = 0;
 936 
 937   // Deoptimize all methods of the evolving class itself
 938   Array<Method*>* old_methods = dependee->methods();
 939   for (int i = 0; i < old_methods->length(); i++) {
 940     ResourceMark rm;
 941     Method* old_method = old_methods->at(i);
 942     nmethod *nm = old_method->code();
 943     if (nm != NULL) {
 944       nm->mark_for_deoptimization();
 945       number_of_marked_CodeBlobs++;
 946     }
 947   }
 948 
 949   NMethodIterator iter;
 950   while(iter.next_alive()) {
 951     nmethod* nm = iter.method();
 952     if (nm->is_marked_for_deoptimization()) {
 953       // ...Already marked in the previous pass; don't count it again.
 954     } else if (nm->is_evol_dependent_on(dependee())) {
 955       ResourceMark rm;
 956       nm->mark_for_deoptimization();
 957       number_of_marked_CodeBlobs++;
 958     } else  {
 959       // flush caches in case they refer to a redefined Method*
 960       nm->clear_inline_caches();
 961     }
 962   }
 963 
 964   return number_of_marked_CodeBlobs;
 965 }
 966 #endif // HOTSWAP
 967 
 968 
 969 // Deoptimize all methods
 970 void CodeCache::mark_all_nmethods_for_deoptimization() {
 971   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 972   NMethodIterator iter;
 973   while(iter.next_alive()) {
 974     nmethod* nm = iter.method();
 975     if (!nm->method()->is_method_handle_intrinsic()) {
 976       nm->mark_for_deoptimization();
 977     }
 978   }
 979 }
 980 
 981 int CodeCache::mark_for_deoptimization(Method* dependee) {
 982   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 983   int number_of_marked_CodeBlobs = 0;
 984 
 985   NMethodIterator iter;
 986   while(iter.next_alive()) {
 987     nmethod* nm = iter.method();
 988     if (nm->is_dependent_on_method(dependee)) {
 989       ResourceMark rm;
 990       nm->mark_for_deoptimization();
 991       number_of_marked_CodeBlobs++;
 992     }
 993   }
 994 
 995   return number_of_marked_CodeBlobs;
 996 }
 997 
 998 void CodeCache::make_marked_nmethods_not_entrant() {
 999   assert_locked_or_safepoint(CodeCache_lock);
1000   NMethodIterator iter;
1001   while(iter.next_alive()) {
1002     nmethod* nm = iter.method();
1003     if (nm->is_marked_for_deoptimization()) {
1004       nm->make_not_entrant();
1005     }
1006   }
1007 }
1008 
1009 // Flushes compiled methods dependent on dependee.
1010 void CodeCache::flush_dependents_on(instanceKlassHandle dependee) {
1011   assert_lock_strong(Compile_lock);
1012 
1013   if (number_of_nmethods_with_dependencies() == 0) return;
1014 
1015   // CodeCache can only be updated by a thread_in_VM and they will all be
1016   // stopped during the safepoint so CodeCache will be safe to update without
1017   // holding the CodeCache_lock.
1018 
1019   KlassDepChange changes(dependee);
1020 
1021   // Compute the dependent nmethods
1022   if (mark_for_deoptimization(changes) > 0) {
1023     // At least one nmethod has been marked for deoptimization
1024     VM_Deoptimize op;
1025     VMThread::execute(&op);
1026   }
1027 }
1028 
1029 #ifdef HOTSWAP
1030 // Flushes compiled methods dependent on dependee in the evolutionary sense
1031 void CodeCache::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1032   // --- Compile_lock is not held. However we are at a safepoint.
1033   assert_locked_or_safepoint(Compile_lock);
1034   if (number_of_nmethods_with_dependencies() == 0) return;
1035 
1036   // CodeCache can only be updated by a thread_in_VM and they will all be
1037   // stopped during the safepoint so CodeCache will be safe to update without
1038   // holding the CodeCache_lock.
1039 
1040   // Compute the dependent nmethods
1041   if (mark_for_evol_deoptimization(ev_k_h) > 0) {
1042     // At least one nmethod has been marked for deoptimization
1043 
1044     // All this already happens inside a VM_Operation, so we'll do all the work here.
1045     // Stuff copied from VM_Deoptimize and modified slightly.
1046 
1047     // We do not want any GCs to happen while we are in the middle of this VM operation
1048     ResourceMark rm;
1049     DeoptimizationMarker dm;
1050 
1051     // Deoptimize all activations depending on marked nmethods
1052     Deoptimization::deoptimize_dependents();
1053 
1054     // Make the dependent methods not entrant
1055     make_marked_nmethods_not_entrant();
1056   }
1057 }
1058 #endif // HOTSWAP
1059 
1060 
1061 // Flushes compiled methods dependent on dependee
1062 void CodeCache::flush_dependents_on_method(methodHandle m_h) {
1063   // --- Compile_lock is not held. However we are at a safepoint.
1064   assert_locked_or_safepoint(Compile_lock);
1065 
1066   // CodeCache can only be updated by a thread_in_VM and they will all be
1067   // stopped dring the safepoint so CodeCache will be safe to update without
1068   // holding the CodeCache_lock.
1069 
1070   // Compute the dependent nmethods
1071   if (mark_for_deoptimization(m_h()) > 0) {
1072     // At least one nmethod has been marked for deoptimization
1073 
1074     // All this already happens inside a VM_Operation, so we'll do all the work here.
1075     // Stuff copied from VM_Deoptimize and modified slightly.
1076 
1077     // We do not want any GCs to happen while we are in the middle of this VM operation
1078     ResourceMark rm;
1079     DeoptimizationMarker dm;
1080 
1081     // Deoptimize all activations depending on marked nmethods
1082     Deoptimization::deoptimize_dependents();
1083 
1084     // Make the dependent methods not entrant
1085     make_marked_nmethods_not_entrant();
1086   }
1087 }
1088 
1089 void CodeCache::verify() {
1090   assert_locked_or_safepoint(CodeCache_lock);
1091   FOR_ALL_HEAPS(heap) {
1092     (*heap)->verify();
1093     FOR_ALL_BLOBS(cb, *heap) {
1094       if (cb->is_alive()) {
1095         cb->verify();
1096       }
1097     }
1098   }
1099 }
1100 
1101 // A CodeHeap is full. Print out warning and report event.
1102 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1103   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1104   CodeHeap* heap = get_code_heap(code_blob_type);
1105   assert(heap != NULL, "heap is null");
1106 
1107   if (!heap->was_full() || print) {
1108     // Not yet reported for this heap, report
1109     heap->report_full();
1110     if (SegmentedCodeCache) {
1111       warning("%s is full. Compiler has been disabled.", get_code_heap_name(code_blob_type));
1112       warning("Try increasing the code heap size using -XX:%s=", get_code_heap_flag_name(code_blob_type));
1113     } else {
1114       warning("CodeCache is full. Compiler has been disabled.");
1115       warning("Try increasing the code cache size using -XX:ReservedCodeCacheSize=");
1116     }
1117     ResourceMark rm;
1118     stringStream s;
1119     // Dump code cache  into a buffer before locking the tty,
1120     {
1121       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1122       print_summary(&s);
1123     }
1124     ttyLocker ttyl;
1125     tty->print("%s", s.as_string());
1126   }
1127 
1128   _codemem_full_count++;
1129   EventCodeCacheFull event;
1130   if (event.should_commit()) {
1131     event.set_codeBlobType((u1)code_blob_type);
1132     event.set_startAddress((u8)heap->low_boundary());
1133     event.set_commitedTopAddress((u8)heap->high());
1134     event.set_reservedTopAddress((u8)heap->high_boundary());
1135     event.set_entryCount(nof_blobs());
1136     event.set_methodCount(nof_nmethods());
1137     event.set_adaptorCount(nof_adapters());
1138     event.set_unallocatedCapacity(heap->unallocated_capacity()/K);
1139     event.set_fullCount(_codemem_full_count);
1140     event.commit();
1141   }
1142 }
1143 
1144 void CodeCache::print_memory_overhead() {
1145   size_t wasted_bytes = 0;
1146   FOR_ALL_HEAPS(heap) {
1147       CodeHeap* curr_heap = *heap;
1148       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1149         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1150         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1151       }
1152   }
1153   // Print bytes that are allocated in the freelist
1154   ttyLocker ttl;
1155   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1156   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1157   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1158   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1159 }
1160 
1161 //------------------------------------------------------------------------------------------------
1162 // Non-product version
1163 
1164 #ifndef PRODUCT
1165 
1166 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1167   if (PrintCodeCache2) {  // Need to add a new flag
1168     ResourceMark rm;
1169     if (size == 0)  size = cb->size();
1170     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1171   }
1172 }
1173 
1174 void CodeCache::print_internals() {
1175   int nmethodCount = 0;
1176   int runtimeStubCount = 0;
1177   int adapterCount = 0;
1178   int deoptimizationStubCount = 0;
1179   int uncommonTrapStubCount = 0;
1180   int bufferBlobCount = 0;
1181   int total = 0;
1182   int nmethodAlive = 0;
1183   int nmethodNotEntrant = 0;
1184   int nmethodZombie = 0;
1185   int nmethodUnloaded = 0;
1186   int nmethodJava = 0;
1187   int nmethodNative = 0;
1188   int max_nm_size = 0;
1189   ResourceMark rm;
1190 
1191   int i = 0;
1192   FOR_ALL_HEAPS(heap) {
1193     if ((_heaps->length() >= 1) && Verbose) {
1194       tty->print_cr("-- %s --", (*heap)->name());
1195     }
1196     FOR_ALL_BLOBS(cb, *heap) {
1197       total++;
1198       if (cb->is_nmethod()) {
1199         nmethod* nm = (nmethod*)cb;
1200 
1201         if (Verbose && nm->method() != NULL) {
1202           ResourceMark rm;
1203           char *method_name = nm->method()->name_and_sig_as_C_string();
1204           tty->print("%s", method_name);
1205           if(nm->is_alive()) { tty->print_cr(" alive"); }
1206           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1207           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1208         }
1209 
1210         nmethodCount++;
1211 
1212         if(nm->is_alive()) { nmethodAlive++; }
1213         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1214         if(nm->is_zombie()) { nmethodZombie++; }
1215         if(nm->is_unloaded()) { nmethodUnloaded++; }
1216         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1217 
1218         if(nm->method() != NULL && nm->is_java_method()) {
1219           nmethodJava++;
1220           max_nm_size = MAX2(max_nm_size, nm->size());
1221         }
1222       } else if (cb->is_runtime_stub()) {
1223         runtimeStubCount++;
1224       } else if (cb->is_deoptimization_stub()) {
1225         deoptimizationStubCount++;
1226       } else if (cb->is_uncommon_trap_stub()) {
1227         uncommonTrapStubCount++;
1228       } else if (cb->is_adapter_blob()) {
1229         adapterCount++;
1230       } else if (cb->is_buffer_blob()) {
1231         bufferBlobCount++;
1232       }
1233     }
1234   }
1235 
1236   int bucketSize = 512;
1237   int bucketLimit = max_nm_size / bucketSize + 1;
1238   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1239   memset(buckets, 0, sizeof(int) * bucketLimit);
1240 
1241   NMethodIterator iter;
1242   while(iter.next()) {
1243     nmethod* nm = iter.method();
1244     if(nm->method() != NULL && nm->is_java_method()) {
1245       buckets[nm->size() / bucketSize]++;
1246     }
1247   }
1248 
1249   tty->print_cr("Code Cache Entries (total of %d)",total);
1250   tty->print_cr("-------------------------------------------------");
1251   tty->print_cr("nmethods: %d",nmethodCount);
1252   tty->print_cr("\talive: %d",nmethodAlive);
1253   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1254   tty->print_cr("\tzombie: %d",nmethodZombie);
1255   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1256   tty->print_cr("\tjava: %d",nmethodJava);
1257   tty->print_cr("\tnative: %d",nmethodNative);
1258   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1259   tty->print_cr("adapters: %d",adapterCount);
1260   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1261   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1262   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1263   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1264   tty->print_cr("-------------------------------------------------");
1265 
1266   for(int i=0; i<bucketLimit; i++) {
1267     if(buckets[i] != 0) {
1268       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1269       tty->fill_to(40);
1270       tty->print_cr("%d",buckets[i]);
1271     }
1272   }
1273 
1274   FREE_C_HEAP_ARRAY(int, buckets);
1275   print_memory_overhead();
1276 }
1277 
1278 #endif // !PRODUCT
1279 
1280 void CodeCache::print() {
1281   print_summary(tty);
1282 
1283 #ifndef PRODUCT
1284   if (!Verbose) return;
1285 
1286   CodeBlob_sizes live;
1287   CodeBlob_sizes dead;
1288 
1289   FOR_ALL_HEAPS(heap) {
1290     FOR_ALL_BLOBS(cb, *heap) {
1291       if (!cb->is_alive()) {
1292         dead.add(cb);
1293       } else {
1294         live.add(cb);
1295       }
1296     }
1297   }
1298 
1299   tty->print_cr("CodeCache:");
1300   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1301 
1302   if (!live.is_empty()) {
1303     live.print("live");
1304   }
1305   if (!dead.is_empty()) {
1306     dead.print("dead");
1307   }
1308 
1309   if (WizardMode) {
1310      // print the oop_map usage
1311     int code_size = 0;
1312     int number_of_blobs = 0;
1313     int number_of_oop_maps = 0;
1314     int map_size = 0;
1315     FOR_ALL_HEAPS(heap) {
1316       FOR_ALL_BLOBS(cb, *heap) {
1317         if (cb->is_alive()) {
1318           number_of_blobs++;
1319           code_size += cb->code_size();
1320           ImmutableOopMapSet* set = cb->oop_maps();
1321           if (set != NULL) {
1322             number_of_oop_maps += set->count();
1323             map_size           += set->nr_of_bytes();
1324           }
1325         }
1326       }
1327     }
1328     tty->print_cr("OopMaps");
1329     tty->print_cr("  #blobs    = %d", number_of_blobs);
1330     tty->print_cr("  code size = %d", code_size);
1331     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1332     tty->print_cr("  map size  = %d", map_size);
1333   }
1334 
1335 #endif // !PRODUCT
1336 }
1337 
1338 void CodeCache::print_summary(outputStream* st, bool detailed) {
1339   FOR_ALL_HEAPS(heap_iterator) {
1340     CodeHeap* heap = (*heap_iterator);
1341     size_t total = (heap->high_boundary() - heap->low_boundary());
1342     if (_heaps->length() >= 1) {
1343       st->print("%s:", heap->name());
1344     } else {
1345       st->print("CodeCache:");
1346     }
1347     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1348                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1349                  total/K, (total - heap->unallocated_capacity())/K,
1350                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1351 
1352     if (detailed) {
1353       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1354                    p2i(heap->low_boundary()),
1355                    p2i(heap->high()),
1356                    p2i(heap->high_boundary()));
1357     }
1358   }
1359 
1360   if (detailed) {
1361     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1362                        " adapters=" UINT32_FORMAT,
1363                        nof_blobs(), nof_nmethods(), nof_adapters());
1364     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1365                  "enabled" : Arguments::mode() == Arguments::_int ?
1366                  "disabled (interpreter mode)" :
1367                  "disabled (not enough contiguous free space left)");
1368   }
1369 }
1370 
1371 void CodeCache::print_codelist(outputStream* st) {
1372   assert_locked_or_safepoint(CodeCache_lock);
1373 
1374   NMethodIterator iter;
1375   while(iter.next_alive()) {
1376     nmethod* nm = iter.method();
1377     ResourceMark rm;
1378     char *method_name = nm->method()->name_and_sig_as_C_string();
1379     st->print_cr("%d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1380                  nm->compile_id(), nm->comp_level(), method_name, (intptr_t)nm->header_begin(),
1381                  (intptr_t)nm->code_begin(), (intptr_t)nm->code_end());
1382   }
1383 }
1384 
1385 void CodeCache::print_layout(outputStream* st) {
1386   assert_locked_or_safepoint(CodeCache_lock);
1387   ResourceMark rm;
1388 
1389   print_summary(st, true);
1390 }
1391 
1392 void CodeCache::log_state(outputStream* st) {
1393   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1394             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1395             nof_blobs(), nof_nmethods(), nof_adapters(),
1396             unallocated_capacity());
1397 }