1 /*
   2  * Copyright (c) 2007, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/cardTableModRefBS.hpp"
  27 #include "gc/shared/cardTableRS.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/genCollectedHeap.hpp"
  30 #include "gc/shared/space.inline.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/virtualspace.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/java.hpp"
  35 #include "runtime/mutexLocker.hpp"
  36 #include "runtime/orderAccess.inline.hpp"
  37 #include "runtime/vmThread.hpp"
  38 
  39 void CardTableModRefBSForCTRS::
  40 non_clean_card_iterate_parallel_work(Space* sp, MemRegion mr,
  41                                      OopsInGenClosure* cl,
  42                                      CardTableRS* ct,
  43                                      uint n_threads) {
  44   assert(n_threads > 0, "expected n_threads > 0");
  45   assert(n_threads <= ParallelGCThreads,
  46          "n_threads: %u > ParallelGCThreads: %u", n_threads, ParallelGCThreads);
  47 
  48   // Make sure the LNC array is valid for the space.
  49   jbyte**   lowest_non_clean;
  50   uintptr_t lowest_non_clean_base_chunk_index;
  51   size_t    lowest_non_clean_chunk_size;
  52   get_LNC_array_for_space(sp, lowest_non_clean,
  53                           lowest_non_clean_base_chunk_index,
  54                           lowest_non_clean_chunk_size);
  55 
  56   uint n_strides = n_threads * ParGCStridesPerThread;
  57   SequentialSubTasksDone* pst = sp->par_seq_tasks();
  58   // Sets the condition for completion of the subtask (how many threads
  59   // need to finish in order to be done).
  60   pst->set_n_threads(n_threads);
  61   pst->set_n_tasks(n_strides);
  62 
  63   uint stride = 0;
  64   while (!pst->is_task_claimed(/* reference */ stride)) {
  65     process_stride(sp, mr, stride, n_strides,
  66                    cl, ct,
  67                    lowest_non_clean,
  68                    lowest_non_clean_base_chunk_index,
  69                    lowest_non_clean_chunk_size);
  70   }
  71   if (pst->all_tasks_completed()) {
  72     // Clear lowest_non_clean array for next time.
  73     intptr_t first_chunk_index = addr_to_chunk_index(mr.start());
  74     uintptr_t last_chunk_index  = addr_to_chunk_index(mr.last());
  75     for (uintptr_t ch = first_chunk_index; ch <= last_chunk_index; ch++) {
  76       intptr_t ind = ch - lowest_non_clean_base_chunk_index;
  77       assert(0 <= ind && ind < (intptr_t)lowest_non_clean_chunk_size,
  78              "Bounds error");
  79       lowest_non_clean[ind] = NULL;
  80     }
  81   }
  82 }
  83 
  84 void
  85 CardTableModRefBSForCTRS::
  86 process_stride(Space* sp,
  87                MemRegion used,
  88                jint stride, int n_strides,
  89                OopsInGenClosure* cl,
  90                CardTableRS* ct,
  91                jbyte** lowest_non_clean,
  92                uintptr_t lowest_non_clean_base_chunk_index,
  93                size_t    lowest_non_clean_chunk_size) {
  94   // We go from higher to lower addresses here; it wouldn't help that much
  95   // because of the strided parallelism pattern used here.
  96 
  97   // Find the first card address of the first chunk in the stride that is
  98   // at least "bottom" of the used region.
  99   jbyte*    start_card  = byte_for(used.start());
 100   jbyte*    end_card    = byte_after(used.last());
 101   uintptr_t start_chunk = addr_to_chunk_index(used.start());
 102   uintptr_t start_chunk_stride_num = start_chunk % n_strides;
 103   jbyte* chunk_card_start;
 104 
 105   if ((uintptr_t)stride >= start_chunk_stride_num) {
 106     chunk_card_start = (jbyte*)(start_card +
 107                                 (stride - start_chunk_stride_num) *
 108                                 ParGCCardsPerStrideChunk);
 109   } else {
 110     // Go ahead to the next chunk group boundary, then to the requested stride.
 111     chunk_card_start = (jbyte*)(start_card +
 112                                 (n_strides - start_chunk_stride_num + stride) *
 113                                 ParGCCardsPerStrideChunk);
 114   }
 115 
 116   while (chunk_card_start < end_card) {
 117     // Even though we go from lower to higher addresses below, the
 118     // strided parallelism can interleave the actual processing of the
 119     // dirty pages in various ways. For a specific chunk within this
 120     // stride, we take care to avoid double scanning or missing a card
 121     // by suitably initializing the "min_done" field in process_chunk_boundaries()
 122     // below, together with the dirty region extension accomplished in
 123     // DirtyCardToOopClosure::do_MemRegion().
 124     jbyte*    chunk_card_end = chunk_card_start + ParGCCardsPerStrideChunk;
 125     // Invariant: chunk_mr should be fully contained within the "used" region.
 126     MemRegion chunk_mr       = MemRegion(addr_for(chunk_card_start),
 127                                          chunk_card_end >= end_card ?
 128                                            used.end() : addr_for(chunk_card_end));
 129     assert(chunk_mr.word_size() > 0, "[chunk_card_start > used_end)");
 130     assert(used.contains(chunk_mr), "chunk_mr should be subset of used");
 131 
 132     // This function is used by the parallel card table iteration.
 133     const bool parallel = true;
 134 
 135     DirtyCardToOopClosure* dcto_cl = sp->new_dcto_cl(cl, precision(),
 136                                                      cl->gen_boundary(),
 137                                                      parallel);
 138     ClearNoncleanCardWrapper clear_cl(dcto_cl, ct, parallel);
 139 
 140 
 141     // Process the chunk.
 142     process_chunk_boundaries(sp,
 143                              dcto_cl,
 144                              chunk_mr,
 145                              used,
 146                              lowest_non_clean,
 147                              lowest_non_clean_base_chunk_index,
 148                              lowest_non_clean_chunk_size);
 149 
 150     // We want the LNC array updates above in process_chunk_boundaries
 151     // to be visible before any of the card table value changes as a
 152     // result of the dirty card iteration below.
 153     OrderAccess::storestore();
 154 
 155     // We want to clear the cards: clear_cl here does the work of finding
 156     // contiguous dirty ranges of cards to process and clear.
 157     clear_cl.do_MemRegion(chunk_mr);
 158 
 159     // Find the next chunk of the stride.
 160     chunk_card_start += ParGCCardsPerStrideChunk * n_strides;
 161   }
 162 }
 163 
 164 
 165 // If you want a talkative process_chunk_boundaries,
 166 // then #define NOISY(x) x
 167 #ifdef NOISY
 168 #error "Encountered a global preprocessor flag, NOISY, which might clash with local definition to follow"
 169 #else
 170 #define NOISY(x)
 171 #endif
 172 
 173 void
 174 CardTableModRefBSForCTRS::
 175 process_chunk_boundaries(Space* sp,
 176                          DirtyCardToOopClosure* dcto_cl,
 177                          MemRegion chunk_mr,
 178                          MemRegion used,
 179                          jbyte** lowest_non_clean,
 180                          uintptr_t lowest_non_clean_base_chunk_index,
 181                          size_t    lowest_non_clean_chunk_size)
 182 {
 183   // We must worry about non-array objects that cross chunk boundaries,
 184   // because such objects are both precisely and imprecisely marked:
 185   // .. if the head of such an object is dirty, the entire object
 186   //    needs to be scanned, under the interpretation that this
 187   //    was an imprecise mark
 188   // .. if the head of such an object is not dirty, we can assume
 189   //    precise marking and it's efficient to scan just the dirty
 190   //    cards.
 191   // In either case, each scanned reference must be scanned precisely
 192   // once so as to avoid cloning of a young referent. For efficiency,
 193   // our closures depend on this property and do not protect against
 194   // double scans.
 195 
 196   uintptr_t start_chunk_index = addr_to_chunk_index(chunk_mr.start());
 197   assert(start_chunk_index >= lowest_non_clean_base_chunk_index, "Bounds error.");
 198   uintptr_t cur_chunk_index   = start_chunk_index - lowest_non_clean_base_chunk_index;
 199 
 200   NOISY(tty->print_cr("===========================================================================");)
 201   NOISY(tty->print_cr(" process_chunk_boundary: Called with [" PTR_FORMAT "," PTR_FORMAT ")",
 202                       chunk_mr.start(), chunk_mr.end());)
 203 
 204   // First, set "our" lowest_non_clean entry, which would be
 205   // used by the thread scanning an adjoining left chunk with
 206   // a non-array object straddling the mutual boundary.
 207   // Find the object that spans our boundary, if one exists.
 208   // first_block is the block possibly straddling our left boundary.
 209   HeapWord* first_block = sp->block_start(chunk_mr.start());
 210   assert((chunk_mr.start() != used.start()) || (first_block == chunk_mr.start()),
 211          "First chunk should always have a co-initial block");
 212   // Does the block straddle the chunk's left boundary, and is it
 213   // a non-array object?
 214   if (first_block < chunk_mr.start()        // first block straddles left bdry
 215       && sp->block_is_obj(first_block)      // first block is an object
 216       && !(oop(first_block)->is_objArray()  // first block is not an array (arrays are precisely dirtied)
 217            || oop(first_block)->is_typeArray())) {
 218     // Find our least non-clean card, so that a left neighbor
 219     // does not scan an object straddling the mutual boundary
 220     // too far to the right, and attempt to scan a portion of
 221     // that object twice.
 222     jbyte* first_dirty_card = NULL;
 223     jbyte* last_card_of_first_obj =
 224         byte_for(first_block + sp->block_size(first_block) - 1);
 225     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
 226     jbyte* last_card_of_cur_chunk = byte_for(chunk_mr.last());
 227     jbyte* last_card_to_check =
 228       (jbyte*) MIN2((intptr_t) last_card_of_cur_chunk,
 229                     (intptr_t) last_card_of_first_obj);
 230     // Note that this does not need to go beyond our last card
 231     // if our first object completely straddles this chunk.
 232     for (jbyte* cur = first_card_of_cur_chunk;
 233          cur <= last_card_to_check; cur++) {
 234       jbyte val = *cur;
 235       if (card_will_be_scanned(val)) {
 236         first_dirty_card = cur; break;
 237       } else {
 238         assert(!card_may_have_been_dirty(val), "Error");
 239       }
 240     }
 241     if (first_dirty_card != NULL) {
 242       NOISY(tty->print_cr(" LNC: Found a dirty card at " PTR_FORMAT " in current chunk",
 243                     first_dirty_card);)
 244       assert(cur_chunk_index < lowest_non_clean_chunk_size, "Bounds error.");
 245       assert(lowest_non_clean[cur_chunk_index] == NULL,
 246              "Write exactly once : value should be stable hereafter for this round");
 247       lowest_non_clean[cur_chunk_index] = first_dirty_card;
 248     } NOISY(else {
 249       tty->print_cr(" LNC: Found no dirty card in current chunk; leaving LNC entry NULL");
 250       // In the future, we could have this thread look for a non-NULL value to copy from its
 251       // right neighbor (up to the end of the first object).
 252       if (last_card_of_cur_chunk < last_card_of_first_obj) {
 253         tty->print_cr(" LNC: BEWARE!!! first obj straddles past right end of chunk:\n"
 254                       "   might be efficient to get value from right neighbor?");
 255       }
 256     })
 257   } else {
 258     // In this case we can help our neighbor by just asking them
 259     // to stop at our first card (even though it may not be dirty).
 260     NOISY(tty->print_cr(" LNC: first block is not a non-array object; setting LNC to first card of current chunk");)
 261     assert(lowest_non_clean[cur_chunk_index] == NULL, "Write once : value should be stable hereafter");
 262     jbyte* first_card_of_cur_chunk = byte_for(chunk_mr.start());
 263     lowest_non_clean[cur_chunk_index] = first_card_of_cur_chunk;
 264   }
 265   NOISY(tty->print_cr(" process_chunk_boundary: lowest_non_clean[" INTPTR_FORMAT "] = " PTR_FORMAT
 266                 "   which corresponds to the heap address " PTR_FORMAT,
 267                 cur_chunk_index, lowest_non_clean[cur_chunk_index],
 268                 (lowest_non_clean[cur_chunk_index] != NULL)
 269                 ? addr_for(lowest_non_clean[cur_chunk_index])
 270                 : NULL);)
 271   NOISY(tty->print_cr("---------------------------------------------------------------------------");)
 272 
 273   // Next, set our own max_to_do, which will strictly/exclusively bound
 274   // the highest address that we will scan past the right end of our chunk.
 275   HeapWord* max_to_do = NULL;
 276   if (chunk_mr.end() < used.end()) {
 277     // This is not the last chunk in the used region.
 278     // What is our last block? We check the first block of
 279     // the next (right) chunk rather than strictly check our last block
 280     // because it's potentially more efficient to do so.
 281     HeapWord* const last_block = sp->block_start(chunk_mr.end());
 282     assert(last_block <= chunk_mr.end(), "In case this property changes.");
 283     if ((last_block == chunk_mr.end())     // our last block does not straddle boundary
 284         || !sp->block_is_obj(last_block)   // last_block isn't an object
 285         || oop(last_block)->is_objArray()  // last_block is an array (precisely marked)
 286         || oop(last_block)->is_typeArray()) {
 287       max_to_do = chunk_mr.end();
 288       NOISY(tty->print_cr(" process_chunk_boundary: Last block on this card is not a non-array object;\n"
 289                          "   max_to_do left at " PTR_FORMAT, max_to_do);)
 290     } else {
 291       assert(last_block < chunk_mr.end(), "Tautology");
 292       // It is a non-array object that straddles the right boundary of this chunk.
 293       // last_obj_card is the card corresponding to the start of the last object
 294       // in the chunk.  Note that the last object may not start in
 295       // the chunk.
 296       jbyte* const last_obj_card = byte_for(last_block);
 297       const jbyte val = *last_obj_card;
 298       if (!card_will_be_scanned(val)) {
 299         assert(!card_may_have_been_dirty(val), "Error");
 300         // The card containing the head is not dirty.  Any marks on
 301         // subsequent cards still in this chunk must have been made
 302         // precisely; we can cap processing at the end of our chunk.
 303         max_to_do = chunk_mr.end();
 304         NOISY(tty->print_cr(" process_chunk_boundary: Head of last object on this card is not dirty;\n"
 305                             "   max_to_do left at " PTR_FORMAT,
 306                             max_to_do);)
 307       } else {
 308         // The last object must be considered dirty, and extends onto the
 309         // following chunk.  Look for a dirty card in that chunk that will
 310         // bound our processing.
 311         jbyte* limit_card = NULL;
 312         const size_t last_block_size = sp->block_size(last_block);
 313         jbyte* const last_card_of_last_obj =
 314           byte_for(last_block + last_block_size - 1);
 315         jbyte* const first_card_of_next_chunk = byte_for(chunk_mr.end());
 316         // This search potentially goes a long distance looking
 317         // for the next card that will be scanned, terminating
 318         // at the end of the last_block, if no earlier dirty card
 319         // is found.
 320         assert(byte_for(chunk_mr.end()) - byte_for(chunk_mr.start()) == ParGCCardsPerStrideChunk,
 321                "last card of next chunk may be wrong");
 322         for (jbyte* cur = first_card_of_next_chunk;
 323              cur <= last_card_of_last_obj; cur++) {
 324           const jbyte val = *cur;
 325           if (card_will_be_scanned(val)) {
 326             NOISY(tty->print_cr(" Found a non-clean card " PTR_FORMAT " with value 0x%x",
 327                                 cur, (int)val);)
 328             limit_card = cur; break;
 329           } else {
 330             assert(!card_may_have_been_dirty(val), "Error: card can't be skipped");
 331           }
 332         }
 333         if (limit_card != NULL) {
 334           max_to_do = addr_for(limit_card);
 335           assert(limit_card != NULL && max_to_do != NULL, "Error");
 336           NOISY(tty->print_cr(" process_chunk_boundary: Found a dirty card at " PTR_FORMAT
 337                         "   max_to_do set at " PTR_FORMAT " which is before end of last block in chunk: "
 338                         PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
 339                         limit_card, max_to_do, last_block, last_block_size, (last_block+last_block_size));)
 340         } else {
 341           // The following is a pessimistic value, because it's possible
 342           // that a dirty card on a subsequent chunk has been cleared by
 343           // the time we get to look at it; we'll correct for that further below,
 344           // using the LNC array which records the least non-clean card
 345           // before cards were cleared in a particular chunk.
 346           limit_card = last_card_of_last_obj;
 347           max_to_do = last_block + last_block_size;
 348           assert(limit_card != NULL && max_to_do != NULL, "Error");
 349           NOISY(tty->print_cr(" process_chunk_boundary: Found no dirty card before end of last block in chunk\n"
 350                               "   Setting limit_card to " PTR_FORMAT
 351                               " and max_to_do " PTR_FORMAT " + " PTR_FORMAT " = " PTR_FORMAT,
 352                               limit_card, last_block, last_block_size, max_to_do);)
 353         }
 354         assert(0 < cur_chunk_index+1 && cur_chunk_index+1 < lowest_non_clean_chunk_size,
 355                "Bounds error.");
 356         // It is possible that a dirty card for the last object may have been
 357         // cleared before we had a chance to examine it. In that case, the value
 358         // will have been logged in the LNC for that chunk.
 359         // We need to examine as many chunks to the right as this object
 360         // covers. However, we need to bound this checking to the largest
 361         // entry in the LNC array: this is because the heap may expand
 362         // after the LNC array has been created but before we reach this point,
 363         // and the last block in our chunk may have been expanded to include
 364         // the expansion delta (and possibly subsequently allocated from, so
 365         // it wouldn't be sufficient to check whether that last block was
 366         // or was not an object at this point).
 367         uintptr_t last_chunk_index_to_check = addr_to_chunk_index(last_block + last_block_size - 1)
 368                                               - lowest_non_clean_base_chunk_index;
 369         const uintptr_t last_chunk_index    = addr_to_chunk_index(used.last())
 370                                               - lowest_non_clean_base_chunk_index;
 371         if (last_chunk_index_to_check > last_chunk_index) {
 372           assert(last_block + last_block_size > used.end(),
 373                  "Inconsistency detected: last_block [" PTR_FORMAT "," PTR_FORMAT "]"
 374                  " does not exceed used.end() = " PTR_FORMAT ","
 375                  " yet last_chunk_index_to_check " INTPTR_FORMAT
 376                  " exceeds last_chunk_index " INTPTR_FORMAT,
 377                  p2i(last_block), p2i(last_block + last_block_size),
 378                  p2i(used.end()),
 379                  last_chunk_index_to_check, last_chunk_index);
 380           assert(sp->used_region().end() > used.end(),
 381                  "Expansion did not happen: "
 382                  "[" PTR_FORMAT "," PTR_FORMAT ") -> [" PTR_FORMAT "," PTR_FORMAT ")",
 383                  p2i(sp->used_region().start()), p2i(sp->used_region().end()),
 384                  p2i(used.start()), p2i(used.end()));
 385           NOISY(tty->print_cr(" process_chunk_boundary: heap expanded; explicitly bounding last_chunk");)
 386           last_chunk_index_to_check = last_chunk_index;
 387         }
 388         for (uintptr_t lnc_index = cur_chunk_index + 1;
 389              lnc_index <= last_chunk_index_to_check;
 390              lnc_index++) {
 391           jbyte* lnc_card = lowest_non_clean[lnc_index];
 392           if (lnc_card != NULL) {
 393             // we can stop at the first non-NULL entry we find
 394             if (lnc_card <= limit_card) {
 395               NOISY(tty->print_cr(" process_chunk_boundary: LNC card " PTR_FORMAT " is lower than limit_card " PTR_FORMAT,
 396                                   "   max_to_do will be lowered to " PTR_FORMAT " from " PTR_FORMAT,
 397                                   lnc_card, limit_card, addr_for(lnc_card), max_to_do);)
 398               limit_card = lnc_card;
 399               max_to_do = addr_for(limit_card);
 400               assert(limit_card != NULL && max_to_do != NULL, "Error");
 401             }
 402             // In any case, we break now
 403             break;
 404           }  // else continue to look for a non-NULL entry if any
 405         }
 406         assert(limit_card != NULL && max_to_do != NULL, "Error");
 407       }
 408       assert(max_to_do != NULL, "OOPS 1 !");
 409     }
 410     assert(max_to_do != NULL, "OOPS 2!");
 411   } else {
 412     max_to_do = used.end();
 413     NOISY(tty->print_cr(" process_chunk_boundary: Last chunk of this space;\n"
 414                   "   max_to_do left at " PTR_FORMAT,
 415                   max_to_do);)
 416   }
 417   assert(max_to_do != NULL, "OOPS 3!");
 418   // Now we can set the closure we're using so it doesn't to beyond
 419   // max_to_do.
 420   dcto_cl->set_min_done(max_to_do);
 421 #ifndef PRODUCT
 422   dcto_cl->set_last_bottom(max_to_do);
 423 #endif
 424   NOISY(tty->print_cr("===========================================================================\n");)
 425 }
 426 
 427 #undef NOISY
 428 
 429 void
 430 CardTableModRefBSForCTRS::
 431 get_LNC_array_for_space(Space* sp,
 432                         jbyte**& lowest_non_clean,
 433                         uintptr_t& lowest_non_clean_base_chunk_index,
 434                         size_t& lowest_non_clean_chunk_size) {
 435 
 436   int       i        = find_covering_region_containing(sp->bottom());
 437   MemRegion covered  = _covered[i];
 438   size_t    n_chunks = chunks_to_cover(covered);
 439 
 440   // Only the first thread to obtain the lock will resize the
 441   // LNC array for the covered region.  Any later expansion can't affect
 442   // the used_at_save_marks region.
 443   // (I observed a bug in which the first thread to execute this would
 444   // resize, and then it would cause "expand_and_allocate" that would
 445   // increase the number of chunks in the covered region.  Then a second
 446   // thread would come and execute this, see that the size didn't match,
 447   // and free and allocate again.  So the first thread would be using a
 448   // freed "_lowest_non_clean" array.)
 449 
 450   // Do a dirty read here. If we pass the conditional then take the rare
 451   // event lock and do the read again in case some other thread had already
 452   // succeeded and done the resize.
 453   int cur_collection = GenCollectedHeap::heap()->total_collections();
 454   if (_last_LNC_resizing_collection[i] != cur_collection) {
 455     MutexLocker x(ParGCRareEvent_lock);
 456     if (_last_LNC_resizing_collection[i] != cur_collection) {
 457       if (_lowest_non_clean[i] == NULL ||
 458           n_chunks != _lowest_non_clean_chunk_size[i]) {
 459 
 460         // Should we delete the old?
 461         if (_lowest_non_clean[i] != NULL) {
 462           assert(n_chunks != _lowest_non_clean_chunk_size[i],
 463                  "logical consequence");
 464           FREE_C_HEAP_ARRAY(CardPtr, _lowest_non_clean[i]);
 465           _lowest_non_clean[i] = NULL;
 466         }
 467         // Now allocate a new one if necessary.
 468         if (_lowest_non_clean[i] == NULL) {
 469           _lowest_non_clean[i]                  = NEW_C_HEAP_ARRAY(CardPtr, n_chunks, mtGC);
 470           _lowest_non_clean_chunk_size[i]       = n_chunks;
 471           _lowest_non_clean_base_chunk_index[i] = addr_to_chunk_index(covered.start());
 472           for (int j = 0; j < (int)n_chunks; j++)
 473             _lowest_non_clean[i][j] = NULL;
 474         }
 475       }
 476       _last_LNC_resizing_collection[i] = cur_collection;
 477     }
 478   }
 479   // In any case, now do the initialization.
 480   lowest_non_clean                  = _lowest_non_clean[i];
 481   lowest_non_clean_base_chunk_index = _lowest_non_clean_base_chunk_index[i];
 482   lowest_non_clean_chunk_size       = _lowest_non_clean_chunk_size[i];
 483 }