< prev index next >

src/share/vm/gc/g1/g1CollectedHeap.cpp

Print this page
rev 8978 : imported patch remove_err_msg


 954 
 955   // Temporarily disable pretouching of heap pages. This interface is used
 956   // when mmap'ing archived heap data in, so pre-touching is wasted.
 957   FlagSetting fs(AlwaysPreTouch, false);
 958 
 959   // Enable archive object checking in G1MarkSweep. We have to let it know
 960   // about each archive range, so that objects in those ranges aren't marked.
 961   G1MarkSweep::enable_archive_object_check();
 962 
 963   // For each specified MemRegion range, allocate the corresponding G1
 964   // regions and mark them as archive regions. We expect the ranges in
 965   // ascending starting address order, without overlap.
 966   for (size_t i = 0; i < count; i++) {
 967     MemRegion curr_range = ranges[i];
 968     HeapWord* start_address = curr_range.start();
 969     size_t word_size = curr_range.word_size();
 970     HeapWord* last_address = curr_range.last();
 971     size_t commits = 0;
 972 
 973     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 974               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 975               p2i(start_address), p2i(last_address)));
 976     guarantee(start_address > prev_last_addr,
 977               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 978               p2i(start_address), p2i(prev_last_addr)));
 979     prev_last_addr = last_address;
 980 
 981     // Check for ranges that start in the same G1 region in which the previous
 982     // range ended, and adjust the start address so we don't try to allocate
 983     // the same region again. If the current range is entirely within that
 984     // region, skip it, just adjusting the recorded top.
 985     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 986     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 987       start_address = start_region->end();
 988       if (start_address > last_address) {
 989         increase_used(word_size * HeapWordSize);
 990         start_region->set_top(last_address + 1);
 991         continue;
 992       }
 993       start_region->set_top(start_address);
 994       curr_range = MemRegion(start_address, last_address + 1);
 995       start_region = _hrm.addr_to_region(start_address);
 996     }
 997 
 998     // Perform the actual region allocation, exiting if it fails.


1000     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1001       return false;
1002     }
1003     increase_used(word_size * HeapWordSize);
1004     if (commits != 0) {
1005       ergo_verbose1(ErgoHeapSizing,
1006                     "attempt heap expansion",
1007                     ergo_format_reason("allocate archive regions")
1008                     ergo_format_byte("total size"),
1009                     HeapRegion::GrainWords * HeapWordSize * commits);
1010     }
1011 
1012     // Mark each G1 region touched by the range as archive, add it to the old set,
1013     // and set the allocation context and top.
1014     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1015     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1016     prev_last_region = last_region;
1017 
1018     while (curr_region != NULL) {
1019       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1020              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1021       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1022       curr_region->set_allocation_context(AllocationContext::system());
1023       curr_region->set_archive();
1024       _old_set.add(curr_region);
1025       if (curr_region != last_region) {
1026         curr_region->set_top(curr_region->end());
1027         curr_region = _hrm.next_region_in_heap(curr_region);
1028       } else {
1029         curr_region->set_top(last_address + 1);
1030         curr_region = NULL;
1031       }
1032     }
1033 
1034     // Notify mark-sweep of the archive range.
1035     G1MarkSweep::set_range_archive(curr_range, true);
1036   }
1037   return true;
1038 }
1039 
1040 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1041   assert(!is_init_completed(), "Expect to be called at JVM init time");
1042   assert(ranges != NULL, "MemRegion array NULL");
1043   assert(count != 0, "No MemRegions provided");
1044   MemRegion reserved = _hrm.reserved();
1045   HeapWord *prev_last_addr = NULL;
1046   HeapRegion* prev_last_region = NULL;
1047 
1048   // For each MemRegion, create filler objects, if needed, in the G1 regions
1049   // that contain the address range. The address range actually within the
1050   // MemRegion will not be modified. That is assumed to have been initialized
1051   // elsewhere, probably via an mmap of archived heap data.
1052   MutexLockerEx x(Heap_lock);
1053   for (size_t i = 0; i < count; i++) {
1054     HeapWord* start_address = ranges[i].start();
1055     HeapWord* last_address = ranges[i].last();
1056 
1057     assert(reserved.contains(start_address) && reserved.contains(last_address),
1058            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1059                    p2i(start_address), p2i(last_address)));
1060     assert(start_address > prev_last_addr,
1061            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1062                    p2i(start_address), p2i(prev_last_addr)));
1063 
1064     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1065     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1066     HeapWord* bottom_address = start_region->bottom();
1067 
1068     // Check for a range beginning in the same region in which the
1069     // previous one ended.
1070     if (start_region == prev_last_region) {
1071       bottom_address = prev_last_addr + 1;
1072     }
1073 
1074     // Verify that the regions were all marked as archive regions by
1075     // alloc_archive_regions.
1076     HeapRegion* curr_region = start_region;
1077     while (curr_region != NULL) {
1078       guarantee(curr_region->is_archive(),
1079                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1080       if (curr_region != last_region) {
1081         curr_region = _hrm.next_region_in_heap(curr_region);
1082       } else {
1083         curr_region = NULL;
1084       }
1085     }
1086 
1087     prev_last_addr = last_address;
1088     prev_last_region = last_region;
1089 
1090     // Fill the memory below the allocated range with dummy object(s),
1091     // if the region bottom does not match the range start, or if the previous
1092     // range ended within the same G1 region, and there is a gap.
1093     if (start_address != bottom_address) {
1094       size_t fill_size = pointer_delta(start_address, bottom_address);
1095       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1096       increase_used(fill_size * HeapWordSize);
1097     }
1098   }
1099 }


1122 }
1123 
1124 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
1125   assert(!is_init_completed(), "Expect to be called at JVM init time");
1126   assert(ranges != NULL, "MemRegion array NULL");
1127   assert(count != 0, "No MemRegions provided");
1128   MemRegion reserved = _hrm.reserved();
1129   HeapWord* prev_last_addr = NULL;
1130   HeapRegion* prev_last_region = NULL;
1131   size_t size_used = 0;
1132   size_t uncommitted_regions = 0;
1133 
1134   // For each Memregion, free the G1 regions that constitute it, and
1135   // notify mark-sweep that the range is no longer to be considered 'archive.'
1136   MutexLockerEx x(Heap_lock);
1137   for (size_t i = 0; i < count; i++) {
1138     HeapWord* start_address = ranges[i].start();
1139     HeapWord* last_address = ranges[i].last();
1140 
1141     assert(reserved.contains(start_address) && reserved.contains(last_address),
1142            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1143                    p2i(start_address), p2i(last_address)));
1144     assert(start_address > prev_last_addr,
1145            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1146                    p2i(start_address), p2i(prev_last_addr)));
1147     size_used += ranges[i].byte_size();
1148     prev_last_addr = last_address;
1149 
1150     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1151     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1152 
1153     // Check for ranges that start in the same G1 region in which the previous
1154     // range ended, and adjust the start address so we don't try to free
1155     // the same region again. If the current range is entirely within that
1156     // region, skip it.
1157     if (start_region == prev_last_region) {
1158       start_address = start_region->end();
1159       if (start_address > last_address) {
1160         continue;
1161       }
1162       start_region = _hrm.addr_to_region(start_address);
1163     }
1164     prev_last_region = last_region;
1165 
1166     // After verifying that each region was marked as an archive region by
1167     // alloc_archive_regions, set it free and empty and uncommit it.
1168     HeapRegion* curr_region = start_region;
1169     while (curr_region != NULL) {
1170       guarantee(curr_region->is_archive(),
1171                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1172       uint curr_index = curr_region->hrm_index();
1173       _old_set.remove(curr_region);
1174       curr_region->set_free();
1175       curr_region->set_top(curr_region->bottom());
1176       if (curr_region != last_region) {
1177         curr_region = _hrm.next_region_in_heap(curr_region);
1178       } else {
1179         curr_region = NULL;
1180       }
1181       _hrm.shrink_at(curr_index, 1);
1182       uncommitted_regions++;
1183     }
1184 
1185     // Notify mark-sweep that this is no longer an archive range.
1186     G1MarkSweep::set_range_archive(ranges[i], false);
1187   }
1188 
1189   if (uncommitted_regions != 0) {
1190     ergo_verbose1(ErgoHeapSizing,
1191                   "attempt heap shrinking",


1738   // 32-bit size_t's.
1739   double used_after_gc_d = (double) used_after_gc;
1740   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1741   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1742 
1743   // Let's make sure that they are both under the max heap size, which
1744   // by default will make them fit into a size_t.
1745   double desired_capacity_upper_bound = (double) max_heap_size;
1746   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1747                                     desired_capacity_upper_bound);
1748   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1749                                     desired_capacity_upper_bound);
1750 
1751   // We can now safely turn them into size_t's.
1752   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1753   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1754 
1755   // This assert only makes sense here, before we adjust them
1756   // with respect to the min and max heap size.
1757   assert(minimum_desired_capacity <= maximum_desired_capacity,
1758          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1759                  "maximum_desired_capacity = " SIZE_FORMAT,
1760                  minimum_desired_capacity, maximum_desired_capacity));
1761 
1762   // Should not be greater than the heap max size. No need to adjust
1763   // it with respect to the heap min size as it's a lower bound (i.e.,
1764   // we'll try to make the capacity larger than it, not smaller).
1765   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1766   // Should not be less than the heap min size. No need to adjust it
1767   // with respect to the heap max size as it's an upper bound (i.e.,
1768   // we'll try to make the capacity smaller than it, not greater).
1769   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1770 
1771   if (capacity_after_gc < minimum_desired_capacity) {
1772     // Don't expand unless it's significant
1773     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1774     ergo_verbose4(ErgoHeapSizing,
1775                   "attempt heap expansion",
1776                   ergo_format_reason("capacity lower than "
1777                                      "min desired capacity after Full GC")
1778                   ergo_format_byte("capacity")
1779                   ergo_format_byte("occupancy")
1780                   ergo_format_byte_perc("min desired capacity"),


2522 
2523   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2524     // Let's use the existing mechanism for the allocation
2525     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2526                                                  AllocationContext::system());
2527     if (dummy_obj != NULL) {
2528       MemRegion mr(dummy_obj, word_size);
2529       CollectedHeap::fill_with_object(mr);
2530     } else {
2531       // If we can't allocate once, we probably cannot allocate
2532       // again. Let's get out of the loop.
2533       break;
2534     }
2535   }
2536 }
2537 #endif // !PRODUCT
2538 
2539 void G1CollectedHeap::increment_old_marking_cycles_started() {
2540   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2541     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2542     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2543     _old_marking_cycles_started, _old_marking_cycles_completed));
2544 
2545   _old_marking_cycles_started++;
2546 }
2547 
2548 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2549   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2550 
2551   // We assume that if concurrent == true, then the caller is a
2552   // concurrent thread that was joined the Suspendible Thread
2553   // Set. If there's ever a cheap way to check this, we should add an
2554   // assert here.
2555 
2556   // Given that this method is called at the end of a Full GC or of a
2557   // concurrent cycle, and those can be nested (i.e., a Full GC can
2558   // interrupt a concurrent cycle), the number of full collections
2559   // completed should be either one (in the case where there was no
2560   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2561   // behind the number of full collections started.
2562 
2563   // This is the case for the inner caller, i.e. a Full GC.
2564   assert(concurrent ||
2565          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2566          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2567          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2568                  "is inconsistent with _old_marking_cycles_completed = %u",
2569                  _old_marking_cycles_started, _old_marking_cycles_completed));
2570 
2571   // This is the case for the outer caller, i.e. the concurrent cycle.
2572   assert(!concurrent ||
2573          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2574          err_msg("for outer caller (concurrent cycle): "
2575                  "_old_marking_cycles_started = %u "
2576                  "is inconsistent with _old_marking_cycles_completed = %u",
2577                  _old_marking_cycles_started, _old_marking_cycles_completed));
2578 
2579   _old_marking_cycles_completed += 1;
2580 
2581   // We need to clear the "in_progress" flag in the CM thread before
2582   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2583   // is set) so that if a waiter requests another System.gc() it doesn't
2584   // incorrectly see that a marking cycle is still in progress.
2585   if (concurrent) {
2586     _cmThread->set_idle();
2587   }
2588 
2589   // This notify_all() will ensure that a thread that called
2590   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2591   // and it's waiting for a full GC to finish will be woken up. It is
2592   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2593   FullGCCount_lock->notify_all();
2594 }
2595 
2596 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2597   collector_state()->set_concurrent_cycle_started(true);


3107  public:
3108   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3109   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3110   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3111 
3112   int count() { return _count; }
3113   void reset_count() { _count = 0; };
3114 };
3115 
3116 class VerifyKlassClosure: public KlassClosure {
3117   YoungRefCounterClosure _young_ref_counter_closure;
3118   OopClosure *_oop_closure;
3119  public:
3120   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3121   void do_klass(Klass* k) {
3122     k->oops_do(_oop_closure);
3123 
3124     _young_ref_counter_closure.reset_count();
3125     k->oops_do(&_young_ref_counter_closure);
3126     if (_young_ref_counter_closure.count() > 0) {
3127       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3128     }
3129   }
3130 };
3131 
3132 class VerifyLivenessOopClosure: public OopClosure {
3133   G1CollectedHeap* _g1h;
3134   VerifyOption _vo;
3135 public:
3136   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3137     _g1h(g1h), _vo(vo)
3138   { }
3139   void do_oop(narrowOop *p) { do_oop_work(p); }
3140   void do_oop(      oop *p) { do_oop_work(p); }
3141 
3142   template <class T> void do_oop_work(T *p) {
3143     oop obj = oopDesc::load_decode_heap_oop(p);
3144     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3145               "Dead object referenced by a not dead object");
3146   }
3147 };


3177 
3178       o->oop_iterate_no_header(&isLive);
3179       if (!_hr->obj_allocated_since_prev_marking(o)) {
3180         size_t obj_size = o->size();    // Make sure we don't overflow
3181         _live_bytes += (obj_size * HeapWordSize);
3182       }
3183     }
3184   }
3185   size_t live_bytes() { return _live_bytes; }
3186 };
3187 
3188 class VerifyArchiveOopClosure: public OopClosure {
3189 public:
3190   VerifyArchiveOopClosure(HeapRegion *hr) { }
3191   void do_oop(narrowOop *p) { do_oop_work(p); }
3192   void do_oop(      oop *p) { do_oop_work(p); }
3193 
3194   template <class T> void do_oop_work(T *p) {
3195     oop obj = oopDesc::load_decode_heap_oop(p);
3196     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3197               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3198                       p2i(p), p2i(obj)));
3199   }
3200 };
3201 
3202 class VerifyArchiveRegionClosure: public ObjectClosure {
3203 public:
3204   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3205   // Verify that all object pointers are to archive regions.
3206   void do_object(oop o) {
3207     VerifyArchiveOopClosure checkOop(NULL);
3208     assert(o != NULL, "Should not be here for NULL oops");
3209     o->oop_iterate_no_header(&checkOop);
3210   }
3211 };
3212 
3213 class VerifyRegionClosure: public HeapRegionClosure {
3214 private:
3215   bool             _par;
3216   VerifyOption     _vo;
3217   bool             _failures;
3218 public:


4692 
4693 public:
4694   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4695     AbstractGangTask("String/Symbol Unlinking"),
4696     _is_alive(is_alive),
4697     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4698     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4699 
4700     _initial_string_table_size = StringTable::the_table()->table_size();
4701     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4702     if (process_strings) {
4703       StringTable::clear_parallel_claimed_index();
4704     }
4705     if (process_symbols) {
4706       SymbolTable::clear_parallel_claimed_index();
4707     }
4708   }
4709 
4710   ~G1StringSymbolTableUnlinkTask() {
4711     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4712               err_msg("claim value %d after unlink less than initial string table size %d",
4713                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4714     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4715               err_msg("claim value %d after unlink less than initial symbol table size %d",
4716                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4717 
4718     if (G1TraceStringSymbolTableScrubbing) {
4719       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4720                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4721                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4722                              strings_processed(), strings_removed(),
4723                              symbols_processed(), symbols_removed());
4724     }
4725   }
4726 
4727   void work(uint worker_id) {
4728     int strings_processed = 0;
4729     int strings_removed = 0;
4730     int symbols_processed = 0;
4731     int symbols_removed = 0;
4732     if (_process_strings) {
4733       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4734       Atomic::add(strings_processed, &_strings_processed);
4735       Atomic::add(strings_removed, &_strings_removed);
4736     }


5096 // Non Copying Keep Alive closure
5097 class G1KeepAliveClosure: public OopClosure {
5098   G1CollectedHeap* _g1;
5099 public:
5100   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5101   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5102   void do_oop(oop* p) {
5103     oop obj = *p;
5104     assert(obj != NULL, "the caller should have filtered out NULL values");
5105 
5106     const InCSetState cset_state = _g1->in_cset_state(obj);
5107     if (!cset_state.is_in_cset_or_humongous()) {
5108       return;
5109     }
5110     if (cset_state.is_in_cset()) {
5111       assert( obj->is_forwarded(), "invariant" );
5112       *p = obj->forwardee();
5113     } else {
5114       assert(!obj->is_forwarded(), "invariant" );
5115       assert(cset_state.is_humongous(),
5116              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5117       _g1->set_humongous_is_live(obj);
5118     }
5119   }
5120 };
5121 
5122 // Copying Keep Alive closure - can be called from both
5123 // serial and parallel code as long as different worker
5124 // threads utilize different G1ParScanThreadState instances
5125 // and different queues.
5126 
5127 class G1CopyingKeepAliveClosure: public OopClosure {
5128   G1CollectedHeap*         _g1h;
5129   OopClosure*              _copy_non_heap_obj_cl;
5130   G1ParScanThreadState*    _par_scan_state;
5131 
5132 public:
5133   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5134                             OopClosure* non_heap_obj_cl,
5135                             G1ParScanThreadState* pss):
5136     _g1h(g1h),


5150       // evacuation failure) then we need to update the reference
5151       // field and, if both reference and referent are in the G1
5152       // heap, update the RSet for the referent.
5153       //
5154       // If the referent has not been forwarded then we have to keep
5155       // it alive by policy. Therefore we have copy the referent.
5156       //
5157       // If the reference field is in the G1 heap then we can push
5158       // on the PSS queue. When the queue is drained (after each
5159       // phase of reference processing) the object and it's followers
5160       // will be copied, the reference field set to point to the
5161       // new location, and the RSet updated. Otherwise we need to
5162       // use the the non-heap or metadata closures directly to copy
5163       // the referent object and update the pointer, while avoiding
5164       // updating the RSet.
5165 
5166       if (_g1h->is_in_g1_reserved(p)) {
5167         _par_scan_state->push_on_queue(p);
5168       } else {
5169         assert(!Metaspace::contains((const void*)p),
5170                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5171         _copy_non_heap_obj_cl->do_oop(p);
5172       }
5173     }
5174   }
5175 };
5176 
5177 // Serial drain queue closure. Called as the 'complete_gc'
5178 // closure for each discovered list in some of the
5179 // reference processing phases.
5180 
5181 class G1STWDrainQueueClosure: public VoidClosure {
5182 protected:
5183   G1CollectedHeap* _g1h;
5184   G1ParScanThreadState* _par_scan_state;
5185 
5186   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5187 
5188 public:
5189   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5190     _g1h(g1h),


5806     ct_bs->verify_g1_young_region(mr);
5807   } else {
5808     ct_bs->verify_dirty_region(mr);
5809   }
5810 }
5811 
5812 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5813   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5814   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5815     verify_dirty_region(hr);
5816   }
5817 }
5818 
5819 void G1CollectedHeap::verify_dirty_young_regions() {
5820   verify_dirty_young_list(_young_list->first_region());
5821 }
5822 
5823 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5824                                                HeapWord* tams, HeapWord* end) {
5825   guarantee(tams <= end,
5826             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5827   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5828   if (result < end) {
5829     gclog_or_tty->cr();
5830     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5831                            bitmap_name, p2i(result));
5832     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5833                            bitmap_name, p2i(tams), p2i(end));
5834     return false;
5835   }
5836   return true;
5837 }
5838 
5839 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5840   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5841   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5842 
5843   HeapWord* bottom = hr->bottom();
5844   HeapWord* ptams  = hr->prev_top_at_mark_start();
5845   HeapWord* ntams  = hr->next_top_at_mark_start();
5846   HeapWord* end    = hr->end();


6157         !r->rem_set()->is_empty()) {
6158 
6159       if (G1TraceEagerReclaimHumongousObjects) {
6160         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6161                                region_idx,
6162                                (size_t)obj->size() * HeapWordSize,
6163                                p2i(r->bottom()),
6164                                r->region_num(),
6165                                r->rem_set()->occupied(),
6166                                r->rem_set()->strong_code_roots_list_length(),
6167                                next_bitmap->isMarked(r->bottom()),
6168                                g1h->is_humongous_reclaim_candidate(region_idx),
6169                                obj->is_typeArray()
6170                               );
6171       }
6172 
6173       return false;
6174     }
6175 
6176     guarantee(obj->is_typeArray(),
6177               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6178                       PTR_FORMAT " is not.",
6179                       p2i(r->bottom())));
6180 
6181     if (G1TraceEagerReclaimHumongousObjects) {
6182       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6183                              region_idx,
6184                              (size_t)obj->size() * HeapWordSize,
6185                              p2i(r->bottom()),
6186                              r->region_num(),
6187                              r->rem_set()->occupied(),
6188                              r->rem_set()->strong_code_roots_list_length(),
6189                              next_bitmap->isMarked(r->bottom()),
6190                              g1h->is_humongous_reclaim_candidate(region_idx),
6191                              obj->is_typeArray()
6192                             );
6193     }
6194     // Need to clear mark bit of the humongous object if already set.
6195     if (next_bitmap->isMarked(r->bottom())) {
6196       next_bitmap->clear(r->bottom());
6197     }
6198     _freed_bytes += r->used();
6199     r->set_containing_set(NULL);


6388   assert_at_safepoint(true /* should_be_vm_thread */);
6389 
6390   if (!free_list_only) {
6391     TearDownRegionSetsClosure cl(&_old_set);
6392     heap_region_iterate(&cl);
6393 
6394     // Note that emptying the _young_list is postponed and instead done as
6395     // the first step when rebuilding the regions sets again. The reason for
6396     // this is that during a full GC string deduplication needs to know if
6397     // a collected region was young or old when the full GC was initiated.
6398   }
6399   _hrm.remove_all_free_regions();
6400 }
6401 
6402 void G1CollectedHeap::increase_used(size_t bytes) {
6403   _summary_bytes_used += bytes;
6404 }
6405 
6406 void G1CollectedHeap::decrease_used(size_t bytes) {
6407   assert(_summary_bytes_used >= bytes,
6408          err_msg("invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6409                  _summary_bytes_used, bytes));
6410   _summary_bytes_used -= bytes;
6411 }
6412 
6413 void G1CollectedHeap::set_used(size_t bytes) {
6414   _summary_bytes_used = bytes;
6415 }
6416 
6417 class RebuildRegionSetsClosure : public HeapRegionClosure {
6418 private:
6419   bool            _free_list_only;
6420   HeapRegionSet*   _old_set;
6421   HeapRegionManager*   _hrm;
6422   size_t          _total_used;
6423 
6424 public:
6425   RebuildRegionSetsClosure(bool free_list_only,
6426                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6427     _free_list_only(free_list_only),
6428     _old_set(old_set), _hrm(hrm), _total_used(0) {
6429     assert(_hrm->num_free_regions() == 0, "pre-condition");


6471   }
6472 };
6473 
6474 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6475   assert_at_safepoint(true /* should_be_vm_thread */);
6476 
6477   if (!free_list_only) {
6478     _young_list->empty_list();
6479   }
6480 
6481   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6482   heap_region_iterate(&cl);
6483 
6484   if (!free_list_only) {
6485     set_used(cl.total_used());
6486     if (_archive_allocator != NULL) {
6487       _archive_allocator->clear_used();
6488     }
6489   }
6490   assert(used_unlocked() == recalculate_used(),
6491          err_msg("inconsistent used_unlocked(), "
6492                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6493                  used_unlocked(), recalculate_used()));
6494 }
6495 
6496 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6497   _refine_cte_cl->set_concurrent(concurrent);
6498 }
6499 
6500 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6501   HeapRegion* hr = heap_region_containing(p);
6502   return hr->is_in(p);
6503 }
6504 
6505 // Methods for the mutator alloc region
6506 
6507 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6508                                                       bool force) {
6509   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6510   assert(!force || g1_policy()->can_expand_young_list(),
6511          "if force is true we should be able to expand the young list");
6512   bool young_list_full = g1_policy()->is_young_list_full();
6513   if (force || !young_list_full) {


6614 
6615 public:
6616   HeapRegionSetCount _old_count;
6617   HeapRegionSetCount _humongous_count;
6618   HeapRegionSetCount _free_count;
6619 
6620   VerifyRegionListsClosure(HeapRegionSet* old_set,
6621                            HeapRegionSet* humongous_set,
6622                            HeapRegionManager* hrm) :
6623     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6624     _old_count(), _humongous_count(), _free_count(){ }
6625 
6626   bool doHeapRegion(HeapRegion* hr) {
6627     if (hr->is_continues_humongous()) {
6628       return false;
6629     }
6630 
6631     if (hr->is_young()) {
6632       // TODO
6633     } else if (hr->is_starts_humongous()) {
6634       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6635       _humongous_count.increment(1u, hr->capacity());
6636     } else if (hr->is_empty()) {
6637       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6638       _free_count.increment(1u, hr->capacity());
6639     } else if (hr->is_old()) {
6640       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6641       _old_count.increment(1u, hr->capacity());
6642     } else {
6643       // There are no other valid region types. Check for one invalid
6644       // one we can identify: pinned without old or humongous set.
6645       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6646       ShouldNotReachHere();
6647     }
6648     return false;
6649   }
6650 
6651   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6652     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6653     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6654         old_set->total_capacity_bytes(), _old_count.capacity()));
6655 
6656     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6657     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6658         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6659 
6660     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6661     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6662         free_list->total_capacity_bytes(), _free_count.capacity()));
6663   }
6664 };
6665 
6666 void G1CollectedHeap::verify_region_sets() {
6667   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6668 
6669   // First, check the explicit lists.
6670   _hrm.verify();
6671   {
6672     // Given that a concurrent operation might be adding regions to
6673     // the secondary free list we have to take the lock before
6674     // verifying it.
6675     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6676     _secondary_free_list.verify_list();
6677   }
6678 
6679   // If a concurrent region freeing operation is in progress it will
6680   // be difficult to correctly attributed any free regions we come
6681   // across to the correct free list given that they might belong to
6682   // one of several (free_list, secondary_free_list, any local lists,


6698   // Finally, make sure that the region accounting in the lists is
6699   // consistent with what we see in the heap.
6700 
6701   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6702   heap_region_iterate(&cl);
6703   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6704 }
6705 
6706 // Optimized nmethod scanning
6707 
6708 class RegisterNMethodOopClosure: public OopClosure {
6709   G1CollectedHeap* _g1h;
6710   nmethod* _nm;
6711 
6712   template <class T> void do_oop_work(T* p) {
6713     T heap_oop = oopDesc::load_heap_oop(p);
6714     if (!oopDesc::is_null(heap_oop)) {
6715       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6716       HeapRegion* hr = _g1h->heap_region_containing(obj);
6717       assert(!hr->is_continues_humongous(),
6718              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6719                      " starting at " HR_FORMAT,
6720                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6721 
6722       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6723       hr->add_strong_code_root_locked(_nm);
6724     }
6725   }
6726 
6727 public:
6728   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6729     _g1h(g1h), _nm(nm) {}
6730 
6731   void do_oop(oop* p)       { do_oop_work(p); }
6732   void do_oop(narrowOop* p) { do_oop_work(p); }
6733 };
6734 
6735 class UnregisterNMethodOopClosure: public OopClosure {
6736   G1CollectedHeap* _g1h;
6737   nmethod* _nm;
6738 
6739   template <class T> void do_oop_work(T* p) {
6740     T heap_oop = oopDesc::load_heap_oop(p);
6741     if (!oopDesc::is_null(heap_oop)) {
6742       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6743       HeapRegion* hr = _g1h->heap_region_containing(obj);
6744       assert(!hr->is_continues_humongous(),
6745              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6746                      " starting at " HR_FORMAT,
6747                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6748 
6749       hr->remove_strong_code_root(_nm);
6750     }
6751   }
6752 
6753 public:
6754   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6755     _g1h(g1h), _nm(nm) {}
6756 
6757   void do_oop(oop* p)       { do_oop_work(p); }
6758   void do_oop(narrowOop* p) { do_oop_work(p); }
6759 };
6760 
6761 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6762   CollectedHeap::register_nmethod(nm);
6763 
6764   guarantee(nm != NULL, "sanity");
6765   RegisterNMethodOopClosure reg_cl(this, nm);
6766   nm->oops_do(&reg_cl);
6767 }




 954 
 955   // Temporarily disable pretouching of heap pages. This interface is used
 956   // when mmap'ing archived heap data in, so pre-touching is wasted.
 957   FlagSetting fs(AlwaysPreTouch, false);
 958 
 959   // Enable archive object checking in G1MarkSweep. We have to let it know
 960   // about each archive range, so that objects in those ranges aren't marked.
 961   G1MarkSweep::enable_archive_object_check();
 962 
 963   // For each specified MemRegion range, allocate the corresponding G1
 964   // regions and mark them as archive regions. We expect the ranges in
 965   // ascending starting address order, without overlap.
 966   for (size_t i = 0; i < count; i++) {
 967     MemRegion curr_range = ranges[i];
 968     HeapWord* start_address = curr_range.start();
 969     size_t word_size = curr_range.word_size();
 970     HeapWord* last_address = curr_range.last();
 971     size_t commits = 0;
 972 
 973     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 974               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 975               p2i(start_address), p2i(last_address));
 976     guarantee(start_address > prev_last_addr,
 977               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 978               p2i(start_address), p2i(prev_last_addr));
 979     prev_last_addr = last_address;
 980 
 981     // Check for ranges that start in the same G1 region in which the previous
 982     // range ended, and adjust the start address so we don't try to allocate
 983     // the same region again. If the current range is entirely within that
 984     // region, skip it, just adjusting the recorded top.
 985     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 986     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 987       start_address = start_region->end();
 988       if (start_address > last_address) {
 989         increase_used(word_size * HeapWordSize);
 990         start_region->set_top(last_address + 1);
 991         continue;
 992       }
 993       start_region->set_top(start_address);
 994       curr_range = MemRegion(start_address, last_address + 1);
 995       start_region = _hrm.addr_to_region(start_address);
 996     }
 997 
 998     // Perform the actual region allocation, exiting if it fails.


1000     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1001       return false;
1002     }
1003     increase_used(word_size * HeapWordSize);
1004     if (commits != 0) {
1005       ergo_verbose1(ErgoHeapSizing,
1006                     "attempt heap expansion",
1007                     ergo_format_reason("allocate archive regions")
1008                     ergo_format_byte("total size"),
1009                     HeapRegion::GrainWords * HeapWordSize * commits);
1010     }
1011 
1012     // Mark each G1 region touched by the range as archive, add it to the old set,
1013     // and set the allocation context and top.
1014     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1015     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1016     prev_last_region = last_region;
1017 
1018     while (curr_region != NULL) {
1019       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1020              "Region already in use (index %u)", curr_region->hrm_index());
1021       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1022       curr_region->set_allocation_context(AllocationContext::system());
1023       curr_region->set_archive();
1024       _old_set.add(curr_region);
1025       if (curr_region != last_region) {
1026         curr_region->set_top(curr_region->end());
1027         curr_region = _hrm.next_region_in_heap(curr_region);
1028       } else {
1029         curr_region->set_top(last_address + 1);
1030         curr_region = NULL;
1031       }
1032     }
1033 
1034     // Notify mark-sweep of the archive range.
1035     G1MarkSweep::set_range_archive(curr_range, true);
1036   }
1037   return true;
1038 }
1039 
1040 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1041   assert(!is_init_completed(), "Expect to be called at JVM init time");
1042   assert(ranges != NULL, "MemRegion array NULL");
1043   assert(count != 0, "No MemRegions provided");
1044   MemRegion reserved = _hrm.reserved();
1045   HeapWord *prev_last_addr = NULL;
1046   HeapRegion* prev_last_region = NULL;
1047 
1048   // For each MemRegion, create filler objects, if needed, in the G1 regions
1049   // that contain the address range. The address range actually within the
1050   // MemRegion will not be modified. That is assumed to have been initialized
1051   // elsewhere, probably via an mmap of archived heap data.
1052   MutexLockerEx x(Heap_lock);
1053   for (size_t i = 0; i < count; i++) {
1054     HeapWord* start_address = ranges[i].start();
1055     HeapWord* last_address = ranges[i].last();
1056 
1057     assert(reserved.contains(start_address) && reserved.contains(last_address),
1058            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1059            p2i(start_address), p2i(last_address));
1060     assert(start_address > prev_last_addr,
1061            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1062            p2i(start_address), p2i(prev_last_addr));
1063 
1064     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1065     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1066     HeapWord* bottom_address = start_region->bottom();
1067 
1068     // Check for a range beginning in the same region in which the
1069     // previous one ended.
1070     if (start_region == prev_last_region) {
1071       bottom_address = prev_last_addr + 1;
1072     }
1073 
1074     // Verify that the regions were all marked as archive regions by
1075     // alloc_archive_regions.
1076     HeapRegion* curr_region = start_region;
1077     while (curr_region != NULL) {
1078       guarantee(curr_region->is_archive(),
1079                 "Expected archive region at index %u", curr_region->hrm_index());
1080       if (curr_region != last_region) {
1081         curr_region = _hrm.next_region_in_heap(curr_region);
1082       } else {
1083         curr_region = NULL;
1084       }
1085     }
1086 
1087     prev_last_addr = last_address;
1088     prev_last_region = last_region;
1089 
1090     // Fill the memory below the allocated range with dummy object(s),
1091     // if the region bottom does not match the range start, or if the previous
1092     // range ended within the same G1 region, and there is a gap.
1093     if (start_address != bottom_address) {
1094       size_t fill_size = pointer_delta(start_address, bottom_address);
1095       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1096       increase_used(fill_size * HeapWordSize);
1097     }
1098   }
1099 }


1122 }
1123 
1124 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
1125   assert(!is_init_completed(), "Expect to be called at JVM init time");
1126   assert(ranges != NULL, "MemRegion array NULL");
1127   assert(count != 0, "No MemRegions provided");
1128   MemRegion reserved = _hrm.reserved();
1129   HeapWord* prev_last_addr = NULL;
1130   HeapRegion* prev_last_region = NULL;
1131   size_t size_used = 0;
1132   size_t uncommitted_regions = 0;
1133 
1134   // For each Memregion, free the G1 regions that constitute it, and
1135   // notify mark-sweep that the range is no longer to be considered 'archive.'
1136   MutexLockerEx x(Heap_lock);
1137   for (size_t i = 0; i < count; i++) {
1138     HeapWord* start_address = ranges[i].start();
1139     HeapWord* last_address = ranges[i].last();
1140 
1141     assert(reserved.contains(start_address) && reserved.contains(last_address),
1142            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1143            p2i(start_address), p2i(last_address));
1144     assert(start_address > prev_last_addr,
1145            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1146            p2i(start_address), p2i(prev_last_addr));
1147     size_used += ranges[i].byte_size();
1148     prev_last_addr = last_address;
1149 
1150     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1151     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1152 
1153     // Check for ranges that start in the same G1 region in which the previous
1154     // range ended, and adjust the start address so we don't try to free
1155     // the same region again. If the current range is entirely within that
1156     // region, skip it.
1157     if (start_region == prev_last_region) {
1158       start_address = start_region->end();
1159       if (start_address > last_address) {
1160         continue;
1161       }
1162       start_region = _hrm.addr_to_region(start_address);
1163     }
1164     prev_last_region = last_region;
1165 
1166     // After verifying that each region was marked as an archive region by
1167     // alloc_archive_regions, set it free and empty and uncommit it.
1168     HeapRegion* curr_region = start_region;
1169     while (curr_region != NULL) {
1170       guarantee(curr_region->is_archive(),
1171                 "Expected archive region at index %u", curr_region->hrm_index());
1172       uint curr_index = curr_region->hrm_index();
1173       _old_set.remove(curr_region);
1174       curr_region->set_free();
1175       curr_region->set_top(curr_region->bottom());
1176       if (curr_region != last_region) {
1177         curr_region = _hrm.next_region_in_heap(curr_region);
1178       } else {
1179         curr_region = NULL;
1180       }
1181       _hrm.shrink_at(curr_index, 1);
1182       uncommitted_regions++;
1183     }
1184 
1185     // Notify mark-sweep that this is no longer an archive range.
1186     G1MarkSweep::set_range_archive(ranges[i], false);
1187   }
1188 
1189   if (uncommitted_regions != 0) {
1190     ergo_verbose1(ErgoHeapSizing,
1191                   "attempt heap shrinking",


1738   // 32-bit size_t's.
1739   double used_after_gc_d = (double) used_after_gc;
1740   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1741   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1742 
1743   // Let's make sure that they are both under the max heap size, which
1744   // by default will make them fit into a size_t.
1745   double desired_capacity_upper_bound = (double) max_heap_size;
1746   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1747                                     desired_capacity_upper_bound);
1748   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1749                                     desired_capacity_upper_bound);
1750 
1751   // We can now safely turn them into size_t's.
1752   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1753   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1754 
1755   // This assert only makes sense here, before we adjust them
1756   // with respect to the min and max heap size.
1757   assert(minimum_desired_capacity <= maximum_desired_capacity,
1758          "minimum_desired_capacity = " SIZE_FORMAT ", "
1759          "maximum_desired_capacity = " SIZE_FORMAT,
1760          minimum_desired_capacity, maximum_desired_capacity);
1761 
1762   // Should not be greater than the heap max size. No need to adjust
1763   // it with respect to the heap min size as it's a lower bound (i.e.,
1764   // we'll try to make the capacity larger than it, not smaller).
1765   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1766   // Should not be less than the heap min size. No need to adjust it
1767   // with respect to the heap max size as it's an upper bound (i.e.,
1768   // we'll try to make the capacity smaller than it, not greater).
1769   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1770 
1771   if (capacity_after_gc < minimum_desired_capacity) {
1772     // Don't expand unless it's significant
1773     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1774     ergo_verbose4(ErgoHeapSizing,
1775                   "attempt heap expansion",
1776                   ergo_format_reason("capacity lower than "
1777                                      "min desired capacity after Full GC")
1778                   ergo_format_byte("capacity")
1779                   ergo_format_byte("occupancy")
1780                   ergo_format_byte_perc("min desired capacity"),


2522 
2523   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2524     // Let's use the existing mechanism for the allocation
2525     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2526                                                  AllocationContext::system());
2527     if (dummy_obj != NULL) {
2528       MemRegion mr(dummy_obj, word_size);
2529       CollectedHeap::fill_with_object(mr);
2530     } else {
2531       // If we can't allocate once, we probably cannot allocate
2532       // again. Let's get out of the loop.
2533       break;
2534     }
2535   }
2536 }
2537 #endif // !PRODUCT
2538 
2539 void G1CollectedHeap::increment_old_marking_cycles_started() {
2540   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2541     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2542     "Wrong marking cycle count (started: %d, completed: %d)",
2543     _old_marking_cycles_started, _old_marking_cycles_completed);
2544 
2545   _old_marking_cycles_started++;
2546 }
2547 
2548 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2549   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2550 
2551   // We assume that if concurrent == true, then the caller is a
2552   // concurrent thread that was joined the Suspendible Thread
2553   // Set. If there's ever a cheap way to check this, we should add an
2554   // assert here.
2555 
2556   // Given that this method is called at the end of a Full GC or of a
2557   // concurrent cycle, and those can be nested (i.e., a Full GC can
2558   // interrupt a concurrent cycle), the number of full collections
2559   // completed should be either one (in the case where there was no
2560   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2561   // behind the number of full collections started.
2562 
2563   // This is the case for the inner caller, i.e. a Full GC.
2564   assert(concurrent ||
2565          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2566          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2567          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2568          "is inconsistent with _old_marking_cycles_completed = %u",
2569          _old_marking_cycles_started, _old_marking_cycles_completed);
2570 
2571   // This is the case for the outer caller, i.e. the concurrent cycle.
2572   assert(!concurrent ||
2573          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2574          "for outer caller (concurrent cycle): "
2575          "_old_marking_cycles_started = %u "
2576          "is inconsistent with _old_marking_cycles_completed = %u",
2577          _old_marking_cycles_started, _old_marking_cycles_completed);
2578 
2579   _old_marking_cycles_completed += 1;
2580 
2581   // We need to clear the "in_progress" flag in the CM thread before
2582   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2583   // is set) so that if a waiter requests another System.gc() it doesn't
2584   // incorrectly see that a marking cycle is still in progress.
2585   if (concurrent) {
2586     _cmThread->set_idle();
2587   }
2588 
2589   // This notify_all() will ensure that a thread that called
2590   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2591   // and it's waiting for a full GC to finish will be woken up. It is
2592   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2593   FullGCCount_lock->notify_all();
2594 }
2595 
2596 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2597   collector_state()->set_concurrent_cycle_started(true);


3107  public:
3108   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3109   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3110   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3111 
3112   int count() { return _count; }
3113   void reset_count() { _count = 0; };
3114 };
3115 
3116 class VerifyKlassClosure: public KlassClosure {
3117   YoungRefCounterClosure _young_ref_counter_closure;
3118   OopClosure *_oop_closure;
3119  public:
3120   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3121   void do_klass(Klass* k) {
3122     k->oops_do(_oop_closure);
3123 
3124     _young_ref_counter_closure.reset_count();
3125     k->oops_do(&_young_ref_counter_closure);
3126     if (_young_ref_counter_closure.count() > 0) {
3127       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
3128     }
3129   }
3130 };
3131 
3132 class VerifyLivenessOopClosure: public OopClosure {
3133   G1CollectedHeap* _g1h;
3134   VerifyOption _vo;
3135 public:
3136   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3137     _g1h(g1h), _vo(vo)
3138   { }
3139   void do_oop(narrowOop *p) { do_oop_work(p); }
3140   void do_oop(      oop *p) { do_oop_work(p); }
3141 
3142   template <class T> void do_oop_work(T *p) {
3143     oop obj = oopDesc::load_decode_heap_oop(p);
3144     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3145               "Dead object referenced by a not dead object");
3146   }
3147 };


3177 
3178       o->oop_iterate_no_header(&isLive);
3179       if (!_hr->obj_allocated_since_prev_marking(o)) {
3180         size_t obj_size = o->size();    // Make sure we don't overflow
3181         _live_bytes += (obj_size * HeapWordSize);
3182       }
3183     }
3184   }
3185   size_t live_bytes() { return _live_bytes; }
3186 };
3187 
3188 class VerifyArchiveOopClosure: public OopClosure {
3189 public:
3190   VerifyArchiveOopClosure(HeapRegion *hr) { }
3191   void do_oop(narrowOop *p) { do_oop_work(p); }
3192   void do_oop(      oop *p) { do_oop_work(p); }
3193 
3194   template <class T> void do_oop_work(T *p) {
3195     oop obj = oopDesc::load_decode_heap_oop(p);
3196     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3197               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3198               p2i(p), p2i(obj));
3199   }
3200 };
3201 
3202 class VerifyArchiveRegionClosure: public ObjectClosure {
3203 public:
3204   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3205   // Verify that all object pointers are to archive regions.
3206   void do_object(oop o) {
3207     VerifyArchiveOopClosure checkOop(NULL);
3208     assert(o != NULL, "Should not be here for NULL oops");
3209     o->oop_iterate_no_header(&checkOop);
3210   }
3211 };
3212 
3213 class VerifyRegionClosure: public HeapRegionClosure {
3214 private:
3215   bool             _par;
3216   VerifyOption     _vo;
3217   bool             _failures;
3218 public:


4692 
4693 public:
4694   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4695     AbstractGangTask("String/Symbol Unlinking"),
4696     _is_alive(is_alive),
4697     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4698     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4699 
4700     _initial_string_table_size = StringTable::the_table()->table_size();
4701     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4702     if (process_strings) {
4703       StringTable::clear_parallel_claimed_index();
4704     }
4705     if (process_symbols) {
4706       SymbolTable::clear_parallel_claimed_index();
4707     }
4708   }
4709 
4710   ~G1StringSymbolTableUnlinkTask() {
4711     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4712               "claim value %d after unlink less than initial string table size %d",
4713               StringTable::parallel_claimed_index(), _initial_string_table_size);
4714     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4715               "claim value %d after unlink less than initial symbol table size %d",
4716               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4717 
4718     if (G1TraceStringSymbolTableScrubbing) {
4719       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4720                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4721                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4722                              strings_processed(), strings_removed(),
4723                              symbols_processed(), symbols_removed());
4724     }
4725   }
4726 
4727   void work(uint worker_id) {
4728     int strings_processed = 0;
4729     int strings_removed = 0;
4730     int symbols_processed = 0;
4731     int symbols_removed = 0;
4732     if (_process_strings) {
4733       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4734       Atomic::add(strings_processed, &_strings_processed);
4735       Atomic::add(strings_removed, &_strings_removed);
4736     }


5096 // Non Copying Keep Alive closure
5097 class G1KeepAliveClosure: public OopClosure {
5098   G1CollectedHeap* _g1;
5099 public:
5100   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5101   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5102   void do_oop(oop* p) {
5103     oop obj = *p;
5104     assert(obj != NULL, "the caller should have filtered out NULL values");
5105 
5106     const InCSetState cset_state = _g1->in_cset_state(obj);
5107     if (!cset_state.is_in_cset_or_humongous()) {
5108       return;
5109     }
5110     if (cset_state.is_in_cset()) {
5111       assert( obj->is_forwarded(), "invariant" );
5112       *p = obj->forwardee();
5113     } else {
5114       assert(!obj->is_forwarded(), "invariant" );
5115       assert(cset_state.is_humongous(),
5116              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
5117       _g1->set_humongous_is_live(obj);
5118     }
5119   }
5120 };
5121 
5122 // Copying Keep Alive closure - can be called from both
5123 // serial and parallel code as long as different worker
5124 // threads utilize different G1ParScanThreadState instances
5125 // and different queues.
5126 
5127 class G1CopyingKeepAliveClosure: public OopClosure {
5128   G1CollectedHeap*         _g1h;
5129   OopClosure*              _copy_non_heap_obj_cl;
5130   G1ParScanThreadState*    _par_scan_state;
5131 
5132 public:
5133   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5134                             OopClosure* non_heap_obj_cl,
5135                             G1ParScanThreadState* pss):
5136     _g1h(g1h),


5150       // evacuation failure) then we need to update the reference
5151       // field and, if both reference and referent are in the G1
5152       // heap, update the RSet for the referent.
5153       //
5154       // If the referent has not been forwarded then we have to keep
5155       // it alive by policy. Therefore we have copy the referent.
5156       //
5157       // If the reference field is in the G1 heap then we can push
5158       // on the PSS queue. When the queue is drained (after each
5159       // phase of reference processing) the object and it's followers
5160       // will be copied, the reference field set to point to the
5161       // new location, and the RSet updated. Otherwise we need to
5162       // use the the non-heap or metadata closures directly to copy
5163       // the referent object and update the pointer, while avoiding
5164       // updating the RSet.
5165 
5166       if (_g1h->is_in_g1_reserved(p)) {
5167         _par_scan_state->push_on_queue(p);
5168       } else {
5169         assert(!Metaspace::contains((const void*)p),
5170                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
5171         _copy_non_heap_obj_cl->do_oop(p);
5172       }
5173     }
5174   }
5175 };
5176 
5177 // Serial drain queue closure. Called as the 'complete_gc'
5178 // closure for each discovered list in some of the
5179 // reference processing phases.
5180 
5181 class G1STWDrainQueueClosure: public VoidClosure {
5182 protected:
5183   G1CollectedHeap* _g1h;
5184   G1ParScanThreadState* _par_scan_state;
5185 
5186   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5187 
5188 public:
5189   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5190     _g1h(g1h),


5806     ct_bs->verify_g1_young_region(mr);
5807   } else {
5808     ct_bs->verify_dirty_region(mr);
5809   }
5810 }
5811 
5812 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5813   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5814   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5815     verify_dirty_region(hr);
5816   }
5817 }
5818 
5819 void G1CollectedHeap::verify_dirty_young_regions() {
5820   verify_dirty_young_list(_young_list->first_region());
5821 }
5822 
5823 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5824                                                HeapWord* tams, HeapWord* end) {
5825   guarantee(tams <= end,
5826             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5827   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5828   if (result < end) {
5829     gclog_or_tty->cr();
5830     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5831                            bitmap_name, p2i(result));
5832     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5833                            bitmap_name, p2i(tams), p2i(end));
5834     return false;
5835   }
5836   return true;
5837 }
5838 
5839 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5840   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5841   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5842 
5843   HeapWord* bottom = hr->bottom();
5844   HeapWord* ptams  = hr->prev_top_at_mark_start();
5845   HeapWord* ntams  = hr->next_top_at_mark_start();
5846   HeapWord* end    = hr->end();


6157         !r->rem_set()->is_empty()) {
6158 
6159       if (G1TraceEagerReclaimHumongousObjects) {
6160         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6161                                region_idx,
6162                                (size_t)obj->size() * HeapWordSize,
6163                                p2i(r->bottom()),
6164                                r->region_num(),
6165                                r->rem_set()->occupied(),
6166                                r->rem_set()->strong_code_roots_list_length(),
6167                                next_bitmap->isMarked(r->bottom()),
6168                                g1h->is_humongous_reclaim_candidate(region_idx),
6169                                obj->is_typeArray()
6170                               );
6171       }
6172 
6173       return false;
6174     }
6175 
6176     guarantee(obj->is_typeArray(),
6177               "Only eagerly reclaiming type arrays is supported, but the object "
6178               PTR_FORMAT " is not.", p2i(r->bottom()));

6179 
6180     if (G1TraceEagerReclaimHumongousObjects) {
6181       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6182                              region_idx,
6183                              (size_t)obj->size() * HeapWordSize,
6184                              p2i(r->bottom()),
6185                              r->region_num(),
6186                              r->rem_set()->occupied(),
6187                              r->rem_set()->strong_code_roots_list_length(),
6188                              next_bitmap->isMarked(r->bottom()),
6189                              g1h->is_humongous_reclaim_candidate(region_idx),
6190                              obj->is_typeArray()
6191                             );
6192     }
6193     // Need to clear mark bit of the humongous object if already set.
6194     if (next_bitmap->isMarked(r->bottom())) {
6195       next_bitmap->clear(r->bottom());
6196     }
6197     _freed_bytes += r->used();
6198     r->set_containing_set(NULL);


6387   assert_at_safepoint(true /* should_be_vm_thread */);
6388 
6389   if (!free_list_only) {
6390     TearDownRegionSetsClosure cl(&_old_set);
6391     heap_region_iterate(&cl);
6392 
6393     // Note that emptying the _young_list is postponed and instead done as
6394     // the first step when rebuilding the regions sets again. The reason for
6395     // this is that during a full GC string deduplication needs to know if
6396     // a collected region was young or old when the full GC was initiated.
6397   }
6398   _hrm.remove_all_free_regions();
6399 }
6400 
6401 void G1CollectedHeap::increase_used(size_t bytes) {
6402   _summary_bytes_used += bytes;
6403 }
6404 
6405 void G1CollectedHeap::decrease_used(size_t bytes) {
6406   assert(_summary_bytes_used >= bytes,
6407          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
6408          _summary_bytes_used, bytes);
6409   _summary_bytes_used -= bytes;
6410 }
6411 
6412 void G1CollectedHeap::set_used(size_t bytes) {
6413   _summary_bytes_used = bytes;
6414 }
6415 
6416 class RebuildRegionSetsClosure : public HeapRegionClosure {
6417 private:
6418   bool            _free_list_only;
6419   HeapRegionSet*   _old_set;
6420   HeapRegionManager*   _hrm;
6421   size_t          _total_used;
6422 
6423 public:
6424   RebuildRegionSetsClosure(bool free_list_only,
6425                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6426     _free_list_only(free_list_only),
6427     _old_set(old_set), _hrm(hrm), _total_used(0) {
6428     assert(_hrm->num_free_regions() == 0, "pre-condition");


6470   }
6471 };
6472 
6473 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6474   assert_at_safepoint(true /* should_be_vm_thread */);
6475 
6476   if (!free_list_only) {
6477     _young_list->empty_list();
6478   }
6479 
6480   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6481   heap_region_iterate(&cl);
6482 
6483   if (!free_list_only) {
6484     set_used(cl.total_used());
6485     if (_archive_allocator != NULL) {
6486       _archive_allocator->clear_used();
6487     }
6488   }
6489   assert(used_unlocked() == recalculate_used(),
6490          "inconsistent used_unlocked(), "
6491          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6492          used_unlocked(), recalculate_used());
6493 }
6494 
6495 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6496   _refine_cte_cl->set_concurrent(concurrent);
6497 }
6498 
6499 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6500   HeapRegion* hr = heap_region_containing(p);
6501   return hr->is_in(p);
6502 }
6503 
6504 // Methods for the mutator alloc region
6505 
6506 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6507                                                       bool force) {
6508   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6509   assert(!force || g1_policy()->can_expand_young_list(),
6510          "if force is true we should be able to expand the young list");
6511   bool young_list_full = g1_policy()->is_young_list_full();
6512   if (force || !young_list_full) {


6613 
6614 public:
6615   HeapRegionSetCount _old_count;
6616   HeapRegionSetCount _humongous_count;
6617   HeapRegionSetCount _free_count;
6618 
6619   VerifyRegionListsClosure(HeapRegionSet* old_set,
6620                            HeapRegionSet* humongous_set,
6621                            HeapRegionManager* hrm) :
6622     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6623     _old_count(), _humongous_count(), _free_count(){ }
6624 
6625   bool doHeapRegion(HeapRegion* hr) {
6626     if (hr->is_continues_humongous()) {
6627       return false;
6628     }
6629 
6630     if (hr->is_young()) {
6631       // TODO
6632     } else if (hr->is_starts_humongous()) {
6633       assert(hr->containing_set() == _humongous_set, "Heap region %u is starts humongous but not in humongous set.", hr->hrm_index());
6634       _humongous_count.increment(1u, hr->capacity());
6635     } else if (hr->is_empty()) {
6636       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6637       _free_count.increment(1u, hr->capacity());
6638     } else if (hr->is_old()) {
6639       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6640       _old_count.increment(1u, hr->capacity());
6641     } else {
6642       // There are no other valid region types. Check for one invalid
6643       // one we can identify: pinned without old or humongous set.
6644       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6645       ShouldNotReachHere();
6646     }
6647     return false;
6648   }
6649 
6650   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6651     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6652     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6653               old_set->total_capacity_bytes(), _old_count.capacity());
6654 
6655     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6656     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6657               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6658 
6659     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6660     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6661               free_list->total_capacity_bytes(), _free_count.capacity());
6662   }
6663 };
6664 
6665 void G1CollectedHeap::verify_region_sets() {
6666   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6667 
6668   // First, check the explicit lists.
6669   _hrm.verify();
6670   {
6671     // Given that a concurrent operation might be adding regions to
6672     // the secondary free list we have to take the lock before
6673     // verifying it.
6674     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6675     _secondary_free_list.verify_list();
6676   }
6677 
6678   // If a concurrent region freeing operation is in progress it will
6679   // be difficult to correctly attributed any free regions we come
6680   // across to the correct free list given that they might belong to
6681   // one of several (free_list, secondary_free_list, any local lists,


6697   // Finally, make sure that the region accounting in the lists is
6698   // consistent with what we see in the heap.
6699 
6700   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6701   heap_region_iterate(&cl);
6702   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6703 }
6704 
6705 // Optimized nmethod scanning
6706 
6707 class RegisterNMethodOopClosure: public OopClosure {
6708   G1CollectedHeap* _g1h;
6709   nmethod* _nm;
6710 
6711   template <class T> void do_oop_work(T* p) {
6712     T heap_oop = oopDesc::load_heap_oop(p);
6713     if (!oopDesc::is_null(heap_oop)) {
6714       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6715       HeapRegion* hr = _g1h->heap_region_containing(obj);
6716       assert(!hr->is_continues_humongous(),
6717              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6718              " starting at " HR_FORMAT,
6719              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6720 
6721       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6722       hr->add_strong_code_root_locked(_nm);
6723     }
6724   }
6725 
6726 public:
6727   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6728     _g1h(g1h), _nm(nm) {}
6729 
6730   void do_oop(oop* p)       { do_oop_work(p); }
6731   void do_oop(narrowOop* p) { do_oop_work(p); }
6732 };
6733 
6734 class UnregisterNMethodOopClosure: public OopClosure {
6735   G1CollectedHeap* _g1h;
6736   nmethod* _nm;
6737 
6738   template <class T> void do_oop_work(T* p) {
6739     T heap_oop = oopDesc::load_heap_oop(p);
6740     if (!oopDesc::is_null(heap_oop)) {
6741       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6742       HeapRegion* hr = _g1h->heap_region_containing(obj);
6743       assert(!hr->is_continues_humongous(),
6744              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6745              " starting at " HR_FORMAT,
6746              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6747 
6748       hr->remove_strong_code_root(_nm);
6749     }
6750   }
6751 
6752 public:
6753   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6754     _g1h(g1h), _nm(nm) {}
6755 
6756   void do_oop(oop* p)       { do_oop_work(p); }
6757   void do_oop(narrowOop* p) { do_oop_work(p); }
6758 };
6759 
6760 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6761   CollectedHeap::register_nmethod(nm);
6762 
6763   guarantee(nm != NULL, "sanity");
6764   RegisterNMethodOopClosure reg_cl(this, nm);
6765   nm->oops_do(&reg_cl);
6766 }


< prev index next >