1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocationContext.hpp"
  31 #include "gc/g1/g1BiasedArray.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1HRPrinter.hpp"
  34 #include "gc/g1/g1InCSetState.hpp"
  35 #include "gc/g1/g1MonitoringSupport.hpp"
  36 #include "gc/g1/g1EvacStats.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/g1YCTypes.hpp"
  39 #include "gc/g1/hSpaceCounters.hpp"
  40 #include "gc/g1/heapRegionManager.hpp"
  41 #include "gc/g1/heapRegionSet.hpp"
  42 #include "gc/shared/barrierSet.hpp"
  43 #include "gc/shared/collectedHeap.hpp"
  44 #include "gc/shared/plab.hpp"
  45 #include "memory/memRegion.hpp"
  46 #include "utilities/stack.hpp"
  47 
  48 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  49 // It uses the "Garbage First" heap organization and algorithm, which
  50 // may combine concurrent marking with parallel, incremental compaction of
  51 // heap subsets that will yield large amounts of garbage.
  52 
  53 // Forward declarations
  54 class HeapRegion;
  55 class HRRSCleanupTask;
  56 class GenerationSpec;
  57 class OopsInHeapRegionClosure;
  58 class G1ParScanThreadState;
  59 class G1ParScanThreadStateSet;
  60 class G1KlassScanClosure;
  61 class G1ParScanThreadState;
  62 class ObjectClosure;
  63 class SpaceClosure;
  64 class CompactibleSpaceClosure;
  65 class Space;
  66 class G1CollectorPolicy;
  67 class GenRemSet;
  68 class G1RemSet;
  69 class HeapRegionRemSetIterator;
  70 class ConcurrentMark;
  71 class ConcurrentMarkThread;
  72 class ConcurrentG1Refine;
  73 class ConcurrentGCTimer;
  74 class GenerationCounters;
  75 class STWGCTimer;
  76 class G1NewTracer;
  77 class G1OldTracer;
  78 class EvacuationFailedInfo;
  79 class nmethod;
  80 class Ticks;
  81 class WorkGang;
  82 class G1Allocator;
  83 class G1ArchiveAllocator;
  84 
  85 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  86 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  87 
  88 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  89 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  90 
  91 class YoungList : public CHeapObj<mtGC> {
  92 private:
  93   G1CollectedHeap* _g1h;
  94 
  95   HeapRegion* _head;
  96 
  97   HeapRegion* _survivor_head;
  98   HeapRegion* _survivor_tail;
  99 
 100   HeapRegion* _curr;
 101 
 102   uint        _length;
 103   uint        _survivor_length;
 104 
 105   size_t      _last_sampled_rs_lengths;
 106   size_t      _sampled_rs_lengths;
 107 
 108   void         empty_list(HeapRegion* list);
 109 
 110 public:
 111   YoungList(G1CollectedHeap* g1h);
 112 
 113   void         push_region(HeapRegion* hr);
 114   void         add_survivor_region(HeapRegion* hr);
 115 
 116   void         empty_list();
 117   bool         is_empty() { return _length == 0; }
 118   uint         length() { return _length; }
 119   uint         eden_length() { return length() - survivor_length(); }
 120   uint         survivor_length() { return _survivor_length; }
 121 
 122   // Currently we do not keep track of the used byte sum for the
 123   // young list and the survivors and it'd be quite a lot of work to
 124   // do so. When we'll eventually replace the young list with
 125   // instances of HeapRegionLinkedList we'll get that for free. So,
 126   // we'll report the more accurate information then.
 127   size_t       eden_used_bytes() {
 128     assert(length() >= survivor_length(), "invariant");
 129     return (size_t) eden_length() * HeapRegion::GrainBytes;
 130   }
 131   size_t       survivor_used_bytes() {
 132     return (size_t) survivor_length() * HeapRegion::GrainBytes;
 133   }
 134 
 135   void rs_length_sampling_init();
 136   bool rs_length_sampling_more();
 137   void rs_length_sampling_next();
 138 
 139   void reset_sampled_info() {
 140     _last_sampled_rs_lengths =   0;
 141   }
 142   size_t sampled_rs_lengths() { return _last_sampled_rs_lengths; }
 143 
 144   // for development purposes
 145   void reset_auxilary_lists();
 146   void clear() { _head = NULL; _length = 0; }
 147 
 148   void clear_survivors() {
 149     _survivor_head    = NULL;
 150     _survivor_tail    = NULL;
 151     _survivor_length  = 0;
 152   }
 153 
 154   HeapRegion* first_region() { return _head; }
 155   HeapRegion* first_survivor_region() { return _survivor_head; }
 156   HeapRegion* last_survivor_region() { return _survivor_tail; }
 157 
 158   // debugging
 159   bool          check_list_well_formed();
 160   bool          check_list_empty(bool check_sample = true);
 161   void          print();
 162 };
 163 
 164 // The G1 STW is alive closure.
 165 // An instance is embedded into the G1CH and used as the
 166 // (optional) _is_alive_non_header closure in the STW
 167 // reference processor. It is also extensively used during
 168 // reference processing during STW evacuation pauses.
 169 class G1STWIsAliveClosure: public BoolObjectClosure {
 170   G1CollectedHeap* _g1;
 171 public:
 172   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 173   bool do_object_b(oop p);
 174 };
 175 
 176 class RefineCardTableEntryClosure;
 177 
 178 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 179  private:
 180   void reset_from_card_cache(uint start_idx, size_t num_regions);
 181  public:
 182   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 183 };
 184 
 185 class G1CollectedHeap : public CollectedHeap {
 186   friend class VM_CollectForMetadataAllocation;
 187   friend class VM_G1CollectForAllocation;
 188   friend class VM_G1CollectFull;
 189   friend class VM_G1IncCollectionPause;
 190   friend class VMStructs;
 191   friend class MutatorAllocRegion;
 192   friend class G1GCAllocRegion;
 193 
 194   // Closures used in implementation.
 195   friend class G1ParScanThreadState;
 196   friend class G1ParScanThreadStateSet;
 197   friend class G1ParTask;
 198   friend class G1PLABAllocator;
 199   friend class G1PrepareCompactClosure;
 200 
 201   // Other related classes.
 202   friend class HeapRegionClaimer;
 203 
 204   // Testing classes.
 205   friend class G1CheckCSetFastTableClosure;
 206 
 207 private:
 208   WorkGang* _workers;
 209 
 210   static size_t _humongous_object_threshold_in_words;
 211 
 212   // The secondary free list which contains regions that have been
 213   // freed up during the cleanup process. This will be appended to
 214   // the master free list when appropriate.
 215   FreeRegionList _secondary_free_list;
 216 
 217   // It keeps track of the old regions.
 218   HeapRegionSet _old_set;
 219 
 220   // It keeps track of the humongous regions.
 221   HeapRegionSet _humongous_set;
 222 
 223   void eagerly_reclaim_humongous_regions();
 224 
 225   // The number of regions we could create by expansion.
 226   uint _expansion_regions;
 227 
 228   // The block offset table for the G1 heap.
 229   G1BlockOffsetSharedArray* _bot_shared;
 230 
 231   // Tears down the region sets / lists so that they are empty and the
 232   // regions on the heap do not belong to a region set / list. The
 233   // only exception is the humongous set which we leave unaltered. If
 234   // free_list_only is true, it will only tear down the master free
 235   // list. It is called before a Full GC (free_list_only == false) or
 236   // before heap shrinking (free_list_only == true).
 237   void tear_down_region_sets(bool free_list_only);
 238 
 239   // Rebuilds the region sets / lists so that they are repopulated to
 240   // reflect the contents of the heap. The only exception is the
 241   // humongous set which was not torn down in the first place. If
 242   // free_list_only is true, it will only rebuild the master free
 243   // list. It is called after a Full GC (free_list_only == false) or
 244   // after heap shrinking (free_list_only == true).
 245   void rebuild_region_sets(bool free_list_only);
 246 
 247   // Callback for region mapping changed events.
 248   G1RegionMappingChangedListener _listener;
 249 
 250   // The sequence of all heap regions in the heap.
 251   HeapRegionManager _hrm;
 252 
 253   // Manages all allocations with regions except humongous object allocations.
 254   G1Allocator* _allocator;
 255 
 256   // Outside of GC pauses, the number of bytes used in all regions other
 257   // than the current allocation region(s).
 258   size_t _summary_bytes_used;
 259 
 260   void increase_used(size_t bytes);
 261   void decrease_used(size_t bytes);
 262 
 263   void set_used(size_t bytes);
 264 
 265   // Class that handles archive allocation ranges.
 266   G1ArchiveAllocator* _archive_allocator;
 267 
 268   // Statistics for each allocation context
 269   AllocationContextStats _allocation_context_stats;
 270 
 271   // GC allocation statistics policy for survivors.
 272   G1EvacStats _survivor_evac_stats;
 273 
 274   // GC allocation statistics policy for tenured objects.
 275   G1EvacStats _old_evac_stats;
 276 
 277   // It specifies whether we should attempt to expand the heap after a
 278   // region allocation failure. If heap expansion fails we set this to
 279   // false so that we don't re-attempt the heap expansion (it's likely
 280   // that subsequent expansion attempts will also fail if one fails).
 281   // Currently, it is only consulted during GC and it's reset at the
 282   // start of each GC.
 283   bool _expand_heap_after_alloc_failure;
 284 
 285   // Helper for monitoring and management support.
 286   G1MonitoringSupport* _g1mm;
 287 
 288   // Records whether the region at the given index is (still) a
 289   // candidate for eager reclaim.  Only valid for humongous start
 290   // regions; other regions have unspecified values.  Humongous start
 291   // regions are initialized at start of collection pause, with
 292   // candidates removed from the set as they are found reachable from
 293   // roots or the young generation.
 294   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 295    protected:
 296     bool default_value() const { return false; }
 297    public:
 298     void clear() { G1BiasedMappedArray<bool>::clear(); }
 299     void set_candidate(uint region, bool value) {
 300       set_by_index(region, value);
 301     }
 302     bool is_candidate(uint region) {
 303       return get_by_index(region);
 304     }
 305   };
 306 
 307   HumongousReclaimCandidates _humongous_reclaim_candidates;
 308   // Stores whether during humongous object registration we found candidate regions.
 309   // If not, we can skip a few steps.
 310   bool _has_humongous_reclaim_candidates;
 311 
 312   volatile unsigned _gc_time_stamp;
 313 
 314   G1HRPrinter _hr_printer;
 315 
 316   // It decides whether an explicit GC should start a concurrent cycle
 317   // instead of doing a STW GC. Currently, a concurrent cycle is
 318   // explicitly started if:
 319   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 320   // (b) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 321   // (c) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 322   // (d) cause == _g1_humongous_allocation
 323   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 324 
 325   // indicates whether we are in young or mixed GC mode
 326   G1CollectorState _collector_state;
 327 
 328   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 329   // concurrent cycles) we have started.
 330   volatile uint _old_marking_cycles_started;
 331 
 332   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 333   // concurrent cycles) we have completed.
 334   volatile uint _old_marking_cycles_completed;
 335 
 336   bool _heap_summary_sent;
 337 
 338   // This is a non-product method that is helpful for testing. It is
 339   // called at the end of a GC and artificially expands the heap by
 340   // allocating a number of dead regions. This way we can induce very
 341   // frequent marking cycles and stress the cleanup / concurrent
 342   // cleanup code more (as all the regions that will be allocated by
 343   // this method will be found dead by the marking cycle).
 344   void allocate_dummy_regions() PRODUCT_RETURN;
 345 
 346   // Clear RSets after a compaction. It also resets the GC time stamps.
 347   void clear_rsets_post_compaction();
 348 
 349   // If the HR printer is active, dump the state of the regions in the
 350   // heap after a compaction.
 351   void print_hrm_post_compaction();
 352 
 353   // Create a memory mapper for auxiliary data structures of the given size and
 354   // translation factor.
 355   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 356                                                          size_t size,
 357                                                          size_t translation_factor);
 358 
 359   double verify(bool guard, const char* msg);
 360   void verify_before_gc();
 361   void verify_after_gc();
 362 
 363   void log_gc_header();
 364   void log_gc_footer(double pause_time_sec);
 365 
 366   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 367 
 368   // These are macros so that, if the assert fires, we get the correct
 369   // line number, file, etc.
 370 
 371 #define heap_locking_asserts_params(_extra_message_)                          \
 372   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 373   (_extra_message_),                                                          \
 374   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 375   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 376   BOOL_TO_STR(Thread::current()->is_VM_thread())
 377 
 378 #define assert_heap_locked()                                                  \
 379   do {                                                                        \
 380     assert(Heap_lock->owned_by_self(),                                        \
 381            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 382   } while (0)
 383 
 384 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 385   do {                                                                        \
 386     assert(Heap_lock->owned_by_self() ||                                      \
 387            (SafepointSynchronize::is_at_safepoint() &&                        \
 388              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 389            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 390                                         "should be at a safepoint"));         \
 391   } while (0)
 392 
 393 #define assert_heap_locked_and_not_at_safepoint()                             \
 394   do {                                                                        \
 395     assert(Heap_lock->owned_by_self() &&                                      \
 396                                     !SafepointSynchronize::is_at_safepoint(), \
 397           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 398                                        "should not be at a safepoint"));      \
 399   } while (0)
 400 
 401 #define assert_heap_not_locked()                                              \
 402   do {                                                                        \
 403     assert(!Heap_lock->owned_by_self(),                                       \
 404         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 405   } while (0)
 406 
 407 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 408   do {                                                                        \
 409     assert(!Heap_lock->owned_by_self() &&                                     \
 410                                     !SafepointSynchronize::is_at_safepoint(), \
 411       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 412                                    "should not be at a safepoint"));          \
 413   } while (0)
 414 
 415 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 416   do {                                                                        \
 417     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 418               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 419            heap_locking_asserts_params("should be at a safepoint"));          \
 420   } while (0)
 421 
 422 #define assert_not_at_safepoint()                                             \
 423   do {                                                                        \
 424     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 425            heap_locking_asserts_params("should not be at a safepoint"));      \
 426   } while (0)
 427 
 428 protected:
 429 
 430   // The young region list.
 431   YoungList*  _young_list;
 432 
 433   // The current policy object for the collector.
 434   G1CollectorPolicy* _g1_policy;
 435 
 436   // This is the second level of trying to allocate a new region. If
 437   // new_region() didn't find a region on the free_list, this call will
 438   // check whether there's anything available on the
 439   // secondary_free_list and/or wait for more regions to appear on
 440   // that list, if _free_regions_coming is set.
 441   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 442 
 443   // Try to allocate a single non-humongous HeapRegion sufficient for
 444   // an allocation of the given word_size. If do_expand is true,
 445   // attempt to expand the heap if necessary to satisfy the allocation
 446   // request. If the region is to be used as an old region or for a
 447   // humongous object, set is_old to true. If not, to false.
 448   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 449 
 450   // Initialize a contiguous set of free regions of length num_regions
 451   // and starting at index first so that they appear as a single
 452   // humongous region.
 453   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 454                                                       uint num_regions,
 455                                                       size_t word_size,
 456                                                       AllocationContext_t context);
 457 
 458   // Attempt to allocate a humongous object of the given size. Return
 459   // NULL if unsuccessful.
 460   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 461 
 462   // The following two methods, allocate_new_tlab() and
 463   // mem_allocate(), are the two main entry points from the runtime
 464   // into the G1's allocation routines. They have the following
 465   // assumptions:
 466   //
 467   // * They should both be called outside safepoints.
 468   //
 469   // * They should both be called without holding the Heap_lock.
 470   //
 471   // * All allocation requests for new TLABs should go to
 472   //   allocate_new_tlab().
 473   //
 474   // * All non-TLAB allocation requests should go to mem_allocate().
 475   //
 476   // * If either call cannot satisfy the allocation request using the
 477   //   current allocating region, they will try to get a new one. If
 478   //   this fails, they will attempt to do an evacuation pause and
 479   //   retry the allocation.
 480   //
 481   // * If all allocation attempts fail, even after trying to schedule
 482   //   an evacuation pause, allocate_new_tlab() will return NULL,
 483   //   whereas mem_allocate() will attempt a heap expansion and/or
 484   //   schedule a Full GC.
 485   //
 486   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 487   //   should never be called with word_size being humongous. All
 488   //   humongous allocation requests should go to mem_allocate() which
 489   //   will satisfy them with a special path.
 490 
 491   virtual HeapWord* allocate_new_tlab(size_t word_size);
 492 
 493   virtual HeapWord* mem_allocate(size_t word_size,
 494                                  bool*  gc_overhead_limit_was_exceeded);
 495 
 496   // The following three methods take a gc_count_before_ret
 497   // parameter which is used to return the GC count if the method
 498   // returns NULL. Given that we are required to read the GC count
 499   // while holding the Heap_lock, and these paths will take the
 500   // Heap_lock at some point, it's easier to get them to read the GC
 501   // count while holding the Heap_lock before they return NULL instead
 502   // of the caller (namely: mem_allocate()) having to also take the
 503   // Heap_lock just to read the GC count.
 504 
 505   // First-level mutator allocation attempt: try to allocate out of
 506   // the mutator alloc region without taking the Heap_lock. This
 507   // should only be used for non-humongous allocations.
 508   inline HeapWord* attempt_allocation(size_t word_size,
 509                                       uint* gc_count_before_ret,
 510                                       uint* gclocker_retry_count_ret);
 511 
 512   // Second-level mutator allocation attempt: take the Heap_lock and
 513   // retry the allocation attempt, potentially scheduling a GC
 514   // pause. This should only be used for non-humongous allocations.
 515   HeapWord* attempt_allocation_slow(size_t word_size,
 516                                     AllocationContext_t context,
 517                                     uint* gc_count_before_ret,
 518                                     uint* gclocker_retry_count_ret);
 519 
 520   // Takes the Heap_lock and attempts a humongous allocation. It can
 521   // potentially schedule a GC pause.
 522   HeapWord* attempt_allocation_humongous(size_t word_size,
 523                                          uint* gc_count_before_ret,
 524                                          uint* gclocker_retry_count_ret);
 525 
 526   // Allocation attempt that should be called during safepoints (e.g.,
 527   // at the end of a successful GC). expect_null_mutator_alloc_region
 528   // specifies whether the mutator alloc region is expected to be NULL
 529   // or not.
 530   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 531                                             AllocationContext_t context,
 532                                             bool expect_null_mutator_alloc_region);
 533 
 534   // These methods are the "callbacks" from the G1AllocRegion class.
 535 
 536   // For mutator alloc regions.
 537   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 538   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 539                                    size_t allocated_bytes);
 540 
 541   // For GC alloc regions.
 542   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 543                                   InCSetState dest);
 544   void retire_gc_alloc_region(HeapRegion* alloc_region,
 545                               size_t allocated_bytes, InCSetState dest);
 546 
 547   // - if explicit_gc is true, the GC is for a System.gc() or a heap
 548   //   inspection request and should collect the entire heap
 549   // - if clear_all_soft_refs is true, all soft references should be
 550   //   cleared during the GC
 551   // - if explicit_gc is false, word_size describes the allocation that
 552   //   the GC should attempt (at least) to satisfy
 553   // - it returns false if it is unable to do the collection due to the
 554   //   GC locker being active, true otherwise
 555   bool do_collection(bool explicit_gc,
 556                      bool clear_all_soft_refs,
 557                      size_t word_size);
 558 
 559   // Callback from VM_G1CollectFull operation.
 560   // Perform a full collection.
 561   virtual void do_full_collection(bool clear_all_soft_refs);
 562 
 563   // Resize the heap if necessary after a full collection.  If this is
 564   // after a collect-for allocation, "word_size" is the allocation size,
 565   // and will be considered part of the used portion of the heap.
 566   void resize_if_necessary_after_full_collection(size_t word_size);
 567 
 568   // Callback from VM_G1CollectForAllocation operation.
 569   // This function does everything necessary/possible to satisfy a
 570   // failed allocation request (including collection, expansion, etc.)
 571   HeapWord* satisfy_failed_allocation(size_t word_size,
 572                                       AllocationContext_t context,
 573                                       bool* succeeded);
 574 
 575   // Attempting to expand the heap sufficiently
 576   // to support an allocation of the given "word_size".  If
 577   // successful, perform the allocation and return the address of the
 578   // allocated block, or else "NULL".
 579   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 580 
 581   // Process any reference objects discovered during
 582   // an incremental evacuation pause.
 583   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 584 
 585   // Enqueue any remaining discovered references
 586   // after processing.
 587   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 588 
 589 public:
 590   WorkGang* workers() const { return _workers; }
 591 
 592   G1Allocator* allocator() {
 593     return _allocator;
 594   }
 595 
 596   G1MonitoringSupport* g1mm() {
 597     assert(_g1mm != NULL, "should have been initialized");
 598     return _g1mm;
 599   }
 600 
 601   // Expand the garbage-first heap by at least the given size (in bytes!).
 602   // Returns true if the heap was expanded by the requested amount;
 603   // false otherwise.
 604   // (Rounds up to a HeapRegion boundary.)
 605   bool expand(size_t expand_bytes);
 606 
 607   // Returns the PLAB statistics for a given destination.
 608   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 609 
 610   // Determines PLAB size for a given destination.
 611   inline size_t desired_plab_sz(InCSetState dest);
 612 
 613   inline AllocationContextStats& allocation_context_stats();
 614 
 615   // Do anything common to GC's.
 616   void gc_prologue(bool full);
 617   void gc_epilogue(bool full);
 618 
 619   // Modify the reclaim candidate set and test for presence.
 620   // These are only valid for starts_humongous regions.
 621   inline void set_humongous_reclaim_candidate(uint region, bool value);
 622   inline bool is_humongous_reclaim_candidate(uint region);
 623 
 624   // Remove from the reclaim candidate set.  Also remove from the
 625   // collection set so that later encounters avoid the slow path.
 626   inline void set_humongous_is_live(oop obj);
 627 
 628   // Register the given region to be part of the collection set.
 629   inline void register_humongous_region_with_cset(uint index);
 630   // Register regions with humongous objects (actually on the start region) in
 631   // the in_cset_fast_test table.
 632   void register_humongous_regions_with_cset();
 633   // We register a region with the fast "in collection set" test. We
 634   // simply set to true the array slot corresponding to this region.
 635   void register_young_region_with_cset(HeapRegion* r) {
 636     _in_cset_fast_test.set_in_young(r->hrm_index());
 637   }
 638   void register_old_region_with_cset(HeapRegion* r) {
 639     _in_cset_fast_test.set_in_old(r->hrm_index());
 640   }
 641   void clear_in_cset(const HeapRegion* hr) {
 642     _in_cset_fast_test.clear(hr);
 643   }
 644 
 645   void clear_cset_fast_test() {
 646     _in_cset_fast_test.clear();
 647   }
 648 
 649   // This is called at the start of either a concurrent cycle or a Full
 650   // GC to update the number of old marking cycles started.
 651   void increment_old_marking_cycles_started();
 652 
 653   // This is called at the end of either a concurrent cycle or a Full
 654   // GC to update the number of old marking cycles completed. Those two
 655   // can happen in a nested fashion, i.e., we start a concurrent
 656   // cycle, a Full GC happens half-way through it which ends first,
 657   // and then the cycle notices that a Full GC happened and ends
 658   // too. The concurrent parameter is a boolean to help us do a bit
 659   // tighter consistency checking in the method. If concurrent is
 660   // false, the caller is the inner caller in the nesting (i.e., the
 661   // Full GC). If concurrent is true, the caller is the outer caller
 662   // in this nesting (i.e., the concurrent cycle). Further nesting is
 663   // not currently supported. The end of this call also notifies
 664   // the FullGCCount_lock in case a Java thread is waiting for a full
 665   // GC to happen (e.g., it called System.gc() with
 666   // +ExplicitGCInvokesConcurrent).
 667   void increment_old_marking_cycles_completed(bool concurrent);
 668 
 669   uint old_marking_cycles_completed() {
 670     return _old_marking_cycles_completed;
 671   }
 672 
 673   void register_concurrent_cycle_start(const Ticks& start_time);
 674   void register_concurrent_cycle_end();
 675   void trace_heap_after_concurrent_cycle();
 676 
 677   G1HRPrinter* hr_printer() { return &_hr_printer; }
 678 
 679   // Allocates a new heap region instance.
 680   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 681 
 682   // Allocate the highest free region in the reserved heap. This will commit
 683   // regions as necessary.
 684   HeapRegion* alloc_highest_free_region();
 685 
 686   // Frees a non-humongous region by initializing its contents and
 687   // adding it to the free list that's passed as a parameter (this is
 688   // usually a local list which will be appended to the master free
 689   // list later). The used bytes of freed regions are accumulated in
 690   // pre_used. If par is true, the region's RSet will not be freed
 691   // up. The assumption is that this will be done later.
 692   // The locked parameter indicates if the caller has already taken
 693   // care of proper synchronization. This may allow some optimizations.
 694   void free_region(HeapRegion* hr,
 695                    FreeRegionList* free_list,
 696                    bool par,
 697                    bool locked = false);
 698 
 699   // It dirties the cards that cover the block so that the post
 700   // write barrier never queues anything when updating objects on this
 701   // block. It is assumed (and in fact we assert) that the block
 702   // belongs to a young region.
 703   inline void dirty_young_block(HeapWord* start, size_t word_size);
 704 
 705   // Frees a humongous region by collapsing it into individual regions
 706   // and calling free_region() for each of them. The freed regions
 707   // will be added to the free list that's passed as a parameter (this
 708   // is usually a local list which will be appended to the master free
 709   // list later). The used bytes of freed regions are accumulated in
 710   // pre_used. If par is true, the region's RSet will not be freed
 711   // up. The assumption is that this will be done later.
 712   void free_humongous_region(HeapRegion* hr,
 713                              FreeRegionList* free_list,
 714                              bool par);
 715 
 716   // Facility for allocating in 'archive' regions in high heap memory and
 717   // recording the allocated ranges. These should all be called from the
 718   // VM thread at safepoints, without the heap lock held. They can be used
 719   // to create and archive a set of heap regions which can be mapped at the
 720   // same fixed addresses in a subsequent JVM invocation.
 721   void begin_archive_alloc_range();
 722 
 723   // Check if the requested size would be too large for an archive allocation.
 724   bool is_archive_alloc_too_large(size_t word_size);
 725 
 726   // Allocate memory of the requested size from the archive region. This will
 727   // return NULL if the size is too large or if no memory is available. It
 728   // does not trigger a garbage collection.
 729   HeapWord* archive_mem_allocate(size_t word_size);
 730 
 731   // Optionally aligns the end address and returns the allocated ranges in
 732   // an array of MemRegions in order of ascending addresses.
 733   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 734                                size_t end_alignment_in_bytes = 0);
 735 
 736   // Facility for allocating a fixed range within the heap and marking
 737   // the containing regions as 'archive'. For use at JVM init time, when the
 738   // caller may mmap archived heap data at the specified range(s).
 739   // Verify that the MemRegions specified in the argument array are within the
 740   // reserved heap.
 741   bool check_archive_addresses(MemRegion* range, size_t count);
 742 
 743   // Commit the appropriate G1 regions containing the specified MemRegions
 744   // and mark them as 'archive' regions. The regions in the array must be
 745   // non-overlapping and in order of ascending address.
 746   bool alloc_archive_regions(MemRegion* range, size_t count);
 747 
 748   // Insert any required filler objects in the G1 regions around the specified
 749   // ranges to make the regions parseable. This must be called after
 750   // alloc_archive_regions, and after class loading has occurred.
 751   void fill_archive_regions(MemRegion* range, size_t count);
 752 
 753   // For each of the specified MemRegions, uncommit the containing G1 regions
 754   // which had been allocated by alloc_archive_regions. This should be called
 755   // rather than fill_archive_regions at JVM init time if the archive file
 756   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 757   void dealloc_archive_regions(MemRegion* range, size_t count);
 758 
 759 protected:
 760 
 761   // Shrink the garbage-first heap by at most the given size (in bytes!).
 762   // (Rounds down to a HeapRegion boundary.)
 763   virtual void shrink(size_t expand_bytes);
 764   void shrink_helper(size_t expand_bytes);
 765 
 766   #if TASKQUEUE_STATS
 767   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 768   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 769   void reset_taskqueue_stats();
 770   #endif // TASKQUEUE_STATS
 771 
 772   // Schedule the VM operation that will do an evacuation pause to
 773   // satisfy an allocation request of word_size. *succeeded will
 774   // return whether the VM operation was successful (it did do an
 775   // evacuation pause) or not (another thread beat us to it or the GC
 776   // locker was active). Given that we should not be holding the
 777   // Heap_lock when we enter this method, we will pass the
 778   // gc_count_before (i.e., total_collections()) as a parameter since
 779   // it has to be read while holding the Heap_lock. Currently, both
 780   // methods that call do_collection_pause() release the Heap_lock
 781   // before the call, so it's easy to read gc_count_before just before.
 782   HeapWord* do_collection_pause(size_t         word_size,
 783                                 uint           gc_count_before,
 784                                 bool*          succeeded,
 785                                 GCCause::Cause gc_cause);
 786 
 787   void wait_for_root_region_scanning();
 788 
 789   // The guts of the incremental collection pause, executed by the vm
 790   // thread. It returns false if it is unable to do the collection due
 791   // to the GC locker being active, true otherwise
 792   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 793 
 794   // Actually do the work of evacuating the collection set.
 795   void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 796 
 797   // Print the header for the per-thread termination statistics.
 798   static void print_termination_stats_hdr(outputStream* const st);
 799   // Print actual per-thread termination statistics.
 800   void print_termination_stats(outputStream* const st,
 801                                uint worker_id,
 802                                double elapsed_ms,
 803                                double strong_roots_ms,
 804                                double term_ms,
 805                                size_t term_attempts,
 806                                size_t alloc_buffer_waste,
 807                                size_t undo_waste) const;
 808   // Update object copying statistics.
 809   void record_obj_copy_mem_stats();
 810 
 811   // The g1 remembered set of the heap.
 812   G1RemSet* _g1_rem_set;
 813 
 814   // A set of cards that cover the objects for which the Rsets should be updated
 815   // concurrently after the collection.
 816   DirtyCardQueueSet _dirty_card_queue_set;
 817 
 818   // The closure used to refine a single card.
 819   RefineCardTableEntryClosure* _refine_cte_cl;
 820 
 821   // A DirtyCardQueueSet that is used to hold cards that contain
 822   // references into the current collection set. This is used to
 823   // update the remembered sets of the regions in the collection
 824   // set in the event of an evacuation failure.
 825   DirtyCardQueueSet _into_cset_dirty_card_queue_set;
 826 
 827   // After a collection pause, make the regions in the CS into free
 828   // regions.
 829   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 830 
 831   // Abandon the current collection set without recording policy
 832   // statistics or updating free lists.
 833   void abandon_collection_set(HeapRegion* cs_head);
 834 
 835   // The concurrent marker (and the thread it runs in.)
 836   ConcurrentMark* _cm;
 837   ConcurrentMarkThread* _cmThread;
 838 
 839   // The concurrent refiner.
 840   ConcurrentG1Refine* _cg1r;
 841 
 842   // The parallel task queues
 843   RefToScanQueueSet *_task_queues;
 844 
 845   // True iff a evacuation has failed in the current collection.
 846   bool _evacuation_failed;
 847 
 848   EvacuationFailedInfo* _evacuation_failed_info_array;
 849 
 850   // Failed evacuations cause some logical from-space objects to have
 851   // forwarding pointers to themselves.  Reset them.
 852   void remove_self_forwarding_pointers();
 853 
 854   struct OopAndMarkOop {
 855    private:
 856     oop _o;
 857     markOop _m;
 858    public:
 859     OopAndMarkOop(oop obj, markOop m) : _o(obj), _m(m) {
 860     }
 861 
 862     void set_mark() {
 863       _o->set_mark(_m);
 864     }
 865   };
 866 
 867   typedef Stack<OopAndMarkOop,mtGC> OopAndMarkOopStack;
 868   // Stores marks with the corresponding oop that we need to preserve during evacuation
 869   // failure.
 870   OopAndMarkOopStack*  _preserved_objs;
 871 
 872   // Preserve the mark of "obj", if necessary, in preparation for its mark
 873   // word being overwritten with a self-forwarding-pointer.
 874   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 875 
 876 #ifndef PRODUCT
 877   // Support for forcing evacuation failures. Analogous to
 878   // PromotionFailureALot for the other collectors.
 879 
 880   // Records whether G1EvacuationFailureALot should be in effect
 881   // for the current GC
 882   bool _evacuation_failure_alot_for_current_gc;
 883 
 884   // Used to record the GC number for interval checking when
 885   // determining whether G1EvaucationFailureALot is in effect
 886   // for the current GC.
 887   size_t _evacuation_failure_alot_gc_number;
 888 
 889   // Count of the number of evacuations between failures.
 890   volatile size_t _evacuation_failure_alot_count;
 891 
 892   // Set whether G1EvacuationFailureALot should be in effect
 893   // for the current GC (based upon the type of GC and which
 894   // command line flags are set);
 895   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 896                                                   bool during_initial_mark,
 897                                                   bool during_marking);
 898 
 899   inline void set_evacuation_failure_alot_for_current_gc();
 900 
 901   // Return true if it's time to cause an evacuation failure.
 902   inline bool evacuation_should_fail();
 903 
 904   // Reset the G1EvacuationFailureALot counters.  Should be called at
 905   // the end of an evacuation pause in which an evacuation failure occurred.
 906   inline void reset_evacuation_should_fail();
 907 #endif // !PRODUCT
 908 
 909   // ("Weak") Reference processing support.
 910   //
 911   // G1 has 2 instances of the reference processor class. One
 912   // (_ref_processor_cm) handles reference object discovery
 913   // and subsequent processing during concurrent marking cycles.
 914   //
 915   // The other (_ref_processor_stw) handles reference object
 916   // discovery and processing during full GCs and incremental
 917   // evacuation pauses.
 918   //
 919   // During an incremental pause, reference discovery will be
 920   // temporarily disabled for _ref_processor_cm and will be
 921   // enabled for _ref_processor_stw. At the end of the evacuation
 922   // pause references discovered by _ref_processor_stw will be
 923   // processed and discovery will be disabled. The previous
 924   // setting for reference object discovery for _ref_processor_cm
 925   // will be re-instated.
 926   //
 927   // At the start of marking:
 928   //  * Discovery by the CM ref processor is verified to be inactive
 929   //    and it's discovered lists are empty.
 930   //  * Discovery by the CM ref processor is then enabled.
 931   //
 932   // At the end of marking:
 933   //  * Any references on the CM ref processor's discovered
 934   //    lists are processed (possibly MT).
 935   //
 936   // At the start of full GC we:
 937   //  * Disable discovery by the CM ref processor and
 938   //    empty CM ref processor's discovered lists
 939   //    (without processing any entries).
 940   //  * Verify that the STW ref processor is inactive and it's
 941   //    discovered lists are empty.
 942   //  * Temporarily set STW ref processor discovery as single threaded.
 943   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 944   //    field.
 945   //  * Finally enable discovery by the STW ref processor.
 946   //
 947   // The STW ref processor is used to record any discovered
 948   // references during the full GC.
 949   //
 950   // At the end of a full GC we:
 951   //  * Enqueue any reference objects discovered by the STW ref processor
 952   //    that have non-live referents. This has the side-effect of
 953   //    making the STW ref processor inactive by disabling discovery.
 954   //  * Verify that the CM ref processor is still inactive
 955   //    and no references have been placed on it's discovered
 956   //    lists (also checked as a precondition during initial marking).
 957 
 958   // The (stw) reference processor...
 959   ReferenceProcessor* _ref_processor_stw;
 960 
 961   STWGCTimer* _gc_timer_stw;
 962   ConcurrentGCTimer* _gc_timer_cm;
 963 
 964   G1OldTracer* _gc_tracer_cm;
 965   G1NewTracer* _gc_tracer_stw;
 966 
 967   // During reference object discovery, the _is_alive_non_header
 968   // closure (if non-null) is applied to the referent object to
 969   // determine whether the referent is live. If so then the
 970   // reference object does not need to be 'discovered' and can
 971   // be treated as a regular oop. This has the benefit of reducing
 972   // the number of 'discovered' reference objects that need to
 973   // be processed.
 974   //
 975   // Instance of the is_alive closure for embedding into the
 976   // STW reference processor as the _is_alive_non_header field.
 977   // Supplying a value for the _is_alive_non_header field is
 978   // optional but doing so prevents unnecessary additions to
 979   // the discovered lists during reference discovery.
 980   G1STWIsAliveClosure _is_alive_closure_stw;
 981 
 982   // The (concurrent marking) reference processor...
 983   ReferenceProcessor* _ref_processor_cm;
 984 
 985   // Instance of the concurrent mark is_alive closure for embedding
 986   // into the Concurrent Marking reference processor as the
 987   // _is_alive_non_header field. Supplying a value for the
 988   // _is_alive_non_header field is optional but doing so prevents
 989   // unnecessary additions to the discovered lists during reference
 990   // discovery.
 991   G1CMIsAliveClosure _is_alive_closure_cm;
 992 
 993   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 994   HeapRegion** _worker_cset_start_region;
 995 
 996   // Time stamp to validate the regions recorded in the cache
 997   // used by G1CollectedHeap::start_cset_region_for_worker().
 998   // The heap region entry for a given worker is valid iff
 999   // the associated time stamp value matches the current value
1000   // of G1CollectedHeap::_gc_time_stamp.
1001   uint* _worker_cset_start_region_time_stamp;
1002 
1003   volatile bool _free_regions_coming;
1004 
1005 public:
1006 
1007   void set_refine_cte_cl_concurrency(bool concurrent);
1008 
1009   RefToScanQueue *task_queue(uint i) const;
1010 
1011   uint num_task_queues() const;
1012 
1013   // A set of cards where updates happened during the GC
1014   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
1015 
1016   // A DirtyCardQueueSet that is used to hold cards that contain
1017   // references into the current collection set. This is used to
1018   // update the remembered sets of the regions in the collection
1019   // set in the event of an evacuation failure.
1020   DirtyCardQueueSet& into_cset_dirty_card_queue_set()
1021         { return _into_cset_dirty_card_queue_set; }
1022 
1023   // Create a G1CollectedHeap with the specified policy.
1024   // Must call the initialize method afterwards.
1025   // May not return if something goes wrong.
1026   G1CollectedHeap(G1CollectorPolicy* policy);
1027 
1028   // Initialize the G1CollectedHeap to have the initial and
1029   // maximum sizes and remembered and barrier sets
1030   // specified by the policy object.
1031   jint initialize();
1032 
1033   virtual void stop();
1034 
1035   // Return the (conservative) maximum heap alignment for any G1 heap
1036   static size_t conservative_max_heap_alignment();
1037 
1038   // Does operations required after initialization has been done.
1039   void post_initialize();
1040 
1041   // Initialize weak reference processing.
1042   void ref_processing_init();
1043 
1044   virtual Name kind() const {
1045     return CollectedHeap::G1CollectedHeap;
1046   }
1047 
1048   G1CollectorState* collector_state() { return &_collector_state; }
1049 
1050   // The current policy object for the collector.
1051   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
1052 
1053   virtual CollectorPolicy* collector_policy() const;
1054 
1055   // Adaptive size policy.  No such thing for g1.
1056   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
1057 
1058   // The rem set and barrier set.
1059   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
1060 
1061   unsigned get_gc_time_stamp() {
1062     return _gc_time_stamp;
1063   }
1064 
1065   inline void reset_gc_time_stamp();
1066 
1067   void check_gc_time_stamps() PRODUCT_RETURN;
1068 
1069   inline void increment_gc_time_stamp();
1070 
1071   // Reset the given region's GC timestamp. If it's starts humongous,
1072   // also reset the GC timestamp of its corresponding
1073   // continues humongous regions too.
1074   void reset_gc_time_stamps(HeapRegion* hr);
1075 
1076   void iterate_dirty_card_closure(CardTableEntryClosure* cl,
1077                                   DirtyCardQueue* into_cset_dcq,
1078                                   bool concurrent, uint worker_i);
1079 
1080   // The shared block offset table array.
1081   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1082 
1083   // Reference Processing accessors
1084 
1085   // The STW reference processor....
1086   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1087 
1088   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1089 
1090   // The Concurrent Marking reference processor...
1091   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1092 
1093   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1094   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1095 
1096   virtual size_t capacity() const;
1097   virtual size_t used() const;
1098   // This should be called when we're not holding the heap lock. The
1099   // result might be a bit inaccurate.
1100   size_t used_unlocked() const;
1101   size_t recalculate_used() const;
1102 
1103   // These virtual functions do the actual allocation.
1104   // Some heaps may offer a contiguous region for shared non-blocking
1105   // allocation, via inlined code (by exporting the address of the top and
1106   // end fields defining the extent of the contiguous allocation region.)
1107   // But G1CollectedHeap doesn't yet support this.
1108 
1109   virtual bool is_maximal_no_gc() const {
1110     return _hrm.available() == 0;
1111   }
1112 
1113   // The current number of regions in the heap.
1114   uint num_regions() const { return _hrm.length(); }
1115 
1116   // The max number of regions in the heap.
1117   uint max_regions() const { return _hrm.max_length(); }
1118 
1119   // The number of regions that are completely free.
1120   uint num_free_regions() const { return _hrm.num_free_regions(); }
1121 
1122   MemoryUsage get_auxiliary_data_memory_usage() const {
1123     return _hrm.get_auxiliary_data_memory_usage();
1124   }
1125 
1126   // The number of regions that are not completely free.
1127   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1128 
1129   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1130   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1131   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1132   void verify_dirty_young_regions() PRODUCT_RETURN;
1133 
1134 #ifndef PRODUCT
1135   // Make sure that the given bitmap has no marked objects in the
1136   // range [from,limit). If it does, print an error message and return
1137   // false. Otherwise, just return true. bitmap_name should be "prev"
1138   // or "next".
1139   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1140                                 HeapWord* from, HeapWord* limit);
1141 
1142   // Verify that the prev / next bitmap range [tams,end) for the given
1143   // region has no marks. Return true if all is well, false if errors
1144   // are detected.
1145   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1146 #endif // PRODUCT
1147 
1148   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1149   // the given region do not have any spurious marks. If errors are
1150   // detected, print appropriate error messages and crash.
1151   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1152 
1153   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1154   // have any spurious marks. If errors are detected, print
1155   // appropriate error messages and crash.
1156   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1157 
1158   // Do sanity check on the contents of the in-cset fast test table.
1159   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1160 
1161   // verify_region_sets() performs verification over the region
1162   // lists. It will be compiled in the product code to be used when
1163   // necessary (i.e., during heap verification).
1164   void verify_region_sets();
1165 
1166   // verify_region_sets_optional() is planted in the code for
1167   // list verification in non-product builds (and it can be enabled in
1168   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1169 #if HEAP_REGION_SET_FORCE_VERIFY
1170   void verify_region_sets_optional() {
1171     verify_region_sets();
1172   }
1173 #else // HEAP_REGION_SET_FORCE_VERIFY
1174   void verify_region_sets_optional() { }
1175 #endif // HEAP_REGION_SET_FORCE_VERIFY
1176 
1177 #ifdef ASSERT
1178   bool is_on_master_free_list(HeapRegion* hr) {
1179     return _hrm.is_free(hr);
1180   }
1181 #endif // ASSERT
1182 
1183   // Wrapper for the region list operations that can be called from
1184   // methods outside this class.
1185 
1186   void secondary_free_list_add(FreeRegionList* list) {
1187     _secondary_free_list.add_ordered(list);
1188   }
1189 
1190   void append_secondary_free_list() {
1191     _hrm.insert_list_into_free_list(&_secondary_free_list);
1192   }
1193 
1194   void append_secondary_free_list_if_not_empty_with_lock() {
1195     // If the secondary free list looks empty there's no reason to
1196     // take the lock and then try to append it.
1197     if (!_secondary_free_list.is_empty()) {
1198       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1199       append_secondary_free_list();
1200     }
1201   }
1202 
1203   inline void old_set_add(HeapRegion* hr);
1204   inline void old_set_remove(HeapRegion* hr);
1205 
1206   size_t non_young_capacity_bytes() {
1207     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1208   }
1209 
1210   void set_free_regions_coming();
1211   void reset_free_regions_coming();
1212   bool free_regions_coming() { return _free_regions_coming; }
1213   void wait_while_free_regions_coming();
1214 
1215   // Determine whether the given region is one that we are using as an
1216   // old GC alloc region.
1217   bool is_old_gc_alloc_region(HeapRegion* hr);
1218 
1219   // Perform a collection of the heap; intended for use in implementing
1220   // "System.gc".  This probably implies as full a collection as the
1221   // "CollectedHeap" supports.
1222   virtual void collect(GCCause::Cause cause);
1223 
1224   // The same as above but assume that the caller holds the Heap_lock.
1225   void collect_locked(GCCause::Cause cause);
1226 
1227   virtual bool copy_allocation_context_stats(const jint* contexts,
1228                                              jlong* totals,
1229                                              jbyte* accuracy,
1230                                              jint len);
1231 
1232   // True iff an evacuation has failed in the most-recent collection.
1233   bool evacuation_failed() { return _evacuation_failed; }
1234 
1235   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1236   void prepend_to_freelist(FreeRegionList* list);
1237   void decrement_summary_bytes(size_t bytes);
1238 
1239   // Returns "TRUE" iff "p" points into the committed areas of the heap.
1240   virtual bool is_in(const void* p) const;
1241 #ifdef ASSERT
1242   // Returns whether p is in one of the available areas of the heap. Slow but
1243   // extensive version.
1244   bool is_in_exact(const void* p) const;
1245 #endif
1246 
1247   // Return "TRUE" iff the given object address is within the collection
1248   // set. Slow implementation.
1249   bool obj_in_cs(oop obj);
1250 
1251   inline bool is_in_cset(const HeapRegion *hr);
1252   inline bool is_in_cset(oop obj);
1253 
1254   inline bool is_in_cset_or_humongous(const oop obj);
1255 
1256  private:
1257   // This array is used for a quick test on whether a reference points into
1258   // the collection set or not. Each of the array's elements denotes whether the
1259   // corresponding region is in the collection set or not.
1260   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1261 
1262  public:
1263 
1264   inline InCSetState in_cset_state(const oop obj);
1265 
1266   // Return "TRUE" iff the given object address is in the reserved
1267   // region of g1.
1268   bool is_in_g1_reserved(const void* p) const {
1269     return _hrm.reserved().contains(p);
1270   }
1271 
1272   // Returns a MemRegion that corresponds to the space that has been
1273   // reserved for the heap
1274   MemRegion g1_reserved() const {
1275     return _hrm.reserved();
1276   }
1277 
1278   virtual bool is_in_closed_subset(const void* p) const;
1279 
1280   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1281     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1282   }
1283 
1284   // This resets the card table to all zeros.  It is used after
1285   // a collection pause which used the card table to claim cards.
1286   void cleanUpCardTable();
1287 
1288   // Iteration functions.
1289 
1290   // Iterate over all objects, calling "cl.do_object" on each.
1291   virtual void object_iterate(ObjectClosure* cl);
1292 
1293   virtual void safe_object_iterate(ObjectClosure* cl) {
1294     object_iterate(cl);
1295   }
1296 
1297   // Iterate over heap regions, in address order, terminating the
1298   // iteration early if the "doHeapRegion" method returns "true".
1299   void heap_region_iterate(HeapRegionClosure* blk) const;
1300 
1301   // Return the region with the given index. It assumes the index is valid.
1302   inline HeapRegion* region_at(uint index) const;
1303 
1304   // Calculate the region index of the given address. Given address must be
1305   // within the heap.
1306   inline uint addr_to_region(HeapWord* addr) const;
1307 
1308   inline HeapWord* bottom_addr_for_region(uint index) const;
1309 
1310   // Iterate over the heap regions in parallel. Assumes that this will be called
1311   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1312   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1313   // to each of the regions, by attempting to claim the region using the
1314   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1315   // region. The concurrent argument should be set to true if iteration is
1316   // performed concurrently, during which no assumptions are made for consistent
1317   // attributes of the heap regions (as they might be modified while iterating).
1318   void heap_region_par_iterate(HeapRegionClosure* cl,
1319                                uint worker_id,
1320                                HeapRegionClaimer* hrclaimer,
1321                                bool concurrent = false) const;
1322 
1323   // Clear the cached cset start regions and (more importantly)
1324   // the time stamps. Called when we reset the GC time stamp.
1325   void clear_cset_start_regions();
1326 
1327   // Given the id of a worker, obtain or calculate a suitable
1328   // starting region for iterating over the current collection set.
1329   HeapRegion* start_cset_region_for_worker(uint worker_i);
1330 
1331   // Iterate over the regions (if any) in the current collection set.
1332   void collection_set_iterate(HeapRegionClosure* blk);
1333 
1334   // As above but starting from region r
1335   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1336 
1337   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1338 
1339   // Returns the HeapRegion that contains addr. addr must not be NULL.
1340   template <class T>
1341   inline HeapRegion* heap_region_containing_raw(const T addr) const;
1342 
1343   // Returns the HeapRegion that contains addr. addr must not be NULL.
1344   // If addr is within a humongous continues region, it returns its humongous start region.
1345   template <class T>
1346   inline HeapRegion* heap_region_containing(const T addr) const;
1347 
1348   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1349   // each address in the (reserved) heap is a member of exactly
1350   // one block.  The defining characteristic of a block is that it is
1351   // possible to find its size, and thus to progress forward to the next
1352   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1353   // represent Java objects, or they might be free blocks in a
1354   // free-list-based heap (or subheap), as long as the two kinds are
1355   // distinguishable and the size of each is determinable.
1356 
1357   // Returns the address of the start of the "block" that contains the
1358   // address "addr".  We say "blocks" instead of "object" since some heaps
1359   // may not pack objects densely; a chunk may either be an object or a
1360   // non-object.
1361   virtual HeapWord* block_start(const void* addr) const;
1362 
1363   // Requires "addr" to be the start of a chunk, and returns its size.
1364   // "addr + size" is required to be the start of a new chunk, or the end
1365   // of the active area of the heap.
1366   virtual size_t block_size(const HeapWord* addr) const;
1367 
1368   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1369   // the block is an object.
1370   virtual bool block_is_obj(const HeapWord* addr) const;
1371 
1372   // Section on thread-local allocation buffers (TLABs)
1373   // See CollectedHeap for semantics.
1374 
1375   bool supports_tlab_allocation() const;
1376   size_t tlab_capacity(Thread* ignored) const;
1377   size_t tlab_used(Thread* ignored) const;
1378   size_t max_tlab_size() const;
1379   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1380 
1381   // Can a compiler initialize a new object without store barriers?
1382   // This permission only extends from the creation of a new object
1383   // via a TLAB up to the first subsequent safepoint. If such permission
1384   // is granted for this heap type, the compiler promises to call
1385   // defer_store_barrier() below on any slow path allocation of
1386   // a new object for which such initializing store barriers will
1387   // have been elided. G1, like CMS, allows this, but should be
1388   // ready to provide a compensating write barrier as necessary
1389   // if that storage came out of a non-young region. The efficiency
1390   // of this implementation depends crucially on being able to
1391   // answer very efficiently in constant time whether a piece of
1392   // storage in the heap comes from a young region or not.
1393   // See ReduceInitialCardMarks.
1394   virtual bool can_elide_tlab_store_barriers() const {
1395     return true;
1396   }
1397 
1398   virtual bool card_mark_must_follow_store() const {
1399     return true;
1400   }
1401 
1402   inline bool is_in_young(const oop obj);
1403 
1404   virtual bool is_scavengable(const void* addr);
1405 
1406   // We don't need barriers for initializing stores to objects
1407   // in the young gen: for the SATB pre-barrier, there is no
1408   // pre-value that needs to be remembered; for the remembered-set
1409   // update logging post-barrier, we don't maintain remembered set
1410   // information for young gen objects.
1411   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1412 
1413   // Returns "true" iff the given word_size is "very large".
1414   static bool is_humongous(size_t word_size) {
1415     // Note this has to be strictly greater-than as the TLABs
1416     // are capped at the humongous threshold and we want to
1417     // ensure that we don't try to allocate a TLAB as
1418     // humongous and that we don't allocate a humongous
1419     // object in a TLAB.
1420     return word_size > _humongous_object_threshold_in_words;
1421   }
1422 
1423   // Returns the humongous threshold for a specific region size
1424   static size_t humongous_threshold_for(size_t region_size) {
1425     return (region_size / 2);
1426   }
1427 
1428   // Update mod union table with the set of dirty cards.
1429   void updateModUnion();
1430 
1431   // Set the mod union bits corresponding to the given memRegion.  Note
1432   // that this is always a safe operation, since it doesn't clear any
1433   // bits.
1434   void markModUnionRange(MemRegion mr);
1435 
1436   // Print the maximum heap capacity.
1437   virtual size_t max_capacity() const;
1438 
1439   virtual jlong millis_since_last_gc();
1440 
1441 
1442   // Convenience function to be used in situations where the heap type can be
1443   // asserted to be this type.
1444   static G1CollectedHeap* heap();
1445 
1446   void set_region_short_lived_locked(HeapRegion* hr);
1447   // add appropriate methods for any other surv rate groups
1448 
1449   YoungList* young_list() const { return _young_list; }
1450 
1451   // debugging
1452   bool check_young_list_well_formed() {
1453     return _young_list->check_list_well_formed();
1454   }
1455 
1456   bool check_young_list_empty(bool check_heap,
1457                               bool check_sample = true);
1458 
1459   // *** Stuff related to concurrent marking.  It's not clear to me that so
1460   // many of these need to be public.
1461 
1462   // The functions below are helper functions that a subclass of
1463   // "CollectedHeap" can use in the implementation of its virtual
1464   // functions.
1465   // This performs a concurrent marking of the live objects in a
1466   // bitmap off to the side.
1467   void doConcurrentMark();
1468 
1469   bool isMarkedPrev(oop obj) const;
1470   bool isMarkedNext(oop obj) const;
1471 
1472   // Determine if an object is dead, given the object and also
1473   // the region to which the object belongs. An object is dead
1474   // iff a) it was not allocated since the last mark, b) it
1475   // is not marked, and c) it is not in an archive region.
1476   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1477     return
1478       !hr->obj_allocated_since_prev_marking(obj) &&
1479       !isMarkedPrev(obj) &&
1480       !hr->is_archive();
1481   }
1482 
1483   // This function returns true when an object has been
1484   // around since the previous marking and hasn't yet
1485   // been marked during this marking, and is not in an archive region.
1486   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1487     return
1488       !hr->obj_allocated_since_next_marking(obj) &&
1489       !isMarkedNext(obj) &&
1490       !hr->is_archive();
1491   }
1492 
1493   // Determine if an object is dead, given only the object itself.
1494   // This will find the region to which the object belongs and
1495   // then call the region version of the same function.
1496 
1497   // Added if it is NULL it isn't dead.
1498 
1499   inline bool is_obj_dead(const oop obj) const;
1500 
1501   inline bool is_obj_ill(const oop obj) const;
1502 
1503   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1504   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1505   bool is_marked(oop obj, VerifyOption vo);
1506   const char* top_at_mark_start_str(VerifyOption vo);
1507 
1508   ConcurrentMark* concurrent_mark() const { return _cm; }
1509 
1510   // Refinement
1511 
1512   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1513 
1514   // The dirty cards region list is used to record a subset of regions
1515   // whose cards need clearing. The list if populated during the
1516   // remembered set scanning and drained during the card table
1517   // cleanup. Although the methods are reentrant, population/draining
1518   // phases must not overlap. For synchronization purposes the last
1519   // element on the list points to itself.
1520   HeapRegion* _dirty_cards_region_list;
1521   void push_dirty_cards_region(HeapRegion* hr);
1522   HeapRegion* pop_dirty_cards_region();
1523 
1524   // Optimized nmethod scanning support routines
1525 
1526   // Register the given nmethod with the G1 heap.
1527   virtual void register_nmethod(nmethod* nm);
1528 
1529   // Unregister the given nmethod from the G1 heap.
1530   virtual void unregister_nmethod(nmethod* nm);
1531 
1532   // Free up superfluous code root memory.
1533   void purge_code_root_memory();
1534 
1535   // Rebuild the strong code root lists for each region
1536   // after a full GC.
1537   void rebuild_strong_code_roots();
1538 
1539   // Delete entries for dead interned string and clean up unreferenced symbols
1540   // in symbol table, possibly in parallel.
1541   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1542 
1543   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1544   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1545 
1546   // Redirty logged cards in the refinement queue.
1547   void redirty_logged_cards();
1548   // Verification
1549 
1550   // Perform any cleanup actions necessary before allowing a verification.
1551   virtual void prepare_for_verify();
1552 
1553   // Perform verification.
1554 
1555   // vo == UsePrevMarking  -> use "prev" marking information,
1556   // vo == UseNextMarking -> use "next" marking information
1557   // vo == UseMarkWord    -> use the mark word in the object header
1558   //
1559   // NOTE: Only the "prev" marking information is guaranteed to be
1560   // consistent most of the time, so most calls to this should use
1561   // vo == UsePrevMarking.
1562   // Currently, there is only one case where this is called with
1563   // vo == UseNextMarking, which is to verify the "next" marking
1564   // information at the end of remark.
1565   // Currently there is only one place where this is called with
1566   // vo == UseMarkWord, which is to verify the marking during a
1567   // full GC.
1568   void verify(bool silent, VerifyOption vo);
1569 
1570   // Override; it uses the "prev" marking information
1571   virtual void verify(bool silent);
1572 
1573   // The methods below are here for convenience and dispatch the
1574   // appropriate method depending on value of the given VerifyOption
1575   // parameter. The values for that parameter, and their meanings,
1576   // are the same as those above.
1577 
1578   bool is_obj_dead_cond(const oop obj,
1579                         const HeapRegion* hr,
1580                         const VerifyOption vo) const;
1581 
1582   bool is_obj_dead_cond(const oop obj,
1583                         const VerifyOption vo) const;
1584 
1585   G1HeapSummary create_g1_heap_summary();
1586   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1587 
1588   // Printing
1589 
1590   virtual void print_on(outputStream* st) const;
1591   virtual void print_extended_on(outputStream* st) const;
1592   virtual void print_on_error(outputStream* st) const;
1593 
1594   virtual void print_gc_threads_on(outputStream* st) const;
1595   virtual void gc_threads_do(ThreadClosure* tc) const;
1596 
1597   // Override
1598   void print_tracing_info() const;
1599 
1600   // The following two methods are helpful for debugging RSet issues.
1601   void print_cset_rsets() PRODUCT_RETURN;
1602   void print_all_rsets() PRODUCT_RETURN;
1603 
1604 public:
1605   size_t pending_card_num();
1606 
1607 protected:
1608   size_t _max_heap_capacity;
1609 };
1610 
1611 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP