/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce #define _WIN32_WINNT 0x0600 // no precompiled headers #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "interpreter/interpreter.hpp" #include "jvm_windows.h" #include "memory/allocation.inline.hpp" #include "memory/filemap.hpp" #include "mutex_windows.inline.hpp" #include "oops/oop.inline.hpp" #include "os_share_windows.hpp" #include "os_windows.inline.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/atomic.inline.hpp" #include "runtime/extendedPC.hpp" #include "runtime/globals.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/objectMonitor.hpp" #include "runtime/orderAccess.inline.hpp" #include "runtime/osThread.hpp" #include "runtime/perfMemory.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/statSampler.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "runtime/threadCritical.hpp" #include "runtime/timer.hpp" #include "runtime/vm_version.hpp" #include "semaphore_windows.hpp" #include "services/attachListener.hpp" #include "services/memTracker.hpp" #include "services/runtimeService.hpp" #include "utilities/decoder.hpp" #include "utilities/defaultStream.hpp" #include "utilities/events.hpp" #include "utilities/growableArray.hpp" #include "utilities/vmError.hpp" #ifdef _DEBUG #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include // For _beginthreadex(), _endthreadex() #include // For os::dll_address_to_function_name // for enumerating dll libraries #include // for timer info max values which include all bits #define ALL_64_BITS CONST64(-1) // For DLL loading/load error detection // Values of PE COFF #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c #define IMAGE_FILE_SIGNATURE_LENGTH 4 static HANDLE main_process; static HANDLE main_thread; static int main_thread_id; static FILETIME process_creation_time; static FILETIME process_exit_time; static FILETIME process_user_time; static FILETIME process_kernel_time; #ifdef _M_IA64 #define __CPU__ ia64 #else #ifdef _M_AMD64 #define __CPU__ amd64 #else #define __CPU__ i486 #endif #endif // save DLL module handle, used by GetModuleFileName HINSTANCE vm_lib_handle; BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) { switch (reason) { case DLL_PROCESS_ATTACH: vm_lib_handle = hinst; if (ForceTimeHighResolution) { timeBeginPeriod(1L); } break; case DLL_PROCESS_DETACH: if (ForceTimeHighResolution) { timeEndPeriod(1L); } break; default: break; } return true; } static inline double fileTimeAsDouble(FILETIME* time) { const double high = (double) ((unsigned int) ~0); const double split = 10000000.0; double result = (time->dwLowDateTime / split) + time->dwHighDateTime * (high/split); return result; } // Implementation of os bool os::unsetenv(const char* name) { assert(name != NULL, "Null pointer"); return (SetEnvironmentVariable(name, NULL) == TRUE); } // No setuid programs under Windows. bool os::have_special_privileges() { return false; } // This method is a periodic task to check for misbehaving JNI applications // under CheckJNI, we can add any periodic checks here. // For Windows at the moment does nothing void os::run_periodic_checks() { return; } // previous UnhandledExceptionFilter, if there is one static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL; LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo); void os::init_system_properties_values() { // sysclasspath, java_home, dll_dir { char *home_path; char *dll_path; char *pslash; char *bin = "\\bin"; char home_dir[MAX_PATH + 1]; char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR"); if (alt_home_dir != NULL) { strncpy(home_dir, alt_home_dir, MAX_PATH + 1); home_dir[MAX_PATH] = '\0'; } else { os::jvm_path(home_dir, sizeof(home_dir)); // Found the full path to jvm.dll. // Now cut the path to /jre if we can. *(strrchr(home_dir, '\\')) = '\0'; // get rid of \jvm.dll pslash = strrchr(home_dir, '\\'); if (pslash != NULL) { *pslash = '\0'; // get rid of \{client|server} pslash = strrchr(home_dir, '\\'); if (pslash != NULL) { *pslash = '\0'; // get rid of \bin } } } home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal); if (home_path == NULL) { return; } strcpy(home_path, home_dir); Arguments::set_java_home(home_path); FREE_C_HEAP_ARRAY(char, home_path); dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal); if (dll_path == NULL) { return; } strcpy(dll_path, home_dir); strcat(dll_path, bin); Arguments::set_dll_dir(dll_path); FREE_C_HEAP_ARRAY(char, dll_path); if (!set_boot_path('\\', ';')) { return; } } // library_path #define EXT_DIR "\\lib\\ext" #define BIN_DIR "\\bin" #define PACKAGE_DIR "\\Sun\\Java" { // Win32 library search order (See the documentation for LoadLibrary): // // 1. The directory from which application is loaded. // 2. The system wide Java Extensions directory (Java only) // 3. System directory (GetSystemDirectory) // 4. Windows directory (GetWindowsDirectory) // 5. The PATH environment variable // 6. The current directory char *library_path; char tmp[MAX_PATH]; char *path_str = ::getenv("PATH"); library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) + sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal); library_path[0] = '\0'; GetModuleFileName(NULL, tmp, sizeof(tmp)); *(strrchr(tmp, '\\')) = '\0'; strcat(library_path, tmp); GetWindowsDirectory(tmp, sizeof(tmp)); strcat(library_path, ";"); strcat(library_path, tmp); strcat(library_path, PACKAGE_DIR BIN_DIR); GetSystemDirectory(tmp, sizeof(tmp)); strcat(library_path, ";"); strcat(library_path, tmp); GetWindowsDirectory(tmp, sizeof(tmp)); strcat(library_path, ";"); strcat(library_path, tmp); if (path_str) { strcat(library_path, ";"); strcat(library_path, path_str); } strcat(library_path, ";."); Arguments::set_library_path(library_path); FREE_C_HEAP_ARRAY(char, library_path); } // Default extensions directory { char path[MAX_PATH]; char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1]; GetWindowsDirectory(path, MAX_PATH); sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR, path, PACKAGE_DIR, EXT_DIR); Arguments::set_ext_dirs(buf); } #undef EXT_DIR #undef BIN_DIR #undef PACKAGE_DIR #ifndef _WIN64 // set our UnhandledExceptionFilter and save any previous one prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception); #endif // Done return; } void os::breakpoint() { DebugBreak(); } // Invoked from the BREAKPOINT Macro extern "C" void breakpoint() { os::breakpoint(); } // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP. // So far, this method is only used by Native Memory Tracking, which is // only supported on Windows XP or later. // int os::get_native_stack(address* stack, int frames, int toSkip) { #ifdef _NMT_NOINLINE_ toSkip++; #endif int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL); for (int index = captured; index < frames; index ++) { stack[index] = NULL; } return captured; } // os::current_stack_base() // // Returns the base of the stack, which is the stack's // starting address. This function must be called // while running on the stack of the thread being queried. address os::current_stack_base() { MEMORY_BASIC_INFORMATION minfo; address stack_bottom; size_t stack_size; VirtualQuery(&minfo, &minfo, sizeof(minfo)); stack_bottom = (address)minfo.AllocationBase; stack_size = minfo.RegionSize; // Add up the sizes of all the regions with the same // AllocationBase. while (1) { VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo)); if (stack_bottom == (address)minfo.AllocationBase) { stack_size += minfo.RegionSize; } else { break; } } #ifdef _M_IA64 // IA64 has memory and register stacks // // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit // at thread creation (1MB backing store growing upwards, 1MB memory stack // growing downwards, 2MB summed up) // // ... // ------- top of stack (high address) ----- // | // | 1MB // | Backing Store (Register Stack) // | // | / \ // | | // | | // | | // ------------------------ stack base ----- // | 1MB // | Memory Stack // | // | | // | | // | | // | \ / // | // ----- bottom of stack (low address) ----- // ... stack_size = stack_size / 2; #endif return stack_bottom + stack_size; } size_t os::current_stack_size() { size_t sz; MEMORY_BASIC_INFORMATION minfo; VirtualQuery(&minfo, &minfo, sizeof(minfo)); sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase; return sz; } struct tm* os::localtime_pd(const time_t* clock, struct tm* res) { const struct tm* time_struct_ptr = localtime(clock); if (time_struct_ptr != NULL) { *res = *time_struct_ptr; return res; } return NULL; } LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo); // Thread start routine for all new Java threads static unsigned __stdcall java_start(Thread* thread) { // Try to randomize the cache line index of hot stack frames. // This helps when threads of the same stack traces evict each other's // cache lines. The threads can be either from the same JVM instance, or // from different JVM instances. The benefit is especially true for // processors with hyperthreading technology. static int counter = 0; int pid = os::current_process_id(); _alloca(((pid ^ counter++) & 7) * 128); OSThread* osthr = thread->osthread(); assert(osthr->get_state() == RUNNABLE, "invalid os thread state"); if (UseNUMA) { int lgrp_id = os::numa_get_group_id(); if (lgrp_id != -1) { thread->set_lgrp_id(lgrp_id); } } // Diagnostic code to investigate JDK-6573254 int res = 30115; // non-java thread if (thread->is_Java_thread()) { res = 20115; // java thread } // Install a win32 structured exception handler around every thread created // by VM, so VM can generate error dump when an exception occurred in non- // Java thread (e.g. VM thread). __try { thread->run(); } __except(topLevelExceptionFilter( (_EXCEPTION_POINTERS*)_exception_info())) { // Nothing to do. } // One less thread is executing // When the VMThread gets here, the main thread may have already exited // which frees the CodeHeap containing the Atomic::add code if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) { Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count); } // Thread must not return from exit_process_or_thread(), but if it does, // let it proceed to exit normally return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res); } static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) { // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) return NULL; // Initialize support for Java interrupts HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL); if (interrupt_event == NULL) { delete osthread; return NULL; } osthread->set_interrupt_event(interrupt_event); // Store info on the Win32 thread into the OSThread osthread->set_thread_handle(thread_handle); osthread->set_thread_id(thread_id); if (UseNUMA) { int lgrp_id = os::numa_get_group_id(); if (lgrp_id != -1) { thread->set_lgrp_id(lgrp_id); } } // Initial thread state is INITIALIZED, not SUSPENDED osthread->set_state(INITIALIZED); return osthread; } bool os::create_attached_thread(JavaThread* thread) { #ifdef ASSERT thread->verify_not_published(); #endif HANDLE thread_h; if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(), &thread_h, THREAD_ALL_ACCESS, false, 0)) { fatal("DuplicateHandle failed\n"); } OSThread* osthread = create_os_thread(thread, thread_h, (int)current_thread_id()); if (osthread == NULL) { return false; } // Initial thread state is RUNNABLE osthread->set_state(RUNNABLE); thread->set_osthread(osthread); return true; } bool os::create_main_thread(JavaThread* thread) { #ifdef ASSERT thread->verify_not_published(); #endif if (_starting_thread == NULL) { _starting_thread = create_os_thread(thread, main_thread, main_thread_id); if (_starting_thread == NULL) { return false; } } // The primordial thread is runnable from the start) _starting_thread->set_state(RUNNABLE); thread->set_osthread(_starting_thread); return true; } // Allocate and initialize a new OSThread bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) { unsigned thread_id; // Allocate the OSThread object OSThread* osthread = new OSThread(NULL, NULL); if (osthread == NULL) { return false; } // Initialize support for Java interrupts HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL); if (interrupt_event == NULL) { delete osthread; return NULL; } osthread->set_interrupt_event(interrupt_event); osthread->set_interrupted(false); thread->set_osthread(osthread); if (stack_size == 0) { switch (thr_type) { case os::java_thread: // Java threads use ThreadStackSize which default value can be changed with the flag -Xss if (JavaThread::stack_size_at_create() > 0) { stack_size = JavaThread::stack_size_at_create(); } break; case os::compiler_thread: if (CompilerThreadStackSize > 0) { stack_size = (size_t)(CompilerThreadStackSize * K); break; } // else fall through: // use VMThreadStackSize if CompilerThreadStackSize is not defined case os::vm_thread: case os::pgc_thread: case os::cgc_thread: case os::watcher_thread: if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K); break; } } // Create the Win32 thread // // Contrary to what MSDN document says, "stack_size" in _beginthreadex() // does not specify stack size. Instead, it specifies the size of // initially committed space. The stack size is determined by // PE header in the executable. If the committed "stack_size" is larger // than default value in the PE header, the stack is rounded up to the // nearest multiple of 1MB. For example if the launcher has default // stack size of 320k, specifying any size less than 320k does not // affect the actual stack size at all, it only affects the initial // commitment. On the other hand, specifying 'stack_size' larger than // default value may cause significant increase in memory usage, because // not only the stack space will be rounded up to MB, but also the // entire space is committed upfront. // // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION' // for CreateThread() that can treat 'stack_size' as stack size. However we // are not supposed to call CreateThread() directly according to MSDN // document because JVM uses C runtime library. The good news is that the // flag appears to work with _beginthredex() as well. #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION #define STACK_SIZE_PARAM_IS_A_RESERVATION (0x10000) #endif HANDLE thread_handle = (HANDLE)_beginthreadex(NULL, (unsigned)stack_size, (unsigned (__stdcall *)(void*)) java_start, thread, CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION, &thread_id); if (thread_handle == NULL) { // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again // without the flag. thread_handle = (HANDLE)_beginthreadex(NULL, (unsigned)stack_size, (unsigned (__stdcall *)(void*)) java_start, thread, CREATE_SUSPENDED, &thread_id); } if (thread_handle == NULL) { // Need to clean up stuff we've allocated so far CloseHandle(osthread->interrupt_event()); thread->set_osthread(NULL); delete osthread; return NULL; } Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count); // Store info on the Win32 thread into the OSThread osthread->set_thread_handle(thread_handle); osthread->set_thread_id(thread_id); // Initial thread state is INITIALIZED, not SUSPENDED osthread->set_state(INITIALIZED); // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain return true; } // Free Win32 resources related to the OSThread void os::free_thread(OSThread* osthread) { assert(osthread != NULL, "osthread not set"); CloseHandle(osthread->thread_handle()); CloseHandle(osthread->interrupt_event()); delete osthread; } static jlong first_filetime; static jlong initial_performance_count; static jlong performance_frequency; jlong as_long(LARGE_INTEGER x) { jlong result = 0; // initialization to avoid warning set_high(&result, x.HighPart); set_low(&result, x.LowPart); return result; } jlong os::elapsed_counter() { LARGE_INTEGER count; if (win32::_has_performance_count) { QueryPerformanceCounter(&count); return as_long(count) - initial_performance_count; } else { FILETIME wt; GetSystemTimeAsFileTime(&wt); return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime); } } jlong os::elapsed_frequency() { if (win32::_has_performance_count) { return performance_frequency; } else { // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601. return 10000000; } } julong os::available_memory() { return win32::available_memory(); } julong os::win32::available_memory() { // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect // value if total memory is larger than 4GB MEMORYSTATUSEX ms; ms.dwLength = sizeof(ms); GlobalMemoryStatusEx(&ms); return (julong)ms.ullAvailPhys; } julong os::physical_memory() { return win32::physical_memory(); } bool os::has_allocatable_memory_limit(julong* limit) { MEMORYSTATUSEX ms; ms.dwLength = sizeof(ms); GlobalMemoryStatusEx(&ms); #ifdef _LP64 *limit = (julong)ms.ullAvailVirtual; return true; #else // Limit to 1400m because of the 2gb address space wall *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual); return true; #endif } // VC6 lacks DWORD_PTR #if _MSC_VER < 1300 typedef UINT_PTR DWORD_PTR; #endif int os::active_processor_count() { DWORD_PTR lpProcessAffinityMask = 0; DWORD_PTR lpSystemAffinityMask = 0; int proc_count = processor_count(); if (proc_count <= sizeof(UINT_PTR) * BitsPerByte && GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) { // Nof active processors is number of bits in process affinity mask int bitcount = 0; while (lpProcessAffinityMask != 0) { lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1); bitcount++; } return bitcount; } else { return proc_count; } } void os::set_native_thread_name(const char *name) { // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx // // Note that unfortunately this only works if the process // is already attached to a debugger; debugger must observe // the exception below to show the correct name. const DWORD MS_VC_EXCEPTION = 0x406D1388; struct { DWORD dwType; // must be 0x1000 LPCSTR szName; // pointer to name (in user addr space) DWORD dwThreadID; // thread ID (-1=caller thread) DWORD dwFlags; // reserved for future use, must be zero } info; info.dwType = 0x1000; info.szName = name; info.dwThreadID = -1; info.dwFlags = 0; __try { RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info ); } __except(EXCEPTION_CONTINUE_EXECUTION) {} } bool os::distribute_processes(uint length, uint* distribution) { // Not yet implemented. return false; } bool os::bind_to_processor(uint processor_id) { // Not yet implemented. return false; } void os::win32::initialize_performance_counter() { LARGE_INTEGER count; if (QueryPerformanceFrequency(&count)) { win32::_has_performance_count = 1; performance_frequency = as_long(count); QueryPerformanceCounter(&count); initial_performance_count = as_long(count); } else { win32::_has_performance_count = 0; FILETIME wt; GetSystemTimeAsFileTime(&wt); first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime); } } double os::elapsedTime() { return (double) elapsed_counter() / (double) elapsed_frequency(); } // Windows format: // The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601. // Java format: // Java standards require the number of milliseconds since 1/1/1970 // Constant offset - calculated using offset() static jlong _offset = 116444736000000000; // Fake time counter for reproducible results when debugging static jlong fake_time = 0; #ifdef ASSERT // Just to be safe, recalculate the offset in debug mode static jlong _calculated_offset = 0; static int _has_calculated_offset = 0; jlong offset() { if (_has_calculated_offset) return _calculated_offset; SYSTEMTIME java_origin; java_origin.wYear = 1970; java_origin.wMonth = 1; java_origin.wDayOfWeek = 0; // ignored java_origin.wDay = 1; java_origin.wHour = 0; java_origin.wMinute = 0; java_origin.wSecond = 0; java_origin.wMilliseconds = 0; FILETIME jot; if (!SystemTimeToFileTime(&java_origin, &jot)) { fatal("Error = %d\nWindows error", GetLastError()); } _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime); _has_calculated_offset = 1; assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal"); return _calculated_offset; } #else jlong offset() { return _offset; } #endif jlong windows_to_java_time(FILETIME wt) { jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime); return (a - offset()) / 10000; } // Returns time ticks in (10th of micro seconds) jlong windows_to_time_ticks(FILETIME wt) { jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime); return (a - offset()); } FILETIME java_to_windows_time(jlong l) { jlong a = (l * 10000) + offset(); FILETIME result; result.dwHighDateTime = high(a); result.dwLowDateTime = low(a); return result; } bool os::supports_vtime() { return true; } bool os::enable_vtime() { return false; } bool os::vtime_enabled() { return false; } double os::elapsedVTime() { FILETIME created; FILETIME exited; FILETIME kernel; FILETIME user; if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) { // the resolution of windows_to_java_time() should be sufficient (ms) return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS; } else { return elapsedTime(); } } jlong os::javaTimeMillis() { if (UseFakeTimers) { return fake_time++; } else { FILETIME wt; GetSystemTimeAsFileTime(&wt); return windows_to_java_time(wt); } } void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) { FILETIME wt; GetSystemTimeAsFileTime(&wt); jlong ticks = windows_to_time_ticks(wt); // 10th of micros jlong secs = jlong(ticks / 10000000); // 10000 * 1000 seconds = secs; nanos = jlong(ticks - (secs*10000000)) * 100; } jlong os::javaTimeNanos() { if (!win32::_has_performance_count) { return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do. } else { LARGE_INTEGER current_count; QueryPerformanceCounter(¤t_count); double current = as_long(current_count); double freq = performance_frequency; jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC); return time; } } void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) { if (!win32::_has_performance_count) { // javaTimeMillis() doesn't have much percision, // but it is not going to wrap -- so all 64 bits info_ptr->max_value = ALL_64_BITS; // this is a wall clock timer, so may skip info_ptr->may_skip_backward = true; info_ptr->may_skip_forward = true; } else { jlong freq = performance_frequency; if (freq < NANOSECS_PER_SEC) { // the performance counter is 64 bits and we will // be multiplying it -- so no wrap in 64 bits info_ptr->max_value = ALL_64_BITS; } else if (freq > NANOSECS_PER_SEC) { // use the max value the counter can reach to // determine the max value which could be returned julong max_counter = (julong)ALL_64_BITS; info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC)); } else { // the performance counter is 64 bits and we will // be using it directly -- so no wrap in 64 bits info_ptr->max_value = ALL_64_BITS; } // using a counter, so no skipping info_ptr->may_skip_backward = false; info_ptr->may_skip_forward = false; } info_ptr->kind = JVMTI_TIMER_ELAPSED; // elapsed not CPU time } char* os::local_time_string(char *buf, size_t buflen) { SYSTEMTIME st; GetLocalTime(&st); jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d", st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond); return buf; } bool os::getTimesSecs(double* process_real_time, double* process_user_time, double* process_system_time) { HANDLE h_process = GetCurrentProcess(); FILETIME create_time, exit_time, kernel_time, user_time; BOOL result = GetProcessTimes(h_process, &create_time, &exit_time, &kernel_time, &user_time); if (result != 0) { FILETIME wt; GetSystemTimeAsFileTime(&wt); jlong rtc_millis = windows_to_java_time(wt); jlong user_millis = windows_to_java_time(user_time); jlong system_millis = windows_to_java_time(kernel_time); *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS); *process_user_time = ((double) user_millis) / ((double) MILLIUNITS); *process_system_time = ((double) system_millis) / ((double) MILLIUNITS); return true; } else { return false; } } void os::shutdown() { // allow PerfMemory to attempt cleanup of any persistent resources perfMemory_exit(); // flush buffered output, finish log files ostream_abort(); // Check for abort hook abort_hook_t abort_hook = Arguments::abort_hook(); if (abort_hook != NULL) { abort_hook(); } } static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION, PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION); static HANDLE dumpFile = NULL; // Check if dump file can be created. void os::check_dump_limit(char* buffer, size_t buffsz) { bool status = true; if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) { jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line"); status = false; } #ifndef ASSERT if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) { jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows"); status = false; } #endif if (status) { const char* cwd = get_current_directory(NULL, 0); int pid = current_process_id(); if (cwd != NULL) { jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid); } else { jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid); } if (dumpFile == NULL && (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL)) == INVALID_HANDLE_VALUE) { jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError()); status = false; } } VMError::record_coredump_status(buffer, status); } void os::abort(bool dump_core, void* siginfo, void* context) { HINSTANCE dbghelp; EXCEPTION_POINTERS ep; MINIDUMP_EXCEPTION_INFORMATION mei; MINIDUMP_EXCEPTION_INFORMATION* pmei; HANDLE hProcess = GetCurrentProcess(); DWORD processId = GetCurrentProcessId(); MINIDUMP_TYPE dumpType; shutdown(); if (!dump_core || dumpFile == NULL) { if (dumpFile != NULL) { CloseHandle(dumpFile); } win32::exit_process_or_thread(win32::EPT_PROCESS, 1); } dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0); if (dbghelp == NULL) { jio_fprintf(stderr, "Failed to load dbghelp.dll\n"); CloseHandle(dumpFile); win32::exit_process_or_thread(win32::EPT_PROCESS, 1); } _MiniDumpWriteDump = CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION, PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION), GetProcAddress(dbghelp, "MiniDumpWriteDump")); if (_MiniDumpWriteDump == NULL) { jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n"); CloseHandle(dumpFile); win32::exit_process_or_thread(win32::EPT_PROCESS, 1); } dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData); // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with // API_VERSION_NUMBER 11 or higher contains the ones we want though #if API_VERSION_NUMBER >= 11 dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules); #endif if (siginfo != NULL && context != NULL) { ep.ContextRecord = (PCONTEXT) context; ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo; mei.ThreadId = GetCurrentThreadId(); mei.ExceptionPointers = &ep; pmei = &mei; } else { pmei = NULL; } // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then. if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false && _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) { jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError()); } CloseHandle(dumpFile); win32::exit_process_or_thread(win32::EPT_PROCESS, 1); } // Die immediately, no exit hook, no abort hook, no cleanup. void os::die() { win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1); } // Directory routines copied from src/win32/native/java/io/dirent_md.c // * dirent_md.c 1.15 00/02/02 // // The declarations for DIR and struct dirent are in jvm_win32.h. // Caller must have already run dirname through JVM_NativePath, which removes // duplicate slashes and converts all instances of '/' into '\\'. DIR * os::opendir(const char *dirname) { assert(dirname != NULL, "just checking"); // hotspot change DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal); DWORD fattr; // hotspot change char alt_dirname[4] = { 0, 0, 0, 0 }; if (dirp == 0) { errno = ENOMEM; return 0; } // Win32 accepts "\" in its POSIX stat(), but refuses to treat it // as a directory in FindFirstFile(). We detect this case here and // prepend the current drive name. // if (dirname[1] == '\0' && dirname[0] == '\\') { alt_dirname[0] = _getdrive() + 'A' - 1; alt_dirname[1] = ':'; alt_dirname[2] = '\\'; alt_dirname[3] = '\0'; dirname = alt_dirname; } dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal); if (dirp->path == 0) { free(dirp); errno = ENOMEM; return 0; } strcpy(dirp->path, dirname); fattr = GetFileAttributes(dirp->path); if (fattr == 0xffffffff) { free(dirp->path); free(dirp); errno = ENOENT; return 0; } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) { free(dirp->path); free(dirp); errno = ENOTDIR; return 0; } // Append "*.*", or possibly "\\*.*", to path if (dirp->path[1] == ':' && (dirp->path[2] == '\0' || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) { // No '\\' needed for cases like "Z:" or "Z:\" strcat(dirp->path, "*.*"); } else { strcat(dirp->path, "\\*.*"); } dirp->handle = FindFirstFile(dirp->path, &dirp->find_data); if (dirp->handle == INVALID_HANDLE_VALUE) { if (GetLastError() != ERROR_FILE_NOT_FOUND) { free(dirp->path); free(dirp); errno = EACCES; return 0; } } return dirp; } // parameter dbuf unused on Windows struct dirent * os::readdir(DIR *dirp, dirent *dbuf) { assert(dirp != NULL, "just checking"); // hotspot change if (dirp->handle == INVALID_HANDLE_VALUE) { return 0; } strcpy(dirp->dirent.d_name, dirp->find_data.cFileName); if (!FindNextFile(dirp->handle, &dirp->find_data)) { if (GetLastError() == ERROR_INVALID_HANDLE) { errno = EBADF; return 0; } FindClose(dirp->handle); dirp->handle = INVALID_HANDLE_VALUE; } return &dirp->dirent; } int os::closedir(DIR *dirp) { assert(dirp != NULL, "just checking"); // hotspot change if (dirp->handle != INVALID_HANDLE_VALUE) { if (!FindClose(dirp->handle)) { errno = EBADF; return -1; } dirp->handle = INVALID_HANDLE_VALUE; } free(dirp->path); free(dirp); return 0; } // This must be hard coded because it's the system's temporary // directory not the java application's temp directory, ala java.io.tmpdir. const char* os::get_temp_directory() { static char path_buf[MAX_PATH]; if (GetTempPath(MAX_PATH, path_buf) > 0) { return path_buf; } else { path_buf[0] = '\0'; return path_buf; } } static bool file_exists(const char* filename) { if (filename == NULL || strlen(filename) == 0) { return false; } return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES; } bool os::dll_build_name(char *buffer, size_t buflen, const char* pname, const char* fname) { bool retval = false; const size_t pnamelen = pname ? strlen(pname) : 0; const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0; // Return error on buffer overflow. if (pnamelen + strlen(fname) + 10 > buflen) { return retval; } if (pnamelen == 0) { jio_snprintf(buffer, buflen, "%s.dll", fname); retval = true; } else if (c == ':' || c == '\\') { jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname); retval = true; } else if (strchr(pname, *os::path_separator()) != NULL) { int n; char** pelements = split_path(pname, &n); if (pelements == NULL) { return false; } for (int i = 0; i < n; i++) { char* path = pelements[i]; // Really shouldn't be NULL, but check can't hurt size_t plen = (path == NULL) ? 0 : strlen(path); if (plen == 0) { continue; // skip the empty path values } const char lastchar = path[plen - 1]; if (lastchar == ':' || lastchar == '\\') { jio_snprintf(buffer, buflen, "%s%s.dll", path, fname); } else { jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname); } if (file_exists(buffer)) { retval = true; break; } } // release the storage for (int i = 0; i < n; i++) { if (pelements[i] != NULL) { FREE_C_HEAP_ARRAY(char, pelements[i]); } } if (pelements != NULL) { FREE_C_HEAP_ARRAY(char*, pelements); } } else { jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname); retval = true; } return retval; } // Needs to be in os specific directory because windows requires another // header file const char* os::get_current_directory(char *buf, size_t buflen) { int n = static_cast(buflen); if (buflen > INT_MAX) n = INT_MAX; return _getcwd(buf, n); } //----------------------------------------------------------- // Helper functions for fatal error handler #ifdef _WIN64 // Helper routine which returns true if address in // within the NTDLL address space. // static bool _addr_in_ntdll(address addr) { HMODULE hmod; MODULEINFO minfo; hmod = GetModuleHandle("NTDLL.DLL"); if (hmod == NULL) return false; if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod, &minfo, sizeof(MODULEINFO))) { return false; } if ((addr >= minfo.lpBaseOfDll) && (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) { return true; } else { return false; } } #endif struct _modinfo { address addr; char* full_path; // point to a char buffer int buflen; // size of the buffer address base_addr; }; static int _locate_module_by_addr(const char * mod_fname, address base_addr, address top_address, void * param) { struct _modinfo *pmod = (struct _modinfo *)param; if (!pmod) return -1; if (base_addr <= pmod->addr && top_address > pmod->addr) { // if a buffer is provided, copy path name to the buffer if (pmod->full_path) { jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname); } pmod->base_addr = base_addr; return 1; } return 0; } bool os::dll_address_to_library_name(address addr, char* buf, int buflen, int* offset) { // buf is not optional, but offset is optional assert(buf != NULL, "sanity check"); // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always // return the full path to the DLL file, sometimes it returns path // to the corresponding PDB file (debug info); sometimes it only // returns partial path, which makes life painful. struct _modinfo mi; mi.addr = addr; mi.full_path = buf; mi.buflen = buflen; if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) { // buf already contains path name if (offset) *offset = addr - mi.base_addr; return true; } buf[0] = '\0'; if (offset) *offset = -1; return false; } bool os::dll_address_to_function_name(address addr, char *buf, int buflen, int *offset, bool demangle) { // buf is not optional, but offset is optional assert(buf != NULL, "sanity check"); if (Decoder::decode(addr, buf, buflen, offset, demangle)) { return true; } if (offset != NULL) *offset = -1; buf[0] = '\0'; return false; } // save the start and end address of jvm.dll into param[0] and param[1] static int _locate_jvm_dll(const char* mod_fname, address base_addr, address top_address, void * param) { if (!param) return -1; if (base_addr <= (address)_locate_jvm_dll && top_address > (address)_locate_jvm_dll) { ((address*)param)[0] = base_addr; ((address*)param)[1] = top_address; return 1; } return 0; } address vm_lib_location[2]; // start and end address of jvm.dll // check if addr is inside jvm.dll bool os::address_is_in_vm(address addr) { if (!vm_lib_location[0] || !vm_lib_location[1]) { if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) { assert(false, "Can't find jvm module."); return false; } } return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]); } // print module info; param is outputStream* static int _print_module(const char* fname, address base_address, address top_address, void* param) { if (!param) return -1; outputStream* st = (outputStream*)param; st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname); return 0; } // Loads .dll/.so and // in case of error it checks if .dll/.so was built for the // same architecture as Hotspot is running on void * os::dll_load(const char *name, char *ebuf, int ebuflen) { void * result = LoadLibrary(name); if (result != NULL) { return result; } DWORD errcode = GetLastError(); if (errcode == ERROR_MOD_NOT_FOUND) { strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1); ebuf[ebuflen - 1] = '\0'; return NULL; } // Parsing dll below // If we can read dll-info and find that dll was built // for an architecture other than Hotspot is running in // - then print to buffer "DLL was built for a different architecture" // else call os::lasterror to obtain system error message // Read system error message into ebuf // It may or may not be overwritten below (in the for loop and just above) lasterror(ebuf, (size_t) ebuflen); ebuf[ebuflen - 1] = '\0'; int fd = ::open(name, O_RDONLY | O_BINARY, 0); if (fd < 0) { return NULL; } uint32_t signature_offset; uint16_t lib_arch = 0; bool failed_to_get_lib_arch = ( // Go to position 3c in the dll (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0) || // Read location of signature (sizeof(signature_offset) != (os::read(fd, (void*)&signature_offset, sizeof(signature_offset)))) || // Go to COFF File Header in dll // that is located after "signature" (4 bytes long) (os::seek_to_file_offset(fd, signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0) || // Read field that contains code of architecture // that dll was built for (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch)))) ); ::close(fd); if (failed_to_get_lib_arch) { // file i/o error - report os::lasterror(...) msg return NULL; } typedef struct { uint16_t arch_code; char* arch_name; } arch_t; static const arch_t arch_array[] = { {IMAGE_FILE_MACHINE_I386, (char*)"IA 32"}, {IMAGE_FILE_MACHINE_AMD64, (char*)"AMD 64"}, {IMAGE_FILE_MACHINE_IA64, (char*)"IA 64"} }; #if (defined _M_IA64) static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64; #elif (defined _M_AMD64) static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64; #elif (defined _M_IX86) static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386; #else #error Method os::dll_load requires that one of following \ is defined :_M_IA64,_M_AMD64 or _M_IX86 #endif // Obtain a string for printf operation // lib_arch_str shall contain string what platform this .dll was built for // running_arch_str shall string contain what platform Hotspot was built for char *running_arch_str = NULL, *lib_arch_str = NULL; for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) { if (lib_arch == arch_array[i].arch_code) { lib_arch_str = arch_array[i].arch_name; } if (running_arch == arch_array[i].arch_code) { running_arch_str = arch_array[i].arch_name; } } assert(running_arch_str, "Didn't find running architecture code in arch_array"); // If the architecture is right // but some other error took place - report os::lasterror(...) msg if (lib_arch == running_arch) { return NULL; } if (lib_arch_str != NULL) { ::_snprintf(ebuf, ebuflen - 1, "Can't load %s-bit .dll on a %s-bit platform", lib_arch_str, running_arch_str); } else { // don't know what architecture this dll was build for ::_snprintf(ebuf, ebuflen - 1, "Can't load this .dll (machine code=0x%x) on a %s-bit platform", lib_arch, running_arch_str); } return NULL; } void os::print_dll_info(outputStream *st) { st->print_cr("Dynamic libraries:"); get_loaded_modules_info(_print_module, (void *)st); } int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) { HANDLE hProcess; # define MAX_NUM_MODULES 128 HMODULE modules[MAX_NUM_MODULES]; static char filename[MAX_PATH]; int result = 0; if (!os::PSApiDll::PSApiAvailable()) { return 0; } int pid = os::current_process_id(); hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, pid); if (hProcess == NULL) return 0; DWORD size_needed; if (!os::PSApiDll::EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) { CloseHandle(hProcess); return 0; } // number of modules that are currently loaded int num_modules = size_needed / sizeof(HMODULE); for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) { // Get Full pathname: if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) { filename[0] = '\0'; } MODULEINFO modinfo; if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) { modinfo.lpBaseOfDll = NULL; modinfo.SizeOfImage = 0; } // Invoke callback function result = callback(filename, (address)modinfo.lpBaseOfDll, (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param); if (result) break; } CloseHandle(hProcess); return result; } #ifndef PRODUCT bool os::get_host_name(char* buf, size_t buflen) { DWORD size = (DWORD)buflen; return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE); } #endif // PRODUCT void os::get_summary_os_info(char* buf, size_t buflen) { stringStream sst(buf, buflen); os::win32::print_windows_version(&sst); // chop off newline character char* nl = strchr(buf, '\n'); if (nl != NULL) *nl = '\0'; } void os::print_os_info_brief(outputStream* st) { os::print_os_info(st); } void os::print_os_info(outputStream* st) { #ifdef ASSERT char buffer[1024]; st->print("HostName: "); if (get_host_name(buffer, sizeof(buffer))) { st->print("%s ", buffer); } else { st->print("N/A "); } #endif st->print("OS:"); os::win32::print_windows_version(st); } void os::win32::print_windows_version(outputStream* st) { OSVERSIONINFOEX osvi; VS_FIXEDFILEINFO *file_info; TCHAR kernel32_path[MAX_PATH]; UINT len, ret; // Use the GetVersionEx information to see if we're on a server or // workstation edition of Windows. Starting with Windows 8.1 we can't // trust the OS version information returned by this API. ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX)); osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX); if (!GetVersionEx((OSVERSIONINFO *)&osvi)) { st->print_cr("Call to GetVersionEx failed"); return; } bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION); // Get the full path to \Windows\System32\kernel32.dll and use that for // determining what version of Windows we're running on. len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1; ret = GetSystemDirectory(kernel32_path, len); if (ret == 0 || ret > len) { st->print_cr("Call to GetSystemDirectory failed"); return; } strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret); DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL); if (version_size == 0) { st->print_cr("Call to GetFileVersionInfoSize failed"); return; } LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal); if (version_info == NULL) { st->print_cr("Failed to allocate version_info"); return; } if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) { os::free(version_info); st->print_cr("Call to GetFileVersionInfo failed"); return; } if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) { os::free(version_info); st->print_cr("Call to VerQueryValue failed"); return; } int major_version = HIWORD(file_info->dwProductVersionMS); int minor_version = LOWORD(file_info->dwProductVersionMS); int build_number = HIWORD(file_info->dwProductVersionLS); int build_minor = LOWORD(file_info->dwProductVersionLS); int os_vers = major_version * 1000 + minor_version; os::free(version_info); st->print(" Windows "); switch (os_vers) { case 6000: if (is_workstation) { st->print("Vista"); } else { st->print("Server 2008"); } break; case 6001: if (is_workstation) { st->print("7"); } else { st->print("Server 2008 R2"); } break; case 6002: if (is_workstation) { st->print("8"); } else { st->print("Server 2012"); } break; case 6003: if (is_workstation) { st->print("8.1"); } else { st->print("Server 2012 R2"); } break; case 10000: if (is_workstation) { st->print("10"); } else { // The server version name of Windows 10 is not known at this time st->print("%d.%d", major_version, minor_version); } break; default: // Unrecognized windows, print out its major and minor versions st->print("%d.%d", major_version, minor_version); break; } // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could // find out whether we are running on 64 bit processor or not SYSTEM_INFO si; ZeroMemory(&si, sizeof(SYSTEM_INFO)); os::Kernel32Dll::GetNativeSystemInfo(&si); if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) { st->print(" , 64 bit"); } st->print(" Build %d", build_number); st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor); st->cr(); } void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) { // Nothing to do for now. } void os::get_summary_cpu_info(char* buf, size_t buflen) { HKEY key; DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key); if (status == ERROR_SUCCESS) { DWORD size = (DWORD)buflen; status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size); if (status != ERROR_SUCCESS) { strncpy(buf, "## __CPU__", buflen); } RegCloseKey(key); } else { // Put generic cpu info to return strncpy(buf, "## __CPU__", buflen); } } void os::print_memory_info(outputStream* st) { st->print("Memory:"); st->print(" %dk page", os::vm_page_size()>>10); // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect // value if total memory is larger than 4GB MEMORYSTATUSEX ms; ms.dwLength = sizeof(ms); GlobalMemoryStatusEx(&ms); st->print(", physical %uk", os::physical_memory() >> 10); st->print("(%uk free)", os::available_memory() >> 10); st->print(", swap %uk", ms.ullTotalPageFile >> 10); st->print("(%uk free)", ms.ullAvailPageFile >> 10); st->cr(); } void os::print_siginfo(outputStream *st, void *siginfo) { EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo; st->print("siginfo:"); st->print(" ExceptionCode=0x%x", er->ExceptionCode); if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && er->NumberParameters >= 2) { switch (er->ExceptionInformation[0]) { case 0: st->print(", reading address"); break; case 1: st->print(", writing address"); break; default: st->print(", ExceptionInformation=" INTPTR_FORMAT, er->ExceptionInformation[0]); } st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]); } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR && er->NumberParameters >= 2 && UseSharedSpaces) { FileMapInfo* mapinfo = FileMapInfo::current_info(); if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) { st->print("\n\nError accessing class data sharing archive." \ " Mapped file inaccessible during execution, " \ " possible disk/network problem."); } } else { int num = er->NumberParameters; if (num > 0) { st->print(", ExceptionInformation="); for (int i = 0; i < num; i++) { st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]); } } } st->cr(); } void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) { // do nothing } static char saved_jvm_path[MAX_PATH] = {0}; // Find the full path to the current module, jvm.dll void os::jvm_path(char *buf, jint buflen) { // Error checking. if (buflen < MAX_PATH) { assert(false, "must use a large-enough buffer"); buf[0] = '\0'; return; } // Lazy resolve the path to current module. if (saved_jvm_path[0] != 0) { strcpy(buf, saved_jvm_path); return; } buf[0] = '\0'; if (Arguments::sun_java_launcher_is_altjvm()) { // Support for the java launcher's '-XXaltjvm=' option. Check // for a JAVA_HOME environment variable and fix up the path so it // looks like jvm.dll is installed there (append a fake suffix // hotspot/jvm.dll). char* java_home_var = ::getenv("JAVA_HOME"); if (java_home_var != NULL && java_home_var[0] != 0 && strlen(java_home_var) < (size_t)buflen) { strncpy(buf, java_home_var, buflen); // determine if this is a legacy image or modules image // modules image doesn't have "jre" subdirectory size_t len = strlen(buf); char* jrebin_p = buf + len; jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\"); if (0 != _access(buf, 0)) { jio_snprintf(jrebin_p, buflen-len, "\\bin\\"); } len = strlen(buf); jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll"); } } if (buf[0] == '\0') { GetModuleFileName(vm_lib_handle, buf, buflen); } strncpy(saved_jvm_path, buf, MAX_PATH); saved_jvm_path[MAX_PATH - 1] = '\0'; } void os::print_jni_name_prefix_on(outputStream* st, int args_size) { #ifndef _WIN64 st->print("_"); #endif } void os::print_jni_name_suffix_on(outputStream* st, int args_size) { #ifndef _WIN64 st->print("@%d", args_size * sizeof(int)); #endif } // This method is a copy of JDK's sysGetLastErrorString // from src/windows/hpi/src/system_md.c size_t os::lasterror(char* buf, size_t len) { DWORD errval; if ((errval = GetLastError()) != 0) { // DOS error size_t n = (size_t)FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS, NULL, errval, 0, buf, (DWORD)len, NULL); if (n > 3) { // Drop final '.', CR, LF if (buf[n - 1] == '\n') n--; if (buf[n - 1] == '\r') n--; if (buf[n - 1] == '.') n--; buf[n] = '\0'; } return n; } if (errno != 0) { // C runtime error that has no corresponding DOS error code const char* s = strerror(errno); size_t n = strlen(s); if (n >= len) n = len - 1; strncpy(buf, s, n); buf[n] = '\0'; return n; } return 0; } int os::get_last_error() { DWORD error = GetLastError(); if (error == 0) { error = errno; } return (int)error; } WindowsSemaphore::WindowsSemaphore(uint value) { _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL); guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError()); } WindowsSemaphore::~WindowsSemaphore() { ::CloseHandle(_semaphore); } void WindowsSemaphore::signal(uint count) { if (count > 0) { BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL); assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError()); } } void WindowsSemaphore::wait() { DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE); assert(ret != WAIT_FAILED, "WaitForSingleObject failed with error code: %lu", GetLastError()); assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret); } // sun.misc.Signal // NOTE that this is a workaround for an apparent kernel bug where if // a signal handler for SIGBREAK is installed then that signal handler // takes priority over the console control handler for CTRL_CLOSE_EVENT. // See bug 4416763. static void (*sigbreakHandler)(int) = NULL; static void UserHandler(int sig, void *siginfo, void *context) { os::signal_notify(sig); // We need to reinstate the signal handler each time... os::signal(sig, (void*)UserHandler); } void* os::user_handler() { return (void*) UserHandler; } void* os::signal(int signal_number, void* handler) { if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) { void (*oldHandler)(int) = sigbreakHandler; sigbreakHandler = (void (*)(int)) handler; return (void*) oldHandler; } else { return (void*)::signal(signal_number, (void (*)(int))handler); } } void os::signal_raise(int signal_number) { raise(signal_number); } // The Win32 C runtime library maps all console control events other than ^C // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close, // logoff, and shutdown events. We therefore install our own console handler // that raises SIGTERM for the latter cases. // static BOOL WINAPI consoleHandler(DWORD event) { switch (event) { case CTRL_C_EVENT: if (is_error_reported()) { // Ctrl-C is pressed during error reporting, likely because the error // handler fails to abort. Let VM die immediately. os::die(); } os::signal_raise(SIGINT); return TRUE; break; case CTRL_BREAK_EVENT: if (sigbreakHandler != NULL) { (*sigbreakHandler)(SIGBREAK); } return TRUE; break; case CTRL_LOGOFF_EVENT: { // Don't terminate JVM if it is running in a non-interactive session, // such as a service process. USEROBJECTFLAGS flags; HANDLE handle = GetProcessWindowStation(); if (handle != NULL && GetUserObjectInformation(handle, UOI_FLAGS, &flags, sizeof(USEROBJECTFLAGS), NULL)) { // If it is a non-interactive session, let next handler to deal // with it. if ((flags.dwFlags & WSF_VISIBLE) == 0) { return FALSE; } } } case CTRL_CLOSE_EVENT: case CTRL_SHUTDOWN_EVENT: os::signal_raise(SIGTERM); return TRUE; break; default: break; } return FALSE; } // The following code is moved from os.cpp for making this // code platform specific, which it is by its very nature. // Return maximum OS signal used + 1 for internal use only // Used as exit signal for signal_thread int os::sigexitnum_pd() { return NSIG; } // a counter for each possible signal value, including signal_thread exit signal static volatile jint pending_signals[NSIG+1] = { 0 }; static HANDLE sig_sem = NULL; void os::signal_init_pd() { // Initialize signal structures memset((void*)pending_signals, 0, sizeof(pending_signals)); sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL); // Programs embedding the VM do not want it to attempt to receive // events like CTRL_LOGOFF_EVENT, which are used to implement the // shutdown hooks mechanism introduced in 1.3. For example, when // the VM is run as part of a Windows NT service (i.e., a servlet // engine in a web server), the correct behavior is for any console // control handler to return FALSE, not TRUE, because the OS's // "final" handler for such events allows the process to continue if // it is a service (while terminating it if it is not a service). // To make this behavior uniform and the mechanism simpler, we // completely disable the VM's usage of these console events if -Xrs // (=ReduceSignalUsage) is specified. This means, for example, that // the CTRL-BREAK thread dump mechanism is also disabled in this // case. See bugs 4323062, 4345157, and related bugs. if (!ReduceSignalUsage) { // Add a CTRL-C handler SetConsoleCtrlHandler(consoleHandler, TRUE); } } void os::signal_notify(int signal_number) { BOOL ret; if (sig_sem != NULL) { Atomic::inc(&pending_signals[signal_number]); ret = ::ReleaseSemaphore(sig_sem, 1, NULL); assert(ret != 0, "ReleaseSemaphore() failed"); } } static int check_pending_signals(bool wait_for_signal) { DWORD ret; while (true) { for (int i = 0; i < NSIG + 1; i++) { jint n = pending_signals[i]; if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) { return i; } } if (!wait_for_signal) { return -1; } JavaThread *thread = JavaThread::current(); ThreadBlockInVM tbivm(thread); bool threadIsSuspended; do { thread->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self() ret = ::WaitForSingleObject(sig_sem, INFINITE); assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed"); // were we externally suspended while we were waiting? threadIsSuspended = thread->handle_special_suspend_equivalent_condition(); if (threadIsSuspended) { // The semaphore has been incremented, but while we were waiting // another thread suspended us. We don't want to continue running // while suspended because that would surprise the thread that // suspended us. ret = ::ReleaseSemaphore(sig_sem, 1, NULL); assert(ret != 0, "ReleaseSemaphore() failed"); thread->java_suspend_self(); } } while (threadIsSuspended); } } int os::signal_lookup() { return check_pending_signals(false); } int os::signal_wait() { return check_pending_signals(true); } // Implicit OS exception handling LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) { JavaThread* thread = JavaThread::current(); // Save pc in thread #ifdef _M_IA64 // Do not blow up if no thread info available. if (thread) { // Saving PRECISE pc (with slot information) in thread. uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress; // Convert precise PC into "Unix" format precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2); thread->set_saved_exception_pc((address)precise_pc); } // Set pc to handler exceptionInfo->ContextRecord->StIIP = (DWORD64)handler; // Clear out psr.ri (= Restart Instruction) in order to continue // at the beginning of the target bundle. exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF; assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!"); #else #ifdef _M_AMD64 // Do not blow up if no thread info available. if (thread) { thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip); } // Set pc to handler exceptionInfo->ContextRecord->Rip = (DWORD64)handler; #else // Do not blow up if no thread info available. if (thread) { thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip); } // Set pc to handler exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler; #endif #endif // Continue the execution return EXCEPTION_CONTINUE_EXECUTION; } // Used for PostMortemDump extern "C" void safepoints(); extern "C" void find(int x); extern "C" void events(); // According to Windows API documentation, an illegal instruction sequence should generate // the 0xC000001C exception code. However, real world experience shows that occasionnaly // the execution of an illegal instruction can generate the exception code 0xC000001E. This // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems). #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E // From "Execution Protection in the Windows Operating System" draft 0.35 // Once a system header becomes available, the "real" define should be // included or copied here. #define EXCEPTION_INFO_EXEC_VIOLATION 0x08 // Handle NAT Bit consumption on IA64. #ifdef _M_IA64 #define EXCEPTION_REG_NAT_CONSUMPTION STATUS_REG_NAT_CONSUMPTION #endif // Windows Vista/2008 heap corruption check #define EXCEPTION_HEAP_CORRUPTION 0xC0000374 #define def_excpt(val) #val, val struct siglabel { char *name; int number; }; // All Visual C++ exceptions thrown from code generated by the Microsoft Visual // C++ compiler contain this error code. Because this is a compiler-generated // error, the code is not listed in the Win32 API header files. // The code is actually a cryptic mnemonic device, with the initial "E" // standing for "exception" and the final 3 bytes (0x6D7363) representing the // ASCII values of "msc". #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION 0xE06D7363 struct siglabel exceptlabels[] = { def_excpt(EXCEPTION_ACCESS_VIOLATION), def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT), def_excpt(EXCEPTION_BREAKPOINT), def_excpt(EXCEPTION_SINGLE_STEP), def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED), def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND), def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO), def_excpt(EXCEPTION_FLT_INEXACT_RESULT), def_excpt(EXCEPTION_FLT_INVALID_OPERATION), def_excpt(EXCEPTION_FLT_OVERFLOW), def_excpt(EXCEPTION_FLT_STACK_CHECK), def_excpt(EXCEPTION_FLT_UNDERFLOW), def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO), def_excpt(EXCEPTION_INT_OVERFLOW), def_excpt(EXCEPTION_PRIV_INSTRUCTION), def_excpt(EXCEPTION_IN_PAGE_ERROR), def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION), def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2), def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION), def_excpt(EXCEPTION_STACK_OVERFLOW), def_excpt(EXCEPTION_INVALID_DISPOSITION), def_excpt(EXCEPTION_GUARD_PAGE), def_excpt(EXCEPTION_INVALID_HANDLE), def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION), def_excpt(EXCEPTION_HEAP_CORRUPTION), #ifdef _M_IA64 def_excpt(EXCEPTION_REG_NAT_CONSUMPTION), #endif NULL, 0 }; const char* os::exception_name(int exception_code, char *buf, size_t size) { for (int i = 0; exceptlabels[i].name != NULL; i++) { if (exceptlabels[i].number == exception_code) { jio_snprintf(buf, size, "%s", exceptlabels[i].name); return buf; } } return NULL; } //----------------------------------------------------------------------------- LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) { // handle exception caused by idiv; should only happen for -MinInt/-1 // (division by zero is handled explicitly) #ifdef _M_IA64 assert(0, "Fix Handle_IDiv_Exception"); #else #ifdef _M_AMD64 PCONTEXT ctx = exceptionInfo->ContextRecord; address pc = (address)ctx->Rip; assert(pc[0] == 0xF7, "not an idiv opcode"); assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands"); assert(ctx->Rax == min_jint, "unexpected idiv exception"); // set correct result values and continue after idiv instruction ctx->Rip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes ctx->Rax = (DWORD)min_jint; // result ctx->Rdx = (DWORD)0; // remainder // Continue the execution #else PCONTEXT ctx = exceptionInfo->ContextRecord; address pc = (address)ctx->Eip; assert(pc[0] == 0xF7, "not an idiv opcode"); assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands"); assert(ctx->Eax == min_jint, "unexpected idiv exception"); // set correct result values and continue after idiv instruction ctx->Eip = (DWORD)pc + 2; // idiv reg, reg is 2 bytes ctx->Eax = (DWORD)min_jint; // result ctx->Edx = (DWORD)0; // remainder // Continue the execution #endif #endif return EXCEPTION_CONTINUE_EXECUTION; } //----------------------------------------------------------------------------- LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) { PCONTEXT ctx = exceptionInfo->ContextRecord; #ifndef _WIN64 // handle exception caused by native method modifying control word DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode; switch (exception_code) { case EXCEPTION_FLT_DENORMAL_OPERAND: case EXCEPTION_FLT_DIVIDE_BY_ZERO: case EXCEPTION_FLT_INEXACT_RESULT: case EXCEPTION_FLT_INVALID_OPERATION: case EXCEPTION_FLT_OVERFLOW: case EXCEPTION_FLT_STACK_CHECK: case EXCEPTION_FLT_UNDERFLOW: jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std()); if (fp_control_word != ctx->FloatSave.ControlWord) { // Restore FPCW and mask out FLT exceptions ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0; // Mask out pending FLT exceptions ctx->FloatSave.StatusWord &= 0xffffff00; return EXCEPTION_CONTINUE_EXECUTION; } } if (prev_uef_handler != NULL) { // We didn't handle this exception so pass it to the previous // UnhandledExceptionFilter. return (prev_uef_handler)(exceptionInfo); } #else // !_WIN64 // On Windows, the mxcsr control bits are non-volatile across calls // See also CR 6192333 // jint MxCsr = INITIAL_MXCSR; // we can't use StubRoutines::addr_mxcsr_std() // because in Win64 mxcsr is not saved there if (MxCsr != ctx->MxCsr) { ctx->MxCsr = MxCsr; return EXCEPTION_CONTINUE_EXECUTION; } #endif // !_WIN64 return EXCEPTION_CONTINUE_SEARCH; } static inline void report_error(Thread* t, DWORD exception_code, address addr, void* siginfo, void* context) { VMError::report_and_die(t, exception_code, addr, siginfo, context); // If UseOsErrorReporting, this will return here and save the error file // somewhere where we can find it in the minidump. } //----------------------------------------------------------------------------- LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) { if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH; DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode; #ifdef _M_IA64 // On Itanium, we need the "precise pc", which has the slot number coded // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format). address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress; // Convert the pc to "Unix format", which has the slot number coded // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2 // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction" // information is saved in the Unix format. address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2)); #else #ifdef _M_AMD64 address pc = (address) exceptionInfo->ContextRecord->Rip; #else address pc = (address) exceptionInfo->ContextRecord->Eip; #endif #endif Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady // Handle SafeFetch32 and SafeFetchN exceptions. if (StubRoutines::is_safefetch_fault(pc)) { return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc)); } #ifndef _WIN64 // Execution protection violation - win32 running on AMD64 only // Handled first to avoid misdiagnosis as a "normal" access violation; // This is safe to do because we have a new/unique ExceptionInformation // code for this condition. if (exception_code == EXCEPTION_ACCESS_VIOLATION) { PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord; int exception_subcode = (int) exceptionRecord->ExceptionInformation[0]; address addr = (address) exceptionRecord->ExceptionInformation[1]; if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) { int page_size = os::vm_page_size(); // Make sure the pc and the faulting address are sane. // // If an instruction spans a page boundary, and the page containing // the beginning of the instruction is executable but the following // page is not, the pc and the faulting address might be slightly // different - we still want to unguard the 2nd page in this case. // // 15 bytes seems to be a (very) safe value for max instruction size. bool pc_is_near_addr = (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15); bool instr_spans_page_boundary = (align_size_down((intptr_t) pc ^ (intptr_t) addr, (intptr_t) page_size) > 0); if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) { static volatile address last_addr = (address) os::non_memory_address_word(); // In conservative mode, don't unguard unless the address is in the VM if (UnguardOnExecutionViolation > 0 && addr != last_addr && (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) { // Set memory to RWX and retry address page_start = (address) align_size_down((intptr_t) addr, (intptr_t) page_size); bool res = os::protect_memory((char*) page_start, page_size, os::MEM_PROT_RWX); if (PrintMiscellaneous && Verbose) { char buf[256]; jio_snprintf(buf, sizeof(buf), "Execution protection violation " "at " INTPTR_FORMAT ", unguarding " INTPTR_FORMAT ": %s", addr, page_start, (res ? "success" : strerror(errno))); tty->print_raw_cr(buf); } // Set last_addr so if we fault again at the same address, we don't // end up in an endless loop. // // There are two potential complications here. Two threads trapping // at the same address at the same time could cause one of the // threads to think it already unguarded, and abort the VM. Likely // very rare. // // The other race involves two threads alternately trapping at // different addresses and failing to unguard the page, resulting in // an endless loop. This condition is probably even more unlikely // than the first. // // Although both cases could be avoided by using locks or thread // local last_addr, these solutions are unnecessary complication: // this handler is a best-effort safety net, not a complete solution. // It is disabled by default and should only be used as a workaround // in case we missed any no-execute-unsafe VM code. last_addr = addr; return EXCEPTION_CONTINUE_EXECUTION; } } // Last unguard failed or not unguarding tty->print_raw_cr("Execution protection violation"); report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord, exceptionInfo->ContextRecord); return EXCEPTION_CONTINUE_SEARCH; } } #endif // _WIN64 // Check to see if we caught the safepoint code in the // process of write protecting the memory serialization page. // It write enables the page immediately after protecting it // so just return. if (exception_code == EXCEPTION_ACCESS_VIOLATION) { JavaThread* thread = (JavaThread*) t; PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord; address addr = (address) exceptionRecord->ExceptionInformation[1]; if (os::is_memory_serialize_page(thread, addr)) { // Block current thread until the memory serialize page permission restored. os::block_on_serialize_page_trap(); return EXCEPTION_CONTINUE_EXECUTION; } } if ((exception_code == EXCEPTION_ACCESS_VIOLATION) && VM_Version::is_cpuinfo_segv_addr(pc)) { // Verify that OS save/restore AVX registers. return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr()); } if (t != NULL && t->is_Java_thread()) { JavaThread* thread = (JavaThread*) t; bool in_java = thread->thread_state() == _thread_in_Java; // Handle potential stack overflows up front. if (exception_code == EXCEPTION_STACK_OVERFLOW) { if (os::uses_stack_guard_pages()) { #ifdef _M_IA64 // Use guard page for register stack. PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord; address addr = (address) exceptionRecord->ExceptionInformation[1]; // Check for a register stack overflow on Itanium if (thread->addr_inside_register_stack_red_zone(addr)) { // Fatal red zone violation happens if the Java program // catches a StackOverflow error and does so much processing // that it runs beyond the unprotected yellow guard zone. As // a result, we are out of here. fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit."); } else if(thread->addr_inside_register_stack(addr)) { // Disable the yellow zone which sets the state that // we've got a stack overflow problem. if (thread->stack_yellow_zone_enabled()) { thread->disable_stack_yellow_zone(); } // Give us some room to process the exception. thread->disable_register_stack_guard(); // Tracing with +Verbose. if (Verbose) { tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc); tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr); tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base()); tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]", thread->register_stack_base(), thread->register_stack_base() + thread->stack_size()); } // Reguard the permanent register stack red zone just to be sure. // We saw Windows silently disabling this without telling us. thread->enable_register_stack_red_zone(); return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW)); } #endif if (thread->stack_yellow_zone_enabled()) { // Yellow zone violation. The o/s has unprotected the first yellow // zone page for us. Note: must call disable_stack_yellow_zone to // update the enabled status, even if the zone contains only one page. thread->disable_stack_yellow_zone(); // If not in java code, return and hope for the best. return in_java ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW)) : EXCEPTION_CONTINUE_EXECUTION; } else { // Fatal red zone violation. thread->disable_stack_red_zone(); tty->print_raw_cr("An unrecoverable stack overflow has occurred."); report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord, exceptionInfo->ContextRecord); return EXCEPTION_CONTINUE_SEARCH; } } else if (in_java) { // JVM-managed guard pages cannot be used on win95/98. The o/s provides // a one-time-only guard page, which it has released to us. The next // stack overflow on this thread will result in an ACCESS_VIOLATION. return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW)); } else { // Can only return and hope for the best. Further stack growth will // result in an ACCESS_VIOLATION. return EXCEPTION_CONTINUE_EXECUTION; } } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) { // Either stack overflow or null pointer exception. if (in_java) { PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord; address addr = (address) exceptionRecord->ExceptionInformation[1]; address stack_end = thread->stack_base() - thread->stack_size(); if (addr < stack_end && addr >= stack_end - os::vm_page_size()) { // Stack overflow. assert(!os::uses_stack_guard_pages(), "should be caught by red zone code above."); return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW)); } // Check for safepoint polling and implicit null // We only expect null pointers in the stubs (vtable) // the rest are checked explicitly now. CodeBlob* cb = CodeCache::find_blob(pc); if (cb != NULL) { if (os::is_poll_address(addr)) { address stub = SharedRuntime::get_poll_stub(pc); return Handle_Exception(exceptionInfo, stub); } } { #ifdef _WIN64 // If it's a legal stack address map the entire region in // PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord; address addr = (address) exceptionRecord->ExceptionInformation[1]; if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) { addr = (address)((uintptr_t)addr & (~((uintptr_t)os::vm_page_size() - (uintptr_t)1))); os::commit_memory((char *)addr, thread->stack_base() - addr, !ExecMem); return EXCEPTION_CONTINUE_EXECUTION; } else #endif { // Null pointer exception. #ifdef _M_IA64 // Process implicit null checks in compiled code. Note: Implicit null checks // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs. if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) { CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format); // Handle implicit null check in UEP method entry if (cb && (cb->is_frame_complete_at(pc) || (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) { if (Verbose) { intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0); tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format); tty->print_cr(" to addr " INTPTR_FORMAT, addr); tty->print_cr(" bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)", *(bundle_start + 1), *bundle_start); } return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL)); } } // Implicit null checks were processed above. Hence, we should not reach // here in the usual case => die! if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception"); report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord, exceptionInfo->ContextRecord); return EXCEPTION_CONTINUE_SEARCH; #else // !IA64 // Windows 98 reports faulting addresses incorrectly if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) || !os::win32::is_nt()) { address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); if (stub != NULL) return Handle_Exception(exceptionInfo, stub); } report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord, exceptionInfo->ContextRecord); return EXCEPTION_CONTINUE_SEARCH; #endif } } } #ifdef _WIN64 // Special care for fast JNI field accessors. // jni_fast_GetField can trap at certain pc's if a GC kicks // in and the heap gets shrunk before the field access. if (exception_code == EXCEPTION_ACCESS_VIOLATION) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { return Handle_Exception(exceptionInfo, addr); } } #endif // Stack overflow or null pointer exception in native code. report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord, exceptionInfo->ContextRecord); return EXCEPTION_CONTINUE_SEARCH; } // /EXCEPTION_ACCESS_VIOLATION // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - #if defined _M_IA64 else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION || exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) { M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0); // Compiled method patched to be non entrant? Following conditions must apply: // 1. must be first instruction in bundle // 2. must be a break instruction with appropriate code if ((((uint64_t) pc & 0x0F) == 0) && (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) { return Handle_Exception(exceptionInfo, (address)SharedRuntime::get_handle_wrong_method_stub()); } } // /EXCEPTION_ILLEGAL_INSTRUCTION #endif if (in_java) { switch (exception_code) { case EXCEPTION_INT_DIVIDE_BY_ZERO: return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO)); case EXCEPTION_INT_OVERFLOW: return Handle_IDiv_Exception(exceptionInfo); } // switch } if (((thread->thread_state() == _thread_in_Java) || (thread->thread_state() == _thread_in_native)) && exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) { LONG result=Handle_FLT_Exception(exceptionInfo); if (result==EXCEPTION_CONTINUE_EXECUTION) return result; } } if (exception_code != EXCEPTION_BREAKPOINT) { report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord, exceptionInfo->ContextRecord); } return EXCEPTION_CONTINUE_SEARCH; } #ifndef _WIN64 // Special care for fast JNI accessors. // jni_fast_GetField can trap at certain pc's if a GC kicks in and // the heap gets shrunk before the field access. // Need to install our own structured exception handler since native code may // install its own. LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) { DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode; if (exception_code == EXCEPTION_ACCESS_VIOLATION) { address pc = (address) exceptionInfo->ContextRecord->Eip; address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { return Handle_Exception(exceptionInfo, addr); } } return EXCEPTION_CONTINUE_SEARCH; } #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result) \ Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, \ jobject obj, \ jfieldID fieldID) { \ __try { \ return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, \ obj, \ fieldID); \ } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*) \ _exception_info())) { \ } \ return 0; \ } DEFINE_FAST_GETFIELD(jboolean, bool, Boolean) DEFINE_FAST_GETFIELD(jbyte, byte, Byte) DEFINE_FAST_GETFIELD(jchar, char, Char) DEFINE_FAST_GETFIELD(jshort, short, Short) DEFINE_FAST_GETFIELD(jint, int, Int) DEFINE_FAST_GETFIELD(jlong, long, Long) DEFINE_FAST_GETFIELD(jfloat, float, Float) DEFINE_FAST_GETFIELD(jdouble, double, Double) address os::win32::fast_jni_accessor_wrapper(BasicType type) { switch (type) { case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper; case T_BYTE: return (address)jni_fast_GetByteField_wrapper; case T_CHAR: return (address)jni_fast_GetCharField_wrapper; case T_SHORT: return (address)jni_fast_GetShortField_wrapper; case T_INT: return (address)jni_fast_GetIntField_wrapper; case T_LONG: return (address)jni_fast_GetLongField_wrapper; case T_FLOAT: return (address)jni_fast_GetFloatField_wrapper; case T_DOUBLE: return (address)jni_fast_GetDoubleField_wrapper; default: ShouldNotReachHere(); } return (address)-1; } #endif // Virtual Memory int os::vm_page_size() { return os::win32::vm_page_size(); } int os::vm_allocation_granularity() { return os::win32::vm_allocation_granularity(); } // Windows large page support is available on Windows 2003. In order to use // large page memory, the administrator must first assign additional privilege // to the user: // + select Control Panel -> Administrative Tools -> Local Security Policy // + select Local Policies -> User Rights Assignment // + double click "Lock pages in memory", add users and/or groups // + reboot // Note the above steps are needed for administrator as well, as administrators // by default do not have the privilege to lock pages in memory. // // Note about Windows 2003: although the API supports committing large page // memory on a page-by-page basis and VirtualAlloc() returns success under this // scenario, I found through experiment it only uses large page if the entire // memory region is reserved and committed in a single VirtualAlloc() call. // This makes Windows large page support more or less like Solaris ISM, in // that the entire heap must be committed upfront. This probably will change // in the future, if so the code below needs to be revisited. #ifndef MEM_LARGE_PAGES #define MEM_LARGE_PAGES 0x20000000 #endif static HANDLE _hProcess; static HANDLE _hToken; // Container for NUMA node list info class NUMANodeListHolder { private: int *_numa_used_node_list; // allocated below int _numa_used_node_count; void free_node_list() { if (_numa_used_node_list != NULL) { FREE_C_HEAP_ARRAY(int, _numa_used_node_list); } } public: NUMANodeListHolder() { _numa_used_node_count = 0; _numa_used_node_list = NULL; // do rest of initialization in build routine (after function pointers are set up) } ~NUMANodeListHolder() { free_node_list(); } bool build() { DWORD_PTR proc_aff_mask; DWORD_PTR sys_aff_mask; if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false; ULONG highest_node_number; if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false; free_node_list(); _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal); for (unsigned int i = 0; i <= highest_node_number; i++) { ULONGLONG proc_mask_numa_node; if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false; if ((proc_aff_mask & proc_mask_numa_node)!=0) { _numa_used_node_list[_numa_used_node_count++] = i; } } return (_numa_used_node_count > 1); } int get_count() { return _numa_used_node_count; } int get_node_list_entry(int n) { // for indexes out of range, returns -1 return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1); } } numa_node_list_holder; static size_t _large_page_size = 0; static bool resolve_functions_for_large_page_init() { return os::Kernel32Dll::GetLargePageMinimumAvailable() && os::Advapi32Dll::AdvapiAvailable(); } static bool request_lock_memory_privilege() { _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, os::current_process_id()); LUID luid; if (_hProcess != NULL && os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) && os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) { TOKEN_PRIVILEGES tp; tp.PrivilegeCount = 1; tp.Privileges[0].Luid = luid; tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED; // AdjustTokenPrivileges() may return TRUE even when it couldn't change the // privilege. Check GetLastError() too. See MSDN document. if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) && (GetLastError() == ERROR_SUCCESS)) { return true; } } return false; } static void cleanup_after_large_page_init() { if (_hProcess) CloseHandle(_hProcess); _hProcess = NULL; if (_hToken) CloseHandle(_hToken); _hToken = NULL; } static bool numa_interleaving_init() { bool success = false; bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving); // print a warning if UseNUMAInterleaving flag is specified on command line bool warn_on_failure = use_numa_interleaving_specified; #define WARN(msg) if (warn_on_failure) { warning(msg); } // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages) size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity(); NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity); if (os::Kernel32Dll::NumaCallsAvailable()) { if (numa_node_list_holder.build()) { if (PrintMiscellaneous && Verbose) { tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count()); for (int i = 0; i < numa_node_list_holder.get_count(); i++) { tty->print("%d ", numa_node_list_holder.get_node_list_entry(i)); } tty->print("\n"); } success = true; } else { WARN("Process does not cover multiple NUMA nodes."); } } else { WARN("NUMA Interleaving is not supported by the operating system."); } if (!success) { if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag."); } return success; #undef WARN } // this routine is used whenever we need to reserve a contiguous VA range // but we need to make separate VirtualAlloc calls for each piece of the range // Reasons for doing this: // * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise) // * UseNUMAInterleaving requires a separate node for each piece static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot, bool should_inject_error = false) { char * p_buf; // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity(); size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size; // first reserve enough address space in advance since we want to be // able to break a single contiguous virtual address range into multiple // large page commits but WS2003 does not allow reserving large page space // so we just use 4K pages for reserve, this gives us a legal contiguous // address space. then we will deallocate that reservation, and re alloc // using large pages const size_t size_of_reserve = bytes + chunk_size; if (bytes > size_of_reserve) { // Overflowed. return NULL; } p_buf = (char *) VirtualAlloc(addr, size_of_reserve, // size of Reserve MEM_RESERVE, PAGE_READWRITE); // If reservation failed, return NULL if (p_buf == NULL) return NULL; MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC); os::release_memory(p_buf, bytes + chunk_size); // we still need to round up to a page boundary (in case we are using large pages) // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size) // instead we handle this in the bytes_to_rq computation below p_buf = (char *) align_size_up((size_t)p_buf, page_size); // now go through and allocate one chunk at a time until all bytes are // allocated size_t bytes_remaining = bytes; // An overflow of align_size_up() would have been caught above // in the calculation of size_of_reserve. char * next_alloc_addr = p_buf; HANDLE hProc = GetCurrentProcess(); #ifdef ASSERT // Variable for the failure injection long ran_num = os::random(); size_t fail_after = ran_num % bytes; #endif int count=0; while (bytes_remaining) { // select bytes_to_rq to get to the next chunk_size boundary size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size)); // Note allocate and commit char * p_new; #ifdef ASSERT bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after); #else const bool inject_error_now = false; #endif if (inject_error_now) { p_new = NULL; } else { if (!UseNUMAInterleaving) { p_new = (char *) VirtualAlloc(next_alloc_addr, bytes_to_rq, flags, prot); } else { // get the next node to use from the used_node_list assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected"); DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count()); p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node); } } if (p_new == NULL) { // Free any allocated pages if (next_alloc_addr > p_buf) { // Some memory was committed so release it. size_t bytes_to_release = bytes - bytes_remaining; // NMT has yet to record any individual blocks, so it // need to create a dummy 'reserve' record to match // the release. MemTracker::record_virtual_memory_reserve((address)p_buf, bytes_to_release, CALLER_PC); os::release_memory(p_buf, bytes_to_release); } #ifdef ASSERT if (should_inject_error) { if (TracePageSizes && Verbose) { tty->print_cr("Reserving pages individually failed."); } } #endif return NULL; } bytes_remaining -= bytes_to_rq; next_alloc_addr += bytes_to_rq; count++; } // Although the memory is allocated individually, it is returned as one. // NMT records it as one block. if ((flags & MEM_COMMIT) != 0) { MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC); } else { MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC); } // made it this far, success return p_buf; } void os::large_page_init() { if (!UseLargePages) return; // print a warning if any large page related flag is specified on command line bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) || !FLAG_IS_DEFAULT(LargePageSizeInBytes); bool success = false; #define WARN(msg) if (warn_on_failure) { warning(msg); } if (resolve_functions_for_large_page_init()) { if (request_lock_memory_privilege()) { size_t s = os::Kernel32Dll::GetLargePageMinimum(); if (s) { #if defined(IA32) || defined(AMD64) if (s > 4*M || LargePageSizeInBytes > 4*M) { WARN("JVM cannot use large pages bigger than 4mb."); } else { #endif if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) { _large_page_size = LargePageSizeInBytes; } else { _large_page_size = s; } success = true; #if defined(IA32) || defined(AMD64) } #endif } else { WARN("Large page is not supported by the processor."); } } else { WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory."); } } else { WARN("Large page is not supported by the operating system."); } #undef WARN const size_t default_page_size = (size_t) vm_page_size(); if (success && _large_page_size > default_page_size) { _page_sizes[0] = _large_page_size; _page_sizes[1] = default_page_size; _page_sizes[2] = 0; } cleanup_after_large_page_init(); UseLargePages = success; } // On win32, one cannot release just a part of reserved memory, it's an // all or nothing deal. When we split a reservation, we must break the // reservation into two reservations. void os::pd_split_reserved_memory(char *base, size_t size, size_t split, bool realloc) { if (size > 0) { release_memory(base, size); if (realloc) { reserve_memory(split, base); } if (size != split) { reserve_memory(size - split, base + split); } } } // Multiple threads can race in this code but it's not possible to unmap small sections of // virtual space to get requested alignment, like posix-like os's. // Windows prevents multiple thread from remapping over each other so this loop is thread-safe. char* os::reserve_memory_aligned(size_t size, size_t alignment) { assert((alignment & (os::vm_allocation_granularity() - 1)) == 0, "Alignment must be a multiple of allocation granularity (page size)"); assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned"); size_t extra_size = size + alignment; assert(extra_size >= size, "overflow, size is too large to allow alignment"); char* aligned_base = NULL; do { char* extra_base = os::reserve_memory(extra_size, NULL, alignment); if (extra_base == NULL) { return NULL; } // Do manual alignment aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment); os::release_memory(extra_base, extra_size); aligned_base = os::reserve_memory(size, aligned_base); } while (aligned_base == NULL); return aligned_base; } char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) { assert((size_t)addr % os::vm_allocation_granularity() == 0, "reserve alignment"); assert(bytes % os::vm_page_size() == 0, "reserve page size"); char* res; // note that if UseLargePages is on, all the areas that require interleaving // will go thru reserve_memory_special rather than thru here. bool use_individual = (UseNUMAInterleaving && !UseLargePages); if (!use_individual) { res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE); } else { elapsedTimer reserveTimer; if (Verbose && PrintMiscellaneous) reserveTimer.start(); // in numa interleaving, we have to allocate pages individually // (well really chunks of NUMAInterleaveGranularity size) res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE); if (res == NULL) { warning("NUMA page allocation failed"); } if (Verbose && PrintMiscellaneous) { reserveTimer.stop(); tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes, reserveTimer.milliseconds(), reserveTimer.ticks()); } } assert(res == NULL || addr == NULL || addr == res, "Unexpected address from reserve."); return res; } // Reserve memory at an arbitrary address, only if that area is // available (and not reserved for something else). char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) { // Windows os::reserve_memory() fails of the requested address range is // not avilable. return reserve_memory(bytes, requested_addr); } size_t os::large_page_size() { return _large_page_size; } bool os::can_commit_large_page_memory() { // Windows only uses large page memory when the entire region is reserved // and committed in a single VirtualAlloc() call. This may change in the // future, but with Windows 2003 it's not possible to commit on demand. return false; } bool os::can_execute_large_page_memory() { return true; } char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) { assert(UseLargePages, "only for large pages"); if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) { return NULL; // Fallback to small pages. } const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE; const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES; // with large pages, there are two cases where we need to use Individual Allocation // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003) // 2) NUMA Interleaving is enabled, in which case we use a different node for each page if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) { if (TracePageSizes && Verbose) { tty->print_cr("Reserving large pages individually."); } char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError); if (p_buf == NULL) { // give an appropriate warning message if (UseNUMAInterleaving) { warning("NUMA large page allocation failed, UseLargePages flag ignored"); } if (UseLargePagesIndividualAllocation) { warning("Individually allocated large pages failed, " "use -XX:-UseLargePagesIndividualAllocation to turn off"); } return NULL; } return p_buf; } else { if (TracePageSizes && Verbose) { tty->print_cr("Reserving large pages in a single large chunk."); } // normal policy just allocate it all at once DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES; char * res = (char *)VirtualAlloc(addr, bytes, flag, prot); if (res != NULL) { MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC); } return res; } } bool os::release_memory_special(char* base, size_t bytes) { assert(base != NULL, "Sanity check"); return release_memory(base, bytes); } void os::print_statistics() { } static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) { int err = os::get_last_error(); char buf[256]; size_t buf_len = os::lasterror(buf, sizeof(buf)); warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes, exec, buf_len != 0 ? buf : "", err); } bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) { if (bytes == 0) { // Don't bother the OS with noops. return true; } assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries"); assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks"); // Don't attempt to print anything if the OS call fails. We're // probably low on resources, so the print itself may cause crashes. // unless we have NUMAInterleaving enabled, the range of a commit // is always within a reserve covered by a single VirtualAlloc // in that case we can just do a single commit for the requested size if (!UseNUMAInterleaving) { if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) { NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);) return false; } if (exec) { DWORD oldprot; // Windows doc says to use VirtualProtect to get execute permissions if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) { NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);) return false; } } return true; } else { // when NUMAInterleaving is enabled, the commit might cover a range that // came from multiple VirtualAlloc reserves (using allocate_pages_individually). // VirtualQuery can help us determine that. The RegionSize that VirtualQuery // returns represents the number of bytes that can be committed in one step. size_t bytes_remaining = bytes; char * next_alloc_addr = addr; while (bytes_remaining > 0) { MEMORY_BASIC_INFORMATION alloc_info; VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info)); size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize); if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL) { NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq, exec);) return false; } if (exec) { DWORD oldprot; if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot)) { NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq, exec);) return false; } } bytes_remaining -= bytes_to_rq; next_alloc_addr += bytes_to_rq; } } // if we made it this far, return true return true; } bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) { // alignment_hint is ignored on this OS return pd_commit_memory(addr, size, exec); } void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec, const char* mesg) { assert(mesg != NULL, "mesg must be specified"); if (!pd_commit_memory(addr, size, exec)) { warn_fail_commit_memory(addr, size, exec); vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg); } } void os::pd_commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint, bool exec, const char* mesg) { // alignment_hint is ignored on this OS pd_commit_memory_or_exit(addr, size, exec, mesg); } bool os::pd_uncommit_memory(char* addr, size_t bytes) { if (bytes == 0) { // Don't bother the OS with noops. return true; } assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries"); assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks"); return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0); } bool os::pd_release_memory(char* addr, size_t bytes) { return VirtualFree(addr, 0, MEM_RELEASE) != 0; } bool os::pd_create_stack_guard_pages(char* addr, size_t size) { return os::commit_memory(addr, size, !ExecMem); } bool os::remove_stack_guard_pages(char* addr, size_t size) { return os::uncommit_memory(addr, size); } // Set protections specified bool os::protect_memory(char* addr, size_t bytes, ProtType prot, bool is_committed) { unsigned int p = 0; switch (prot) { case MEM_PROT_NONE: p = PAGE_NOACCESS; break; case MEM_PROT_READ: p = PAGE_READONLY; break; case MEM_PROT_RW: p = PAGE_READWRITE; break; case MEM_PROT_RWX: p = PAGE_EXECUTE_READWRITE; break; default: ShouldNotReachHere(); } DWORD old_status; // Strange enough, but on Win32 one can change protection only for committed // memory, not a big deal anyway, as bytes less or equal than 64K if (!is_committed) { commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX, "cannot commit protection page"); } // One cannot use os::guard_memory() here, as on Win32 guard page // have different (one-shot) semantics, from MSDN on PAGE_GUARD: // // Pages in the region become guard pages. Any attempt to access a guard page // causes the system to raise a STATUS_GUARD_PAGE exception and turn off // the guard page status. Guard pages thus act as a one-time access alarm. return VirtualProtect(addr, bytes, p, &old_status) != 0; } bool os::guard_memory(char* addr, size_t bytes) { DWORD old_status; return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0; } bool os::unguard_memory(char* addr, size_t bytes) { DWORD old_status; return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0; } void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { } void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { } void os::numa_make_global(char *addr, size_t bytes) { } void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) { } bool os::numa_topology_changed() { return false; } size_t os::numa_get_groups_num() { return MAX2(numa_node_list_holder.get_count(), 1); } int os::numa_get_group_id() { return 0; } size_t os::numa_get_leaf_groups(int *ids, size_t size) { if (numa_node_list_holder.get_count() == 0 && size > 0) { // Provide an answer for UMA systems ids[0] = 0; return 1; } else { // check for size bigger than actual groups_num size = MIN2(size, numa_get_groups_num()); for (int i = 0; i < (int)size; i++) { ids[i] = numa_node_list_holder.get_node_list_entry(i); } return size; } } bool os::get_page_info(char *start, page_info* info) { return false; } char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) { return end; } char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). return (char*)-1; } #define MAX_ERROR_COUNT 100 #define SYS_THREAD_ERROR 0xffffffffUL void os::pd_start_thread(Thread* thread) { DWORD ret = ResumeThread(thread->osthread()->thread_handle()); // Returns previous suspend state: // 0: Thread was not suspended // 1: Thread is running now // >1: Thread is still suspended. assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back } class HighResolutionInterval : public CHeapObj { // The default timer resolution seems to be 10 milliseconds. // (Where is this written down?) // If someone wants to sleep for only a fraction of the default, // then we set the timer resolution down to 1 millisecond for // the duration of their interval. // We carefully set the resolution back, since otherwise we // seem to incur an overhead (3%?) that we don't need. // CONSIDER: if ms is small, say 3, then we should run with a high resolution time. // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod(). // Alternatively, we could compute the relative error (503/500 = .6%) and only use // timeBeginPeriod() if the relative error exceeded some threshold. // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and // to decreased efficiency related to increased timer "tick" rates. We want to minimize // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high // resolution timers running. private: jlong resolution; public: HighResolutionInterval(jlong ms) { resolution = ms % 10L; if (resolution != 0) { MMRESULT result = timeBeginPeriod(1L); } } ~HighResolutionInterval() { if (resolution != 0) { MMRESULT result = timeEndPeriod(1L); } resolution = 0L; } }; int os::sleep(Thread* thread, jlong ms, bool interruptable) { jlong limit = (jlong) MAXDWORD; while (ms > limit) { int res; if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) { return res; } ms -= limit; } assert(thread == Thread::current(), "thread consistency check"); OSThread* osthread = thread->osthread(); OSThreadWaitState osts(osthread, false /* not Object.wait() */); int result; if (interruptable) { assert(thread->is_Java_thread(), "must be java thread"); JavaThread *jt = (JavaThread *) thread; ThreadBlockInVM tbivm(jt); jt->set_suspend_equivalent(); // cleared by handle_special_suspend_equivalent_condition() or // java_suspend_self() via check_and_wait_while_suspended() HANDLE events[1]; events[0] = osthread->interrupt_event(); HighResolutionInterval *phri=NULL; if (!ForceTimeHighResolution) { phri = new HighResolutionInterval(ms); } if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) { result = OS_TIMEOUT; } else { ResetEvent(osthread->interrupt_event()); osthread->set_interrupted(false); result = OS_INTRPT; } delete phri; //if it is NULL, harmless // were we externally suspended while we were waiting? jt->check_and_wait_while_suspended(); } else { assert(!thread->is_Java_thread(), "must not be java thread"); Sleep((long) ms); result = OS_TIMEOUT; } return result; } // Short sleep, direct OS call. // // ms = 0, means allow others (if any) to run. // void os::naked_short_sleep(jlong ms) { assert(ms < 1000, "Un-interruptable sleep, short time use only"); Sleep(ms); } // Sleep forever; naked call to OS-specific sleep; use with CAUTION void os::infinite_sleep() { while (true) { // sleep forever ... Sleep(100000); // ... 100 seconds at a time } } typedef BOOL (WINAPI * STTSignature)(void); void os::naked_yield() { // Use either SwitchToThread() or Sleep(0) // Consider passing back the return value from SwitchToThread(). if (os::Kernel32Dll::SwitchToThreadAvailable()) { SwitchToThread(); } else { Sleep(0); } } // Win32 only gives you access to seven real priorities at a time, // so we compress Java's ten down to seven. It would be better // if we dynamically adjusted relative priorities. int os::java_to_os_priority[CriticalPriority + 1] = { THREAD_PRIORITY_IDLE, // 0 Entry should never be used THREAD_PRIORITY_LOWEST, // 1 MinPriority THREAD_PRIORITY_LOWEST, // 2 THREAD_PRIORITY_BELOW_NORMAL, // 3 THREAD_PRIORITY_BELOW_NORMAL, // 4 THREAD_PRIORITY_NORMAL, // 5 NormPriority THREAD_PRIORITY_NORMAL, // 6 THREAD_PRIORITY_ABOVE_NORMAL, // 7 THREAD_PRIORITY_ABOVE_NORMAL, // 8 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority THREAD_PRIORITY_HIGHEST, // 10 MaxPriority THREAD_PRIORITY_HIGHEST // 11 CriticalPriority }; int prio_policy1[CriticalPriority + 1] = { THREAD_PRIORITY_IDLE, // 0 Entry should never be used THREAD_PRIORITY_LOWEST, // 1 MinPriority THREAD_PRIORITY_LOWEST, // 2 THREAD_PRIORITY_BELOW_NORMAL, // 3 THREAD_PRIORITY_BELOW_NORMAL, // 4 THREAD_PRIORITY_NORMAL, // 5 NormPriority THREAD_PRIORITY_ABOVE_NORMAL, // 6 THREAD_PRIORITY_ABOVE_NORMAL, // 7 THREAD_PRIORITY_HIGHEST, // 8 THREAD_PRIORITY_HIGHEST, // 9 NearMaxPriority THREAD_PRIORITY_TIME_CRITICAL, // 10 MaxPriority THREAD_PRIORITY_TIME_CRITICAL // 11 CriticalPriority }; static int prio_init() { // If ThreadPriorityPolicy is 1, switch tables if (ThreadPriorityPolicy == 1) { int i; for (i = 0; i < CriticalPriority + 1; i++) { os::java_to_os_priority[i] = prio_policy1[i]; } } if (UseCriticalJavaThreadPriority) { os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority]; } return 0; } OSReturn os::set_native_priority(Thread* thread, int priority) { if (!UseThreadPriorities) return OS_OK; bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0; return ret ? OS_OK : OS_ERR; } OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) { if (!UseThreadPriorities) { *priority_ptr = java_to_os_priority[NormPriority]; return OS_OK; } int os_prio = GetThreadPriority(thread->osthread()->thread_handle()); if (os_prio == THREAD_PRIORITY_ERROR_RETURN) { assert(false, "GetThreadPriority failed"); return OS_ERR; } *priority_ptr = os_prio; return OS_OK; } // Hint to the underlying OS that a task switch would not be good. // Void return because it's a hint and can fail. void os::hint_no_preempt() {} void os::interrupt(Thread* thread) { assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer"); OSThread* osthread = thread->osthread(); osthread->set_interrupted(true); // More than one thread can get here with the same value of osthread, // resulting in multiple notifications. We do, however, want the store // to interrupted() to be visible to other threads before we post // the interrupt event. OrderAccess::release(); SetEvent(osthread->interrupt_event()); // For JSR166: unpark after setting status if (thread->is_Java_thread()) { ((JavaThread*)thread)->parker()->unpark(); } ParkEvent * ev = thread->_ParkEvent; if (ev != NULL) ev->unpark(); } bool os::is_interrupted(Thread* thread, bool clear_interrupted) { assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), "possibility of dangling Thread pointer"); OSThread* osthread = thread->osthread(); // There is no synchronization between the setting of the interrupt // and it being cleared here. It is critical - see 6535709 - that // we only clear the interrupt state, and reset the interrupt event, // if we are going to report that we were indeed interrupted - else // an interrupt can be "lost", leading to spurious wakeups or lost wakeups // depending on the timing. By checking thread interrupt event to see // if the thread gets real interrupt thus prevent spurious wakeup. bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0); if (interrupted && clear_interrupted) { osthread->set_interrupted(false); ResetEvent(osthread->interrupt_event()); } // Otherwise leave the interrupted state alone return interrupted; } // Get's a pc (hint) for a running thread. Currently used only for profiling. ExtendedPC os::get_thread_pc(Thread* thread) { CONTEXT context; context.ContextFlags = CONTEXT_CONTROL; HANDLE handle = thread->osthread()->thread_handle(); #ifdef _M_IA64 assert(0, "Fix get_thread_pc"); return ExtendedPC(NULL); #else if (GetThreadContext(handle, &context)) { #ifdef _M_AMD64 return ExtendedPC((address) context.Rip); #else return ExtendedPC((address) context.Eip); #endif } else { return ExtendedPC(NULL); } #endif } // GetCurrentThreadId() returns DWORD intx os::current_thread_id() { return GetCurrentThreadId(); } static int _initial_pid = 0; int os::current_process_id() { return (_initial_pid ? _initial_pid : _getpid()); } int os::win32::_vm_page_size = 0; int os::win32::_vm_allocation_granularity = 0; int os::win32::_processor_type = 0; // Processor level is not available on non-NT systems, use vm_version instead int os::win32::_processor_level = 0; julong os::win32::_physical_memory = 0; size_t os::win32::_default_stack_size = 0; intx os::win32::_os_thread_limit = 0; volatile intx os::win32::_os_thread_count = 0; bool os::win32::_is_nt = false; bool os::win32::_is_windows_2003 = false; bool os::win32::_is_windows_server = false; // 6573254 // Currently, the bug is observed across all the supported Windows releases, // including the latest one (as of this writing - Windows Server 2012 R2) bool os::win32::_has_exit_bug = true; bool os::win32::_has_performance_count = 0; void os::win32::initialize_system_info() { SYSTEM_INFO si; GetSystemInfo(&si); _vm_page_size = si.dwPageSize; _vm_allocation_granularity = si.dwAllocationGranularity; _processor_type = si.dwProcessorType; _processor_level = si.wProcessorLevel; set_processor_count(si.dwNumberOfProcessors); MEMORYSTATUSEX ms; ms.dwLength = sizeof(ms); // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual, // dwMemoryLoad (% of memory in use) GlobalMemoryStatusEx(&ms); _physical_memory = ms.ullTotalPhys; OSVERSIONINFOEX oi; oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX); GetVersionEx((OSVERSIONINFO*)&oi); switch (oi.dwPlatformId) { case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break; case VER_PLATFORM_WIN32_NT: _is_nt = true; { int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion; if (os_vers == 5002) { _is_windows_2003 = true; } if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER || oi.wProductType == VER_NT_SERVER) { _is_windows_server = true; } } break; default: fatal("Unknown platform"); } _default_stack_size = os::current_stack_size(); assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size"); assert((_default_stack_size & (_vm_page_size - 1)) == 0, "stack size not a multiple of page size"); initialize_performance_counter(); } HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) { char path[MAX_PATH]; DWORD size; DWORD pathLen = (DWORD)sizeof(path); HINSTANCE result = NULL; // only allow library name without path component assert(strchr(name, '\\') == NULL, "path not allowed"); assert(strchr(name, ':') == NULL, "path not allowed"); if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) { jio_snprintf(ebuf, ebuflen, "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name); return NULL; } // search system directory if ((size = GetSystemDirectory(path, pathLen)) > 0) { if (size >= pathLen) { return NULL; // truncated } if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) { return NULL; // truncated } if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) { return result; } } // try Windows directory if ((size = GetWindowsDirectory(path, pathLen)) > 0) { if (size >= pathLen) { return NULL; // truncated } if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) { return NULL; // truncated } if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) { return result; } } jio_snprintf(ebuf, ebuflen, "os::win32::load_windows_dll() cannot load %s from system directories.", name); return NULL; } #define EXIT_TIMEOUT 300000 /* 5 minutes */ static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) { InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect); return TRUE; } int os::win32::exit_process_or_thread(Ept what, int exit_code) { // Basic approach: // - Each exiting thread registers its intent to exit and then does so. // - A thread trying to terminate the process must wait for all // threads currently exiting to complete their exit. if (os::win32::has_exit_bug()) { // The array holds handles of the threads that have started exiting by calling // _endthreadex(). // Should be large enough to avoid blocking the exiting thread due to lack of // a free slot. static HANDLE handles[MAXIMUM_WAIT_OBJECTS]; static int handle_count = 0; static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT; static CRITICAL_SECTION crit_sect; static volatile jint process_exiting = 0; int i, j; DWORD res; HANDLE hproc, hthr; // The first thread that reached this point, initializes the critical section. if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) { warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__); } else if (OrderAccess::load_acquire(&process_exiting) == 0) { EnterCriticalSection(&crit_sect); if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) { // Remove from the array those handles of the threads that have completed exiting. for (i = 0, j = 0; i < handle_count; ++i) { res = WaitForSingleObject(handles[i], 0 /* don't wait */); if (res == WAIT_TIMEOUT) { handles[j++] = handles[i]; } else { if (res == WAIT_FAILED) { warning("WaitForSingleObject failed (%u) in %s: %d\n", GetLastError(), __FILE__, __LINE__); } // Don't keep the handle, if we failed waiting for it. CloseHandle(handles[i]); } } // If there's no free slot in the array of the kept handles, we'll have to // wait until at least one thread completes exiting. if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) { // Raise the priority of the oldest exiting thread to increase its chances // to complete sooner. SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL); res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT); if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) { i = (res - WAIT_OBJECT_0); handle_count = MAXIMUM_WAIT_OBJECTS - 1; for (; i < handle_count; ++i) { handles[i] = handles[i + 1]; } } else { warning("WaitForMultipleObjects %s (%u) in %s: %d\n", (res == WAIT_FAILED ? "failed" : "timed out"), GetLastError(), __FILE__, __LINE__); // Don't keep handles, if we failed waiting for them. for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) { CloseHandle(handles[i]); } handle_count = 0; } } // Store a duplicate of the current thread handle in the array of handles. hproc = GetCurrentProcess(); hthr = GetCurrentThread(); if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count], 0, FALSE, DUPLICATE_SAME_ACCESS)) { warning("DuplicateHandle failed (%u) in %s: %d\n", GetLastError(), __FILE__, __LINE__); } else { ++handle_count; } // The current exiting thread has stored its handle in the array, and now // should leave the critical section before calling _endthreadex(). } else if (what != EPT_THREAD) { if (handle_count > 0) { // Before ending the process, make sure all the threads that had called // _endthreadex() completed. // Set the priority level of the current thread to the same value as // the priority level of exiting threads. // This is to ensure it will be given a fair chance to execute if // the timeout expires. hthr = GetCurrentThread(); SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL); for (i = 0; i < handle_count; ++i) { SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL); } res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT); if (res == WAIT_FAILED || res == WAIT_TIMEOUT) { warning("WaitForMultipleObjects %s (%u) in %s: %d\n", (res == WAIT_FAILED ? "failed" : "timed out"), GetLastError(), __FILE__, __LINE__); } for (i = 0; i < handle_count; ++i) { CloseHandle(handles[i]); } handle_count = 0; } OrderAccess::release_store(&process_exiting, 1); } LeaveCriticalSection(&crit_sect); } if (what == EPT_THREAD) { while (OrderAccess::load_acquire(&process_exiting) != 0) { // Some other thread is about to call exit(), so we // don't let the current thread proceed to _endthreadex() SuspendThread(GetCurrentThread()); // Avoid busy-wait loop, if SuspendThread() failed. Sleep(EXIT_TIMEOUT); } } } // We are here if either // - there's no 'race at exit' bug on this OS release; // - initialization of the critical section failed (unlikely); // - the current thread has stored its handle and left the critical section; // - the process-exiting thread has raised the flag and left the critical section. if (what == EPT_THREAD) { _endthreadex((unsigned)exit_code); } else if (what == EPT_PROCESS) { ::exit(exit_code); } else { _exit(exit_code); } // Should not reach here return exit_code; } #undef EXIT_TIMEOUT void os::win32::setmode_streams() { _setmode(_fileno(stdin), _O_BINARY); _setmode(_fileno(stdout), _O_BINARY); _setmode(_fileno(stderr), _O_BINARY); } bool os::is_debugger_attached() { return IsDebuggerPresent() ? true : false; } void os::wait_for_keypress_at_exit(void) { if (PauseAtExit) { fprintf(stderr, "Press any key to continue...\n"); fgetc(stdin); } } int os::message_box(const char* title, const char* message) { int result = MessageBox(NULL, message, title, MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY); return result == IDYES; } int os::allocate_thread_local_storage() { return TlsAlloc(); } void os::free_thread_local_storage(int index) { TlsFree(index); } void os::thread_local_storage_at_put(int index, void* value) { TlsSetValue(index, value); assert(thread_local_storage_at(index) == value, "Just checking"); } void* os::thread_local_storage_at(int index) { return TlsGetValue(index); } #ifndef PRODUCT #ifndef _WIN64 // Helpers to check whether NX protection is enabled int nx_exception_filter(_EXCEPTION_POINTERS *pex) { if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION && pex->ExceptionRecord->NumberParameters > 0 && pex->ExceptionRecord->ExceptionInformation[0] == EXCEPTION_INFO_EXEC_VIOLATION) { return EXCEPTION_EXECUTE_HANDLER; } return EXCEPTION_CONTINUE_SEARCH; } void nx_check_protection() { // If NX is enabled we'll get an exception calling into code on the stack char code[] = { (char)0xC3 }; // ret void *code_ptr = (void *)code; __try { __asm call code_ptr } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) { tty->print_raw_cr("NX protection detected."); } } #endif // _WIN64 #endif // PRODUCT // this is called _before_ the global arguments have been parsed void os::init(void) { _initial_pid = _getpid(); init_random(1234567); win32::initialize_system_info(); win32::setmode_streams(); init_page_sizes((size_t) win32::vm_page_size()); // This may be overridden later when argument processing is done. FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, os::win32::is_windows_2003()); // Initialize main_process and main_thread main_process = GetCurrentProcess(); // Remember main_process is a pseudo handle if (!DuplicateHandle(main_process, GetCurrentThread(), main_process, &main_thread, THREAD_ALL_ACCESS, false, 0)) { fatal("DuplicateHandle failed\n"); } main_thread_id = (int) GetCurrentThreadId(); } // To install functions for atexit processing extern "C" { static void perfMemory_exit_helper() { perfMemory_exit(); } } static jint initSock(); // this is called _after_ the global arguments have been parsed jint os::init_2(void) { // Allocate a single page and mark it as readable for safepoint polling address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY); guarantee(polling_page != NULL, "Reserve Failed for polling page"); address return_page = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY); guarantee(return_page != NULL, "Commit Failed for polling page"); os::set_polling_page(polling_page); #ifndef PRODUCT if (Verbose && PrintMiscellaneous) { tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page); } #endif if (!UseMembar) { address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE); guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page"); return_page = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE); guarantee(return_page != NULL, "Commit Failed for memory serialize page"); os::set_memory_serialize_page(mem_serialize_page); #ifndef PRODUCT if (Verbose && PrintMiscellaneous) { tty->print("[Memory Serialize Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page); } #endif } // Setup Windows Exceptions // for debugging float code generation bugs if (ForceFloatExceptions) { #ifndef _WIN64 static long fp_control_word = 0; __asm { fstcw fp_control_word } // see Intel PPro Manual, Vol. 2, p 7-16 const long precision = 0x20; const long underflow = 0x10; const long overflow = 0x08; const long zero_div = 0x04; const long denorm = 0x02; const long invalid = 0x01; fp_control_word |= invalid; __asm { fldcw fp_control_word } #endif } // If stack_commit_size is 0, windows will reserve the default size, // but only commit a small portion of it. size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size()); size_t default_reserve_size = os::win32::default_stack_size(); size_t actual_reserve_size = stack_commit_size; if (stack_commit_size < default_reserve_size) { // If stack_commit_size == 0, we want this too actual_reserve_size = default_reserve_size; } // Check minimum allowable stack size for thread creation and to initialize // the java system classes, including StackOverflowError - depends on page // size. Add a page for compiler2 recursion in main thread. // Add in 2*BytesPerWord times page size to account for VM stack during // class initialization depending on 32 or 64 bit VM. size_t min_stack_allowed = (size_t)(StackYellowPages+StackRedPages+StackShadowPages+ 2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size(); if (actual_reserve_size < min_stack_allowed) { tty->print_cr("\nThe stack size specified is too small, " "Specify at least %dk", min_stack_allowed / K); return JNI_ERR; } JavaThread::set_stack_size_at_create(stack_commit_size); // Calculate theoretical max. size of Threads to guard gainst artifical // out-of-memory situations, where all available address-space has been // reserved by thread stacks. assert(actual_reserve_size != 0, "Must have a stack"); // Calculate the thread limit when we should start doing Virtual Memory // banging. Currently when the threads will have used all but 200Mb of space. // // TODO: consider performing a similar calculation for commit size instead // as reserve size, since on a 64-bit platform we'll run into that more // often than running out of virtual memory space. We can use the // lower value of the two calculations as the os_thread_limit. size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K); win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size); // at exit methods are called in the reverse order of their registration. // there is no limit to the number of functions registered. atexit does // not set errno. if (PerfAllowAtExitRegistration) { // only register atexit functions if PerfAllowAtExitRegistration is set. // atexit functions can be delayed until process exit time, which // can be problematic for embedded VM situations. Embedded VMs should // call DestroyJavaVM() to assure that VM resources are released. // note: perfMemory_exit_helper atexit function may be removed in // the future if the appropriate cleanup code can be added to the // VM_Exit VMOperation's doit method. if (atexit(perfMemory_exit_helper) != 0) { warning("os::init_2 atexit(perfMemory_exit_helper) failed"); } } #ifndef _WIN64 // Print something if NX is enabled (win32 on AMD64) NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection()); #endif // initialize thread priority policy prio_init(); if (UseNUMA && !ForceNUMA) { UseNUMA = false; // We don't fully support this yet } if (UseNUMAInterleaving) { // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag bool success = numa_interleaving_init(); if (!success) UseNUMAInterleaving = false; } if (initSock() != JNI_OK) { return JNI_ERR; } return JNI_OK; } // Mark the polling page as unreadable void os::make_polling_page_unreadable(void) { DWORD old_status; if (!VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status)) { fatal("Could not disable polling page"); } } // Mark the polling page as readable void os::make_polling_page_readable(void) { DWORD old_status; if (!VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status)) { fatal("Could not enable polling page"); } } int os::stat(const char *path, struct stat *sbuf) { char pathbuf[MAX_PATH]; if (strlen(path) > MAX_PATH - 1) { errno = ENAMETOOLONG; return -1; } os::native_path(strcpy(pathbuf, path)); int ret = ::stat(pathbuf, sbuf); if (sbuf != NULL && UseUTCFileTimestamp) { // Fix for 6539723. st_mtime returned from stat() is dependent on // the system timezone and so can return different values for the // same file if/when daylight savings time changes. This adjustment // makes sure the same timestamp is returned regardless of the TZ. // // See: // http://msdn.microsoft.com/library/ // default.asp?url=/library/en-us/sysinfo/base/ // time_zone_information_str.asp // and // http://msdn.microsoft.com/library/default.asp?url= // /library/en-us/sysinfo/base/settimezoneinformation.asp // // NOTE: there is a insidious bug here: If the timezone is changed // after the call to stat() but before 'GetTimeZoneInformation()', then // the adjustment we do here will be wrong and we'll return the wrong // value (which will likely end up creating an invalid class data // archive). Absent a better API for this, or some time zone locking // mechanism, we'll have to live with this risk. TIME_ZONE_INFORMATION tz; DWORD tzid = GetTimeZoneInformation(&tz); int daylightBias = (tzid == TIME_ZONE_ID_DAYLIGHT) ? tz.DaylightBias : tz.StandardBias; sbuf->st_mtime += (tz.Bias + daylightBias) * 60; } return ret; } #define FT2INT64(ft) \ ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime)) // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool) // are used by JVM M&M and JVMTI to get user+sys or user CPU time // of a thread. // // current_thread_cpu_time() and thread_cpu_time(Thread*) returns // the fast estimate available on the platform. // current_thread_cpu_time() is not optimized for Windows yet jlong os::current_thread_cpu_time() { // return user + sys since the cost is the same return os::thread_cpu_time(Thread::current(), true /* user+sys */); } jlong os::thread_cpu_time(Thread* thread) { // consistent with what current_thread_cpu_time() returns. return os::thread_cpu_time(thread, true /* user+sys */); } jlong os::current_thread_cpu_time(bool user_sys_cpu_time) { return os::thread_cpu_time(Thread::current(), user_sys_cpu_time); } jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) { // This code is copy from clasic VM -> hpi::sysThreadCPUTime // If this function changes, os::is_thread_cpu_time_supported() should too if (os::win32::is_nt()) { FILETIME CreationTime; FILETIME ExitTime; FILETIME KernelTime; FILETIME UserTime; if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0) { return -1; } else if (user_sys_cpu_time) { return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100; } else { return FT2INT64(UserTime) * 100; } } else { return (jlong) timeGetTime() * 1000000; } } void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned } void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) { info_ptr->max_value = ALL_64_BITS; // the max value -- all 64 bits info_ptr->may_skip_backward = false; // GetThreadTimes returns absolute time info_ptr->may_skip_forward = false; // GetThreadTimes returns absolute time info_ptr->kind = JVMTI_TIMER_TOTAL_CPU; // user+system time is returned } bool os::is_thread_cpu_time_supported() { // see os::thread_cpu_time if (os::win32::is_nt()) { FILETIME CreationTime; FILETIME ExitTime; FILETIME KernelTime; FILETIME UserTime; if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0) { return false; } else { return true; } } else { return false; } } // Windows does't provide a loadavg primitive so this is stubbed out for now. // It does have primitives (PDH API) to get CPU usage and run queue length. // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length" // If we wanted to implement loadavg on Windows, we have a few options: // // a) Query CPU usage and run queue length and "fake" an answer by // returning the CPU usage if it's under 100%, and the run queue // length otherwise. It turns out that querying is pretty slow // on Windows, on the order of 200 microseconds on a fast machine. // Note that on the Windows the CPU usage value is the % usage // since the last time the API was called (and the first call // returns 100%), so we'd have to deal with that as well. // // b) Sample the "fake" answer using a sampling thread and store // the answer in a global variable. The call to loadavg would // just return the value of the global, avoiding the slow query. // // c) Sample a better answer using exponential decay to smooth the // value. This is basically the algorithm used by UNIX kernels. // // Note that sampling thread starvation could affect both (b) and (c). int os::loadavg(double loadavg[], int nelem) { return -1; } // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield() bool os::dont_yield() { return DontYieldALot; } // This method is a slightly reworked copy of JDK's sysOpen // from src/windows/hpi/src/sys_api_md.c int os::open(const char *path, int oflag, int mode) { char pathbuf[MAX_PATH]; if (strlen(path) > MAX_PATH - 1) { errno = ENAMETOOLONG; return -1; } os::native_path(strcpy(pathbuf, path)); return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode); } FILE* os::open(int fd, const char* mode) { return ::_fdopen(fd, mode); } // Is a (classpath) directory empty? bool os::dir_is_empty(const char* path) { WIN32_FIND_DATA fd; HANDLE f = FindFirstFile(path, &fd); if (f == INVALID_HANDLE_VALUE) { return true; } FindClose(f); return false; } // create binary file, rewriting existing file if required int os::create_binary_file(const char* path, bool rewrite_existing) { int oflags = _O_CREAT | _O_WRONLY | _O_BINARY; if (!rewrite_existing) { oflags |= _O_EXCL; } return ::open(path, oflags, _S_IREAD | _S_IWRITE); } // return current position of file pointer jlong os::current_file_offset(int fd) { return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR); } // move file pointer to the specified offset jlong os::seek_to_file_offset(int fd, jlong offset) { return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET); } jlong os::lseek(int fd, jlong offset, int whence) { return (jlong) ::_lseeki64(fd, offset, whence); } size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) { OVERLAPPED ov; DWORD nread; BOOL result; ZeroMemory(&ov, sizeof(ov)); ov.Offset = (DWORD)offset; ov.OffsetHigh = (DWORD)(offset >> 32); HANDLE h = (HANDLE)::_get_osfhandle(fd); result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov); return result ? nread : 0; } // This method is a slightly reworked copy of JDK's sysNativePath // from src/windows/hpi/src/path_md.c // Convert a pathname to native format. On win32, this involves forcing all // separators to be '\\' rather than '/' (both are legal inputs, but Win95 // sometimes rejects '/') and removing redundant separators. The input path is // assumed to have been converted into the character encoding used by the local // system. Because this might be a double-byte encoding, care is taken to // treat double-byte lead characters correctly. // // This procedure modifies the given path in place, as the result is never // longer than the original. There is no error return; this operation always // succeeds. char * os::native_path(char *path) { char *src = path, *dst = path, *end = path; char *colon = NULL; // If a drive specifier is found, this will // point to the colon following the drive letter // Assumption: '/', '\\', ':', and drive letters are never lead bytes assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\')) && (!::IsDBCSLeadByte(':'))), "Illegal lead byte"); // Check for leading separators #define isfilesep(c) ((c) == '/' || (c) == '\\') while (isfilesep(*src)) { src++; } if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') { // Remove leading separators if followed by drive specifier. This // hack is necessary to support file URLs containing drive // specifiers (e.g., "file://c:/path"). As a side effect, // "/c:/path" can be used as an alternative to "c:/path". *dst++ = *src++; colon = dst; *dst++ = ':'; src++; } else { src = path; if (isfilesep(src[0]) && isfilesep(src[1])) { // UNC pathname: Retain first separator; leave src pointed at // second separator so that further separators will be collapsed // into the second separator. The result will be a pathname // beginning with "\\\\" followed (most likely) by a host name. src = dst = path + 1; path[0] = '\\'; // Force first separator to '\\' } } end = dst; // Remove redundant separators from remainder of path, forcing all // separators to be '\\' rather than '/'. Also, single byte space // characters are removed from the end of the path because those // are not legal ending characters on this operating system. // while (*src != '\0') { if (isfilesep(*src)) { *dst++ = '\\'; src++; while (isfilesep(*src)) src++; if (*src == '\0') { // Check for trailing separator end = dst; if (colon == dst - 2) break; // "z:\\" if (dst == path + 1) break; // "\\" if (dst == path + 2 && isfilesep(path[0])) { // "\\\\" is not collapsed to "\\" because "\\\\" marks the // beginning of a UNC pathname. Even though it is not, by // itself, a valid UNC pathname, we leave it as is in order // to be consistent with the path canonicalizer as well // as the win32 APIs, which treat this case as an invalid // UNC pathname rather than as an alias for the root // directory of the current drive. break; } end = --dst; // Path does not denote a root directory, so // remove trailing separator break; } end = dst; } else { if (::IsDBCSLeadByte(*src)) { // Copy a double-byte character *dst++ = *src++; if (*src) *dst++ = *src++; end = dst; } else { // Copy a single-byte character char c = *src++; *dst++ = c; // Space is not a legal ending character if (c != ' ') end = dst; } } } *end = '\0'; // For "z:", add "." to work around a bug in the C runtime library if (colon == dst - 1) { path[2] = '.'; path[3] = '\0'; } return path; } // This code is a copy of JDK's sysSetLength // from src/windows/hpi/src/sys_api_md.c int os::ftruncate(int fd, jlong length) { HANDLE h = (HANDLE)::_get_osfhandle(fd); long high = (long)(length >> 32); DWORD ret; if (h == (HANDLE)(-1)) { return -1; } ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN); if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) { return -1; } if (::SetEndOfFile(h) == FALSE) { return -1; } return 0; } // This code is a copy of JDK's sysSync // from src/windows/hpi/src/sys_api_md.c // except for the legacy workaround for a bug in Win 98 int os::fsync(int fd) { HANDLE handle = (HANDLE)::_get_osfhandle(fd); if ((!::FlushFileBuffers(handle)) && (GetLastError() != ERROR_ACCESS_DENIED)) { // from winerror.h return -1; } return 0; } static int nonSeekAvailable(int, long *); static int stdinAvailable(int, long *); #define S_ISCHR(mode) (((mode) & _S_IFCHR) == _S_IFCHR) #define S_ISFIFO(mode) (((mode) & _S_IFIFO) == _S_IFIFO) // This code is a copy of JDK's sysAvailable // from src/windows/hpi/src/sys_api_md.c int os::available(int fd, jlong *bytes) { jlong cur, end; struct _stati64 stbuf64; if (::_fstati64(fd, &stbuf64) >= 0) { int mode = stbuf64.st_mode; if (S_ISCHR(mode) || S_ISFIFO(mode)) { int ret; long lpbytes; if (fd == 0) { ret = stdinAvailable(fd, &lpbytes); } else { ret = nonSeekAvailable(fd, &lpbytes); } (*bytes) = (jlong)(lpbytes); return ret; } if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) { return FALSE; } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) { return FALSE; } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) { return FALSE; } *bytes = end - cur; return TRUE; } else { return FALSE; } } // This code is a copy of JDK's nonSeekAvailable // from src/windows/hpi/src/sys_api_md.c static int nonSeekAvailable(int fd, long *pbytes) { // This is used for available on non-seekable devices // (like both named and anonymous pipes, such as pipes // connected to an exec'd process). // Standard Input is a special case. HANDLE han; if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) { return FALSE; } if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) { // PeekNamedPipe fails when at EOF. In that case we // simply make *pbytes = 0 which is consistent with the // behavior we get on Solaris when an fd is at EOF. // The only alternative is to raise an Exception, // which isn't really warranted. // if (::GetLastError() != ERROR_BROKEN_PIPE) { return FALSE; } *pbytes = 0; } return TRUE; } #define MAX_INPUT_EVENTS 2000 // This code is a copy of JDK's stdinAvailable // from src/windows/hpi/src/sys_api_md.c static int stdinAvailable(int fd, long *pbytes) { HANDLE han; DWORD numEventsRead = 0; // Number of events read from buffer DWORD numEvents = 0; // Number of events in buffer DWORD i = 0; // Loop index DWORD curLength = 0; // Position marker DWORD actualLength = 0; // Number of bytes readable BOOL error = FALSE; // Error holder INPUT_RECORD *lpBuffer; // Pointer to records of input events if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) { return FALSE; } // Construct an array of input records in the console buffer error = ::GetNumberOfConsoleInputEvents(han, &numEvents); if (error == 0) { return nonSeekAvailable(fd, pbytes); } // lpBuffer must fit into 64K or else PeekConsoleInput fails if (numEvents > MAX_INPUT_EVENTS) { numEvents = MAX_INPUT_EVENTS; } lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal); if (lpBuffer == NULL) { return FALSE; } error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead); if (error == 0) { os::free(lpBuffer); return FALSE; } // Examine input records for the number of bytes available for (i=0; ibKeyDown == TRUE) { CHAR *keyPressed = (CHAR *) &(keyRecord->uChar); curLength++; if (*keyPressed == '\r') { actualLength = curLength; } } } } if (lpBuffer != NULL) { os::free(lpBuffer); } *pbytes = (long) actualLength; return TRUE; } // Map a block of memory. char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset, char *addr, size_t bytes, bool read_only, bool allow_exec) { HANDLE hFile; char* base; hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hFile == NULL) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("CreateFile() failed: GetLastError->%ld.", err); } return NULL; } if (allow_exec) { // CreateFileMapping/MapViewOfFileEx can't map executable memory // unless it comes from a PE image (which the shared archive is not.) // Even VirtualProtect refuses to give execute access to mapped memory // that was not previously executable. // // Instead, stick the executable region in anonymous memory. Yuck. // Penalty is that ~4 pages will not be shareable - in the future // we might consider DLLizing the shared archive with a proper PE // header so that mapping executable + sharing is possible. base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); if (base == NULL) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err); } CloseHandle(hFile); return NULL; } DWORD bytes_read; OVERLAPPED overlapped; overlapped.Offset = (DWORD)file_offset; overlapped.OffsetHigh = 0; overlapped.hEvent = NULL; // ReadFile guarantees that if the return value is true, the requested // number of bytes were read before returning. bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0; if (!res) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("ReadFile() failed: GetLastError->%ld.", err); } release_memory(base, bytes); CloseHandle(hFile); return NULL; } } else { HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0, NULL /* file_name */); if (hMap == NULL) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err); } CloseHandle(hFile); return NULL; } DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY; base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset, (DWORD)bytes, addr); if (base == NULL) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err); } CloseHandle(hMap); CloseHandle(hFile); return NULL; } if (CloseHandle(hMap) == 0) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err); } CloseHandle(hFile); return base; } } if (allow_exec) { DWORD old_protect; DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE; bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0; if (!res) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err); } // Don't consider this a hard error, on IA32 even if the // VirtualProtect fails, we should still be able to execute CloseHandle(hFile); return base; } } if (CloseHandle(hFile) == 0) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err); } return base; } return base; } // Remap a block of memory. char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset, char *addr, size_t bytes, bool read_only, bool allow_exec) { // This OS does not allow existing memory maps to be remapped so we // have to unmap the memory before we remap it. if (!os::unmap_memory(addr, bytes)) { return NULL; } // There is a very small theoretical window between the unmap_memory() // call above and the map_memory() call below where a thread in native // code may be able to access an address that is no longer mapped. return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec); } // Unmap a block of memory. // Returns true=success, otherwise false. bool os::pd_unmap_memory(char* addr, size_t bytes) { MEMORY_BASIC_INFORMATION mem_info; if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err); } return false; } // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx. // Instead, executable region was allocated using VirtualAlloc(). See // pd_map_memory() above. // // The following flags should match the 'exec_access' flages used for // VirtualProtect() in pd_map_memory(). if (mem_info.Protect == PAGE_EXECUTE_READ || mem_info.Protect == PAGE_EXECUTE_READWRITE) { return pd_release_memory(addr, bytes); } BOOL result = UnmapViewOfFile(addr); if (result == 0) { if (PrintMiscellaneous && Verbose) { DWORD err = GetLastError(); tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err); } return false; } return true; } void os::pause() { char filename[MAX_PATH]; if (PauseAtStartupFile && PauseAtStartupFile[0]) { jio_snprintf(filename, MAX_PATH, PauseAtStartupFile); } else { jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id()); } int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666); if (fd != -1) { struct stat buf; ::close(fd); while (::stat(filename, &buf) == 0) { Sleep(100); } } else { jio_fprintf(stderr, "Could not open pause file '%s', continuing immediately.\n", filename); } } os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() { assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread"); } // See the caveats for this class in os_windows.hpp // Protects the callback call so that raised OS EXCEPTIONS causes a jump back // into this method and returns false. If no OS EXCEPTION was raised, returns // true. // The callback is supposed to provide the method that should be protected. // bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) { assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread"); assert(!WatcherThread::watcher_thread()->has_crash_protection(), "crash_protection already set?"); bool success = true; __try { WatcherThread::watcher_thread()->set_crash_protection(this); cb.call(); } __except(EXCEPTION_EXECUTE_HANDLER) { // only for protection, nothing to do success = false; } WatcherThread::watcher_thread()->set_crash_protection(NULL); return success; } // An Event wraps a win32 "CreateEvent" kernel handle. // // We have a number of choices regarding "CreateEvent" win32 handle leakage: // // 1: When a thread dies return the Event to the EventFreeList, clear the ParkHandle // field, and call CloseHandle() on the win32 event handle. Unpark() would // need to be modified to tolerate finding a NULL (invalid) win32 event handle. // In addition, an unpark() operation might fetch the handle field, but the // event could recycle between the fetch and the SetEvent() operation. // SetEvent() would either fail because the handle was invalid, or inadvertently work, // as the win32 handle value had been recycled. In an ideal world calling SetEvent() // on an stale but recycled handle would be harmless, but in practice this might // confuse other non-Sun code, so it's not a viable approach. // // 2: Once a win32 event handle is associated with an Event, it remains associated // with the Event. The event handle is never closed. This could be construed // as handle leakage, but only up to the maximum # of threads that have been extant // at any one time. This shouldn't be an issue, as windows platforms typically // permit a process to have hundreds of thousands of open handles. // // 3: Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList // and release unused handles. // // 4: Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle. // It's not clear, however, that we wouldn't be trading one type of leak for another. // // 5. Use an RCU-like mechanism (Read-Copy Update). // Or perhaps something similar to Maged Michael's "Hazard pointers". // // We use (2). // // TODO-FIXME: // 1. Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation. // 2. Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks // to recover from (or at least detect) the dreaded Windows 841176 bug. // 3. Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent // into a single win32 CreateEvent() handle. // // Assumption: // Only one parker can exist on an event, which is why we allocate // them per-thread. Multiple unparkers can coexist. // // _Event transitions in park() // -1 => -1 : illegal // 1 => 0 : pass - return immediately // 0 => -1 : block; then set _Event to 0 before returning // // _Event transitions in unpark() // 0 => 1 : just return // 1 => 1 : just return // -1 => either 0 or 1; must signal target thread // That is, we can safely transition _Event from -1 to either // 0 or 1. // // _Event serves as a restricted-range semaphore. // -1 : thread is blocked, i.e. there is a waiter // 0 : neutral: thread is running or ready, // could have been signaled after a wait started // 1 : signaled - thread is running or ready // // Another possible encoding of _Event would be with // explicit "PARKED" == 01b and "SIGNALED" == 10b bits. // int os::PlatformEvent::park(jlong Millis) { // Transitions for _Event: // -1 => -1 : illegal // 1 => 0 : pass - return immediately // 0 => -1 : block; then set _Event to 0 before returning guarantee(_ParkHandle != NULL , "Invariant"); guarantee(Millis > 0 , "Invariant"); // CONSIDER: defer assigning a CreateEvent() handle to the Event until // the initial park() operation. // Consider: use atomic decrement instead of CAS-loop int v; for (;;) { v = _Event; if (Atomic::cmpxchg(v-1, &_Event, v) == v) break; } guarantee((v == 0) || (v == 1), "invariant"); if (v != 0) return OS_OK; // Do this the hard way by blocking ... // TODO: consider a brief spin here, gated on the success of recent // spin attempts by this thread. // // We decompose long timeouts into series of shorter timed waits. // Evidently large timo values passed in WaitForSingleObject() are problematic on some // versions of Windows. See EventWait() for details. This may be superstition. Or not. // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time // with os::javaTimeNanos(). Furthermore, we assume that spurious returns from // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend // to happen early in the wait interval. Specifically, after a spurious wakeup (rv == // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate // for the already waited time. This policy does not admit any new outcomes. // In the future, however, we might want to track the accumulated wait time and // adjust Millis accordingly if we encounter a spurious wakeup. const int MAXTIMEOUT = 0x10000000; DWORD rv = WAIT_TIMEOUT; while (_Event < 0 && Millis > 0) { DWORD prd = Millis; // set prd = MAX (Millis, MAXTIMEOUT) if (Millis > MAXTIMEOUT) { prd = MAXTIMEOUT; } rv = ::WaitForSingleObject(_ParkHandle, prd); assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed"); if (rv == WAIT_TIMEOUT) { Millis -= prd; } } v = _Event; _Event = 0; // see comment at end of os::PlatformEvent::park() below: OrderAccess::fence(); // If we encounter a nearly simultanous timeout expiry and unpark() // we return OS_OK indicating we awoke via unpark(). // Implementor's license -- returning OS_TIMEOUT would be equally valid, however. return (v >= 0) ? OS_OK : OS_TIMEOUT; } void os::PlatformEvent::park() { // Transitions for _Event: // -1 => -1 : illegal // 1 => 0 : pass - return immediately // 0 => -1 : block; then set _Event to 0 before returning guarantee(_ParkHandle != NULL, "Invariant"); // Invariant: Only the thread associated with the Event/PlatformEvent // may call park(). // Consider: use atomic decrement instead of CAS-loop int v; for (;;) { v = _Event; if (Atomic::cmpxchg(v-1, &_Event, v) == v) break; } guarantee((v == 0) || (v == 1), "invariant"); if (v != 0) return; // Do this the hard way by blocking ... // TODO: consider a brief spin here, gated on the success of recent // spin attempts by this thread. while (_Event < 0) { DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE); assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed"); } // Usually we'll find _Event == 0 at this point, but as // an optional optimization we clear it, just in case can // multiple unpark() operations drove _Event up to 1. _Event = 0; OrderAccess::fence(); guarantee(_Event >= 0, "invariant"); } void os::PlatformEvent::unpark() { guarantee(_ParkHandle != NULL, "Invariant"); // Transitions for _Event: // 0 => 1 : just return // 1 => 1 : just return // -1 => either 0 or 1; must signal target thread // That is, we can safely transition _Event from -1 to either // 0 or 1. // See also: "Semaphores in Plan 9" by Mullender & Cox // // Note: Forcing a transition from "-1" to "1" on an unpark() means // that it will take two back-to-back park() calls for the owning // thread to block. This has the benefit of forcing a spurious return // from the first park() call after an unpark() call which will help // shake out uses of park() and unpark() without condition variables. if (Atomic::xchg(1, &_Event) >= 0) return; ::SetEvent(_ParkHandle); } // JSR166 // ------------------------------------------------------- // The Windows implementation of Park is very straightforward: Basic // operations on Win32 Events turn out to have the right semantics to // use them directly. We opportunistically resuse the event inherited // from Monitor. void Parker::park(bool isAbsolute, jlong time) { guarantee(_ParkEvent != NULL, "invariant"); // First, demultiplex/decode time arguments if (time < 0) { // don't wait return; } else if (time == 0 && !isAbsolute) { time = INFINITE; } else if (isAbsolute) { time -= os::javaTimeMillis(); // convert to relative time if (time <= 0) { // already elapsed return; } } else { // relative time /= 1000000; // Must coarsen from nanos to millis if (time == 0) { // Wait for the minimal time unit if zero time = 1; } } JavaThread* thread = (JavaThread*)(Thread::current()); assert(thread->is_Java_thread(), "Must be JavaThread"); JavaThread *jt = (JavaThread *)thread; // Don't wait if interrupted or already triggered if (Thread::is_interrupted(thread, false) || WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) { ResetEvent(_ParkEvent); return; } else { ThreadBlockInVM tbivm(jt); OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */); jt->set_suspend_equivalent(); WaitForSingleObject(_ParkEvent, time); ResetEvent(_ParkEvent); // If externally suspended while waiting, re-suspend if (jt->handle_special_suspend_equivalent_condition()) { jt->java_suspend_self(); } } } void Parker::unpark() { guarantee(_ParkEvent != NULL, "invariant"); SetEvent(_ParkEvent); } // Run the specified command in a separate process. Return its exit value, // or -1 on failure (e.g. can't create a new process). int os::fork_and_exec(char* cmd) { STARTUPINFO si; PROCESS_INFORMATION pi; memset(&si, 0, sizeof(si)); si.cb = sizeof(si); memset(&pi, 0, sizeof(pi)); BOOL rslt = CreateProcess(NULL, // executable name - use command line cmd, // command line NULL, // process security attribute NULL, // thread security attribute TRUE, // inherits system handles 0, // no creation flags NULL, // use parent's environment block NULL, // use parent's starting directory &si, // (in) startup information &pi); // (out) process information if (rslt) { // Wait until child process exits. WaitForSingleObject(pi.hProcess, INFINITE); DWORD exit_code; GetExitCodeProcess(pi.hProcess, &exit_code); // Close process and thread handles. CloseHandle(pi.hProcess); CloseHandle(pi.hThread); return (int)exit_code; } else { return -1; } } //-------------------------------------------------------------------------------------------------- // Non-product code static int mallocDebugIntervalCounter = 0; static int mallocDebugCounter = 0; bool os::check_heap(bool force) { if (++mallocDebugCounter < MallocVerifyStart && !force) return true; if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) { // Note: HeapValidate executes two hardware breakpoints when it finds something // wrong; at these points, eax contains the address of the offending block (I think). // To get to the exlicit error message(s) below, just continue twice. HANDLE heap = GetProcessHeap(); // If we fail to lock the heap, then gflags.exe has been used // or some other special heap flag has been set that prevents // locking. We don't try to walk a heap we can't lock. if (HeapLock(heap) != 0) { PROCESS_HEAP_ENTRY phe; phe.lpData = NULL; while (HeapWalk(heap, &phe) != 0) { if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) && !HeapValidate(heap, 0, phe.lpData)) { tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter); tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData); fatal("corrupted C heap"); } } DWORD err = GetLastError(); if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) { fatal("heap walk aborted with error %d", err); } HeapUnlock(heap); } mallocDebugIntervalCounter = 0; } return true; } bool os::find(address addr, outputStream* st) { // Nothing yet return false; } LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) { DWORD exception_code = e->ExceptionRecord->ExceptionCode; if (exception_code == EXCEPTION_ACCESS_VIOLATION) { JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow(); PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord; address addr = (address) exceptionRecord->ExceptionInformation[1]; if (os::is_memory_serialize_page(thread, addr)) { return EXCEPTION_CONTINUE_EXECUTION; } } return EXCEPTION_CONTINUE_SEARCH; } // We don't build a headless jre for Windows bool os::is_headless_jre() { return false; } static jint initSock() { WSADATA wsadata; if (!os::WinSock2Dll::WinSock2Available()) { jio_fprintf(stderr, "Could not load Winsock (error: %d)\n", ::GetLastError()); return JNI_ERR; } if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) { jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n", ::GetLastError()); return JNI_ERR; } return JNI_OK; } struct hostent* os::get_host_by_name(char* name) { return (struct hostent*)os::WinSock2Dll::gethostbyname(name); } int os::socket_close(int fd) { return ::closesocket(fd); } int os::socket(int domain, int type, int protocol) { return ::socket(domain, type, protocol); } int os::connect(int fd, struct sockaddr* him, socklen_t len) { return ::connect(fd, him, len); } int os::recv(int fd, char* buf, size_t nBytes, uint flags) { return ::recv(fd, buf, (int)nBytes, flags); } int os::send(int fd, char* buf, size_t nBytes, uint flags) { return ::send(fd, buf, (int)nBytes, flags); } int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) { return ::send(fd, buf, (int)nBytes, flags); } // WINDOWS CONTEXT Flags for THREAD_SAMPLING #if defined(IA32) #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS) #elif defined (AMD64) #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT) #endif // returns true if thread could be suspended, // false otherwise static bool do_suspend(HANDLE* h) { if (h != NULL) { if (SuspendThread(*h) != ~0) { return true; } } return false; } // resume the thread // calling resume on an active thread is a no-op static void do_resume(HANDLE* h) { if (h != NULL) { ResumeThread(*h); } } // retrieve a suspend/resume context capable handle // from the tid. Caller validates handle return value. void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) { if (h != NULL) { *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid); } } // Thread sampling implementation // void os::SuspendedThreadTask::internal_do_task() { CONTEXT ctxt; HANDLE h = NULL; // get context capable handle for thread get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id()); // sanity if (h == NULL || h == INVALID_HANDLE_VALUE) { return; } // suspend the thread if (do_suspend(&h)) { ctxt.ContextFlags = sampling_context_flags; // get thread context GetThreadContext(h, &ctxt); SuspendedThreadTaskContext context(_thread, &ctxt); // pass context to Thread Sampling impl do_task(context); // resume thread do_resume(&h); } // close handle CloseHandle(h); } // Kernel32 API typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void); typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD); typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG); typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG); typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG); GetLargePageMinimum_Fn os::Kernel32Dll::_GetLargePageMinimum = NULL; VirtualAllocExNuma_Fn os::Kernel32Dll::_VirtualAllocExNuma = NULL; GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL; GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL; RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL; BOOL os::Kernel32Dll::initialized = FALSE; SIZE_T os::Kernel32Dll::GetLargePageMinimum() { assert(initialized && _GetLargePageMinimum != NULL, "GetLargePageMinimumAvailable() not yet called"); return _GetLargePageMinimum(); } BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() { if (!initialized) { initialize(); } return _GetLargePageMinimum != NULL; } BOOL os::Kernel32Dll::NumaCallsAvailable() { if (!initialized) { initialize(); } return _VirtualAllocExNuma != NULL; } LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) { assert(initialized && _VirtualAllocExNuma != NULL, "NUMACallsAvailable() not yet called"); return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node); } BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) { assert(initialized && _GetNumaHighestNodeNumber != NULL, "NUMACallsAvailable() not yet called"); return _GetNumaHighestNodeNumber(ptr_highest_node_number); } BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) { assert(initialized && _GetNumaNodeProcessorMask != NULL, "NUMACallsAvailable() not yet called"); return _GetNumaNodeProcessorMask(node, proc_mask); } USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip, ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) { if (!initialized) { initialize(); } if (_RtlCaptureStackBackTrace != NULL) { return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture, BackTrace, BackTraceHash); } else { return 0; } } void os::Kernel32Dll::initializeCommon() { if (!initialized) { HMODULE handle = ::GetModuleHandle("Kernel32.dll"); assert(handle != NULL, "Just check"); _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum"); _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma"); _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber"); _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask"); _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace"); initialized = TRUE; } } #ifndef JDK6_OR_EARLIER void os::Kernel32Dll::initialize() { initializeCommon(); } // Kernel32 API inline BOOL os::Kernel32Dll::SwitchToThread() { return ::SwitchToThread(); } inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() { return true; } // Help tools inline BOOL os::Kernel32Dll::HelpToolsAvailable() { return true; } inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags, DWORD th32ProcessId) { return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId); } inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot, LPMODULEENTRY32 lpme) { return ::Module32First(hSnapshot, lpme); } inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot, LPMODULEENTRY32 lpme) { return ::Module32Next(hSnapshot, lpme); } inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) { ::GetNativeSystemInfo(lpSystemInfo); } // PSAPI API inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) { return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded); } inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) { return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize); } inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) { return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb); } inline BOOL os::PSApiDll::PSApiAvailable() { return true; } // WinSock2 API inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) { return ::WSAStartup(wVersionRequested, lpWSAData); } inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) { return ::gethostbyname(name); } inline BOOL os::WinSock2Dll::WinSock2Available() { return true; } // Advapi API inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle, BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength, PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) { return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState, BufferLength, PreviousState, ReturnLength); } inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess, PHANDLE TokenHandle) { return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle); } inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) { return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid); } inline BOOL os::Advapi32Dll::AdvapiAvailable() { return true; } void* os::get_default_process_handle() { return (void*)GetModuleHandle(NULL); } // Builds a platform dependent Agent_OnLoad_ function name // which is used to find statically linked in agents. // Additionally for windows, takes into account __stdcall names. // Parameters: // sym_name: Symbol in library we are looking for // lib_name: Name of library to look in, NULL for shared libs. // is_absolute_path == true if lib_name is absolute path to agent // such as "C:/a/b/L.dll" // == false if only the base name of the library is passed in // such as "L" char* os::build_agent_function_name(const char *sym_name, const char *lib_name, bool is_absolute_path) { char *agent_entry_name; size_t len; size_t name_len; size_t prefix_len = strlen(JNI_LIB_PREFIX); size_t suffix_len = strlen(JNI_LIB_SUFFIX); const char *start; if (lib_name != NULL) { len = name_len = strlen(lib_name); if (is_absolute_path) { // Need to strip path, prefix and suffix if ((start = strrchr(lib_name, *os::file_separator())) != NULL) { lib_name = ++start; } else { // Need to check for drive prefix if ((start = strchr(lib_name, ':')) != NULL) { lib_name = ++start; } } if (len <= (prefix_len + suffix_len)) { return NULL; } lib_name += prefix_len; name_len = strlen(lib_name) - suffix_len; } } len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2; agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread); if (agent_entry_name == NULL) { return NULL; } if (lib_name != NULL) { const char *p = strrchr(sym_name, '@'); if (p != NULL && p != sym_name) { // sym_name == _Agent_OnLoad@XX strncpy(agent_entry_name, sym_name, (p - sym_name)); agent_entry_name[(p-sym_name)] = '\0'; // agent_entry_name == _Agent_OnLoad strcat(agent_entry_name, "_"); strncat(agent_entry_name, lib_name, name_len); strcat(agent_entry_name, p); // agent_entry_name == _Agent_OnLoad_lib_name@XX } else { strcpy(agent_entry_name, sym_name); strcat(agent_entry_name, "_"); strncat(agent_entry_name, lib_name, name_len); } } else { strcpy(agent_entry_name, sym_name); } return agent_entry_name; } #else // Kernel32 API typedef BOOL (WINAPI* SwitchToThread_Fn)(void); typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD); typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32); typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32); typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO); SwitchToThread_Fn os::Kernel32Dll::_SwitchToThread = NULL; CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL; Module32First_Fn os::Kernel32Dll::_Module32First = NULL; Module32Next_Fn os::Kernel32Dll::_Module32Next = NULL; GetNativeSystemInfo_Fn os::Kernel32Dll::_GetNativeSystemInfo = NULL; void os::Kernel32Dll::initialize() { if (!initialized) { HMODULE handle = ::GetModuleHandle("Kernel32.dll"); assert(handle != NULL, "Just check"); _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread"); _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn) ::GetProcAddress(handle, "CreateToolhelp32Snapshot"); _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First"); _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next"); _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo"); initializeCommon(); // resolve the functions that always need resolving initialized = TRUE; } } BOOL os::Kernel32Dll::SwitchToThread() { assert(initialized && _SwitchToThread != NULL, "SwitchToThreadAvailable() not yet called"); return _SwitchToThread(); } BOOL os::Kernel32Dll::SwitchToThreadAvailable() { if (!initialized) { initialize(); } return _SwitchToThread != NULL; } // Help tools BOOL os::Kernel32Dll::HelpToolsAvailable() { if (!initialized) { initialize(); } return _CreateToolhelp32Snapshot != NULL && _Module32First != NULL && _Module32Next != NULL; } HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags, DWORD th32ProcessId) { assert(initialized && _CreateToolhelp32Snapshot != NULL, "HelpToolsAvailable() not yet called"); return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId); } BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) { assert(initialized && _Module32First != NULL, "HelpToolsAvailable() not yet called"); return _Module32First(hSnapshot, lpme); } inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot, LPMODULEENTRY32 lpme) { assert(initialized && _Module32Next != NULL, "HelpToolsAvailable() not yet called"); return _Module32Next(hSnapshot, lpme); } BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() { if (!initialized) { initialize(); } return _GetNativeSystemInfo != NULL; } void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) { assert(initialized && _GetNativeSystemInfo != NULL, "GetNativeSystemInfoAvailable() not yet called"); _GetNativeSystemInfo(lpSystemInfo); } // PSAPI API typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD); typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD); typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD); EnumProcessModules_Fn os::PSApiDll::_EnumProcessModules = NULL; GetModuleFileNameEx_Fn os::PSApiDll::_GetModuleFileNameEx = NULL; GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL; BOOL os::PSApiDll::initialized = FALSE; void os::PSApiDll::initialize() { if (!initialized) { HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0); if (handle != NULL) { _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle, "EnumProcessModules"); _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle, "GetModuleFileNameExA"); _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle, "GetModuleInformation"); } initialized = TRUE; } } BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) { assert(initialized && _EnumProcessModules != NULL, "PSApiAvailable() not yet called"); return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded); } DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) { assert(initialized && _GetModuleFileNameEx != NULL, "PSApiAvailable() not yet called"); return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize); } BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) { assert(initialized && _GetModuleInformation != NULL, "PSApiAvailable() not yet called"); return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb); } BOOL os::PSApiDll::PSApiAvailable() { if (!initialized) { initialize(); } return _EnumProcessModules != NULL && _GetModuleFileNameEx != NULL && _GetModuleInformation != NULL; } // WinSock2 API typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA); typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...); WSAStartup_Fn os::WinSock2Dll::_WSAStartup = NULL; gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL; BOOL os::WinSock2Dll::initialized = FALSE; void os::WinSock2Dll::initialize() { if (!initialized) { HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0); if (handle != NULL) { _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup"); _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname"); } initialized = TRUE; } } BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) { assert(initialized && _WSAStartup != NULL, "WinSock2Available() not yet called"); return _WSAStartup(wVersionRequested, lpWSAData); } struct hostent* os::WinSock2Dll::gethostbyname(const char *name) { assert(initialized && _gethostbyname != NULL, "WinSock2Available() not yet called"); return _gethostbyname(name); } BOOL os::WinSock2Dll::WinSock2Available() { if (!initialized) { initialize(); } return _WSAStartup != NULL && _gethostbyname != NULL; } typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD); typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE); typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID); AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL; OpenProcessToken_Fn os::Advapi32Dll::_OpenProcessToken = NULL; LookupPrivilegeValue_Fn os::Advapi32Dll::_LookupPrivilegeValue = NULL; BOOL os::Advapi32Dll::initialized = FALSE; void os::Advapi32Dll::initialize() { if (!initialized) { HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0); if (handle != NULL) { _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle, "AdjustTokenPrivileges"); _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle, "OpenProcessToken"); _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle, "LookupPrivilegeValueA"); } initialized = TRUE; } } BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle, BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength, PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) { assert(initialized && _AdjustTokenPrivileges != NULL, "AdvapiAvailable() not yet called"); return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState, BufferLength, PreviousState, ReturnLength); } BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess, PHANDLE TokenHandle) { assert(initialized && _OpenProcessToken != NULL, "AdvapiAvailable() not yet called"); return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle); } BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) { assert(initialized && _LookupPrivilegeValue != NULL, "AdvapiAvailable() not yet called"); return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid); } BOOL os::Advapi32Dll::AdvapiAvailable() { if (!initialized) { initialize(); } return _AdjustTokenPrivileges != NULL && _OpenProcessToken != NULL && _LookupPrivilegeValue != NULL; } #endif #ifndef PRODUCT // test the code path in reserve_memory_special() that tries to allocate memory in a single // contiguous memory block at a particular address. // The test first tries to find a good approximate address to allocate at by using the same // method to allocate some memory at any address. The test then tries to allocate memory in // the vicinity (not directly after it to avoid possible by-chance use of that location) // This is of course only some dodgy assumption, there is no guarantee that the vicinity of // the previously allocated memory is available for allocation. The only actual failure // that is reported is when the test tries to allocate at a particular location but gets a // different valid one. A NULL return value at this point is not considered an error but may // be legitimate. // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages. void TestReserveMemorySpecial_test() { if (!UseLargePages) { if (VerboseInternalVMTests) { gclog_or_tty->print("Skipping test because large pages are disabled"); } return; } // save current value of globals bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation; bool old_use_numa_interleaving = UseNUMAInterleaving; // set globals to make sure we hit the correct code path UseLargePagesIndividualAllocation = UseNUMAInterleaving = false; // do an allocation at an address selected by the OS to get a good one. const size_t large_allocation_size = os::large_page_size() * 4; char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false); if (result == NULL) { if (VerboseInternalVMTests) { gclog_or_tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.", large_allocation_size); } } else { os::release_memory_special(result, large_allocation_size); // allocate another page within the recently allocated memory area which seems to be a good location. At least // we managed to get it once. const size_t expected_allocation_size = os::large_page_size(); char* expected_location = result + os::large_page_size(); char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false); if (actual_location == NULL) { if (VerboseInternalVMTests) { gclog_or_tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.", expected_location, large_allocation_size); } } else { // release memory os::release_memory_special(actual_location, expected_allocation_size); // only now check, after releasing any memory to avoid any leaks. assert(actual_location == expected_location, "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead", expected_location, expected_allocation_size, actual_location); } } // restore globals UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation; UseNUMAInterleaving = old_use_numa_interleaving; } #endif // PRODUCT