/* * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "asm/macroAssembler.inline.hpp" #include "compiler/disassembler.hpp" #include "interpreter/bytecodeHistogram.hpp" #include "interpreter/bytecodeInterpreter.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interpreterGenerator.hpp" #include "interpreter/interpreterRuntime.hpp" #include "interpreter/interp_masm.hpp" #include "interpreter/templateTable.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "oops/arrayOop.hpp" #include "oops/methodData.hpp" #include "oops/method.hpp" #include "oops/oop.inline.hpp" #include "prims/forte.hpp" #include "prims/jvmtiExport.hpp" #include "prims/methodHandles.hpp" #include "runtime/handles.inline.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/timer.hpp" # define __ _masm-> //------------------------------------------------------------------------------------------------------------------------ // Implementation of InterpreterCodelet void InterpreterCodelet::initialize(const char* description, Bytecodes::Code bytecode) { _description = description; _bytecode = bytecode; } void InterpreterCodelet::verify() { } void InterpreterCodelet::print_on(outputStream* st) const { ttyLocker ttyl; if (PrintInterpreter) { st->cr(); st->print_cr("----------------------------------------------------------------------"); } if (description() != NULL) st->print("%s ", description()); if (bytecode() >= 0 ) st->print("%d %s ", bytecode(), Bytecodes::name(bytecode())); st->print_cr("[" INTPTR_FORMAT ", " INTPTR_FORMAT "] %d bytes", p2i(code_begin()), p2i(code_end()), code_size()); if (PrintInterpreter) { st->cr(); Disassembler::decode(code_begin(), code_end(), st, DEBUG_ONLY(_strings) NOT_DEBUG(CodeStrings())); } } CodeletMark::CodeletMark(InterpreterMacroAssembler*& masm, const char* description, Bytecodes::Code bytecode) : _clet((InterpreterCodelet*)AbstractInterpreter::code()->request(codelet_size())), _cb(_clet->code_begin(), _clet->code_size()) { // Request all space (add some slack for Codelet data). assert(_clet != NULL, "we checked not enough space already"); // Initialize Codelet attributes. _clet->initialize(description, bytecode); // Create assembler for code generation. masm = new InterpreterMacroAssembler(&_cb); _masm = &masm; } CodeletMark::~CodeletMark() { // Align so printing shows nop's instead of random code at the end (Codelets are aligned). (*_masm)->align(wordSize); // Make sure all code is in code buffer. (*_masm)->flush(); // Commit Codelet. AbstractInterpreter::code()->commit((*_masm)->code()->pure_insts_size(), (*_masm)->code()->strings()); // Make sure nobody can use _masm outside a CodeletMark lifespan. *_masm = NULL; } //------------------------------------------------------------------------------------------------------------------------ // Implementation of platform independent aspects of Interpreter void AbstractInterpreter::initialize() { if (_code != NULL) return; // make sure 'imported' classes are initialized if (CountBytecodes || TraceBytecodes || StopInterpreterAt) BytecodeCounter::reset(); if (PrintBytecodeHistogram) BytecodeHistogram::reset(); if (PrintBytecodePairHistogram) BytecodePairHistogram::reset(); InvocationCounter::reinitialize(DelayCompilationDuringStartup); } void AbstractInterpreter::print() { tty->cr(); tty->print_cr("----------------------------------------------------------------------"); tty->print_cr("Interpreter"); tty->cr(); tty->print_cr("code size = %6dK bytes", (int)_code->used_space()/1024); tty->print_cr("total space = %6dK bytes", (int)_code->total_space()/1024); tty->print_cr("wasted space = %6dK bytes", (int)_code->available_space()/1024); tty->cr(); tty->print_cr("# of codelets = %6d" , _code->number_of_stubs()); if (_code->number_of_stubs() != 0) { tty->print_cr("avg codelet size = %6d bytes", _code->used_space() / _code->number_of_stubs()); tty->cr(); } _code->print(); tty->print_cr("----------------------------------------------------------------------"); tty->cr(); } void interpreter_init() { Interpreter::initialize(); #ifndef PRODUCT if (TraceBytecodes) BytecodeTracer::set_closure(BytecodeTracer::std_closure()); #endif // PRODUCT // need to hit every safepoint in order to call zapping routine // register the interpreter Forte::register_stub( "Interpreter", AbstractInterpreter::code()->code_start(), AbstractInterpreter::code()->code_end() ); // notify JVMTI profiler if (JvmtiExport::should_post_dynamic_code_generated()) { JvmtiExport::post_dynamic_code_generated("Interpreter", AbstractInterpreter::code()->code_start(), AbstractInterpreter::code()->code_end()); } } //------------------------------------------------------------------------------------------------------------------------ // Implementation of interpreter StubQueue* AbstractInterpreter::_code = NULL; bool AbstractInterpreter::_notice_safepoints = false; address AbstractInterpreter::_rethrow_exception_entry = NULL; address AbstractInterpreter::_native_entry_begin = NULL; address AbstractInterpreter::_native_entry_end = NULL; address AbstractInterpreter::_slow_signature_handler; address AbstractInterpreter::_entry_table [AbstractInterpreter::number_of_method_entries]; address AbstractInterpreter::_native_abi_to_tosca [AbstractInterpreter::number_of_result_handlers]; //------------------------------------------------------------------------------------------------------------------------ // Generation of complete interpreter AbstractInterpreterGenerator::AbstractInterpreterGenerator(StubQueue* _code) { _masm = NULL; } static const BasicType types[Interpreter::number_of_result_handlers] = { T_BOOLEAN, T_CHAR , T_BYTE , T_SHORT , T_INT , T_LONG , T_VOID , T_FLOAT , T_DOUBLE , T_OBJECT }; void AbstractInterpreterGenerator::generate_all() { { CodeletMark cm(_masm, "slow signature handler"); Interpreter::_slow_signature_handler = generate_slow_signature_handler(); } } //------------------------------------------------------------------------------------------------------------------------ // Entry points AbstractInterpreter::MethodKind AbstractInterpreter::method_kind(methodHandle m) { // Abstract method? if (m->is_abstract()) return abstract; // Method handle primitive? if (m->is_method_handle_intrinsic()) { vmIntrinsics::ID id = m->intrinsic_id(); assert(MethodHandles::is_signature_polymorphic(id), "must match an intrinsic"); MethodKind kind = (MethodKind)( method_handle_invoke_FIRST + ((int)id - vmIntrinsics::FIRST_MH_SIG_POLY) ); assert(kind <= method_handle_invoke_LAST, "parallel enum ranges"); return kind; } #ifndef CC_INTERP if (UseCRC32Intrinsics && m->is_native()) { // Use optimized stub code for CRC32 native methods. switch (m->intrinsic_id()) { case vmIntrinsics::_updateCRC32 : return java_util_zip_CRC32_update; case vmIntrinsics::_updateBytesCRC32 : return java_util_zip_CRC32_updateBytes; case vmIntrinsics::_updateByteBufferCRC32 : return java_util_zip_CRC32_updateByteBuffer; } } switch(m->intrinsic_id()) { case vmIntrinsics::_intBitsToFloat: return java_lang_Float_intBitsToFloat; case vmIntrinsics::_floatToRawIntBits: return java_lang_Float_floatToRawIntBits; case vmIntrinsics::_longBitsToDouble: return java_lang_Double_longBitsToDouble; case vmIntrinsics::_doubleToRawLongBits: return java_lang_Double_doubleToRawLongBits; } #endif // CC_INTERP // Native method? // Note: This test must come _before_ the test for intrinsic // methods. See also comments below. if (m->is_native()) { assert(!m->is_method_handle_intrinsic(), "overlapping bits here, watch out"); return m->is_synchronized() ? native_synchronized : native; } // Synchronized? if (m->is_synchronized()) { return zerolocals_synchronized; } if (RegisterFinalizersAtInit && m->code_size() == 1 && m->intrinsic_id() == vmIntrinsics::_Object_init) { // We need to execute the special return bytecode to check for // finalizer registration so create a normal frame. return zerolocals; } // Empty method? if (m->is_empty_method()) { return empty; } // Special intrinsic method? // Note: This test must come _after_ the test for native methods, // otherwise we will run into problems with JDK 1.2, see also // InterpreterGenerator::generate_method_entry() for // for details. switch (m->intrinsic_id()) { case vmIntrinsics::_dsin : return java_lang_math_sin ; case vmIntrinsics::_dcos : return java_lang_math_cos ; case vmIntrinsics::_dtan : return java_lang_math_tan ; case vmIntrinsics::_dabs : return java_lang_math_abs ; case vmIntrinsics::_dsqrt : return java_lang_math_sqrt ; case vmIntrinsics::_dlog : return java_lang_math_log ; case vmIntrinsics::_dlog10: return java_lang_math_log10; case vmIntrinsics::_dpow : return java_lang_math_pow ; case vmIntrinsics::_dexp : return java_lang_math_exp ; case vmIntrinsics::_Reference_get: return java_lang_ref_reference_get; } // Accessor method? if (m->is_accessor()) { assert(m->size_of_parameters() == 1, "fast code for accessors assumes parameter size = 1"); return accessor; } // Note: for now: zero locals for all non-empty methods return zerolocals; } void AbstractInterpreter::set_entry_for_kind(AbstractInterpreter::MethodKind kind, address entry) { assert(kind >= method_handle_invoke_FIRST && kind <= method_handle_invoke_LAST, "late initialization only for MH entry points"); assert(_entry_table[kind] == _entry_table[abstract], "previous value must be AME entry"); _entry_table[kind] = entry; } // Return true if the interpreter can prove that the given bytecode has // not yet been executed (in Java semantics, not in actual operation). bool AbstractInterpreter::is_not_reached(methodHandle method, int bci) { Bytecodes::Code code = method()->code_at(bci); if (!Bytecodes::must_rewrite(code)) { // might have been reached return false; } // the bytecode might not be rewritten if the method is an accessor, etc. address ientry = method->interpreter_entry(); if (ientry != entry_for_kind(AbstractInterpreter::zerolocals) && ientry != entry_for_kind(AbstractInterpreter::zerolocals_synchronized)) return false; // interpreter does not run this method! // otherwise, we can be sure this bytecode has never been executed return true; } #ifndef PRODUCT void AbstractInterpreter::print_method_kind(MethodKind kind) { switch (kind) { case zerolocals : tty->print("zerolocals" ); break; case zerolocals_synchronized: tty->print("zerolocals_synchronized"); break; case native : tty->print("native" ); break; case native_synchronized : tty->print("native_synchronized" ); break; case empty : tty->print("empty" ); break; case accessor : tty->print("accessor" ); break; case abstract : tty->print("abstract" ); break; case java_lang_math_sin : tty->print("java_lang_math_sin" ); break; case java_lang_math_cos : tty->print("java_lang_math_cos" ); break; case java_lang_math_tan : tty->print("java_lang_math_tan" ); break; case java_lang_math_abs : tty->print("java_lang_math_abs" ); break; case java_lang_math_sqrt : tty->print("java_lang_math_sqrt" ); break; case java_lang_math_log : tty->print("java_lang_math_log" ); break; case java_lang_math_log10 : tty->print("java_lang_math_log10" ); break; case java_util_zip_CRC32_update : tty->print("java_util_zip_CRC32_update"); break; case java_util_zip_CRC32_updateBytes : tty->print("java_util_zip_CRC32_updateBytes"); break; case java_util_zip_CRC32_updateByteBuffer : tty->print("java_util_zip_CRC32_updateByteBuffer"); break; default: if (kind >= method_handle_invoke_FIRST && kind <= method_handle_invoke_LAST) { const char* kind_name = vmIntrinsics::name_at(method_handle_intrinsic(kind)); if (kind_name[0] == '_') kind_name = &kind_name[1]; // '_invokeExact' => 'invokeExact' tty->print("method_handle_%s", kind_name); break; } ShouldNotReachHere(); break; } } #endif // PRODUCT //------------------------------------------------------------------------------------------------------------------------ // Deoptimization support /** * If a deoptimization happens, this function returns the point of next bytecode to continue execution. */ address AbstractInterpreter::deopt_continue_after_entry(Method* method, address bcp, int callee_parameters, bool is_top_frame) { assert(method->contains(bcp), "just checkin'"); // Get the original and rewritten bytecode. Bytecodes::Code code = Bytecodes::java_code_at(method, bcp); assert(!Interpreter::bytecode_should_reexecute(code), "should not reexecute"); const int bci = method->bci_from(bcp); // compute continuation length const int length = Bytecodes::length_at(method, bcp); // compute result type BasicType type = T_ILLEGAL; switch (code) { case Bytecodes::_invokevirtual : case Bytecodes::_invokespecial : case Bytecodes::_invokestatic : case Bytecodes::_invokeinterface: { Thread *thread = Thread::current(); ResourceMark rm(thread); methodHandle mh(thread, method); type = Bytecode_invoke(mh, bci).result_type(); // since the cache entry might not be initialized: // (NOT needed for the old calling convension) if (!is_top_frame) { int index = Bytes::get_native_u2(bcp+1); method->constants()->cache()->entry_at(index)->set_parameter_size(callee_parameters); } break; } case Bytecodes::_invokedynamic: { Thread *thread = Thread::current(); ResourceMark rm(thread); methodHandle mh(thread, method); type = Bytecode_invoke(mh, bci).result_type(); // since the cache entry might not be initialized: // (NOT needed for the old calling convension) if (!is_top_frame) { int index = Bytes::get_native_u4(bcp+1); method->constants()->invokedynamic_cp_cache_entry_at(index)->set_parameter_size(callee_parameters); } break; } case Bytecodes::_ldc : case Bytecodes::_ldc_w : // fall through case Bytecodes::_ldc2_w: { Thread *thread = Thread::current(); ResourceMark rm(thread); methodHandle mh(thread, method); type = Bytecode_loadconstant(mh, bci).result_type(); break; } default: type = Bytecodes::result_type(code); break; } // return entry point for computed continuation state & bytecode length return is_top_frame ? Interpreter::deopt_entry (as_TosState(type), length) : Interpreter::return_entry(as_TosState(type), length, code); } // If deoptimization happens, this function returns the point where the interpreter reexecutes // the bytecode. // Note: Bytecodes::_athrow is a special case in that it does not return // Interpreter::deopt_entry(vtos, 0) like others address AbstractInterpreter::deopt_reexecute_entry(Method* method, address bcp) { assert(method->contains(bcp), "just checkin'"); Bytecodes::Code code = Bytecodes::java_code_at(method, bcp); #ifdef COMPILER1 if(code == Bytecodes::_athrow ) { return Interpreter::rethrow_exception_entry(); } #endif /* COMPILER1 */ return Interpreter::deopt_entry(vtos, 0); } // If deoptimization happens, the interpreter should reexecute these bytecodes. // This function mainly helps the compilers to set up the reexecute bit. bool AbstractInterpreter::bytecode_should_reexecute(Bytecodes::Code code) { switch (code) { case Bytecodes::_lookupswitch: case Bytecodes::_tableswitch: case Bytecodes::_fast_binaryswitch: case Bytecodes::_fast_linearswitch: // recompute condtional expression folded into _if case Bytecodes::_lcmp : case Bytecodes::_fcmpl : case Bytecodes::_fcmpg : case Bytecodes::_dcmpl : case Bytecodes::_dcmpg : case Bytecodes::_ifnull : case Bytecodes::_ifnonnull : case Bytecodes::_goto : case Bytecodes::_goto_w : case Bytecodes::_ifeq : case Bytecodes::_ifne : case Bytecodes::_iflt : case Bytecodes::_ifge : case Bytecodes::_ifgt : case Bytecodes::_ifle : case Bytecodes::_if_icmpeq : case Bytecodes::_if_icmpne : case Bytecodes::_if_icmplt : case Bytecodes::_if_icmpge : case Bytecodes::_if_icmpgt : case Bytecodes::_if_icmple : case Bytecodes::_if_acmpeq : case Bytecodes::_if_acmpne : // special cases case Bytecodes::_getfield : case Bytecodes::_putfield : case Bytecodes::_getstatic : case Bytecodes::_putstatic : case Bytecodes::_aastore : #ifdef COMPILER1 //special case of reexecution case Bytecodes::_athrow : #endif return true; default: return false; } } void AbstractInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { // Quick & dirty stack overflow checking: bang the stack & handle trap. // Note that we do the banging after the frame is setup, since the exception // handling code expects to find a valid interpreter frame on the stack. // Doing the banging earlier fails if the caller frame is not an interpreter // frame. // (Also, the exception throwing code expects to unlock any synchronized // method receiever, so do the banging after locking the receiver.) // Bang each page in the shadow zone. We can't assume it's been done for // an interpreter frame with greater than a page of locals, so each page // needs to be checked. Only true for non-native. if (UseStackBanging) { const int start_page = native_call ? StackShadowPages : 1; const int page_size = os::vm_page_size(); for (int pages = start_page; pages <= StackShadowPages ; pages++) { __ bang_stack_with_offset(pages*page_size); } } } void AbstractInterpreterGenerator::initialize_method_handle_entries() { // method handle entry kinds are generated later in MethodHandlesAdapterGenerator::generate: for (int i = Interpreter::method_handle_invoke_FIRST; i <= Interpreter::method_handle_invoke_LAST; i++) { Interpreter::MethodKind kind = (Interpreter::MethodKind) i; Interpreter::_entry_table[kind] = Interpreter::_entry_table[Interpreter::abstract]; } } // Generate method entries address InterpreterGenerator::generate_method_entry( AbstractInterpreter::MethodKind kind) { // determine code generation flags bool synchronized = false; address entry_point = NULL; switch (kind) { case Interpreter::zerolocals : break; case Interpreter::zerolocals_synchronized: synchronized = true; break; case Interpreter::native : entry_point = generate_native_entry(false); break; case Interpreter::native_synchronized : entry_point = generate_native_entry(true); break; case Interpreter::empty : entry_point = generate_empty_entry(); break; case Interpreter::accessor : entry_point = generate_accessor_entry(); break; case Interpreter::abstract : entry_point = generate_abstract_entry(); break; case Interpreter::java_lang_math_sin : // fall thru case Interpreter::java_lang_math_cos : // fall thru case Interpreter::java_lang_math_tan : // fall thru case Interpreter::java_lang_math_abs : // fall thru case Interpreter::java_lang_math_log : // fall thru case Interpreter::java_lang_math_log10 : // fall thru case Interpreter::java_lang_math_sqrt : // fall thru case Interpreter::java_lang_math_pow : // fall thru case Interpreter::java_lang_math_exp : entry_point = generate_math_entry(kind); break; case Interpreter::java_lang_ref_reference_get : entry_point = generate_Reference_get_entry(); break; #ifndef CC_INTERP case Interpreter::java_util_zip_CRC32_update : entry_point = generate_CRC32_update_entry(); break; case Interpreter::java_util_zip_CRC32_updateBytes : // fall thru case Interpreter::java_util_zip_CRC32_updateByteBuffer : entry_point = generate_CRC32_updateBytes_entry(kind); break; #if defined(TARGET_ARCH_x86) && !defined(_LP64) // On x86_32 platforms, a special entry is generated for the following four methods. // On other platforms the normal entry is used to enter these methods. case Interpreter::java_lang_Float_intBitsToFloat : entry_point = generate_Float_intBitsToFloat_entry(); break; case Interpreter::java_lang_Float_floatToRawIntBits : entry_point = generate_Float_floatToRawIntBits_entry(); break; case Interpreter::java_lang_Double_longBitsToDouble : entry_point = generate_Double_longBitsToDouble_entry(); break; case Interpreter::java_lang_Double_doubleToRawLongBits : entry_point = generate_Double_doubleToRawLongBits_entry(); break; #else case Interpreter::java_lang_Float_intBitsToFloat: case Interpreter::java_lang_Float_floatToRawIntBits: case Interpreter::java_lang_Double_longBitsToDouble: case Interpreter::java_lang_Double_doubleToRawLongBits: entry_point = generate_native_entry(false); break; #endif // defined(TARGET_ARCH_x86) && !defined(_LP64) #endif // CC_INTERP default: fatal("unexpected method kind: %d", kind); break; } if (entry_point) { return entry_point; } return generate_normal_entry(synchronized); }