1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_solaris.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_solaris.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/atomic.inline.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <setjmp.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <thread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/filio.h>
  71 # include <sys/utsname.h>
  72 # include <sys/systeminfo.h>
  73 # include <sys/socket.h>
  74 # include <sys/trap.h>
  75 # include <sys/lwp.h>
  76 # include <pwd.h>
  77 # include <poll.h>
  78 # include <sys/lwp.h>
  79 # include <procfs.h>     //  see comment in <sys/procfs.h>
  80 
  81 #ifndef AMD64
  82 // QQQ seems useless at this point
  83 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  84 #endif // AMD64
  85 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  86 
  87 
  88 #define MAX_PATH (2 * K)
  89 
  90 // Minimum stack size for the VM.  It's easier to document a constant value
  91 // but it's different for x86 and sparc because the page sizes are different.
  92 #ifdef AMD64
  93 size_t os::Solaris::min_stack_allowed = 224*K;
  94 #define REG_SP REG_RSP
  95 #define REG_PC REG_RIP
  96 #define REG_FP REG_RBP
  97 #else
  98 size_t os::Solaris::min_stack_allowed = 64*K;
  99 #define REG_SP UESP
 100 #define REG_PC EIP
 101 #define REG_FP EBP
 102 // 4900493 counter to prevent runaway LDTR refresh attempt
 103 
 104 static volatile int ldtr_refresh = 0;
 105 // the libthread instruction that faults because of the stale LDTR
 106 
 107 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 108                        };
 109 #endif // AMD64
 110 
 111 char* os::non_memory_address_word() {
 112   // Must never look like an address returned by reserve_memory,
 113   // even in its subfields (as defined by the CPU immediate fields,
 114   // if the CPU splits constants across multiple instructions).
 115   return (char*) -1;
 116 }
 117 
 118 //
 119 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 120 // There are issues with libthread giving out uc_links for different threads
 121 // on the same uc_link chain and bad or circular links.
 122 //
 123 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
 124   if (valid >= suspect ||
 125       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 126       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 127       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 128     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 129     return false;
 130   }
 131 
 132   if (thread->is_Java_thread()) {
 133     if (!valid_stack_address(thread, (address)suspect)) {
 134       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 135       return false;
 136     }
 137     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 138       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 139       return false;
 140     }
 141   }
 142   return true;
 143 }
 144 
 145 // We will only follow one level of uc_link since there are libthread
 146 // issues with ucontext linking and it is better to be safe and just
 147 // let caller retry later.
 148 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 149   ucontext_t *uc) {
 150 
 151   ucontext_t *retuc = NULL;
 152 
 153   if (uc != NULL) {
 154     if (uc->uc_link == NULL) {
 155       // cannot validate without uc_link so accept current ucontext
 156       retuc = uc;
 157     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 158       // first ucontext is valid so try the next one
 159       uc = uc->uc_link;
 160       if (uc->uc_link == NULL) {
 161         // cannot validate without uc_link so accept current ucontext
 162         retuc = uc;
 163       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 164         // the ucontext one level down is also valid so return it
 165         retuc = uc;
 166       }
 167     }
 168   }
 169   return retuc;
 170 }
 171 
 172 // Assumes ucontext is valid
 173 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
 174   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 175 }
 176 
 177 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
 178   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
 179 }
 180 
 181 // Assumes ucontext is valid
 182 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
 183   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 184 }
 185 
 186 // Assumes ucontext is valid
 187 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
 188   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 189 }
 190 
 191 address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
 192   return (address) uc->uc_mcontext.gregs[REG_PC];
 193 }
 194 
 195 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 196 // is currently interrupted by SIGPROF.
 197 //
 198 // The difference between this and os::fetch_frame_from_context() is that
 199 // here we try to skip nested signal frames.
 200 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 201   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 202 
 203   assert(thread != NULL, "just checking");
 204   assert(ret_sp != NULL, "just checking");
 205   assert(ret_fp != NULL, "just checking");
 206 
 207   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 208   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 209 }
 210 
 211 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 212                     intptr_t** ret_sp, intptr_t** ret_fp) {
 213 
 214   ExtendedPC  epc;
 215   ucontext_t *uc = (ucontext_t*)ucVoid;
 216 
 217   if (uc != NULL) {
 218     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 219     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 220     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 221   } else {
 222     // construct empty ExtendedPC for return value checking
 223     epc = ExtendedPC(NULL);
 224     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 225     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 226   }
 227 
 228   return epc;
 229 }
 230 
 231 frame os::fetch_frame_from_context(void* ucVoid) {
 232   intptr_t* sp;
 233   intptr_t* fp;
 234   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 235   return frame(sp, fp, epc.pc());
 236 }
 237 
 238 frame os::get_sender_for_C_frame(frame* fr) {
 239   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 240 }
 241 
 242 extern "C" intptr_t *_get_current_sp();  // in .il file
 243 
 244 address os::current_stack_pointer() {
 245   return (address)_get_current_sp();
 246 }
 247 
 248 extern "C" intptr_t *_get_current_fp();  // in .il file
 249 
 250 frame os::current_frame() {
 251   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 252   frame myframe((intptr_t*)os::current_stack_pointer(),
 253                 (intptr_t*)fp,
 254                 CAST_FROM_FN_PTR(address, os::current_frame));
 255   if (os::is_first_C_frame(&myframe)) {
 256     // stack is not walkable
 257     frame ret; // This will be a null useless frame
 258     return ret;
 259   } else {
 260     return os::get_sender_for_C_frame(&myframe);
 261   }
 262 }
 263 
 264 #ifndef AMD64
 265 
 266 // Detecting SSE support by OS
 267 // From solaris_i486.s
 268 extern "C" bool sse_check();
 269 extern "C" bool sse_unavailable();
 270 
 271 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 272 static int sse_status = SSE_UNKNOWN;
 273 
 274 
 275 static void  check_for_sse_support() {
 276   if (!VM_Version::supports_sse()) {
 277     sse_status = SSE_NOT_SUPPORTED;
 278     return;
 279   }
 280   // looking for _sse_hw in libc.so, if it does not exist or
 281   // the value (int) is 0, OS has no support for SSE
 282   int *sse_hwp;
 283   void *h;
 284 
 285   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 286     //open failed, presume no support for SSE
 287     sse_status = SSE_NOT_SUPPORTED;
 288     return;
 289   }
 290   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 291     sse_status = SSE_NOT_SUPPORTED;
 292   } else if (*sse_hwp == 0) {
 293     sse_status = SSE_NOT_SUPPORTED;
 294   }
 295   dlclose(h);
 296 
 297   if (sse_status == SSE_UNKNOWN) {
 298     bool (*try_sse)() = (bool (*)())sse_check;
 299     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 300   }
 301 
 302 }
 303 
 304 #endif // AMD64
 305 
 306 bool os::supports_sse() {
 307 #ifdef AMD64
 308   return true;
 309 #else
 310   if (sse_status == SSE_UNKNOWN)
 311     check_for_sse_support();
 312   return sse_status == SSE_SUPPORTED;
 313 #endif // AMD64
 314 }
 315 
 316 bool os::is_allocatable(size_t bytes) {
 317 #ifdef AMD64
 318   return true;
 319 #else
 320 
 321   if (bytes < 2 * G) {
 322     return true;
 323   }
 324 
 325   char* addr = reserve_memory(bytes, NULL);
 326 
 327   if (addr != NULL) {
 328     release_memory(addr, bytes);
 329   }
 330 
 331   return addr != NULL;
 332 #endif // AMD64
 333 
 334 }
 335 
 336 extern "C" JNIEXPORT int
 337 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 338                           int abort_if_unrecognized) {
 339   ucontext_t* uc = (ucontext_t*) ucVoid;
 340 
 341 #ifndef AMD64
 342   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 343     // the SSE instruction faulted. supports_sse() need return false.
 344     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 345     return true;
 346   }
 347 #endif // !AMD64
 348 
 349   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
 350 
 351   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 352   // (no destructors can be run)
 353   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 354 
 355   SignalHandlerMark shm(t);
 356 
 357   if(sig == SIGPIPE || sig == SIGXFSZ) {
 358     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 359       return true;
 360     } else {
 361       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 362         char buf[64];
 363         warning("Ignoring %s - see 4229104 or 6499219",
 364                 os::exception_name(sig, buf, sizeof(buf)));
 365 
 366       }
 367       return true;
 368     }
 369   }
 370 
 371   JavaThread* thread = NULL;
 372   VMThread* vmthread = NULL;
 373 
 374   if (os::Solaris::signal_handlers_are_installed) {
 375     if (t != NULL ){
 376       if(t->is_Java_thread()) {
 377         thread = (JavaThread*)t;
 378       }
 379       else if(t->is_VM_thread()){
 380         vmthread = (VMThread *)t;
 381       }
 382     }
 383   }
 384 
 385   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
 386 
 387   if (sig == os::Solaris::SIGasync()) {
 388     if(thread || vmthread){
 389       OSThread::SR_handler(t, uc);
 390       return true;
 391     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 392       return true;
 393     } else {
 394       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 395       // non-java thread
 396       return true;
 397     }
 398   }
 399 
 400   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 401     // can't decode this kind of signal
 402     info = NULL;
 403   } else {
 404     assert(sig == info->si_signo, "bad siginfo");
 405   }
 406 
 407   // decide if this trap can be handled by a stub
 408   address stub = NULL;
 409 
 410   address pc          = NULL;
 411 
 412   //%note os_trap_1
 413   if (info != NULL && uc != NULL && thread != NULL) {
 414     // factor me: getPCfromContext
 415     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 416 
 417     if (StubRoutines::is_safefetch_fault(pc)) {
 418       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 419       return true;
 420     }
 421 
 422     // Handle ALL stack overflow variations here
 423     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 424       address addr = (address) info->si_addr;
 425       if (thread->in_stack_yellow_zone(addr)) {
 426         thread->disable_stack_yellow_zone();
 427         if (thread->thread_state() == _thread_in_Java) {
 428           // Throw a stack overflow exception.  Guard pages will be reenabled
 429           // while unwinding the stack.
 430           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 431         } else {
 432           // Thread was in the vm or native code.  Return and try to finish.
 433           return true;
 434         }
 435       } else if (thread->in_stack_red_zone(addr)) {
 436         // Fatal red zone violation.  Disable the guard pages and fall through
 437         // to handle_unexpected_exception way down below.
 438         thread->disable_stack_red_zone();
 439         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 440       }
 441     }
 442 
 443     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 444       // Verify that OS save/restore AVX registers.
 445       stub = VM_Version::cpuinfo_cont_addr();
 446     }
 447 
 448     if (thread->thread_state() == _thread_in_vm) {
 449       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 450         stub = StubRoutines::handler_for_unsafe_access();
 451       }
 452     }
 453 
 454     if (thread->thread_state() == _thread_in_Java) {
 455       // Support Safepoint Polling
 456       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 457         stub = SharedRuntime::get_poll_stub(pc);
 458       }
 459       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 460         // BugId 4454115: A read from a MappedByteBuffer can fault
 461         // here if the underlying file has been truncated.
 462         // Do not crash the VM in such a case.
 463         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 464         if (cb != NULL) {
 465           nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 466           if (nm != NULL && nm->has_unsafe_access()) {
 467             stub = StubRoutines::handler_for_unsafe_access();
 468           }
 469         }
 470       }
 471       else
 472       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 473         // integer divide by zero
 474         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 475       }
 476 #ifndef AMD64
 477       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 478         // floating-point divide by zero
 479         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 480       }
 481       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 482         // The encoding of D2I in i486.ad can cause an exception prior
 483         // to the fist instruction if there was an invalid operation
 484         // pending. We want to dismiss that exception. From the win_32
 485         // side it also seems that if it really was the fist causing
 486         // the exception that we do the d2i by hand with different
 487         // rounding. Seems kind of weird. QQQ TODO
 488         // Note that we take the exception at the NEXT floating point instruction.
 489         if (pc[0] == 0xDB) {
 490             assert(pc[0] == 0xDB, "not a FIST opcode");
 491             assert(pc[1] == 0x14, "not a FIST opcode");
 492             assert(pc[2] == 0x24, "not a FIST opcode");
 493             return true;
 494         } else {
 495             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 496             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 497             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 498         }
 499       }
 500       else if (sig == SIGFPE ) {
 501         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 502       }
 503 #endif // !AMD64
 504 
 505         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 506         // to return properly from the handler without this extra stuff on the back side.
 507 
 508       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 509         // Determination of interpreter/vtable stub/compiled code null exception
 510         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 511       }
 512     }
 513 
 514     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 515     // and the heap gets shrunk before the field access.
 516     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 517       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 518       if (addr != (address)-1) {
 519         stub = addr;
 520       }
 521     }
 522 
 523     // Check to see if we caught the safepoint code in the
 524     // process of write protecting the memory serialization page.
 525     // It write enables the page immediately after protecting it
 526     // so we can just return to retry the write.
 527     if ((sig == SIGSEGV) &&
 528         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 529       // Block current thread until the memory serialize page permission restored.
 530       os::block_on_serialize_page_trap();
 531       return true;
 532     }
 533   }
 534 
 535   // Execution protection violation
 536   //
 537   // Preventative code for future versions of Solaris which may
 538   // enable execution protection when running the 32-bit VM on AMD64.
 539   //
 540   // This should be kept as the last step in the triage.  We don't
 541   // have a dedicated trap number for a no-execute fault, so be
 542   // conservative and allow other handlers the first shot.
 543   //
 544   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 545   // this si_code is so generic that it is almost meaningless; and
 546   // the si_code for this condition may change in the future.
 547   // Furthermore, a false-positive should be harmless.
 548   if (UnguardOnExecutionViolation > 0 &&
 549       (sig == SIGSEGV || sig == SIGBUS) &&
 550       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 551     int page_size = os::vm_page_size();
 552     address addr = (address) info->si_addr;
 553     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 554     // Make sure the pc and the faulting address are sane.
 555     //
 556     // If an instruction spans a page boundary, and the page containing
 557     // the beginning of the instruction is executable but the following
 558     // page is not, the pc and the faulting address might be slightly
 559     // different - we still want to unguard the 2nd page in this case.
 560     //
 561     // 15 bytes seems to be a (very) safe value for max instruction size.
 562     bool pc_is_near_addr =
 563       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 564     bool instr_spans_page_boundary =
 565       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 566                        (intptr_t) page_size) > 0);
 567 
 568     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 569       static volatile address last_addr =
 570         (address) os::non_memory_address_word();
 571 
 572       // In conservative mode, don't unguard unless the address is in the VM
 573       if (addr != last_addr &&
 574           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 575 
 576         // Make memory rwx and retry
 577         address page_start =
 578           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 579         bool res = os::protect_memory((char*) page_start, page_size,
 580                                       os::MEM_PROT_RWX);
 581 
 582         if (PrintMiscellaneous && Verbose) {
 583           char buf[256];
 584           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 585                        "at " INTPTR_FORMAT
 586                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 587                        page_start, (res ? "success" : "failed"), errno);
 588           tty->print_raw_cr(buf);
 589         }
 590         stub = pc;
 591 
 592         // Set last_addr so if we fault again at the same address, we don't end
 593         // up in an endless loop.
 594         //
 595         // There are two potential complications here.  Two threads trapping at
 596         // the same address at the same time could cause one of the threads to
 597         // think it already unguarded, and abort the VM.  Likely very rare.
 598         //
 599         // The other race involves two threads alternately trapping at
 600         // different addresses and failing to unguard the page, resulting in
 601         // an endless loop.  This condition is probably even more unlikely than
 602         // the first.
 603         //
 604         // Although both cases could be avoided by using locks or thread local
 605         // last_addr, these solutions are unnecessary complication: this
 606         // handler is a best-effort safety net, not a complete solution.  It is
 607         // disabled by default and should only be used as a workaround in case
 608         // we missed any no-execute-unsafe VM code.
 609 
 610         last_addr = addr;
 611       }
 612     }
 613   }
 614 
 615   if (stub != NULL) {
 616     // save all thread context in case we need to restore it
 617 
 618     if (thread != NULL) thread->set_saved_exception_pc(pc);
 619     // 12/02/99: On Sparc it appears that the full context is also saved
 620     // but as yet, no one looks at or restores that saved context
 621     os::Solaris::ucontext_set_pc(uc, stub);
 622     return true;
 623   }
 624 
 625   // signal-chaining
 626   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 627     return true;
 628   }
 629 
 630 #ifndef AMD64
 631   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 632   // Handle an undefined selector caused by an attempt to assign
 633   // fs in libthread getipriptr(). With the current libthread design every 512
 634   // thread creations the LDT for a private thread data structure is extended
 635   // and thre is a hazard that and another thread attempting a thread creation
 636   // will use a stale LDTR that doesn't reflect the structure's growth,
 637   // causing a GP fault.
 638   // Enforce the probable limit of passes through here to guard against an
 639   // infinite loop if some other move to fs caused the GP fault. Note that
 640   // this loop counter is ultimately a heuristic as it is possible for
 641   // more than one thread to generate this fault at a time in an MP system.
 642   // In the case of the loop count being exceeded or if the poll fails
 643   // just fall through to a fatal error.
 644   // If there is some other source of T_GPFLT traps and the text at EIP is
 645   // unreadable this code will loop infinitely until the stack is exausted.
 646   // The key to diagnosis in this case is to look for the bottom signal handler
 647   // frame.
 648 
 649   if(! IgnoreLibthreadGPFault) {
 650     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 651       const unsigned char *p =
 652                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 653 
 654       // Expected instruction?
 655 
 656       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 657 
 658         Atomic::inc(&ldtr_refresh);
 659 
 660         // Infinite loop?
 661 
 662         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 663 
 664           // No, force scheduling to get a fresh view of the LDTR
 665 
 666           if(poll(NULL, 0, 10) == 0) {
 667 
 668             // Retry the move
 669 
 670             return false;
 671           }
 672         }
 673       }
 674     }
 675   }
 676 #endif // !AMD64
 677 
 678   if (!abort_if_unrecognized) {
 679     // caller wants another chance, so give it to him
 680     return false;
 681   }
 682 
 683   if (!os::Solaris::libjsig_is_loaded) {
 684     struct sigaction oldAct;
 685     sigaction(sig, (struct sigaction *)0, &oldAct);
 686     if (oldAct.sa_sigaction != signalHandler) {
 687       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 688                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 689       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 690     }
 691   }
 692 
 693   if (pc == NULL && uc != NULL) {
 694     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 695   }
 696 
 697   // unmask current signal
 698   sigset_t newset;
 699   sigemptyset(&newset);
 700   sigaddset(&newset, sig);
 701   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 702 
 703   // Determine which sort of error to throw.  Out of swap may signal
 704   // on the thread stack, which could get a mapping error when touched.
 705   address addr = (address) info->si_addr;
 706   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 707     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 708   }
 709 
 710   VMError::report_and_die(t, sig, pc, info, ucVoid);
 711 
 712   ShouldNotReachHere();
 713   return false;
 714 }
 715 
 716 void os::print_context(outputStream *st, void *context) {
 717   if (context == NULL) return;
 718 
 719   ucontext_t *uc = (ucontext_t*)context;
 720   st->print_cr("Registers:");
 721 #ifdef AMD64
 722   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 723   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 724   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 725   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 726   st->cr();
 727   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 728   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 729   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 730   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 731   st->cr();
 732   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 733   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 734   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 735   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 736   st->cr();
 737   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 738   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 739   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 740   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 741   st->cr();
 742   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 743   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 744 #else
 745   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 746   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 747   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 748   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 749   st->cr();
 750   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 751   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 752   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 753   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 754   st->cr();
 755   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 756   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 757 #endif // AMD64
 758   st->cr();
 759   st->cr();
 760 
 761   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 762   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 763   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 764   st->cr();
 765 
 766   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 767   // point to garbage if entry point in an nmethod is corrupted. Leave
 768   // this at the end, and hope for the best.
 769   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 770   address pc = epc.pc();
 771   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 772   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 773 }
 774 
 775 void os::print_register_info(outputStream *st, void *context) {
 776   if (context == NULL) return;
 777 
 778   ucontext_t *uc = (ucontext_t*)context;
 779 
 780   st->print_cr("Register to memory mapping:");
 781   st->cr();
 782 
 783   // this is horrendously verbose but the layout of the registers in the
 784   // context does not match how we defined our abstract Register set, so
 785   // we can't just iterate through the gregs area
 786 
 787   // this is only for the "general purpose" registers
 788 
 789 #ifdef AMD64
 790   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 791   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 792   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 793   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 794   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 795   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 796   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 797   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 798   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 799   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 800   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 801   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 802   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 803   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 804   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 805   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 806 #else
 807   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 808   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 809   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 810   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 811   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 812   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 813   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 814   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 815 #endif
 816 
 817   st->cr();
 818 }
 819 
 820 
 821 #ifdef AMD64
 822 void os::Solaris::init_thread_fpu_state(void) {
 823   // Nothing to do
 824 }
 825 #else
 826 // From solaris_i486.s
 827 extern "C" void fixcw();
 828 
 829 void os::Solaris::init_thread_fpu_state(void) {
 830   // Set fpu to 53 bit precision. This happens too early to use a stub.
 831   fixcw();
 832 }
 833 
 834 // These routines are the initial value of atomic_xchg_entry(),
 835 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 836 // until initialization is complete.
 837 // TODO - replace with .il implementation when compiler supports it.
 838 
 839 typedef jint  xchg_func_t        (jint,  volatile jint*);
 840 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 841 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 842 typedef jint  add_func_t         (jint,  volatile jint*);
 843 
 844 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 845   // try to use the stub:
 846   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 847 
 848   if (func != NULL) {
 849     os::atomic_xchg_func = func;
 850     return (*func)(exchange_value, dest);
 851   }
 852   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 853 
 854   jint old_value = *dest;
 855   *dest = exchange_value;
 856   return old_value;
 857 }
 858 
 859 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 860   // try to use the stub:
 861   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 862 
 863   if (func != NULL) {
 864     os::atomic_cmpxchg_func = func;
 865     return (*func)(exchange_value, dest, compare_value);
 866   }
 867   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 868 
 869   jint old_value = *dest;
 870   if (old_value == compare_value)
 871     *dest = exchange_value;
 872   return old_value;
 873 }
 874 
 875 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 876   // try to use the stub:
 877   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 878 
 879   if (func != NULL) {
 880     os::atomic_cmpxchg_long_func = func;
 881     return (*func)(exchange_value, dest, compare_value);
 882   }
 883   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 884 
 885   jlong old_value = *dest;
 886   if (old_value == compare_value)
 887     *dest = exchange_value;
 888   return old_value;
 889 }
 890 
 891 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 892   // try to use the stub:
 893   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 894 
 895   if (func != NULL) {
 896     os::atomic_add_func = func;
 897     return (*func)(add_value, dest);
 898   }
 899   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 900 
 901   return (*dest) += add_value;
 902 }
 903 
 904 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 905 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 906 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 907 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 908 
 909 extern "C" void _solaris_raw_setup_fpu(address ptr);
 910 void os::setup_fpu() {
 911   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 912   _solaris_raw_setup_fpu(fpu_cntrl);
 913 }
 914 #endif // AMD64
 915 
 916 #ifndef PRODUCT
 917 void os::verify_stack_alignment() {
 918 #ifdef AMD64
 919   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 920 #endif
 921 }
 922 #endif
 923 
 924 int os::extra_bang_size_in_bytes() {
 925   // JDK-8050147 requires the full cache line bang for x86.
 926   return VM_Version::L1_line_size();
 927 }