1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/iterator.inline.hpp"
  58 #include "memory/padded.hpp"
  59 #include "memory/resourceArea.hpp"
  60 #include "oops/oop.inline.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/globals_extension.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/orderAccess.inline.hpp"
  67 #include "runtime/vmThread.hpp"
  68 #include "services/memoryService.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 // statics
  73 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  74 bool CMSCollector::_full_gc_requested = false;
  75 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  76 
  77 //////////////////////////////////////////////////////////////////
  78 // In support of CMS/VM thread synchronization
  79 //////////////////////////////////////////////////////////////////
  80 // We split use of the CGC_lock into 2 "levels".
  81 // The low-level locking is of the usual CGC_lock monitor. We introduce
  82 // a higher level "token" (hereafter "CMS token") built on top of the
  83 // low level monitor (hereafter "CGC lock").
  84 // The token-passing protocol gives priority to the VM thread. The
  85 // CMS-lock doesn't provide any fairness guarantees, but clients
  86 // should ensure that it is only held for very short, bounded
  87 // durations.
  88 //
  89 // When either of the CMS thread or the VM thread is involved in
  90 // collection operations during which it does not want the other
  91 // thread to interfere, it obtains the CMS token.
  92 //
  93 // If either thread tries to get the token while the other has
  94 // it, that thread waits. However, if the VM thread and CMS thread
  95 // both want the token, then the VM thread gets priority while the
  96 // CMS thread waits. This ensures, for instance, that the "concurrent"
  97 // phases of the CMS thread's work do not block out the VM thread
  98 // for long periods of time as the CMS thread continues to hog
  99 // the token. (See bug 4616232).
 100 //
 101 // The baton-passing functions are, however, controlled by the
 102 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 103 // and here the low-level CMS lock, not the high level token,
 104 // ensures mutual exclusion.
 105 //
 106 // Two important conditions that we have to satisfy:
 107 // 1. if a thread does a low-level wait on the CMS lock, then it
 108 //    relinquishes the CMS token if it were holding that token
 109 //    when it acquired the low-level CMS lock.
 110 // 2. any low-level notifications on the low-level lock
 111 //    should only be sent when a thread has relinquished the token.
 112 //
 113 // In the absence of either property, we'd have potential deadlock.
 114 //
 115 // We protect each of the CMS (concurrent and sequential) phases
 116 // with the CMS _token_, not the CMS _lock_.
 117 //
 118 // The only code protected by CMS lock is the token acquisition code
 119 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 120 // baton-passing code.
 121 //
 122 // Unfortunately, i couldn't come up with a good abstraction to factor and
 123 // hide the naked CGC_lock manipulation in the baton-passing code
 124 // further below. That's something we should try to do. Also, the proof
 125 // of correctness of this 2-level locking scheme is far from obvious,
 126 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 127 // that there may be a theoretical possibility of delay/starvation in the
 128 // low-level lock/wait/notify scheme used for the baton-passing because of
 129 // potential interference with the priority scheme embodied in the
 130 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 131 // invocation further below and marked with "XXX 20011219YSR".
 132 // Indeed, as we note elsewhere, this may become yet more slippery
 133 // in the presence of multiple CMS and/or multiple VM threads. XXX
 134 
 135 class CMSTokenSync: public StackObj {
 136  private:
 137   bool _is_cms_thread;
 138  public:
 139   CMSTokenSync(bool is_cms_thread):
 140     _is_cms_thread(is_cms_thread) {
 141     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 142            "Incorrect argument to constructor");
 143     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 144   }
 145 
 146   ~CMSTokenSync() {
 147     assert(_is_cms_thread ?
 148              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 149              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 150           "Incorrect state");
 151     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 152   }
 153 };
 154 
 155 // Convenience class that does a CMSTokenSync, and then acquires
 156 // upto three locks.
 157 class CMSTokenSyncWithLocks: public CMSTokenSync {
 158  private:
 159   // Note: locks are acquired in textual declaration order
 160   // and released in the opposite order
 161   MutexLockerEx _locker1, _locker2, _locker3;
 162  public:
 163   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 164                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 165     CMSTokenSync(is_cms_thread),
 166     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 167     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 168     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 169   { }
 170 };
 171 
 172 
 173 //////////////////////////////////////////////////////////////////
 174 //  Concurrent Mark-Sweep Generation /////////////////////////////
 175 //////////////////////////////////////////////////////////////////
 176 
 177 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 178 
 179 // This struct contains per-thread things necessary to support parallel
 180 // young-gen collection.
 181 class CMSParGCThreadState: public CHeapObj<mtGC> {
 182  public:
 183   CFLS_LAB lab;
 184   PromotionInfo promo;
 185 
 186   // Constructor.
 187   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 188     promo.setSpace(cfls);
 189   }
 190 };
 191 
 192 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 193      ReservedSpace rs, size_t initial_byte_size,
 194      CardTableRS* ct, bool use_adaptive_freelists,
 195      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 196   CardGeneration(rs, initial_byte_size, ct),
 197   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 198   _did_compact(false)
 199 {
 200   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 201   HeapWord* end    = (HeapWord*) _virtual_space.high();
 202 
 203   _direct_allocated_words = 0;
 204   NOT_PRODUCT(
 205     _numObjectsPromoted = 0;
 206     _numWordsPromoted = 0;
 207     _numObjectsAllocated = 0;
 208     _numWordsAllocated = 0;
 209   )
 210 
 211   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 212                                            use_adaptive_freelists,
 213                                            dictionaryChoice);
 214   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 215   _cmsSpace->_old_gen = this;
 216 
 217   _gc_stats = new CMSGCStats();
 218 
 219   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 220   // offsets match. The ability to tell free chunks from objects
 221   // depends on this property.
 222   debug_only(
 223     FreeChunk* junk = NULL;
 224     assert(UseCompressedClassPointers ||
 225            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 226            "Offset of FreeChunk::_prev within FreeChunk must match"
 227            "  that of OopDesc::_klass within OopDesc");
 228   )
 229 
 230   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 231   for (uint i = 0; i < ParallelGCThreads; i++) {
 232     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 233   }
 234 
 235   _incremental_collection_failed = false;
 236   // The "dilatation_factor" is the expansion that can occur on
 237   // account of the fact that the minimum object size in the CMS
 238   // generation may be larger than that in, say, a contiguous young
 239   //  generation.
 240   // Ideally, in the calculation below, we'd compute the dilatation
 241   // factor as: MinChunkSize/(promoting_gen's min object size)
 242   // Since we do not have such a general query interface for the
 243   // promoting generation, we'll instead just use the minimum
 244   // object size (which today is a header's worth of space);
 245   // note that all arithmetic is in units of HeapWords.
 246   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 247   assert(_dilatation_factor >= 1.0, "from previous assert");
 248 }
 249 
 250 
 251 // The field "_initiating_occupancy" represents the occupancy percentage
 252 // at which we trigger a new collection cycle.  Unless explicitly specified
 253 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 254 // is calculated by:
 255 //
 256 //   Let "f" be MinHeapFreeRatio in
 257 //
 258 //    _initiating_occupancy = 100-f +
 259 //                           f * (CMSTriggerRatio/100)
 260 //   where CMSTriggerRatio is the argument "tr" below.
 261 //
 262 // That is, if we assume the heap is at its desired maximum occupancy at the
 263 // end of a collection, we let CMSTriggerRatio of the (purported) free
 264 // space be allocated before initiating a new collection cycle.
 265 //
 266 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 267   assert(io <= 100 && tr <= 100, "Check the arguments");
 268   if (io >= 0) {
 269     _initiating_occupancy = (double)io / 100.0;
 270   } else {
 271     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 272                              (double)(tr * MinHeapFreeRatio) / 100.0)
 273                             / 100.0;
 274   }
 275 }
 276 
 277 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 278   assert(collector() != NULL, "no collector");
 279   collector()->ref_processor_init();
 280 }
 281 
 282 void CMSCollector::ref_processor_init() {
 283   if (_ref_processor == NULL) {
 284     // Allocate and initialize a reference processor
 285     _ref_processor =
 286       new ReferenceProcessor(_span,                               // span
 287                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 288                              ParallelGCThreads,                   // mt processing degree
 289                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 290                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 291                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 292                              &_is_alive_closure);                 // closure for liveness info
 293     // Initialize the _ref_processor field of CMSGen
 294     _cmsGen->set_ref_processor(_ref_processor);
 295 
 296   }
 297 }
 298 
 299 AdaptiveSizePolicy* CMSCollector::size_policy() {
 300   GenCollectedHeap* gch = GenCollectedHeap::heap();
 301   return gch->gen_policy()->size_policy();
 302 }
 303 
 304 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 305 
 306   const char* gen_name = "old";
 307   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 308   // Generation Counters - generation 1, 1 subspace
 309   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 310       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 311 
 312   _space_counters = new GSpaceCounters(gen_name, 0,
 313                                        _virtual_space.reserved_size(),
 314                                        this, _gen_counters);
 315 }
 316 
 317 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 318   _cms_gen(cms_gen)
 319 {
 320   assert(alpha <= 100, "bad value");
 321   _saved_alpha = alpha;
 322 
 323   // Initialize the alphas to the bootstrap value of 100.
 324   _gc0_alpha = _cms_alpha = 100;
 325 
 326   _cms_begin_time.update();
 327   _cms_end_time.update();
 328 
 329   _gc0_duration = 0.0;
 330   _gc0_period = 0.0;
 331   _gc0_promoted = 0;
 332 
 333   _cms_duration = 0.0;
 334   _cms_period = 0.0;
 335   _cms_allocated = 0;
 336 
 337   _cms_used_at_gc0_begin = 0;
 338   _cms_used_at_gc0_end = 0;
 339   _allow_duty_cycle_reduction = false;
 340   _valid_bits = 0;
 341 }
 342 
 343 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 344   // TBD: CR 6909490
 345   return 1.0;
 346 }
 347 
 348 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 349 }
 350 
 351 // If promotion failure handling is on use
 352 // the padded average size of the promotion for each
 353 // young generation collection.
 354 double CMSStats::time_until_cms_gen_full() const {
 355   size_t cms_free = _cms_gen->cmsSpace()->free();
 356   GenCollectedHeap* gch = GenCollectedHeap::heap();
 357   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 358                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 359   if (cms_free > expected_promotion) {
 360     // Start a cms collection if there isn't enough space to promote
 361     // for the next young collection.  Use the padded average as
 362     // a safety factor.
 363     cms_free -= expected_promotion;
 364 
 365     // Adjust by the safety factor.
 366     double cms_free_dbl = (double)cms_free;
 367     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 368     // Apply a further correction factor which tries to adjust
 369     // for recent occurance of concurrent mode failures.
 370     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 371     cms_free_dbl = cms_free_dbl * cms_adjustment;
 372 
 373     if (PrintGCDetails && Verbose) {
 374       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 375         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 376         cms_free, expected_promotion);
 377       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 378         cms_free_dbl, cms_consumption_rate() + 1.0);
 379     }
 380     // Add 1 in case the consumption rate goes to zero.
 381     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 382   }
 383   return 0.0;
 384 }
 385 
 386 // Compare the duration of the cms collection to the
 387 // time remaining before the cms generation is empty.
 388 // Note that the time from the start of the cms collection
 389 // to the start of the cms sweep (less than the total
 390 // duration of the cms collection) can be used.  This
 391 // has been tried and some applications experienced
 392 // promotion failures early in execution.  This was
 393 // possibly because the averages were not accurate
 394 // enough at the beginning.
 395 double CMSStats::time_until_cms_start() const {
 396   // We add "gc0_period" to the "work" calculation
 397   // below because this query is done (mostly) at the
 398   // end of a scavenge, so we need to conservatively
 399   // account for that much possible delay
 400   // in the query so as to avoid concurrent mode failures
 401   // due to starting the collection just a wee bit too
 402   // late.
 403   double work = cms_duration() + gc0_period();
 404   double deadline = time_until_cms_gen_full();
 405   // If a concurrent mode failure occurred recently, we want to be
 406   // more conservative and halve our expected time_until_cms_gen_full()
 407   if (work > deadline) {
 408     if (Verbose && PrintGCDetails) {
 409       gclog_or_tty->print(
 410         " CMSCollector: collect because of anticipated promotion "
 411         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 412         gc0_period(), time_until_cms_gen_full());
 413     }
 414     return 0.0;
 415   }
 416   return work - deadline;
 417 }
 418 
 419 #ifndef PRODUCT
 420 void CMSStats::print_on(outputStream *st) const {
 421   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 422   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 423                gc0_duration(), gc0_period(), gc0_promoted());
 424   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 425             cms_duration(), cms_period(), cms_allocated());
 426   st->print(",cms_since_beg=%g,cms_since_end=%g",
 427             cms_time_since_begin(), cms_time_since_end());
 428   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 429             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 430 
 431   if (valid()) {
 432     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 433               promotion_rate(), cms_allocation_rate());
 434     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 435               cms_consumption_rate(), time_until_cms_gen_full());
 436   }
 437   st->print(" ");
 438 }
 439 #endif // #ifndef PRODUCT
 440 
 441 CMSCollector::CollectorState CMSCollector::_collectorState =
 442                              CMSCollector::Idling;
 443 bool CMSCollector::_foregroundGCIsActive = false;
 444 bool CMSCollector::_foregroundGCShouldWait = false;
 445 
 446 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 447                            CardTableRS*                   ct,
 448                            ConcurrentMarkSweepPolicy*     cp):
 449   _cmsGen(cmsGen),
 450   _ct(ct),
 451   _ref_processor(NULL),    // will be set later
 452   _conc_workers(NULL),     // may be set later
 453   _abort_preclean(false),
 454   _start_sampling(false),
 455   _between_prologue_and_epilogue(false),
 456   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 457   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 458                  -1 /* lock-free */, "No_lock" /* dummy */),
 459   _modUnionClosurePar(&_modUnionTable),
 460   // Adjust my span to cover old (cms) gen
 461   _span(cmsGen->reserved()),
 462   // Construct the is_alive_closure with _span & markBitMap
 463   _is_alive_closure(_span, &_markBitMap),
 464   _restart_addr(NULL),
 465   _overflow_list(NULL),
 466   _stats(cmsGen),
 467   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 468                              //verify that this lock should be acquired with safepoint check.
 469                              Monitor::_safepoint_check_sometimes)),
 470   _eden_chunk_array(NULL),     // may be set in ctor body
 471   _eden_chunk_capacity(0),     // -- ditto --
 472   _eden_chunk_index(0),        // -- ditto --
 473   _survivor_plab_array(NULL),  // -- ditto --
 474   _survivor_chunk_array(NULL), // -- ditto --
 475   _survivor_chunk_capacity(0), // -- ditto --
 476   _survivor_chunk_index(0),    // -- ditto --
 477   _ser_pmc_preclean_ovflw(0),
 478   _ser_kac_preclean_ovflw(0),
 479   _ser_pmc_remark_ovflw(0),
 480   _par_pmc_remark_ovflw(0),
 481   _ser_kac_ovflw(0),
 482   _par_kac_ovflw(0),
 483 #ifndef PRODUCT
 484   _num_par_pushes(0),
 485 #endif
 486   _collection_count_start(0),
 487   _verifying(false),
 488   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 489   _completed_initialization(false),
 490   _collector_policy(cp),
 491   _should_unload_classes(CMSClassUnloadingEnabled),
 492   _concurrent_cycles_since_last_unload(0),
 493   _roots_scanning_options(GenCollectedHeap::SO_None),
 494   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 495   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 496   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 497   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 498   _cms_start_registered(false)
 499 {
 500   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 501     ExplicitGCInvokesConcurrent = true;
 502   }
 503   // Now expand the span and allocate the collection support structures
 504   // (MUT, marking bit map etc.) to cover both generations subject to
 505   // collection.
 506 
 507   // For use by dirty card to oop closures.
 508   _cmsGen->cmsSpace()->set_collector(this);
 509 
 510   // Allocate MUT and marking bit map
 511   {
 512     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 513     if (!_markBitMap.allocate(_span)) {
 514       warning("Failed to allocate CMS Bit Map");
 515       return;
 516     }
 517     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 518   }
 519   {
 520     _modUnionTable.allocate(_span);
 521     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 522   }
 523 
 524   if (!_markStack.allocate(MarkStackSize)) {
 525     warning("Failed to allocate CMS Marking Stack");
 526     return;
 527   }
 528 
 529   // Support for multi-threaded concurrent phases
 530   if (CMSConcurrentMTEnabled) {
 531     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 532       // just for now
 533       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 534     }
 535     if (ConcGCThreads > 1) {
 536       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 537                                  ConcGCThreads, true);
 538       if (_conc_workers == NULL) {
 539         warning("GC/CMS: _conc_workers allocation failure: "
 540               "forcing -CMSConcurrentMTEnabled");
 541         CMSConcurrentMTEnabled = false;
 542       } else {
 543         _conc_workers->initialize_workers();
 544       }
 545     } else {
 546       CMSConcurrentMTEnabled = false;
 547     }
 548   }
 549   if (!CMSConcurrentMTEnabled) {
 550     ConcGCThreads = 0;
 551   } else {
 552     // Turn off CMSCleanOnEnter optimization temporarily for
 553     // the MT case where it's not fixed yet; see 6178663.
 554     CMSCleanOnEnter = false;
 555   }
 556   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 557          "Inconsistency");
 558 
 559   // Parallel task queues; these are shared for the
 560   // concurrent and stop-world phases of CMS, but
 561   // are not shared with parallel scavenge (ParNew).
 562   {
 563     uint i;
 564     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 565 
 566     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 567          || ParallelRefProcEnabled)
 568         && num_queues > 0) {
 569       _task_queues = new OopTaskQueueSet(num_queues);
 570       if (_task_queues == NULL) {
 571         warning("task_queues allocation failure.");
 572         return;
 573       }
 574       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 575       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 576       for (i = 0; i < num_queues; i++) {
 577         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 578         if (q == NULL) {
 579           warning("work_queue allocation failure.");
 580           return;
 581         }
 582         _task_queues->register_queue(i, q);
 583       }
 584       for (i = 0; i < num_queues; i++) {
 585         _task_queues->queue(i)->initialize();
 586         _hash_seed[i] = 17;  // copied from ParNew
 587       }
 588     }
 589   }
 590 
 591   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 592 
 593   // Clip CMSBootstrapOccupancy between 0 and 100.
 594   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 595 
 596   // Now tell CMS generations the identity of their collector
 597   ConcurrentMarkSweepGeneration::set_collector(this);
 598 
 599   // Create & start a CMS thread for this CMS collector
 600   _cmsThread = ConcurrentMarkSweepThread::start(this);
 601   assert(cmsThread() != NULL, "CMS Thread should have been created");
 602   assert(cmsThread()->collector() == this,
 603          "CMS Thread should refer to this gen");
 604   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 605 
 606   // Support for parallelizing young gen rescan
 607   GenCollectedHeap* gch = GenCollectedHeap::heap();
 608   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 609   _young_gen = (ParNewGeneration*)gch->young_gen();
 610   if (gch->supports_inline_contig_alloc()) {
 611     _top_addr = gch->top_addr();
 612     _end_addr = gch->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _completed_initialization = true;
 640   _inter_sweep_timer.start();  // start of time
 641 }
 642 
 643 const char* ConcurrentMarkSweepGeneration::name() const {
 644   return "concurrent mark-sweep generation";
 645 }
 646 void ConcurrentMarkSweepGeneration::update_counters() {
 647   if (UsePerfData) {
 648     _space_counters->update_all();
 649     _gen_counters->update_all();
 650   }
 651 }
 652 
 653 // this is an optimized version of update_counters(). it takes the
 654 // used value as a parameter rather than computing it.
 655 //
 656 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 657   if (UsePerfData) {
 658     _space_counters->update_used(used);
 659     _space_counters->update_capacity();
 660     _gen_counters->update_all();
 661   }
 662 }
 663 
 664 void ConcurrentMarkSweepGeneration::print() const {
 665   Generation::print();
 666   cmsSpace()->print();
 667 }
 668 
 669 #ifndef PRODUCT
 670 void ConcurrentMarkSweepGeneration::print_statistics() {
 671   cmsSpace()->printFLCensus(0);
 672 }
 673 #endif
 674 
 675 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 676   GenCollectedHeap* gch = GenCollectedHeap::heap();
 677   if (PrintGCDetails) {
 678     // I didn't want to change the logging when removing the level concept,
 679     // but I guess this logging could say "old" or something instead of "1".
 680     assert(gch->is_old_gen(this),
 681            "The CMS generation should be the old generation");
 682     uint level = 1;
 683     if (Verbose) {
 684       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "(" SIZE_FORMAT ")]",
 685         level, short_name(), s, used(), capacity());
 686     } else {
 687       gclog_or_tty->print("[%u %s-%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)]",
 688         level, short_name(), s, used() / K, capacity() / K);
 689     }
 690   }
 691   if (Verbose) {
 692     gclog_or_tty->print(" " SIZE_FORMAT "(" SIZE_FORMAT ")",
 693               gch->used(), gch->capacity());
 694   } else {
 695     gclog_or_tty->print(" " SIZE_FORMAT "K(" SIZE_FORMAT "K)",
 696               gch->used() / K, gch->capacity() / K);
 697   }
 698 }
 699 
 700 size_t
 701 ConcurrentMarkSweepGeneration::contiguous_available() const {
 702   // dld proposes an improvement in precision here. If the committed
 703   // part of the space ends in a free block we should add that to
 704   // uncommitted size in the calculation below. Will make this
 705   // change later, staying with the approximation below for the
 706   // time being. -- ysr.
 707   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 708 }
 709 
 710 size_t
 711 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 712   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 713 }
 714 
 715 size_t ConcurrentMarkSweepGeneration::max_available() const {
 716   return free() + _virtual_space.uncommitted_size();
 717 }
 718 
 719 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 720   size_t available = max_available();
 721   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 722   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 723   if (Verbose && PrintGCDetails) {
 724     gclog_or_tty->print_cr(
 725       "CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "),"
 726       "max_promo(" SIZE_FORMAT ")",
 727       res? "":" not", available, res? ">=":"<",
 728       av_promo, max_promotion_in_bytes);
 729   }
 730   return res;
 731 }
 732 
 733 // At a promotion failure dump information on block layout in heap
 734 // (cms old generation).
 735 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 736   if (CMSDumpAtPromotionFailure) {
 737     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 738   }
 739 }
 740 
 741 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 742   // Clear the promotion information.  These pointers can be adjusted
 743   // along with all the other pointers into the heap but
 744   // compaction is expected to be a rare event with
 745   // a heap using cms so don't do it without seeing the need.
 746   for (uint i = 0; i < ParallelGCThreads; i++) {
 747     _par_gc_thread_states[i]->promo.reset();
 748   }
 749 }
 750 
 751 void ConcurrentMarkSweepGeneration::compute_new_size() {
 752   assert_locked_or_safepoint(Heap_lock);
 753 
 754   // If incremental collection failed, we just want to expand
 755   // to the limit.
 756   if (incremental_collection_failed()) {
 757     clear_incremental_collection_failed();
 758     grow_to_reserved();
 759     return;
 760   }
 761 
 762   // The heap has been compacted but not reset yet.
 763   // Any metric such as free() or used() will be incorrect.
 764 
 765   CardGeneration::compute_new_size();
 766 
 767   // Reset again after a possible resizing
 768   if (did_compact()) {
 769     cmsSpace()->reset_after_compaction();
 770   }
 771 }
 772 
 773 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 774   assert_locked_or_safepoint(Heap_lock);
 775 
 776   // If incremental collection failed, we just want to expand
 777   // to the limit.
 778   if (incremental_collection_failed()) {
 779     clear_incremental_collection_failed();
 780     grow_to_reserved();
 781     return;
 782   }
 783 
 784   double free_percentage = ((double) free()) / capacity();
 785   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 786   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 787 
 788   // compute expansion delta needed for reaching desired free percentage
 789   if (free_percentage < desired_free_percentage) {
 790     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 791     assert(desired_capacity >= capacity(), "invalid expansion size");
 792     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 793     if (PrintGCDetails && Verbose) {
 794       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 795       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 796       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 797       gclog_or_tty->print_cr("  Desired free fraction %f", desired_free_percentage);
 798       gclog_or_tty->print_cr("  Maximum free fraction %f", maximum_free_percentage);
 799       gclog_or_tty->print_cr("  Capacity " SIZE_FORMAT, capacity() / 1000);
 800       gclog_or_tty->print_cr("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 801       GenCollectedHeap* gch = GenCollectedHeap::heap();
 802       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 803       size_t young_size = gch->young_gen()->capacity();
 804       gclog_or_tty->print_cr("  Young gen size " SIZE_FORMAT, young_size / 1000);
 805       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 806       gclog_or_tty->print_cr("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 807       gclog_or_tty->print_cr("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 808     }
 809     // safe if expansion fails
 810     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 811     if (PrintGCDetails && Verbose) {
 812       gclog_or_tty->print_cr("  Expanded free fraction %f", ((double) free()) / capacity());
 813     }
 814   } else {
 815     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 816     assert(desired_capacity <= capacity(), "invalid expansion size");
 817     size_t shrink_bytes = capacity() - desired_capacity;
 818     // Don't shrink unless the delta is greater than the minimum shrink we want
 819     if (shrink_bytes >= MinHeapDeltaBytes) {
 820       shrink_free_list_by(shrink_bytes);
 821     }
 822   }
 823 }
 824 
 825 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 826   return cmsSpace()->freelistLock();
 827 }
 828 
 829 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 830   CMSSynchronousYieldRequest yr;
 831   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 832   return have_lock_and_allocate(size, tlab);
 833 }
 834 
 835 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 836                                                                 bool   tlab /* ignored */) {
 837   assert_lock_strong(freelistLock());
 838   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 839   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 840   // Allocate the object live (grey) if the background collector has
 841   // started marking. This is necessary because the marker may
 842   // have passed this address and consequently this object will
 843   // not otherwise be greyed and would be incorrectly swept up.
 844   // Note that if this object contains references, the writing
 845   // of those references will dirty the card containing this object
 846   // allowing the object to be blackened (and its references scanned)
 847   // either during a preclean phase or at the final checkpoint.
 848   if (res != NULL) {
 849     // We may block here with an uninitialized object with
 850     // its mark-bit or P-bits not yet set. Such objects need
 851     // to be safely navigable by block_start().
 852     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 853     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 854     collector()->direct_allocated(res, adjustedSize);
 855     _direct_allocated_words += adjustedSize;
 856     // allocation counters
 857     NOT_PRODUCT(
 858       _numObjectsAllocated++;
 859       _numWordsAllocated += (int)adjustedSize;
 860     )
 861   }
 862   return res;
 863 }
 864 
 865 // In the case of direct allocation by mutators in a generation that
 866 // is being concurrently collected, the object must be allocated
 867 // live (grey) if the background collector has started marking.
 868 // This is necessary because the marker may
 869 // have passed this address and consequently this object will
 870 // not otherwise be greyed and would be incorrectly swept up.
 871 // Note that if this object contains references, the writing
 872 // of those references will dirty the card containing this object
 873 // allowing the object to be blackened (and its references scanned)
 874 // either during a preclean phase or at the final checkpoint.
 875 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 876   assert(_markBitMap.covers(start, size), "Out of bounds");
 877   if (_collectorState >= Marking) {
 878     MutexLockerEx y(_markBitMap.lock(),
 879                     Mutex::_no_safepoint_check_flag);
 880     // [see comments preceding SweepClosure::do_blk() below for details]
 881     //
 882     // Can the P-bits be deleted now?  JJJ
 883     //
 884     // 1. need to mark the object as live so it isn't collected
 885     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 886     // 3. need to mark the end of the object so marking, precleaning or sweeping
 887     //    can skip over uninitialized or unparsable objects. An allocated
 888     //    object is considered uninitialized for our purposes as long as
 889     //    its klass word is NULL.  All old gen objects are parsable
 890     //    as soon as they are initialized.)
 891     _markBitMap.mark(start);          // object is live
 892     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 893     _markBitMap.mark(start + size - 1);
 894                                       // mark end of object
 895   }
 896   // check that oop looks uninitialized
 897   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 898 }
 899 
 900 void CMSCollector::promoted(bool par, HeapWord* start,
 901                             bool is_obj_array, size_t obj_size) {
 902   assert(_markBitMap.covers(start), "Out of bounds");
 903   // See comment in direct_allocated() about when objects should
 904   // be allocated live.
 905   if (_collectorState >= Marking) {
 906     // we already hold the marking bit map lock, taken in
 907     // the prologue
 908     if (par) {
 909       _markBitMap.par_mark(start);
 910     } else {
 911       _markBitMap.mark(start);
 912     }
 913     // We don't need to mark the object as uninitialized (as
 914     // in direct_allocated above) because this is being done with the
 915     // world stopped and the object will be initialized by the
 916     // time the marking, precleaning or sweeping get to look at it.
 917     // But see the code for copying objects into the CMS generation,
 918     // where we need to ensure that concurrent readers of the
 919     // block offset table are able to safely navigate a block that
 920     // is in flux from being free to being allocated (and in
 921     // transition while being copied into) and subsequently
 922     // becoming a bona-fide object when the copy/promotion is complete.
 923     assert(SafepointSynchronize::is_at_safepoint(),
 924            "expect promotion only at safepoints");
 925 
 926     if (_collectorState < Sweeping) {
 927       // Mark the appropriate cards in the modUnionTable, so that
 928       // this object gets scanned before the sweep. If this is
 929       // not done, CMS generation references in the object might
 930       // not get marked.
 931       // For the case of arrays, which are otherwise precisely
 932       // marked, we need to dirty the entire array, not just its head.
 933       if (is_obj_array) {
 934         // The [par_]mark_range() method expects mr.end() below to
 935         // be aligned to the granularity of a bit's representation
 936         // in the heap. In the case of the MUT below, that's a
 937         // card size.
 938         MemRegion mr(start,
 939                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 940                         CardTableModRefBS::card_size /* bytes */));
 941         if (par) {
 942           _modUnionTable.par_mark_range(mr);
 943         } else {
 944           _modUnionTable.mark_range(mr);
 945         }
 946       } else {  // not an obj array; we can just mark the head
 947         if (par) {
 948           _modUnionTable.par_mark(start);
 949         } else {
 950           _modUnionTable.mark(start);
 951         }
 952       }
 953     }
 954   }
 955 }
 956 
 957 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 958   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 959   // allocate, copy and if necessary update promoinfo --
 960   // delegate to underlying space.
 961   assert_lock_strong(freelistLock());
 962 
 963 #ifndef PRODUCT
 964   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 965     return NULL;
 966   }
 967 #endif  // #ifndef PRODUCT
 968 
 969   oop res = _cmsSpace->promote(obj, obj_size);
 970   if (res == NULL) {
 971     // expand and retry
 972     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 973     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 974     // Since this is the old generation, we don't try to promote
 975     // into a more senior generation.
 976     res = _cmsSpace->promote(obj, obj_size);
 977   }
 978   if (res != NULL) {
 979     // See comment in allocate() about when objects should
 980     // be allocated live.
 981     assert(obj->is_oop(), "Will dereference klass pointer below");
 982     collector()->promoted(false,           // Not parallel
 983                           (HeapWord*)res, obj->is_objArray(), obj_size);
 984     // promotion counters
 985     NOT_PRODUCT(
 986       _numObjectsPromoted++;
 987       _numWordsPromoted +=
 988         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 989     )
 990   }
 991   return res;
 992 }
 993 
 994 
 995 // IMPORTANT: Notes on object size recognition in CMS.
 996 // ---------------------------------------------------
 997 // A block of storage in the CMS generation is always in
 998 // one of three states. A free block (FREE), an allocated
 999 // object (OBJECT) whose size() method reports the correct size,
1000 // and an intermediate state (TRANSIENT) in which its size cannot
1001 // be accurately determined.
1002 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1003 // -----------------------------------------------------
1004 // FREE:      klass_word & 1 == 1; mark_word holds block size
1005 //
1006 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1007 //            obj->size() computes correct size
1008 //
1009 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1010 //
1011 // STATE IDENTIFICATION: (64 bit+COOPS)
1012 // ------------------------------------
1013 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1014 //
1015 // OBJECT:    klass_word installed; klass_word != 0;
1016 //            obj->size() computes correct size
1017 //
1018 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1019 //
1020 //
1021 // STATE TRANSITION DIAGRAM
1022 //
1023 //        mut / parnew                     mut  /  parnew
1024 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1025 //  ^                                                                   |
1026 //  |------------------------ DEAD <------------------------------------|
1027 //         sweep                            mut
1028 //
1029 // While a block is in TRANSIENT state its size cannot be determined
1030 // so readers will either need to come back later or stall until
1031 // the size can be determined. Note that for the case of direct
1032 // allocation, P-bits, when available, may be used to determine the
1033 // size of an object that may not yet have been initialized.
1034 
1035 // Things to support parallel young-gen collection.
1036 oop
1037 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1038                                            oop old, markOop m,
1039                                            size_t word_sz) {
1040 #ifndef PRODUCT
1041   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1042     return NULL;
1043   }
1044 #endif  // #ifndef PRODUCT
1045 
1046   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1047   PromotionInfo* promoInfo = &ps->promo;
1048   // if we are tracking promotions, then first ensure space for
1049   // promotion (including spooling space for saving header if necessary).
1050   // then allocate and copy, then track promoted info if needed.
1051   // When tracking (see PromotionInfo::track()), the mark word may
1052   // be displaced and in this case restoration of the mark word
1053   // occurs in the (oop_since_save_marks_)iterate phase.
1054   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1055     // Out of space for allocating spooling buffers;
1056     // try expanding and allocating spooling buffers.
1057     if (!expand_and_ensure_spooling_space(promoInfo)) {
1058       return NULL;
1059     }
1060   }
1061   assert(promoInfo->has_spooling_space(), "Control point invariant");
1062   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1063   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1064   if (obj_ptr == NULL) {
1065      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1066      if (obj_ptr == NULL) {
1067        return NULL;
1068      }
1069   }
1070   oop obj = oop(obj_ptr);
1071   OrderAccess::storestore();
1072   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1073   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1074   // IMPORTANT: See note on object initialization for CMS above.
1075   // Otherwise, copy the object.  Here we must be careful to insert the
1076   // klass pointer last, since this marks the block as an allocated object.
1077   // Except with compressed oops it's the mark word.
1078   HeapWord* old_ptr = (HeapWord*)old;
1079   // Restore the mark word copied above.
1080   obj->set_mark(m);
1081   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1082   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1083   OrderAccess::storestore();
1084 
1085   if (UseCompressedClassPointers) {
1086     // Copy gap missed by (aligned) header size calculation below
1087     obj->set_klass_gap(old->klass_gap());
1088   }
1089   if (word_sz > (size_t)oopDesc::header_size()) {
1090     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1091                                  obj_ptr + oopDesc::header_size(),
1092                                  word_sz - oopDesc::header_size());
1093   }
1094 
1095   // Now we can track the promoted object, if necessary.  We take care
1096   // to delay the transition from uninitialized to full object
1097   // (i.e., insertion of klass pointer) until after, so that it
1098   // atomically becomes a promoted object.
1099   if (promoInfo->tracking()) {
1100     promoInfo->track((PromotedObject*)obj, old->klass());
1101   }
1102   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1103   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1104   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1105 
1106   // Finally, install the klass pointer (this should be volatile).
1107   OrderAccess::storestore();
1108   obj->set_klass(old->klass());
1109   // We should now be able to calculate the right size for this object
1110   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1111 
1112   collector()->promoted(true,          // parallel
1113                         obj_ptr, old->is_objArray(), word_sz);
1114 
1115   NOT_PRODUCT(
1116     Atomic::inc_ptr(&_numObjectsPromoted);
1117     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1118   )
1119 
1120   return obj;
1121 }
1122 
1123 void
1124 ConcurrentMarkSweepGeneration::
1125 par_promote_alloc_done(int thread_num) {
1126   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1127   ps->lab.retire(thread_num);
1128 }
1129 
1130 void
1131 ConcurrentMarkSweepGeneration::
1132 par_oop_since_save_marks_iterate_done(int thread_num) {
1133   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1134   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1135   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1136 }
1137 
1138 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1139                                                    size_t size,
1140                                                    bool   tlab)
1141 {
1142   // We allow a STW collection only if a full
1143   // collection was requested.
1144   return full || should_allocate(size, tlab); // FIX ME !!!
1145   // This and promotion failure handling are connected at the
1146   // hip and should be fixed by untying them.
1147 }
1148 
1149 bool CMSCollector::shouldConcurrentCollect() {
1150   if (_full_gc_requested) {
1151     if (Verbose && PrintGCDetails) {
1152       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1153                              " gc request (or gc_locker)");
1154     }
1155     return true;
1156   }
1157 
1158   FreelistLocker x(this);
1159   // ------------------------------------------------------------------
1160   // Print out lots of information which affects the initiation of
1161   // a collection.
1162   if (PrintCMSInitiationStatistics && stats().valid()) {
1163     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1164     gclog_or_tty->stamp();
1165     gclog_or_tty->cr();
1166     stats().print_on(gclog_or_tty);
1167     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1168       stats().time_until_cms_gen_full());
1169     gclog_or_tty->print_cr("free=" SIZE_FORMAT, _cmsGen->free());
1170     gclog_or_tty->print_cr("contiguous_available=" SIZE_FORMAT,
1171                            _cmsGen->contiguous_available());
1172     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1173     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1174     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1175     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1176     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1177     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1178     gclog_or_tty->print_cr("metadata initialized %d",
1179       MetaspaceGC::should_concurrent_collect());
1180   }
1181   // ------------------------------------------------------------------
1182 
1183   // If the estimated time to complete a cms collection (cms_duration())
1184   // is less than the estimated time remaining until the cms generation
1185   // is full, start a collection.
1186   if (!UseCMSInitiatingOccupancyOnly) {
1187     if (stats().valid()) {
1188       if (stats().time_until_cms_start() == 0.0) {
1189         return true;
1190       }
1191     } else {
1192       // We want to conservatively collect somewhat early in order
1193       // to try and "bootstrap" our CMS/promotion statistics;
1194       // this branch will not fire after the first successful CMS
1195       // collection because the stats should then be valid.
1196       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1197         if (Verbose && PrintGCDetails) {
1198           gclog_or_tty->print_cr(
1199             " CMSCollector: collect for bootstrapping statistics:"
1200             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1201             _bootstrap_occupancy);
1202         }
1203         return true;
1204       }
1205     }
1206   }
1207 
1208   // Otherwise, we start a collection cycle if
1209   // old gen want a collection cycle started. Each may use
1210   // an appropriate criterion for making this decision.
1211   // XXX We need to make sure that the gen expansion
1212   // criterion dovetails well with this. XXX NEED TO FIX THIS
1213   if (_cmsGen->should_concurrent_collect()) {
1214     if (Verbose && PrintGCDetails) {
1215       gclog_or_tty->print_cr("CMS old gen initiated");
1216     }
1217     return true;
1218   }
1219 
1220   // We start a collection if we believe an incremental collection may fail;
1221   // this is not likely to be productive in practice because it's probably too
1222   // late anyway.
1223   GenCollectedHeap* gch = GenCollectedHeap::heap();
1224   assert(gch->collector_policy()->is_generation_policy(),
1225          "You may want to check the correctness of the following");
1226   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1227     if (Verbose && PrintGCDetails) {
1228       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1229     }
1230     return true;
1231   }
1232 
1233   if (MetaspaceGC::should_concurrent_collect()) {
1234     if (Verbose && PrintGCDetails) {
1235       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1236     }
1237     return true;
1238   }
1239 
1240   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1241   if (CMSTriggerInterval >= 0) {
1242     if (CMSTriggerInterval == 0) {
1243       // Trigger always
1244       return true;
1245     }
1246 
1247     // Check the CMS time since begin (we do not check the stats validity
1248     // as we want to be able to trigger the first CMS cycle as well)
1249     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1250       if (Verbose && PrintGCDetails) {
1251         if (stats().valid()) {
1252           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1253                                  stats().cms_time_since_begin());
1254         } else {
1255           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1256         }
1257       }
1258       return true;
1259     }
1260   }
1261 
1262   return false;
1263 }
1264 
1265 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1266 
1267 // Clear _expansion_cause fields of constituent generations
1268 void CMSCollector::clear_expansion_cause() {
1269   _cmsGen->clear_expansion_cause();
1270 }
1271 
1272 // We should be conservative in starting a collection cycle.  To
1273 // start too eagerly runs the risk of collecting too often in the
1274 // extreme.  To collect too rarely falls back on full collections,
1275 // which works, even if not optimum in terms of concurrent work.
1276 // As a work around for too eagerly collecting, use the flag
1277 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1278 // giving the user an easily understandable way of controlling the
1279 // collections.
1280 // We want to start a new collection cycle if any of the following
1281 // conditions hold:
1282 // . our current occupancy exceeds the configured initiating occupancy
1283 //   for this generation, or
1284 // . we recently needed to expand this space and have not, since that
1285 //   expansion, done a collection of this generation, or
1286 // . the underlying space believes that it may be a good idea to initiate
1287 //   a concurrent collection (this may be based on criteria such as the
1288 //   following: the space uses linear allocation and linear allocation is
1289 //   going to fail, or there is believed to be excessive fragmentation in
1290 //   the generation, etc... or ...
1291 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1292 //   the case of the old generation; see CR 6543076):
1293 //   we may be approaching a point at which allocation requests may fail because
1294 //   we will be out of sufficient free space given allocation rate estimates.]
1295 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1296 
1297   assert_lock_strong(freelistLock());
1298   if (occupancy() > initiating_occupancy()) {
1299     if (PrintGCDetails && Verbose) {
1300       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1301         short_name(), occupancy(), initiating_occupancy());
1302     }
1303     return true;
1304   }
1305   if (UseCMSInitiatingOccupancyOnly) {
1306     return false;
1307   }
1308   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1309     if (PrintGCDetails && Verbose) {
1310       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1311         short_name());
1312     }
1313     return true;
1314   }
1315   if (_cmsSpace->should_concurrent_collect()) {
1316     if (PrintGCDetails && Verbose) {
1317       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1318         short_name());
1319     }
1320     return true;
1321   }
1322   return false;
1323 }
1324 
1325 void ConcurrentMarkSweepGeneration::collect(bool   full,
1326                                             bool   clear_all_soft_refs,
1327                                             size_t size,
1328                                             bool   tlab)
1329 {
1330   collector()->collect(full, clear_all_soft_refs, size, tlab);
1331 }
1332 
1333 void CMSCollector::collect(bool   full,
1334                            bool   clear_all_soft_refs,
1335                            size_t size,
1336                            bool   tlab)
1337 {
1338   // The following "if" branch is present for defensive reasons.
1339   // In the current uses of this interface, it can be replaced with:
1340   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1341   // But I am not placing that assert here to allow future
1342   // generality in invoking this interface.
1343   if (GC_locker::is_active()) {
1344     // A consistency test for GC_locker
1345     assert(GC_locker::needs_gc(), "Should have been set already");
1346     // Skip this foreground collection, instead
1347     // expanding the heap if necessary.
1348     // Need the free list locks for the call to free() in compute_new_size()
1349     compute_new_size();
1350     return;
1351   }
1352   acquire_control_and_collect(full, clear_all_soft_refs);
1353 }
1354 
1355 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1356   GenCollectedHeap* gch = GenCollectedHeap::heap();
1357   unsigned int gc_count = gch->total_full_collections();
1358   if (gc_count == full_gc_count) {
1359     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1360     _full_gc_requested = true;
1361     _full_gc_cause = cause;
1362     CGC_lock->notify();   // nudge CMS thread
1363   } else {
1364     assert(gc_count > full_gc_count, "Error: causal loop");
1365   }
1366 }
1367 
1368 bool CMSCollector::is_external_interruption() {
1369   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1370   return GCCause::is_user_requested_gc(cause) ||
1371          GCCause::is_serviceability_requested_gc(cause);
1372 }
1373 
1374 void CMSCollector::report_concurrent_mode_interruption() {
1375   if (is_external_interruption()) {
1376     if (PrintGCDetails) {
1377       gclog_or_tty->print(" (concurrent mode interrupted)");
1378     }
1379   } else {
1380     if (PrintGCDetails) {
1381       gclog_or_tty->print(" (concurrent mode failure)");
1382     }
1383     _gc_tracer_cm->report_concurrent_mode_failure();
1384   }
1385 }
1386 
1387 
1388 // The foreground and background collectors need to coordinate in order
1389 // to make sure that they do not mutually interfere with CMS collections.
1390 // When a background collection is active,
1391 // the foreground collector may need to take over (preempt) and
1392 // synchronously complete an ongoing collection. Depending on the
1393 // frequency of the background collections and the heap usage
1394 // of the application, this preemption can be seldom or frequent.
1395 // There are only certain
1396 // points in the background collection that the "collection-baton"
1397 // can be passed to the foreground collector.
1398 //
1399 // The foreground collector will wait for the baton before
1400 // starting any part of the collection.  The foreground collector
1401 // will only wait at one location.
1402 //
1403 // The background collector will yield the baton before starting a new
1404 // phase of the collection (e.g., before initial marking, marking from roots,
1405 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1406 // of the loop which switches the phases. The background collector does some
1407 // of the phases (initial mark, final re-mark) with the world stopped.
1408 // Because of locking involved in stopping the world,
1409 // the foreground collector should not block waiting for the background
1410 // collector when it is doing a stop-the-world phase.  The background
1411 // collector will yield the baton at an additional point just before
1412 // it enters a stop-the-world phase.  Once the world is stopped, the
1413 // background collector checks the phase of the collection.  If the
1414 // phase has not changed, it proceeds with the collection.  If the
1415 // phase has changed, it skips that phase of the collection.  See
1416 // the comments on the use of the Heap_lock in collect_in_background().
1417 //
1418 // Variable used in baton passing.
1419 //   _foregroundGCIsActive - Set to true by the foreground collector when
1420 //      it wants the baton.  The foreground clears it when it has finished
1421 //      the collection.
1422 //   _foregroundGCShouldWait - Set to true by the background collector
1423 //        when it is running.  The foreground collector waits while
1424 //      _foregroundGCShouldWait is true.
1425 //  CGC_lock - monitor used to protect access to the above variables
1426 //      and to notify the foreground and background collectors.
1427 //  _collectorState - current state of the CMS collection.
1428 //
1429 // The foreground collector
1430 //   acquires the CGC_lock
1431 //   sets _foregroundGCIsActive
1432 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1433 //     various locks acquired in preparation for the collection
1434 //     are released so as not to block the background collector
1435 //     that is in the midst of a collection
1436 //   proceeds with the collection
1437 //   clears _foregroundGCIsActive
1438 //   returns
1439 //
1440 // The background collector in a loop iterating on the phases of the
1441 //      collection
1442 //   acquires the CGC_lock
1443 //   sets _foregroundGCShouldWait
1444 //   if _foregroundGCIsActive is set
1445 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1446 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1447 //     and exits the loop.
1448 //   otherwise
1449 //     proceed with that phase of the collection
1450 //     if the phase is a stop-the-world phase,
1451 //       yield the baton once more just before enqueueing
1452 //       the stop-world CMS operation (executed by the VM thread).
1453 //   returns after all phases of the collection are done
1454 //
1455 
1456 void CMSCollector::acquire_control_and_collect(bool full,
1457         bool clear_all_soft_refs) {
1458   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1459   assert(!Thread::current()->is_ConcurrentGC_thread(),
1460          "shouldn't try to acquire control from self!");
1461 
1462   // Start the protocol for acquiring control of the
1463   // collection from the background collector (aka CMS thread).
1464   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1465          "VM thread should have CMS token");
1466   // Remember the possibly interrupted state of an ongoing
1467   // concurrent collection
1468   CollectorState first_state = _collectorState;
1469 
1470   // Signal to a possibly ongoing concurrent collection that
1471   // we want to do a foreground collection.
1472   _foregroundGCIsActive = true;
1473 
1474   // release locks and wait for a notify from the background collector
1475   // releasing the locks in only necessary for phases which
1476   // do yields to improve the granularity of the collection.
1477   assert_lock_strong(bitMapLock());
1478   // We need to lock the Free list lock for the space that we are
1479   // currently collecting.
1480   assert(haveFreelistLocks(), "Must be holding free list locks");
1481   bitMapLock()->unlock();
1482   releaseFreelistLocks();
1483   {
1484     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1485     if (_foregroundGCShouldWait) {
1486       // We are going to be waiting for action for the CMS thread;
1487       // it had better not be gone (for instance at shutdown)!
1488       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1489              "CMS thread must be running");
1490       // Wait here until the background collector gives us the go-ahead
1491       ConcurrentMarkSweepThread::clear_CMS_flag(
1492         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1493       // Get a possibly blocked CMS thread going:
1494       //   Note that we set _foregroundGCIsActive true above,
1495       //   without protection of the CGC_lock.
1496       CGC_lock->notify();
1497       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1498              "Possible deadlock");
1499       while (_foregroundGCShouldWait) {
1500         // wait for notification
1501         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1502         // Possibility of delay/starvation here, since CMS token does
1503         // not know to give priority to VM thread? Actually, i think
1504         // there wouldn't be any delay/starvation, but the proof of
1505         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1506       }
1507       ConcurrentMarkSweepThread::set_CMS_flag(
1508         ConcurrentMarkSweepThread::CMS_vm_has_token);
1509     }
1510   }
1511   // The CMS_token is already held.  Get back the other locks.
1512   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1513          "VM thread should have CMS token");
1514   getFreelistLocks();
1515   bitMapLock()->lock_without_safepoint_check();
1516   if (TraceCMSState) {
1517     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1518       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1519     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1520   }
1521 
1522   // Inform cms gen if this was due to partial collection failing.
1523   // The CMS gen may use this fact to determine its expansion policy.
1524   GenCollectedHeap* gch = GenCollectedHeap::heap();
1525   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1526     assert(!_cmsGen->incremental_collection_failed(),
1527            "Should have been noticed, reacted to and cleared");
1528     _cmsGen->set_incremental_collection_failed();
1529   }
1530 
1531   if (first_state > Idling) {
1532     report_concurrent_mode_interruption();
1533   }
1534 
1535   set_did_compact(true);
1536 
1537   // If the collection is being acquired from the background
1538   // collector, there may be references on the discovered
1539   // references lists.  Abandon those references, since some
1540   // of them may have become unreachable after concurrent
1541   // discovery; the STW compacting collector will redo discovery
1542   // more precisely, without being subject to floating garbage.
1543   // Leaving otherwise unreachable references in the discovered
1544   // lists would require special handling.
1545   ref_processor()->disable_discovery();
1546   ref_processor()->abandon_partial_discovery();
1547   ref_processor()->verify_no_references_recorded();
1548 
1549   if (first_state > Idling) {
1550     save_heap_summary();
1551   }
1552 
1553   do_compaction_work(clear_all_soft_refs);
1554 
1555   // Has the GC time limit been exceeded?
1556   size_t max_eden_size = _young_gen->max_capacity() -
1557                          _young_gen->to()->capacity() -
1558                          _young_gen->from()->capacity();
1559   GCCause::Cause gc_cause = gch->gc_cause();
1560   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1561                                          _young_gen->eden()->used(),
1562                                          _cmsGen->max_capacity(),
1563                                          max_eden_size,
1564                                          full,
1565                                          gc_cause,
1566                                          gch->collector_policy());
1567 
1568   // Reset the expansion cause, now that we just completed
1569   // a collection cycle.
1570   clear_expansion_cause();
1571   _foregroundGCIsActive = false;
1572   return;
1573 }
1574 
1575 // Resize the tenured generation
1576 // after obtaining the free list locks for the
1577 // two generations.
1578 void CMSCollector::compute_new_size() {
1579   assert_locked_or_safepoint(Heap_lock);
1580   FreelistLocker z(this);
1581   MetaspaceGC::compute_new_size();
1582   _cmsGen->compute_new_size_free_list();
1583 }
1584 
1585 // A work method used by the foreground collector to do
1586 // a mark-sweep-compact.
1587 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1588   GenCollectedHeap* gch = GenCollectedHeap::heap();
1589 
1590   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1591   gc_timer->register_gc_start();
1592 
1593   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1594   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1595 
1596   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1597 
1598   // Temporarily widen the span of the weak reference processing to
1599   // the entire heap.
1600   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1601   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1602   // Temporarily, clear the "is_alive_non_header" field of the
1603   // reference processor.
1604   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1605   // Temporarily make reference _processing_ single threaded (non-MT).
1606   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1607   // Temporarily make refs discovery atomic
1608   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1609   // Temporarily make reference _discovery_ single threaded (non-MT)
1610   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1611 
1612   ref_processor()->set_enqueuing_is_done(false);
1613   ref_processor()->enable_discovery();
1614   ref_processor()->setup_policy(clear_all_soft_refs);
1615   // If an asynchronous collection finishes, the _modUnionTable is
1616   // all clear.  If we are assuming the collection from an asynchronous
1617   // collection, clear the _modUnionTable.
1618   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1619     "_modUnionTable should be clear if the baton was not passed");
1620   _modUnionTable.clear_all();
1621   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1622     "mod union for klasses should be clear if the baton was passed");
1623   _ct->klass_rem_set()->clear_mod_union();
1624 
1625   // We must adjust the allocation statistics being maintained
1626   // in the free list space. We do so by reading and clearing
1627   // the sweep timer and updating the block flux rate estimates below.
1628   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1629   if (_inter_sweep_timer.is_active()) {
1630     _inter_sweep_timer.stop();
1631     // Note that we do not use this sample to update the _inter_sweep_estimate.
1632     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1633                                             _inter_sweep_estimate.padded_average(),
1634                                             _intra_sweep_estimate.padded_average());
1635   }
1636 
1637   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1638   #ifdef ASSERT
1639     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1640     size_t free_size = cms_space->free();
1641     assert(free_size ==
1642            pointer_delta(cms_space->end(), cms_space->compaction_top())
1643            * HeapWordSize,
1644       "All the free space should be compacted into one chunk at top");
1645     assert(cms_space->dictionary()->total_chunk_size(
1646                                       debug_only(cms_space->freelistLock())) == 0 ||
1647            cms_space->totalSizeInIndexedFreeLists() == 0,
1648       "All the free space should be in a single chunk");
1649     size_t num = cms_space->totalCount();
1650     assert((free_size == 0 && num == 0) ||
1651            (free_size > 0  && (num == 1 || num == 2)),
1652          "There should be at most 2 free chunks after compaction");
1653   #endif // ASSERT
1654   _collectorState = Resetting;
1655   assert(_restart_addr == NULL,
1656          "Should have been NULL'd before baton was passed");
1657   reset(false /* == !concurrent */);
1658   _cmsGen->reset_after_compaction();
1659   _concurrent_cycles_since_last_unload = 0;
1660 
1661   // Clear any data recorded in the PLAB chunk arrays.
1662   if (_survivor_plab_array != NULL) {
1663     reset_survivor_plab_arrays();
1664   }
1665 
1666   // Adjust the per-size allocation stats for the next epoch.
1667   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1668   // Restart the "inter sweep timer" for the next epoch.
1669   _inter_sweep_timer.reset();
1670   _inter_sweep_timer.start();
1671 
1672   gc_timer->register_gc_end();
1673 
1674   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1675 
1676   // For a mark-sweep-compact, compute_new_size() will be called
1677   // in the heap's do_collection() method.
1678 }
1679 
1680 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1681   ContiguousSpace* eden_space = _young_gen->eden();
1682   ContiguousSpace* from_space = _young_gen->from();
1683   ContiguousSpace* to_space   = _young_gen->to();
1684   // Eden
1685   if (_eden_chunk_array != NULL) {
1686     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1687                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1688                            p2i(eden_space->end()), eden_space->capacity());
1689     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1690                            "_eden_chunk_capacity=" SIZE_FORMAT,
1691                            _eden_chunk_index, _eden_chunk_capacity);
1692     for (size_t i = 0; i < _eden_chunk_index; i++) {
1693       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1694                              i, p2i(_eden_chunk_array[i]));
1695     }
1696   }
1697   // Survivor
1698   if (_survivor_chunk_array != NULL) {
1699     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1700                            p2i(from_space->bottom()), p2i(from_space->top()),
1701                            p2i(from_space->end()), from_space->capacity());
1702     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1703                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1704                            _survivor_chunk_index, _survivor_chunk_capacity);
1705     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1706       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1707                              i, p2i(_survivor_chunk_array[i]));
1708     }
1709   }
1710 }
1711 
1712 void CMSCollector::getFreelistLocks() const {
1713   // Get locks for all free lists in all generations that this
1714   // collector is responsible for
1715   _cmsGen->freelistLock()->lock_without_safepoint_check();
1716 }
1717 
1718 void CMSCollector::releaseFreelistLocks() const {
1719   // Release locks for all free lists in all generations that this
1720   // collector is responsible for
1721   _cmsGen->freelistLock()->unlock();
1722 }
1723 
1724 bool CMSCollector::haveFreelistLocks() const {
1725   // Check locks for all free lists in all generations that this
1726   // collector is responsible for
1727   assert_lock_strong(_cmsGen->freelistLock());
1728   PRODUCT_ONLY(ShouldNotReachHere());
1729   return true;
1730 }
1731 
1732 // A utility class that is used by the CMS collector to
1733 // temporarily "release" the foreground collector from its
1734 // usual obligation to wait for the background collector to
1735 // complete an ongoing phase before proceeding.
1736 class ReleaseForegroundGC: public StackObj {
1737  private:
1738   CMSCollector* _c;
1739  public:
1740   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1741     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1742     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1743     // allow a potentially blocked foreground collector to proceed
1744     _c->_foregroundGCShouldWait = false;
1745     if (_c->_foregroundGCIsActive) {
1746       CGC_lock->notify();
1747     }
1748     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1749            "Possible deadlock");
1750   }
1751 
1752   ~ReleaseForegroundGC() {
1753     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1754     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1755     _c->_foregroundGCShouldWait = true;
1756   }
1757 };
1758 
1759 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1760   assert(Thread::current()->is_ConcurrentGC_thread(),
1761     "A CMS asynchronous collection is only allowed on a CMS thread.");
1762 
1763   GenCollectedHeap* gch = GenCollectedHeap::heap();
1764   {
1765     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1766     MutexLockerEx hl(Heap_lock, safepoint_check);
1767     FreelistLocker fll(this);
1768     MutexLockerEx x(CGC_lock, safepoint_check);
1769     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1770       // The foreground collector is active or we're
1771       // not using asynchronous collections.  Skip this
1772       // background collection.
1773       assert(!_foregroundGCShouldWait, "Should be clear");
1774       return;
1775     } else {
1776       assert(_collectorState == Idling, "Should be idling before start.");
1777       _collectorState = InitialMarking;
1778       register_gc_start(cause);
1779       // Reset the expansion cause, now that we are about to begin
1780       // a new cycle.
1781       clear_expansion_cause();
1782 
1783       // Clear the MetaspaceGC flag since a concurrent collection
1784       // is starting but also clear it after the collection.
1785       MetaspaceGC::set_should_concurrent_collect(false);
1786     }
1787     // Decide if we want to enable class unloading as part of the
1788     // ensuing concurrent GC cycle.
1789     update_should_unload_classes();
1790     _full_gc_requested = false;           // acks all outstanding full gc requests
1791     _full_gc_cause = GCCause::_no_gc;
1792     // Signal that we are about to start a collection
1793     gch->increment_total_full_collections();  // ... starting a collection cycle
1794     _collection_count_start = gch->total_full_collections();
1795   }
1796 
1797   // Used for PrintGC
1798   size_t prev_used;
1799   if (PrintGC && Verbose) {
1800     prev_used = _cmsGen->used();
1801   }
1802 
1803   // The change of the collection state is normally done at this level;
1804   // the exceptions are phases that are executed while the world is
1805   // stopped.  For those phases the change of state is done while the
1806   // world is stopped.  For baton passing purposes this allows the
1807   // background collector to finish the phase and change state atomically.
1808   // The foreground collector cannot wait on a phase that is done
1809   // while the world is stopped because the foreground collector already
1810   // has the world stopped and would deadlock.
1811   while (_collectorState != Idling) {
1812     if (TraceCMSState) {
1813       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1814         p2i(Thread::current()), _collectorState);
1815     }
1816     // The foreground collector
1817     //   holds the Heap_lock throughout its collection.
1818     //   holds the CMS token (but not the lock)
1819     //     except while it is waiting for the background collector to yield.
1820     //
1821     // The foreground collector should be blocked (not for long)
1822     //   if the background collector is about to start a phase
1823     //   executed with world stopped.  If the background
1824     //   collector has already started such a phase, the
1825     //   foreground collector is blocked waiting for the
1826     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1827     //   are executed in the VM thread.
1828     //
1829     // The locking order is
1830     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1831     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1832     //   CMS token  (claimed in
1833     //                stop_world_and_do() -->
1834     //                  safepoint_synchronize() -->
1835     //                    CMSThread::synchronize())
1836 
1837     {
1838       // Check if the FG collector wants us to yield.
1839       CMSTokenSync x(true); // is cms thread
1840       if (waitForForegroundGC()) {
1841         // We yielded to a foreground GC, nothing more to be
1842         // done this round.
1843         assert(_foregroundGCShouldWait == false, "We set it to false in "
1844                "waitForForegroundGC()");
1845         if (TraceCMSState) {
1846           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1847             " exiting collection CMS state %d",
1848             p2i(Thread::current()), _collectorState);
1849         }
1850         return;
1851       } else {
1852         // The background collector can run but check to see if the
1853         // foreground collector has done a collection while the
1854         // background collector was waiting to get the CGC_lock
1855         // above.  If yes, break so that _foregroundGCShouldWait
1856         // is cleared before returning.
1857         if (_collectorState == Idling) {
1858           break;
1859         }
1860       }
1861     }
1862 
1863     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1864       "should be waiting");
1865 
1866     switch (_collectorState) {
1867       case InitialMarking:
1868         {
1869           ReleaseForegroundGC x(this);
1870           stats().record_cms_begin();
1871           VM_CMS_Initial_Mark initial_mark_op(this);
1872           VMThread::execute(&initial_mark_op);
1873         }
1874         // The collector state may be any legal state at this point
1875         // since the background collector may have yielded to the
1876         // foreground collector.
1877         break;
1878       case Marking:
1879         // initial marking in checkpointRootsInitialWork has been completed
1880         if (markFromRoots()) { // we were successful
1881           assert(_collectorState == Precleaning, "Collector state should "
1882             "have changed");
1883         } else {
1884           assert(_foregroundGCIsActive, "Internal state inconsistency");
1885         }
1886         break;
1887       case Precleaning:
1888         // marking from roots in markFromRoots has been completed
1889         preclean();
1890         assert(_collectorState == AbortablePreclean ||
1891                _collectorState == FinalMarking,
1892                "Collector state should have changed");
1893         break;
1894       case AbortablePreclean:
1895         abortable_preclean();
1896         assert(_collectorState == FinalMarking, "Collector state should "
1897           "have changed");
1898         break;
1899       case FinalMarking:
1900         {
1901           ReleaseForegroundGC x(this);
1902 
1903           VM_CMS_Final_Remark final_remark_op(this);
1904           VMThread::execute(&final_remark_op);
1905         }
1906         assert(_foregroundGCShouldWait, "block post-condition");
1907         break;
1908       case Sweeping:
1909         // final marking in checkpointRootsFinal has been completed
1910         sweep();
1911         assert(_collectorState == Resizing, "Collector state change "
1912           "to Resizing must be done under the free_list_lock");
1913 
1914       case Resizing: {
1915         // Sweeping has been completed...
1916         // At this point the background collection has completed.
1917         // Don't move the call to compute_new_size() down
1918         // into code that might be executed if the background
1919         // collection was preempted.
1920         {
1921           ReleaseForegroundGC x(this);   // unblock FG collection
1922           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1923           CMSTokenSync        z(true);   // not strictly needed.
1924           if (_collectorState == Resizing) {
1925             compute_new_size();
1926             save_heap_summary();
1927             _collectorState = Resetting;
1928           } else {
1929             assert(_collectorState == Idling, "The state should only change"
1930                    " because the foreground collector has finished the collection");
1931           }
1932         }
1933         break;
1934       }
1935       case Resetting:
1936         // CMS heap resizing has been completed
1937         reset(true);
1938         assert(_collectorState == Idling, "Collector state should "
1939           "have changed");
1940 
1941         MetaspaceGC::set_should_concurrent_collect(false);
1942 
1943         stats().record_cms_end();
1944         // Don't move the concurrent_phases_end() and compute_new_size()
1945         // calls to here because a preempted background collection
1946         // has it's state set to "Resetting".
1947         break;
1948       case Idling:
1949       default:
1950         ShouldNotReachHere();
1951         break;
1952     }
1953     if (TraceCMSState) {
1954       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1955         p2i(Thread::current()), _collectorState);
1956     }
1957     assert(_foregroundGCShouldWait, "block post-condition");
1958   }
1959 
1960   // Should this be in gc_epilogue?
1961   collector_policy()->counters()->update_counters();
1962 
1963   {
1964     // Clear _foregroundGCShouldWait and, in the event that the
1965     // foreground collector is waiting, notify it, before
1966     // returning.
1967     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1968     _foregroundGCShouldWait = false;
1969     if (_foregroundGCIsActive) {
1970       CGC_lock->notify();
1971     }
1972     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1973            "Possible deadlock");
1974   }
1975   if (TraceCMSState) {
1976     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1977       " exiting collection CMS state %d",
1978       p2i(Thread::current()), _collectorState);
1979   }
1980   if (PrintGC && Verbose) {
1981     _cmsGen->print_heap_change(prev_used);
1982   }
1983 }
1984 
1985 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1986   _cms_start_registered = true;
1987   _gc_timer_cm->register_gc_start();
1988   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1989 }
1990 
1991 void CMSCollector::register_gc_end() {
1992   if (_cms_start_registered) {
1993     report_heap_summary(GCWhen::AfterGC);
1994 
1995     _gc_timer_cm->register_gc_end();
1996     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1997     _cms_start_registered = false;
1998   }
1999 }
2000 
2001 void CMSCollector::save_heap_summary() {
2002   GenCollectedHeap* gch = GenCollectedHeap::heap();
2003   _last_heap_summary = gch->create_heap_summary();
2004   _last_metaspace_summary = gch->create_metaspace_summary();
2005 }
2006 
2007 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2008   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2009   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2010 }
2011 
2012 bool CMSCollector::waitForForegroundGC() {
2013   bool res = false;
2014   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2015          "CMS thread should have CMS token");
2016   // Block the foreground collector until the
2017   // background collectors decides whether to
2018   // yield.
2019   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2020   _foregroundGCShouldWait = true;
2021   if (_foregroundGCIsActive) {
2022     // The background collector yields to the
2023     // foreground collector and returns a value
2024     // indicating that it has yielded.  The foreground
2025     // collector can proceed.
2026     res = true;
2027     _foregroundGCShouldWait = false;
2028     ConcurrentMarkSweepThread::clear_CMS_flag(
2029       ConcurrentMarkSweepThread::CMS_cms_has_token);
2030     ConcurrentMarkSweepThread::set_CMS_flag(
2031       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2032     // Get a possibly blocked foreground thread going
2033     CGC_lock->notify();
2034     if (TraceCMSState) {
2035       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2036         p2i(Thread::current()), _collectorState);
2037     }
2038     while (_foregroundGCIsActive) {
2039       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2040     }
2041     ConcurrentMarkSweepThread::set_CMS_flag(
2042       ConcurrentMarkSweepThread::CMS_cms_has_token);
2043     ConcurrentMarkSweepThread::clear_CMS_flag(
2044       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2045   }
2046   if (TraceCMSState) {
2047     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2048       p2i(Thread::current()), _collectorState);
2049   }
2050   return res;
2051 }
2052 
2053 // Because of the need to lock the free lists and other structures in
2054 // the collector, common to all the generations that the collector is
2055 // collecting, we need the gc_prologues of individual CMS generations
2056 // delegate to their collector. It may have been simpler had the
2057 // current infrastructure allowed one to call a prologue on a
2058 // collector. In the absence of that we have the generation's
2059 // prologue delegate to the collector, which delegates back
2060 // some "local" work to a worker method in the individual generations
2061 // that it's responsible for collecting, while itself doing any
2062 // work common to all generations it's responsible for. A similar
2063 // comment applies to the  gc_epilogue()'s.
2064 // The role of the variable _between_prologue_and_epilogue is to
2065 // enforce the invocation protocol.
2066 void CMSCollector::gc_prologue(bool full) {
2067   // Call gc_prologue_work() for the CMSGen
2068   // we are responsible for.
2069 
2070   // The following locking discipline assumes that we are only called
2071   // when the world is stopped.
2072   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2073 
2074   // The CMSCollector prologue must call the gc_prologues for the
2075   // "generations" that it's responsible
2076   // for.
2077 
2078   assert(   Thread::current()->is_VM_thread()
2079          || (   CMSScavengeBeforeRemark
2080              && Thread::current()->is_ConcurrentGC_thread()),
2081          "Incorrect thread type for prologue execution");
2082 
2083   if (_between_prologue_and_epilogue) {
2084     // We have already been invoked; this is a gc_prologue delegation
2085     // from yet another CMS generation that we are responsible for, just
2086     // ignore it since all relevant work has already been done.
2087     return;
2088   }
2089 
2090   // set a bit saying prologue has been called; cleared in epilogue
2091   _between_prologue_and_epilogue = true;
2092   // Claim locks for common data structures, then call gc_prologue_work()
2093   // for each CMSGen.
2094 
2095   getFreelistLocks();   // gets free list locks on constituent spaces
2096   bitMapLock()->lock_without_safepoint_check();
2097 
2098   // Should call gc_prologue_work() for all cms gens we are responsible for
2099   bool duringMarking =    _collectorState >= Marking
2100                          && _collectorState < Sweeping;
2101 
2102   // The young collections clear the modified oops state, which tells if
2103   // there are any modified oops in the class. The remark phase also needs
2104   // that information. Tell the young collection to save the union of all
2105   // modified klasses.
2106   if (duringMarking) {
2107     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2108   }
2109 
2110   bool registerClosure = duringMarking;
2111 
2112   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2113 
2114   if (!full) {
2115     stats().record_gc0_begin();
2116   }
2117 }
2118 
2119 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2120 
2121   _capacity_at_prologue = capacity();
2122   _used_at_prologue = used();
2123 
2124   // Delegate to CMScollector which knows how to coordinate between
2125   // this and any other CMS generations that it is responsible for
2126   // collecting.
2127   collector()->gc_prologue(full);
2128 }
2129 
2130 // This is a "private" interface for use by this generation's CMSCollector.
2131 // Not to be called directly by any other entity (for instance,
2132 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2133 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2134   bool registerClosure, ModUnionClosure* modUnionClosure) {
2135   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2136   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2137     "Should be NULL");
2138   if (registerClosure) {
2139     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2140   }
2141   cmsSpace()->gc_prologue();
2142   // Clear stat counters
2143   NOT_PRODUCT(
2144     assert(_numObjectsPromoted == 0, "check");
2145     assert(_numWordsPromoted   == 0, "check");
2146     if (Verbose && PrintGC) {
2147       gclog_or_tty->print("Allocated " SIZE_FORMAT " objects, "
2148                           SIZE_FORMAT " bytes concurrently",
2149       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2150     }
2151     _numObjectsAllocated = 0;
2152     _numWordsAllocated   = 0;
2153   )
2154 }
2155 
2156 void CMSCollector::gc_epilogue(bool full) {
2157   // The following locking discipline assumes that we are only called
2158   // when the world is stopped.
2159   assert(SafepointSynchronize::is_at_safepoint(),
2160          "world is stopped assumption");
2161 
2162   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2163   // if linear allocation blocks need to be appropriately marked to allow the
2164   // the blocks to be parsable. We also check here whether we need to nudge the
2165   // CMS collector thread to start a new cycle (if it's not already active).
2166   assert(   Thread::current()->is_VM_thread()
2167          || (   CMSScavengeBeforeRemark
2168              && Thread::current()->is_ConcurrentGC_thread()),
2169          "Incorrect thread type for epilogue execution");
2170 
2171   if (!_between_prologue_and_epilogue) {
2172     // We have already been invoked; this is a gc_epilogue delegation
2173     // from yet another CMS generation that we are responsible for, just
2174     // ignore it since all relevant work has already been done.
2175     return;
2176   }
2177   assert(haveFreelistLocks(), "must have freelist locks");
2178   assert_lock_strong(bitMapLock());
2179 
2180   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2181 
2182   _cmsGen->gc_epilogue_work(full);
2183 
2184   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2185     // in case sampling was not already enabled, enable it
2186     _start_sampling = true;
2187   }
2188   // reset _eden_chunk_array so sampling starts afresh
2189   _eden_chunk_index = 0;
2190 
2191   size_t cms_used   = _cmsGen->cmsSpace()->used();
2192 
2193   // update performance counters - this uses a special version of
2194   // update_counters() that allows the utilization to be passed as a
2195   // parameter, avoiding multiple calls to used().
2196   //
2197   _cmsGen->update_counters(cms_used);
2198 
2199   bitMapLock()->unlock();
2200   releaseFreelistLocks();
2201 
2202   if (!CleanChunkPoolAsync) {
2203     Chunk::clean_chunk_pool();
2204   }
2205 
2206   set_did_compact(false);
2207   _between_prologue_and_epilogue = false;  // ready for next cycle
2208 }
2209 
2210 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2211   collector()->gc_epilogue(full);
2212 
2213   // Also reset promotion tracking in par gc thread states.
2214   for (uint i = 0; i < ParallelGCThreads; i++) {
2215     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2216   }
2217 }
2218 
2219 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2220   assert(!incremental_collection_failed(), "Should have been cleared");
2221   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2222   cmsSpace()->gc_epilogue();
2223     // Print stat counters
2224   NOT_PRODUCT(
2225     assert(_numObjectsAllocated == 0, "check");
2226     assert(_numWordsAllocated == 0, "check");
2227     if (Verbose && PrintGC) {
2228       gclog_or_tty->print("Promoted " SIZE_FORMAT " objects, "
2229                           SIZE_FORMAT " bytes",
2230                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2231     }
2232     _numObjectsPromoted = 0;
2233     _numWordsPromoted   = 0;
2234   )
2235 
2236   if (PrintGC && Verbose) {
2237     // Call down the chain in contiguous_available needs the freelistLock
2238     // so print this out before releasing the freeListLock.
2239     gclog_or_tty->print(" Contiguous available " SIZE_FORMAT " bytes ",
2240                         contiguous_available());
2241   }
2242 }
2243 
2244 #ifndef PRODUCT
2245 bool CMSCollector::have_cms_token() {
2246   Thread* thr = Thread::current();
2247   if (thr->is_VM_thread()) {
2248     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2249   } else if (thr->is_ConcurrentGC_thread()) {
2250     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2251   } else if (thr->is_GC_task_thread()) {
2252     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2253            ParGCRareEvent_lock->owned_by_self();
2254   }
2255   return false;
2256 }
2257 #endif
2258 
2259 // Check reachability of the given heap address in CMS generation,
2260 // treating all other generations as roots.
2261 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2262   // We could "guarantee" below, rather than assert, but I'll
2263   // leave these as "asserts" so that an adventurous debugger
2264   // could try this in the product build provided some subset of
2265   // the conditions were met, provided they were interested in the
2266   // results and knew that the computation below wouldn't interfere
2267   // with other concurrent computations mutating the structures
2268   // being read or written.
2269   assert(SafepointSynchronize::is_at_safepoint(),
2270          "Else mutations in object graph will make answer suspect");
2271   assert(have_cms_token(), "Should hold cms token");
2272   assert(haveFreelistLocks(), "must hold free list locks");
2273   assert_lock_strong(bitMapLock());
2274 
2275   // Clear the marking bit map array before starting, but, just
2276   // for kicks, first report if the given address is already marked
2277   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2278                 _markBitMap.isMarked(addr) ? "" : " not");
2279 
2280   if (verify_after_remark()) {
2281     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2282     bool result = verification_mark_bm()->isMarked(addr);
2283     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2284                            result ? "IS" : "is NOT");
2285     return result;
2286   } else {
2287     gclog_or_tty->print_cr("Could not compute result");
2288     return false;
2289   }
2290 }
2291 
2292 
2293 void
2294 CMSCollector::print_on_error(outputStream* st) {
2295   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2296   if (collector != NULL) {
2297     CMSBitMap* bitmap = &collector->_markBitMap;
2298     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2299     bitmap->print_on_error(st, " Bits: ");
2300 
2301     st->cr();
2302 
2303     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2304     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2305     mut_bitmap->print_on_error(st, " Bits: ");
2306   }
2307 }
2308 
2309 ////////////////////////////////////////////////////////
2310 // CMS Verification Support
2311 ////////////////////////////////////////////////////////
2312 // Following the remark phase, the following invariant
2313 // should hold -- each object in the CMS heap which is
2314 // marked in markBitMap() should be marked in the verification_mark_bm().
2315 
2316 class VerifyMarkedClosure: public BitMapClosure {
2317   CMSBitMap* _marks;
2318   bool       _failed;
2319 
2320  public:
2321   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2322 
2323   bool do_bit(size_t offset) {
2324     HeapWord* addr = _marks->offsetToHeapWord(offset);
2325     if (!_marks->isMarked(addr)) {
2326       oop(addr)->print_on(gclog_or_tty);
2327       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2328       _failed = true;
2329     }
2330     return true;
2331   }
2332 
2333   bool failed() { return _failed; }
2334 };
2335 
2336 bool CMSCollector::verify_after_remark(bool silent) {
2337   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2338   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2339   static bool init = false;
2340 
2341   assert(SafepointSynchronize::is_at_safepoint(),
2342          "Else mutations in object graph will make answer suspect");
2343   assert(have_cms_token(),
2344          "Else there may be mutual interference in use of "
2345          " verification data structures");
2346   assert(_collectorState > Marking && _collectorState <= Sweeping,
2347          "Else marking info checked here may be obsolete");
2348   assert(haveFreelistLocks(), "must hold free list locks");
2349   assert_lock_strong(bitMapLock());
2350 
2351 
2352   // Allocate marking bit map if not already allocated
2353   if (!init) { // first time
2354     if (!verification_mark_bm()->allocate(_span)) {
2355       return false;
2356     }
2357     init = true;
2358   }
2359 
2360   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2361 
2362   // Turn off refs discovery -- so we will be tracing through refs.
2363   // This is as intended, because by this time
2364   // GC must already have cleared any refs that need to be cleared,
2365   // and traced those that need to be marked; moreover,
2366   // the marking done here is not going to interfere in any
2367   // way with the marking information used by GC.
2368   NoRefDiscovery no_discovery(ref_processor());
2369 
2370   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2371 
2372   // Clear any marks from a previous round
2373   verification_mark_bm()->clear_all();
2374   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2375   verify_work_stacks_empty();
2376 
2377   GenCollectedHeap* gch = GenCollectedHeap::heap();
2378   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2379   // Update the saved marks which may affect the root scans.
2380   gch->save_marks();
2381 
2382   if (CMSRemarkVerifyVariant == 1) {
2383     // In this first variant of verification, we complete
2384     // all marking, then check if the new marks-vector is
2385     // a subset of the CMS marks-vector.
2386     verify_after_remark_work_1();
2387   } else if (CMSRemarkVerifyVariant == 2) {
2388     // In this second variant of verification, we flag an error
2389     // (i.e. an object reachable in the new marks-vector not reachable
2390     // in the CMS marks-vector) immediately, also indicating the
2391     // identify of an object (A) that references the unmarked object (B) --
2392     // presumably, a mutation to A failed to be picked up by preclean/remark?
2393     verify_after_remark_work_2();
2394   } else {
2395     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2396             CMSRemarkVerifyVariant);
2397   }
2398   if (!silent) gclog_or_tty->print(" done] ");
2399   return true;
2400 }
2401 
2402 void CMSCollector::verify_after_remark_work_1() {
2403   ResourceMark rm;
2404   HandleMark  hm;
2405   GenCollectedHeap* gch = GenCollectedHeap::heap();
2406 
2407   // Get a clear set of claim bits for the roots processing to work with.
2408   ClassLoaderDataGraph::clear_claimed_marks();
2409 
2410   // Mark from roots one level into CMS
2411   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2412   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2413 
2414   {
2415     StrongRootsScope srs(1);
2416 
2417     gch->gen_process_roots(&srs,
2418                            GenCollectedHeap::OldGen,
2419                            true,   // young gen as roots
2420                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2421                            should_unload_classes(),
2422                            &notOlder,
2423                            NULL,
2424                            NULL);
2425   }
2426 
2427   // Now mark from the roots
2428   MarkFromRootsClosure markFromRootsClosure(this, _span,
2429     verification_mark_bm(), verification_mark_stack(),
2430     false /* don't yield */, true /* verifying */);
2431   assert(_restart_addr == NULL, "Expected pre-condition");
2432   verification_mark_bm()->iterate(&markFromRootsClosure);
2433   while (_restart_addr != NULL) {
2434     // Deal with stack overflow: by restarting at the indicated
2435     // address.
2436     HeapWord* ra = _restart_addr;
2437     markFromRootsClosure.reset(ra);
2438     _restart_addr = NULL;
2439     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2440   }
2441   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2442   verify_work_stacks_empty();
2443 
2444   // Marking completed -- now verify that each bit marked in
2445   // verification_mark_bm() is also marked in markBitMap(); flag all
2446   // errors by printing corresponding objects.
2447   VerifyMarkedClosure vcl(markBitMap());
2448   verification_mark_bm()->iterate(&vcl);
2449   if (vcl.failed()) {
2450     gclog_or_tty->print("Verification failed");
2451     gch->print_on(gclog_or_tty);
2452     fatal("CMS: failed marking verification after remark");
2453   }
2454 }
2455 
2456 class VerifyKlassOopsKlassClosure : public KlassClosure {
2457   class VerifyKlassOopsClosure : public OopClosure {
2458     CMSBitMap* _bitmap;
2459    public:
2460     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2461     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2462     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2463   } _oop_closure;
2464  public:
2465   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2466   void do_klass(Klass* k) {
2467     k->oops_do(&_oop_closure);
2468   }
2469 };
2470 
2471 void CMSCollector::verify_after_remark_work_2() {
2472   ResourceMark rm;
2473   HandleMark  hm;
2474   GenCollectedHeap* gch = GenCollectedHeap::heap();
2475 
2476   // Get a clear set of claim bits for the roots processing to work with.
2477   ClassLoaderDataGraph::clear_claimed_marks();
2478 
2479   // Mark from roots one level into CMS
2480   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2481                                      markBitMap());
2482   CLDToOopClosure cld_closure(&notOlder, true);
2483 
2484   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2485 
2486   {
2487     StrongRootsScope srs(1);
2488 
2489     gch->gen_process_roots(&srs,
2490                            GenCollectedHeap::OldGen,
2491                            true,   // young gen as roots
2492                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2493                            should_unload_classes(),
2494                            &notOlder,
2495                            NULL,
2496                            &cld_closure);
2497   }
2498 
2499   // Now mark from the roots
2500   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2501     verification_mark_bm(), markBitMap(), verification_mark_stack());
2502   assert(_restart_addr == NULL, "Expected pre-condition");
2503   verification_mark_bm()->iterate(&markFromRootsClosure);
2504   while (_restart_addr != NULL) {
2505     // Deal with stack overflow: by restarting at the indicated
2506     // address.
2507     HeapWord* ra = _restart_addr;
2508     markFromRootsClosure.reset(ra);
2509     _restart_addr = NULL;
2510     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2511   }
2512   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2513   verify_work_stacks_empty();
2514 
2515   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2516   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2517 
2518   // Marking completed -- now verify that each bit marked in
2519   // verification_mark_bm() is also marked in markBitMap(); flag all
2520   // errors by printing corresponding objects.
2521   VerifyMarkedClosure vcl(markBitMap());
2522   verification_mark_bm()->iterate(&vcl);
2523   assert(!vcl.failed(), "Else verification above should not have succeeded");
2524 }
2525 
2526 void ConcurrentMarkSweepGeneration::save_marks() {
2527   // delegate to CMS space
2528   cmsSpace()->save_marks();
2529   for (uint i = 0; i < ParallelGCThreads; i++) {
2530     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2531   }
2532 }
2533 
2534 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2535   return cmsSpace()->no_allocs_since_save_marks();
2536 }
2537 
2538 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2539                                                                 \
2540 void ConcurrentMarkSweepGeneration::                            \
2541 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2542   cl->set_generation(this);                                     \
2543   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2544   cl->reset_generation();                                       \
2545   save_marks();                                                 \
2546 }
2547 
2548 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2549 
2550 void
2551 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2552   if (freelistLock()->owned_by_self()) {
2553     Generation::oop_iterate(cl);
2554   } else {
2555     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2556     Generation::oop_iterate(cl);
2557   }
2558 }
2559 
2560 void
2561 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2562   if (freelistLock()->owned_by_self()) {
2563     Generation::object_iterate(cl);
2564   } else {
2565     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2566     Generation::object_iterate(cl);
2567   }
2568 }
2569 
2570 void
2571 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2572   if (freelistLock()->owned_by_self()) {
2573     Generation::safe_object_iterate(cl);
2574   } else {
2575     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2576     Generation::safe_object_iterate(cl);
2577   }
2578 }
2579 
2580 void
2581 ConcurrentMarkSweepGeneration::post_compact() {
2582 }
2583 
2584 void
2585 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2586   // Fix the linear allocation blocks to look like free blocks.
2587 
2588   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2589   // are not called when the heap is verified during universe initialization and
2590   // at vm shutdown.
2591   if (freelistLock()->owned_by_self()) {
2592     cmsSpace()->prepare_for_verify();
2593   } else {
2594     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2595     cmsSpace()->prepare_for_verify();
2596   }
2597 }
2598 
2599 void
2600 ConcurrentMarkSweepGeneration::verify() {
2601   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2602   // are not called when the heap is verified during universe initialization and
2603   // at vm shutdown.
2604   if (freelistLock()->owned_by_self()) {
2605     cmsSpace()->verify();
2606   } else {
2607     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2608     cmsSpace()->verify();
2609   }
2610 }
2611 
2612 void CMSCollector::verify() {
2613   _cmsGen->verify();
2614 }
2615 
2616 #ifndef PRODUCT
2617 bool CMSCollector::overflow_list_is_empty() const {
2618   assert(_num_par_pushes >= 0, "Inconsistency");
2619   if (_overflow_list == NULL) {
2620     assert(_num_par_pushes == 0, "Inconsistency");
2621   }
2622   return _overflow_list == NULL;
2623 }
2624 
2625 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2626 // merely consolidate assertion checks that appear to occur together frequently.
2627 void CMSCollector::verify_work_stacks_empty() const {
2628   assert(_markStack.isEmpty(), "Marking stack should be empty");
2629   assert(overflow_list_is_empty(), "Overflow list should be empty");
2630 }
2631 
2632 void CMSCollector::verify_overflow_empty() const {
2633   assert(overflow_list_is_empty(), "Overflow list should be empty");
2634   assert(no_preserved_marks(), "No preserved marks");
2635 }
2636 #endif // PRODUCT
2637 
2638 // Decide if we want to enable class unloading as part of the
2639 // ensuing concurrent GC cycle. We will collect and
2640 // unload classes if it's the case that:
2641 // (1) an explicit gc request has been made and the flag
2642 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2643 // (2) (a) class unloading is enabled at the command line, and
2644 //     (b) old gen is getting really full
2645 // NOTE: Provided there is no change in the state of the heap between
2646 // calls to this method, it should have idempotent results. Moreover,
2647 // its results should be monotonically increasing (i.e. going from 0 to 1,
2648 // but not 1 to 0) between successive calls between which the heap was
2649 // not collected. For the implementation below, it must thus rely on
2650 // the property that concurrent_cycles_since_last_unload()
2651 // will not decrease unless a collection cycle happened and that
2652 // _cmsGen->is_too_full() are
2653 // themselves also monotonic in that sense. See check_monotonicity()
2654 // below.
2655 void CMSCollector::update_should_unload_classes() {
2656   _should_unload_classes = false;
2657   // Condition 1 above
2658   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2659     _should_unload_classes = true;
2660   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2661     // Disjuncts 2.b.(i,ii,iii) above
2662     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2663                               CMSClassUnloadingMaxInterval)
2664                            || _cmsGen->is_too_full();
2665   }
2666 }
2667 
2668 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2669   bool res = should_concurrent_collect();
2670   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2671   return res;
2672 }
2673 
2674 void CMSCollector::setup_cms_unloading_and_verification_state() {
2675   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2676                              || VerifyBeforeExit;
2677   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2678 
2679   // We set the proper root for this CMS cycle here.
2680   if (should_unload_classes()) {   // Should unload classes this cycle
2681     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2682     set_verifying(should_verify);    // Set verification state for this cycle
2683     return;                            // Nothing else needs to be done at this time
2684   }
2685 
2686   // Not unloading classes this cycle
2687   assert(!should_unload_classes(), "Inconsistency!");
2688 
2689   // If we are not unloading classes then add SO_AllCodeCache to root
2690   // scanning options.
2691   add_root_scanning_option(rso);
2692 
2693   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2694     set_verifying(true);
2695   } else if (verifying() && !should_verify) {
2696     // We were verifying, but some verification flags got disabled.
2697     set_verifying(false);
2698     // Exclude symbols, strings and code cache elements from root scanning to
2699     // reduce IM and RM pauses.
2700     remove_root_scanning_option(rso);
2701   }
2702 }
2703 
2704 
2705 #ifndef PRODUCT
2706 HeapWord* CMSCollector::block_start(const void* p) const {
2707   const HeapWord* addr = (HeapWord*)p;
2708   if (_span.contains(p)) {
2709     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2710       return _cmsGen->cmsSpace()->block_start(p);
2711     }
2712   }
2713   return NULL;
2714 }
2715 #endif
2716 
2717 HeapWord*
2718 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2719                                                    bool   tlab,
2720                                                    bool   parallel) {
2721   CMSSynchronousYieldRequest yr;
2722   assert(!tlab, "Can't deal with TLAB allocation");
2723   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2724   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2725   if (GCExpandToAllocateDelayMillis > 0) {
2726     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2727   }
2728   return have_lock_and_allocate(word_size, tlab);
2729 }
2730 
2731 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2732     size_t bytes,
2733     size_t expand_bytes,
2734     CMSExpansionCause::Cause cause)
2735 {
2736 
2737   bool success = expand(bytes, expand_bytes);
2738 
2739   // remember why we expanded; this information is used
2740   // by shouldConcurrentCollect() when making decisions on whether to start
2741   // a new CMS cycle.
2742   if (success) {
2743     set_expansion_cause(cause);
2744     if (PrintGCDetails && Verbose) {
2745       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2746         CMSExpansionCause::to_string(cause));
2747     }
2748   }
2749 }
2750 
2751 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2752   HeapWord* res = NULL;
2753   MutexLocker x(ParGCRareEvent_lock);
2754   while (true) {
2755     // Expansion by some other thread might make alloc OK now:
2756     res = ps->lab.alloc(word_sz);
2757     if (res != NULL) return res;
2758     // If there's not enough expansion space available, give up.
2759     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2760       return NULL;
2761     }
2762     // Otherwise, we try expansion.
2763     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2764     // Now go around the loop and try alloc again;
2765     // A competing par_promote might beat us to the expansion space,
2766     // so we may go around the loop again if promotion fails again.
2767     if (GCExpandToAllocateDelayMillis > 0) {
2768       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2769     }
2770   }
2771 }
2772 
2773 
2774 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2775   PromotionInfo* promo) {
2776   MutexLocker x(ParGCRareEvent_lock);
2777   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2778   while (true) {
2779     // Expansion by some other thread might make alloc OK now:
2780     if (promo->ensure_spooling_space()) {
2781       assert(promo->has_spooling_space(),
2782              "Post-condition of successful ensure_spooling_space()");
2783       return true;
2784     }
2785     // If there's not enough expansion space available, give up.
2786     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2787       return false;
2788     }
2789     // Otherwise, we try expansion.
2790     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2791     // Now go around the loop and try alloc again;
2792     // A competing allocation might beat us to the expansion space,
2793     // so we may go around the loop again if allocation fails again.
2794     if (GCExpandToAllocateDelayMillis > 0) {
2795       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2796     }
2797   }
2798 }
2799 
2800 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2801   // Only shrink if a compaction was done so that all the free space
2802   // in the generation is in a contiguous block at the end.
2803   if (did_compact()) {
2804     CardGeneration::shrink(bytes);
2805   }
2806 }
2807 
2808 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2809   assert_locked_or_safepoint(Heap_lock);
2810 }
2811 
2812 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2813   assert_locked_or_safepoint(Heap_lock);
2814   assert_lock_strong(freelistLock());
2815   if (PrintGCDetails && Verbose) {
2816     warning("Shrinking of CMS not yet implemented");
2817   }
2818   return;
2819 }
2820 
2821 
2822 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2823 // phases.
2824 class CMSPhaseAccounting: public StackObj {
2825  public:
2826   CMSPhaseAccounting(CMSCollector *collector,
2827                      const char *phase,
2828                      const GCId gc_id,
2829                      bool print_cr = true);
2830   ~CMSPhaseAccounting();
2831 
2832  private:
2833   CMSCollector *_collector;
2834   const char *_phase;
2835   elapsedTimer _wallclock;
2836   bool _print_cr;
2837   const GCId _gc_id;
2838 
2839  public:
2840   // Not MT-safe; so do not pass around these StackObj's
2841   // where they may be accessed by other threads.
2842   jlong wallclock_millis() {
2843     assert(_wallclock.is_active(), "Wall clock should not stop");
2844     _wallclock.stop();  // to record time
2845     jlong ret = _wallclock.milliseconds();
2846     _wallclock.start(); // restart
2847     return ret;
2848   }
2849 };
2850 
2851 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2852                                        const char *phase,
2853                                        const GCId gc_id,
2854                                        bool print_cr) :
2855   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2856 
2857   if (PrintCMSStatistics != 0) {
2858     _collector->resetYields();
2859   }
2860   if (PrintGCDetails) {
2861     gclog_or_tty->gclog_stamp(_gc_id);
2862     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2863       _collector->cmsGen()->short_name(), _phase);
2864   }
2865   _collector->resetTimer();
2866   _wallclock.start();
2867   _collector->startTimer();
2868 }
2869 
2870 CMSPhaseAccounting::~CMSPhaseAccounting() {
2871   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2872   _collector->stopTimer();
2873   _wallclock.stop();
2874   if (PrintGCDetails) {
2875     gclog_or_tty->gclog_stamp(_gc_id);
2876     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2877                  _collector->cmsGen()->short_name(),
2878                  _phase, _collector->timerValue(), _wallclock.seconds());
2879     if (_print_cr) {
2880       gclog_or_tty->cr();
2881     }
2882     if (PrintCMSStatistics != 0) {
2883       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2884                     _collector->yields());
2885     }
2886   }
2887 }
2888 
2889 // CMS work
2890 
2891 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2892 class CMSParMarkTask : public AbstractGangTask {
2893  protected:
2894   CMSCollector*     _collector;
2895   uint              _n_workers;
2896   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2897       AbstractGangTask(name),
2898       _collector(collector),
2899       _n_workers(n_workers) {}
2900   // Work method in support of parallel rescan ... of young gen spaces
2901   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2902                              ContiguousSpace* space,
2903                              HeapWord** chunk_array, size_t chunk_top);
2904   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2905 };
2906 
2907 // Parallel initial mark task
2908 class CMSParInitialMarkTask: public CMSParMarkTask {
2909   StrongRootsScope* _strong_roots_scope;
2910  public:
2911   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2912       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2913       _strong_roots_scope(strong_roots_scope) {}
2914   void work(uint worker_id);
2915 };
2916 
2917 // Checkpoint the roots into this generation from outside
2918 // this generation. [Note this initial checkpoint need only
2919 // be approximate -- we'll do a catch up phase subsequently.]
2920 void CMSCollector::checkpointRootsInitial() {
2921   assert(_collectorState == InitialMarking, "Wrong collector state");
2922   check_correct_thread_executing();
2923   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2924 
2925   save_heap_summary();
2926   report_heap_summary(GCWhen::BeforeGC);
2927 
2928   ReferenceProcessor* rp = ref_processor();
2929   assert(_restart_addr == NULL, "Control point invariant");
2930   {
2931     // acquire locks for subsequent manipulations
2932     MutexLockerEx x(bitMapLock(),
2933                     Mutex::_no_safepoint_check_flag);
2934     checkpointRootsInitialWork();
2935     // enable ("weak") refs discovery
2936     rp->enable_discovery();
2937     _collectorState = Marking;
2938   }
2939 }
2940 
2941 void CMSCollector::checkpointRootsInitialWork() {
2942   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2943   assert(_collectorState == InitialMarking, "just checking");
2944 
2945   // Already have locks.
2946   assert_lock_strong(bitMapLock());
2947   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2948 
2949   // Setup the verification and class unloading state for this
2950   // CMS collection cycle.
2951   setup_cms_unloading_and_verification_state();
2952 
2953   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2954     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2955 
2956   // Reset all the PLAB chunk arrays if necessary.
2957   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2958     reset_survivor_plab_arrays();
2959   }
2960 
2961   ResourceMark rm;
2962   HandleMark  hm;
2963 
2964   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2965   GenCollectedHeap* gch = GenCollectedHeap::heap();
2966 
2967   verify_work_stacks_empty();
2968   verify_overflow_empty();
2969 
2970   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2971   // Update the saved marks which may affect the root scans.
2972   gch->save_marks();
2973 
2974   // weak reference processing has not started yet.
2975   ref_processor()->set_enqueuing_is_done(false);
2976 
2977   // Need to remember all newly created CLDs,
2978   // so that we can guarantee that the remark finds them.
2979   ClassLoaderDataGraph::remember_new_clds(true);
2980 
2981   // Whenever a CLD is found, it will be claimed before proceeding to mark
2982   // the klasses. The claimed marks need to be cleared before marking starts.
2983   ClassLoaderDataGraph::clear_claimed_marks();
2984 
2985   if (CMSPrintEdenSurvivorChunks) {
2986     print_eden_and_survivor_chunk_arrays();
2987   }
2988 
2989   {
2990     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2991     if (CMSParallelInitialMarkEnabled) {
2992       // The parallel version.
2993       WorkGang* workers = gch->workers();
2994       assert(workers != NULL, "Need parallel worker threads.");
2995       uint n_workers = workers->active_workers();
2996 
2997       StrongRootsScope srs(n_workers);
2998 
2999       CMSParInitialMarkTask tsk(this, &srs, n_workers);
3000       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3001       if (n_workers > 1) {
3002         workers->run_task(&tsk);
3003       } else {
3004         tsk.work(0);
3005       }
3006     } else {
3007       // The serial version.
3008       CLDToOopClosure cld_closure(&notOlder, true);
3009       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3010 
3011       StrongRootsScope srs(1);
3012 
3013       gch->gen_process_roots(&srs,
3014                              GenCollectedHeap::OldGen,
3015                              true,   // young gen as roots
3016                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3017                              should_unload_classes(),
3018                              &notOlder,
3019                              NULL,
3020                              &cld_closure);
3021     }
3022   }
3023 
3024   // Clear mod-union table; it will be dirtied in the prologue of
3025   // CMS generation per each young generation collection.
3026 
3027   assert(_modUnionTable.isAllClear(),
3028        "Was cleared in most recent final checkpoint phase"
3029        " or no bits are set in the gc_prologue before the start of the next "
3030        "subsequent marking phase.");
3031 
3032   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3033 
3034   // Save the end of the used_region of the constituent generations
3035   // to be used to limit the extent of sweep in each generation.
3036   save_sweep_limits();
3037   verify_overflow_empty();
3038 }
3039 
3040 bool CMSCollector::markFromRoots() {
3041   // we might be tempted to assert that:
3042   // assert(!SafepointSynchronize::is_at_safepoint(),
3043   //        "inconsistent argument?");
3044   // However that wouldn't be right, because it's possible that
3045   // a safepoint is indeed in progress as a young generation
3046   // stop-the-world GC happens even as we mark in this generation.
3047   assert(_collectorState == Marking, "inconsistent state?");
3048   check_correct_thread_executing();
3049   verify_overflow_empty();
3050 
3051   // Weak ref discovery note: We may be discovering weak
3052   // refs in this generation concurrent (but interleaved) with
3053   // weak ref discovery by the young generation collector.
3054 
3055   CMSTokenSyncWithLocks ts(true, bitMapLock());
3056   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3057   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3058   bool res = markFromRootsWork();
3059   if (res) {
3060     _collectorState = Precleaning;
3061   } else { // We failed and a foreground collection wants to take over
3062     assert(_foregroundGCIsActive, "internal state inconsistency");
3063     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3064     if (PrintGCDetails) {
3065       gclog_or_tty->print_cr("bailing out to foreground collection");
3066     }
3067   }
3068   verify_overflow_empty();
3069   return res;
3070 }
3071 
3072 bool CMSCollector::markFromRootsWork() {
3073   // iterate over marked bits in bit map, doing a full scan and mark
3074   // from these roots using the following algorithm:
3075   // . if oop is to the right of the current scan pointer,
3076   //   mark corresponding bit (we'll process it later)
3077   // . else (oop is to left of current scan pointer)
3078   //   push oop on marking stack
3079   // . drain the marking stack
3080 
3081   // Note that when we do a marking step we need to hold the
3082   // bit map lock -- recall that direct allocation (by mutators)
3083   // and promotion (by the young generation collector) is also
3084   // marking the bit map. [the so-called allocate live policy.]
3085   // Because the implementation of bit map marking is not
3086   // robust wrt simultaneous marking of bits in the same word,
3087   // we need to make sure that there is no such interference
3088   // between concurrent such updates.
3089 
3090   // already have locks
3091   assert_lock_strong(bitMapLock());
3092 
3093   verify_work_stacks_empty();
3094   verify_overflow_empty();
3095   bool result = false;
3096   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3097     result = do_marking_mt();
3098   } else {
3099     result = do_marking_st();
3100   }
3101   return result;
3102 }
3103 
3104 // Forward decl
3105 class CMSConcMarkingTask;
3106 
3107 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3108   CMSCollector*       _collector;
3109   CMSConcMarkingTask* _task;
3110  public:
3111   virtual void yield();
3112 
3113   // "n_threads" is the number of threads to be terminated.
3114   // "queue_set" is a set of work queues of other threads.
3115   // "collector" is the CMS collector associated with this task terminator.
3116   // "yield" indicates whether we need the gang as a whole to yield.
3117   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3118     ParallelTaskTerminator(n_threads, queue_set),
3119     _collector(collector) { }
3120 
3121   void set_task(CMSConcMarkingTask* task) {
3122     _task = task;
3123   }
3124 };
3125 
3126 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3127   CMSConcMarkingTask* _task;
3128  public:
3129   bool should_exit_termination();
3130   void set_task(CMSConcMarkingTask* task) {
3131     _task = task;
3132   }
3133 };
3134 
3135 // MT Concurrent Marking Task
3136 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3137   CMSCollector* _collector;
3138   uint          _n_workers;       // requested/desired # workers
3139   bool          _result;
3140   CompactibleFreeListSpace*  _cms_space;
3141   char          _pad_front[64];   // padding to ...
3142   HeapWord*     _global_finger;   // ... avoid sharing cache line
3143   char          _pad_back[64];
3144   HeapWord*     _restart_addr;
3145 
3146   //  Exposed here for yielding support
3147   Mutex* const _bit_map_lock;
3148 
3149   // The per thread work queues, available here for stealing
3150   OopTaskQueueSet*  _task_queues;
3151 
3152   // Termination (and yielding) support
3153   CMSConcMarkingTerminator _term;
3154   CMSConcMarkingTerminatorTerminator _term_term;
3155 
3156  public:
3157   CMSConcMarkingTask(CMSCollector* collector,
3158                  CompactibleFreeListSpace* cms_space,
3159                  YieldingFlexibleWorkGang* workers,
3160                  OopTaskQueueSet* task_queues):
3161     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3162     _collector(collector),
3163     _cms_space(cms_space),
3164     _n_workers(0), _result(true),
3165     _task_queues(task_queues),
3166     _term(_n_workers, task_queues, _collector),
3167     _bit_map_lock(collector->bitMapLock())
3168   {
3169     _requested_size = _n_workers;
3170     _term.set_task(this);
3171     _term_term.set_task(this);
3172     _restart_addr = _global_finger = _cms_space->bottom();
3173   }
3174 
3175 
3176   OopTaskQueueSet* task_queues()  { return _task_queues; }
3177 
3178   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3179 
3180   HeapWord** global_finger_addr() { return &_global_finger; }
3181 
3182   CMSConcMarkingTerminator* terminator() { return &_term; }
3183 
3184   virtual void set_for_termination(uint active_workers) {
3185     terminator()->reset_for_reuse(active_workers);
3186   }
3187 
3188   void work(uint worker_id);
3189   bool should_yield() {
3190     return    ConcurrentMarkSweepThread::should_yield()
3191            && !_collector->foregroundGCIsActive();
3192   }
3193 
3194   virtual void coordinator_yield();  // stuff done by coordinator
3195   bool result() { return _result; }
3196 
3197   void reset(HeapWord* ra) {
3198     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3199     _restart_addr = _global_finger = ra;
3200     _term.reset_for_reuse();
3201   }
3202 
3203   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3204                                            OopTaskQueue* work_q);
3205 
3206  private:
3207   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3208   void do_work_steal(int i);
3209   void bump_global_finger(HeapWord* f);
3210 };
3211 
3212 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3213   assert(_task != NULL, "Error");
3214   return _task->yielding();
3215   // Note that we do not need the disjunct || _task->should_yield() above
3216   // because we want terminating threads to yield only if the task
3217   // is already in the midst of yielding, which happens only after at least one
3218   // thread has yielded.
3219 }
3220 
3221 void CMSConcMarkingTerminator::yield() {
3222   if (_task->should_yield()) {
3223     _task->yield();
3224   } else {
3225     ParallelTaskTerminator::yield();
3226   }
3227 }
3228 
3229 ////////////////////////////////////////////////////////////////
3230 // Concurrent Marking Algorithm Sketch
3231 ////////////////////////////////////////////////////////////////
3232 // Until all tasks exhausted (both spaces):
3233 // -- claim next available chunk
3234 // -- bump global finger via CAS
3235 // -- find first object that starts in this chunk
3236 //    and start scanning bitmap from that position
3237 // -- scan marked objects for oops
3238 // -- CAS-mark target, and if successful:
3239 //    . if target oop is above global finger (volatile read)
3240 //      nothing to do
3241 //    . if target oop is in chunk and above local finger
3242 //        then nothing to do
3243 //    . else push on work-queue
3244 // -- Deal with possible overflow issues:
3245 //    . local work-queue overflow causes stuff to be pushed on
3246 //      global (common) overflow queue
3247 //    . always first empty local work queue
3248 //    . then get a batch of oops from global work queue if any
3249 //    . then do work stealing
3250 // -- When all tasks claimed (both spaces)
3251 //    and local work queue empty,
3252 //    then in a loop do:
3253 //    . check global overflow stack; steal a batch of oops and trace
3254 //    . try to steal from other threads oif GOS is empty
3255 //    . if neither is available, offer termination
3256 // -- Terminate and return result
3257 //
3258 void CMSConcMarkingTask::work(uint worker_id) {
3259   elapsedTimer _timer;
3260   ResourceMark rm;
3261   HandleMark hm;
3262 
3263   DEBUG_ONLY(_collector->verify_overflow_empty();)
3264 
3265   // Before we begin work, our work queue should be empty
3266   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3267   // Scan the bitmap covering _cms_space, tracing through grey objects.
3268   _timer.start();
3269   do_scan_and_mark(worker_id, _cms_space);
3270   _timer.stop();
3271   if (PrintCMSStatistics != 0) {
3272     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3273       worker_id, _timer.seconds());
3274       // XXX: need xxx/xxx type of notation, two timers
3275   }
3276 
3277   // ... do work stealing
3278   _timer.reset();
3279   _timer.start();
3280   do_work_steal(worker_id);
3281   _timer.stop();
3282   if (PrintCMSStatistics != 0) {
3283     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3284       worker_id, _timer.seconds());
3285       // XXX: need xxx/xxx type of notation, two timers
3286   }
3287   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3288   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3289   // Note that under the current task protocol, the
3290   // following assertion is true even of the spaces
3291   // expanded since the completion of the concurrent
3292   // marking. XXX This will likely change under a strict
3293   // ABORT semantics.
3294   // After perm removal the comparison was changed to
3295   // greater than or equal to from strictly greater than.
3296   // Before perm removal the highest address sweep would
3297   // have been at the end of perm gen but now is at the
3298   // end of the tenured gen.
3299   assert(_global_finger >=  _cms_space->end(),
3300          "All tasks have been completed");
3301   DEBUG_ONLY(_collector->verify_overflow_empty();)
3302 }
3303 
3304 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3305   HeapWord* read = _global_finger;
3306   HeapWord* cur  = read;
3307   while (f > read) {
3308     cur = read;
3309     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3310     if (cur == read) {
3311       // our cas succeeded
3312       assert(_global_finger >= f, "protocol consistency");
3313       break;
3314     }
3315   }
3316 }
3317 
3318 // This is really inefficient, and should be redone by
3319 // using (not yet available) block-read and -write interfaces to the
3320 // stack and the work_queue. XXX FIX ME !!!
3321 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3322                                                       OopTaskQueue* work_q) {
3323   // Fast lock-free check
3324   if (ovflw_stk->length() == 0) {
3325     return false;
3326   }
3327   assert(work_q->size() == 0, "Shouldn't steal");
3328   MutexLockerEx ml(ovflw_stk->par_lock(),
3329                    Mutex::_no_safepoint_check_flag);
3330   // Grab up to 1/4 the size of the work queue
3331   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3332                     (size_t)ParGCDesiredObjsFromOverflowList);
3333   num = MIN2(num, ovflw_stk->length());
3334   for (int i = (int) num; i > 0; i--) {
3335     oop cur = ovflw_stk->pop();
3336     assert(cur != NULL, "Counted wrong?");
3337     work_q->push(cur);
3338   }
3339   return num > 0;
3340 }
3341 
3342 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3343   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3344   int n_tasks = pst->n_tasks();
3345   // We allow that there may be no tasks to do here because
3346   // we are restarting after a stack overflow.
3347   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3348   uint nth_task = 0;
3349 
3350   HeapWord* aligned_start = sp->bottom();
3351   if (sp->used_region().contains(_restart_addr)) {
3352     // Align down to a card boundary for the start of 0th task
3353     // for this space.
3354     aligned_start =
3355       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3356                                  CardTableModRefBS::card_size);
3357   }
3358 
3359   size_t chunk_size = sp->marking_task_size();
3360   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3361     // Having claimed the nth task in this space,
3362     // compute the chunk that it corresponds to:
3363     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3364                                aligned_start + (nth_task+1)*chunk_size);
3365     // Try and bump the global finger via a CAS;
3366     // note that we need to do the global finger bump
3367     // _before_ taking the intersection below, because
3368     // the task corresponding to that region will be
3369     // deemed done even if the used_region() expands
3370     // because of allocation -- as it almost certainly will
3371     // during start-up while the threads yield in the
3372     // closure below.
3373     HeapWord* finger = span.end();
3374     bump_global_finger(finger);   // atomically
3375     // There are null tasks here corresponding to chunks
3376     // beyond the "top" address of the space.
3377     span = span.intersection(sp->used_region());
3378     if (!span.is_empty()) {  // Non-null task
3379       HeapWord* prev_obj;
3380       assert(!span.contains(_restart_addr) || nth_task == 0,
3381              "Inconsistency");
3382       if (nth_task == 0) {
3383         // For the 0th task, we'll not need to compute a block_start.
3384         if (span.contains(_restart_addr)) {
3385           // In the case of a restart because of stack overflow,
3386           // we might additionally skip a chunk prefix.
3387           prev_obj = _restart_addr;
3388         } else {
3389           prev_obj = span.start();
3390         }
3391       } else {
3392         // We want to skip the first object because
3393         // the protocol is to scan any object in its entirety
3394         // that _starts_ in this span; a fortiori, any
3395         // object starting in an earlier span is scanned
3396         // as part of an earlier claimed task.
3397         // Below we use the "careful" version of block_start
3398         // so we do not try to navigate uninitialized objects.
3399         prev_obj = sp->block_start_careful(span.start());
3400         // Below we use a variant of block_size that uses the
3401         // Printezis bits to avoid waiting for allocated
3402         // objects to become initialized/parsable.
3403         while (prev_obj < span.start()) {
3404           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3405           if (sz > 0) {
3406             prev_obj += sz;
3407           } else {
3408             // In this case we may end up doing a bit of redundant
3409             // scanning, but that appears unavoidable, short of
3410             // locking the free list locks; see bug 6324141.
3411             break;
3412           }
3413         }
3414       }
3415       if (prev_obj < span.end()) {
3416         MemRegion my_span = MemRegion(prev_obj, span.end());
3417         // Do the marking work within a non-empty span --
3418         // the last argument to the constructor indicates whether the
3419         // iteration should be incremental with periodic yields.
3420         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3421                                     &_collector->_markBitMap,
3422                                     work_queue(i),
3423                                     &_collector->_markStack);
3424         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3425       } // else nothing to do for this task
3426     }   // else nothing to do for this task
3427   }
3428   // We'd be tempted to assert here that since there are no
3429   // more tasks left to claim in this space, the global_finger
3430   // must exceed space->top() and a fortiori space->end(). However,
3431   // that would not quite be correct because the bumping of
3432   // global_finger occurs strictly after the claiming of a task,
3433   // so by the time we reach here the global finger may not yet
3434   // have been bumped up by the thread that claimed the last
3435   // task.
3436   pst->all_tasks_completed();
3437 }
3438 
3439 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3440  private:
3441   CMSCollector* _collector;
3442   CMSConcMarkingTask* _task;
3443   MemRegion     _span;
3444   CMSBitMap*    _bit_map;
3445   CMSMarkStack* _overflow_stack;
3446   OopTaskQueue* _work_queue;
3447  protected:
3448   DO_OOP_WORK_DEFN
3449  public:
3450   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3451                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3452     MetadataAwareOopClosure(collector->ref_processor()),
3453     _collector(collector),
3454     _task(task),
3455     _span(collector->_span),
3456     _work_queue(work_queue),
3457     _bit_map(bit_map),
3458     _overflow_stack(overflow_stack)
3459   { }
3460   virtual void do_oop(oop* p);
3461   virtual void do_oop(narrowOop* p);
3462 
3463   void trim_queue(size_t max);
3464   void handle_stack_overflow(HeapWord* lost);
3465   void do_yield_check() {
3466     if (_task->should_yield()) {
3467       _task->yield();
3468     }
3469   }
3470 };
3471 
3472 // Grey object scanning during work stealing phase --
3473 // the salient assumption here is that any references
3474 // that are in these stolen objects being scanned must
3475 // already have been initialized (else they would not have
3476 // been published), so we do not need to check for
3477 // uninitialized objects before pushing here.
3478 void Par_ConcMarkingClosure::do_oop(oop obj) {
3479   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3480   HeapWord* addr = (HeapWord*)obj;
3481   // Check if oop points into the CMS generation
3482   // and is not marked
3483   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3484     // a white object ...
3485     // If we manage to "claim" the object, by being the
3486     // first thread to mark it, then we push it on our
3487     // marking stack
3488     if (_bit_map->par_mark(addr)) {     // ... now grey
3489       // push on work queue (grey set)
3490       bool simulate_overflow = false;
3491       NOT_PRODUCT(
3492         if (CMSMarkStackOverflowALot &&
3493             _collector->simulate_overflow()) {
3494           // simulate a stack overflow
3495           simulate_overflow = true;
3496         }
3497       )
3498       if (simulate_overflow ||
3499           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3500         // stack overflow
3501         if (PrintCMSStatistics != 0) {
3502           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3503                                  SIZE_FORMAT, _overflow_stack->capacity());
3504         }
3505         // We cannot assert that the overflow stack is full because
3506         // it may have been emptied since.
3507         assert(simulate_overflow ||
3508                _work_queue->size() == _work_queue->max_elems(),
3509               "Else push should have succeeded");
3510         handle_stack_overflow(addr);
3511       }
3512     } // Else, some other thread got there first
3513     do_yield_check();
3514   }
3515 }
3516 
3517 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3518 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3519 
3520 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3521   while (_work_queue->size() > max) {
3522     oop new_oop;
3523     if (_work_queue->pop_local(new_oop)) {
3524       assert(new_oop->is_oop(), "Should be an oop");
3525       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3526       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3527       new_oop->oop_iterate(this);  // do_oop() above
3528       do_yield_check();
3529     }
3530   }
3531 }
3532 
3533 // Upon stack overflow, we discard (part of) the stack,
3534 // remembering the least address amongst those discarded
3535 // in CMSCollector's _restart_address.
3536 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3537   // We need to do this under a mutex to prevent other
3538   // workers from interfering with the work done below.
3539   MutexLockerEx ml(_overflow_stack->par_lock(),
3540                    Mutex::_no_safepoint_check_flag);
3541   // Remember the least grey address discarded
3542   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3543   _collector->lower_restart_addr(ra);
3544   _overflow_stack->reset();  // discard stack contents
3545   _overflow_stack->expand(); // expand the stack if possible
3546 }
3547 
3548 
3549 void CMSConcMarkingTask::do_work_steal(int i) {
3550   OopTaskQueue* work_q = work_queue(i);
3551   oop obj_to_scan;
3552   CMSBitMap* bm = &(_collector->_markBitMap);
3553   CMSMarkStack* ovflw = &(_collector->_markStack);
3554   int* seed = _collector->hash_seed(i);
3555   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3556   while (true) {
3557     cl.trim_queue(0);
3558     assert(work_q->size() == 0, "Should have been emptied above");
3559     if (get_work_from_overflow_stack(ovflw, work_q)) {
3560       // Can't assert below because the work obtained from the
3561       // overflow stack may already have been stolen from us.
3562       // assert(work_q->size() > 0, "Work from overflow stack");
3563       continue;
3564     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3565       assert(obj_to_scan->is_oop(), "Should be an oop");
3566       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3567       obj_to_scan->oop_iterate(&cl);
3568     } else if (terminator()->offer_termination(&_term_term)) {
3569       assert(work_q->size() == 0, "Impossible!");
3570       break;
3571     } else if (yielding() || should_yield()) {
3572       yield();
3573     }
3574   }
3575 }
3576 
3577 // This is run by the CMS (coordinator) thread.
3578 void CMSConcMarkingTask::coordinator_yield() {
3579   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3580          "CMS thread should hold CMS token");
3581   // First give up the locks, then yield, then re-lock
3582   // We should probably use a constructor/destructor idiom to
3583   // do this unlock/lock or modify the MutexUnlocker class to
3584   // serve our purpose. XXX
3585   assert_lock_strong(_bit_map_lock);
3586   _bit_map_lock->unlock();
3587   ConcurrentMarkSweepThread::desynchronize(true);
3588   _collector->stopTimer();
3589   if (PrintCMSStatistics != 0) {
3590     _collector->incrementYields();
3591   }
3592 
3593   // It is possible for whichever thread initiated the yield request
3594   // not to get a chance to wake up and take the bitmap lock between
3595   // this thread releasing it and reacquiring it. So, while the
3596   // should_yield() flag is on, let's sleep for a bit to give the
3597   // other thread a chance to wake up. The limit imposed on the number
3598   // of iterations is defensive, to avoid any unforseen circumstances
3599   // putting us into an infinite loop. Since it's always been this
3600   // (coordinator_yield()) method that was observed to cause the
3601   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3602   // which is by default non-zero. For the other seven methods that
3603   // also perform the yield operation, as are using a different
3604   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3605   // can enable the sleeping for those methods too, if necessary.
3606   // See 6442774.
3607   //
3608   // We really need to reconsider the synchronization between the GC
3609   // thread and the yield-requesting threads in the future and we
3610   // should really use wait/notify, which is the recommended
3611   // way of doing this type of interaction. Additionally, we should
3612   // consolidate the eight methods that do the yield operation and they
3613   // are almost identical into one for better maintainability and
3614   // readability. See 6445193.
3615   //
3616   // Tony 2006.06.29
3617   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3618                    ConcurrentMarkSweepThread::should_yield() &&
3619                    !CMSCollector::foregroundGCIsActive(); ++i) {
3620     os::sleep(Thread::current(), 1, false);
3621   }
3622 
3623   ConcurrentMarkSweepThread::synchronize(true);
3624   _bit_map_lock->lock_without_safepoint_check();
3625   _collector->startTimer();
3626 }
3627 
3628 bool CMSCollector::do_marking_mt() {
3629   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3630   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3631                                                                   conc_workers()->active_workers(),
3632                                                                   Threads::number_of_non_daemon_threads());
3633   conc_workers()->set_active_workers(num_workers);
3634 
3635   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3636 
3637   CMSConcMarkingTask tsk(this,
3638                          cms_space,
3639                          conc_workers(),
3640                          task_queues());
3641 
3642   // Since the actual number of workers we get may be different
3643   // from the number we requested above, do we need to do anything different
3644   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3645   // class?? XXX
3646   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3647 
3648   // Refs discovery is already non-atomic.
3649   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3650   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3651   conc_workers()->start_task(&tsk);
3652   while (tsk.yielded()) {
3653     tsk.coordinator_yield();
3654     conc_workers()->continue_task(&tsk);
3655   }
3656   // If the task was aborted, _restart_addr will be non-NULL
3657   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3658   while (_restart_addr != NULL) {
3659     // XXX For now we do not make use of ABORTED state and have not
3660     // yet implemented the right abort semantics (even in the original
3661     // single-threaded CMS case). That needs some more investigation
3662     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3663     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3664     // If _restart_addr is non-NULL, a marking stack overflow
3665     // occurred; we need to do a fresh marking iteration from the
3666     // indicated restart address.
3667     if (_foregroundGCIsActive) {
3668       // We may be running into repeated stack overflows, having
3669       // reached the limit of the stack size, while making very
3670       // slow forward progress. It may be best to bail out and
3671       // let the foreground collector do its job.
3672       // Clear _restart_addr, so that foreground GC
3673       // works from scratch. This avoids the headache of
3674       // a "rescan" which would otherwise be needed because
3675       // of the dirty mod union table & card table.
3676       _restart_addr = NULL;
3677       return false;
3678     }
3679     // Adjust the task to restart from _restart_addr
3680     tsk.reset(_restart_addr);
3681     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3682                   _restart_addr);
3683     _restart_addr = NULL;
3684     // Get the workers going again
3685     conc_workers()->start_task(&tsk);
3686     while (tsk.yielded()) {
3687       tsk.coordinator_yield();
3688       conc_workers()->continue_task(&tsk);
3689     }
3690   }
3691   assert(tsk.completed(), "Inconsistency");
3692   assert(tsk.result() == true, "Inconsistency");
3693   return true;
3694 }
3695 
3696 bool CMSCollector::do_marking_st() {
3697   ResourceMark rm;
3698   HandleMark   hm;
3699 
3700   // Temporarily make refs discovery single threaded (non-MT)
3701   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3702   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3703     &_markStack, CMSYield);
3704   // the last argument to iterate indicates whether the iteration
3705   // should be incremental with periodic yields.
3706   _markBitMap.iterate(&markFromRootsClosure);
3707   // If _restart_addr is non-NULL, a marking stack overflow
3708   // occurred; we need to do a fresh iteration from the
3709   // indicated restart address.
3710   while (_restart_addr != NULL) {
3711     if (_foregroundGCIsActive) {
3712       // We may be running into repeated stack overflows, having
3713       // reached the limit of the stack size, while making very
3714       // slow forward progress. It may be best to bail out and
3715       // let the foreground collector do its job.
3716       // Clear _restart_addr, so that foreground GC
3717       // works from scratch. This avoids the headache of
3718       // a "rescan" which would otherwise be needed because
3719       // of the dirty mod union table & card table.
3720       _restart_addr = NULL;
3721       return false;  // indicating failure to complete marking
3722     }
3723     // Deal with stack overflow:
3724     // we restart marking from _restart_addr
3725     HeapWord* ra = _restart_addr;
3726     markFromRootsClosure.reset(ra);
3727     _restart_addr = NULL;
3728     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3729   }
3730   return true;
3731 }
3732 
3733 void CMSCollector::preclean() {
3734   check_correct_thread_executing();
3735   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3736   verify_work_stacks_empty();
3737   verify_overflow_empty();
3738   _abort_preclean = false;
3739   if (CMSPrecleaningEnabled) {
3740     if (!CMSEdenChunksRecordAlways) {
3741       _eden_chunk_index = 0;
3742     }
3743     size_t used = get_eden_used();
3744     size_t capacity = get_eden_capacity();
3745     // Don't start sampling unless we will get sufficiently
3746     // many samples.
3747     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3748                 * CMSScheduleRemarkEdenPenetration)) {
3749       _start_sampling = true;
3750     } else {
3751       _start_sampling = false;
3752     }
3753     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3754     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3755     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3756   }
3757   CMSTokenSync x(true); // is cms thread
3758   if (CMSPrecleaningEnabled) {
3759     sample_eden();
3760     _collectorState = AbortablePreclean;
3761   } else {
3762     _collectorState = FinalMarking;
3763   }
3764   verify_work_stacks_empty();
3765   verify_overflow_empty();
3766 }
3767 
3768 // Try and schedule the remark such that young gen
3769 // occupancy is CMSScheduleRemarkEdenPenetration %.
3770 void CMSCollector::abortable_preclean() {
3771   check_correct_thread_executing();
3772   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3773   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3774 
3775   // If Eden's current occupancy is below this threshold,
3776   // immediately schedule the remark; else preclean
3777   // past the next scavenge in an effort to
3778   // schedule the pause as described above. By choosing
3779   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3780   // we will never do an actual abortable preclean cycle.
3781   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3782     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3783     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3784     // We need more smarts in the abortable preclean
3785     // loop below to deal with cases where allocation
3786     // in young gen is very very slow, and our precleaning
3787     // is running a losing race against a horde of
3788     // mutators intent on flooding us with CMS updates
3789     // (dirty cards).
3790     // One, admittedly dumb, strategy is to give up
3791     // after a certain number of abortable precleaning loops
3792     // or after a certain maximum time. We want to make
3793     // this smarter in the next iteration.
3794     // XXX FIX ME!!! YSR
3795     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3796     while (!(should_abort_preclean() ||
3797              ConcurrentMarkSweepThread::should_terminate())) {
3798       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3799       cumworkdone += workdone;
3800       loops++;
3801       // Voluntarily terminate abortable preclean phase if we have
3802       // been at it for too long.
3803       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3804           loops >= CMSMaxAbortablePrecleanLoops) {
3805         if (PrintGCDetails) {
3806           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3807         }
3808         break;
3809       }
3810       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3811         if (PrintGCDetails) {
3812           gclog_or_tty->print(" CMS: abort preclean due to time ");
3813         }
3814         break;
3815       }
3816       // If we are doing little work each iteration, we should
3817       // take a short break.
3818       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3819         // Sleep for some time, waiting for work to accumulate
3820         stopTimer();
3821         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3822         startTimer();
3823         waited++;
3824       }
3825     }
3826     if (PrintCMSStatistics > 0) {
3827       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3828                           loops, waited, cumworkdone);
3829     }
3830   }
3831   CMSTokenSync x(true); // is cms thread
3832   if (_collectorState != Idling) {
3833     assert(_collectorState == AbortablePreclean,
3834            "Spontaneous state transition?");
3835     _collectorState = FinalMarking;
3836   } // Else, a foreground collection completed this CMS cycle.
3837   return;
3838 }
3839 
3840 // Respond to an Eden sampling opportunity
3841 void CMSCollector::sample_eden() {
3842   // Make sure a young gc cannot sneak in between our
3843   // reading and recording of a sample.
3844   assert(Thread::current()->is_ConcurrentGC_thread(),
3845          "Only the cms thread may collect Eden samples");
3846   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3847          "Should collect samples while holding CMS token");
3848   if (!_start_sampling) {
3849     return;
3850   }
3851   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3852   // is populated by the young generation.
3853   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3854     if (_eden_chunk_index < _eden_chunk_capacity) {
3855       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3856       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3857              "Unexpected state of Eden");
3858       // We'd like to check that what we just sampled is an oop-start address;
3859       // however, we cannot do that here since the object may not yet have been
3860       // initialized. So we'll instead do the check when we _use_ this sample
3861       // later.
3862       if (_eden_chunk_index == 0 ||
3863           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3864                          _eden_chunk_array[_eden_chunk_index-1])
3865            >= CMSSamplingGrain)) {
3866         _eden_chunk_index++;  // commit sample
3867       }
3868     }
3869   }
3870   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3871     size_t used = get_eden_used();
3872     size_t capacity = get_eden_capacity();
3873     assert(used <= capacity, "Unexpected state of Eden");
3874     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3875       _abort_preclean = true;
3876     }
3877   }
3878 }
3879 
3880 
3881 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3882   assert(_collectorState == Precleaning ||
3883          _collectorState == AbortablePreclean, "incorrect state");
3884   ResourceMark rm;
3885   HandleMark   hm;
3886 
3887   // Precleaning is currently not MT but the reference processor
3888   // may be set for MT.  Disable it temporarily here.
3889   ReferenceProcessor* rp = ref_processor();
3890   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3891 
3892   // Do one pass of scrubbing the discovered reference lists
3893   // to remove any reference objects with strongly-reachable
3894   // referents.
3895   if (clean_refs) {
3896     CMSPrecleanRefsYieldClosure yield_cl(this);
3897     assert(rp->span().equals(_span), "Spans should be equal");
3898     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3899                                    &_markStack, true /* preclean */);
3900     CMSDrainMarkingStackClosure complete_trace(this,
3901                                    _span, &_markBitMap, &_markStack,
3902                                    &keep_alive, true /* preclean */);
3903 
3904     // We don't want this step to interfere with a young
3905     // collection because we don't want to take CPU
3906     // or memory bandwidth away from the young GC threads
3907     // (which may be as many as there are CPUs).
3908     // Note that we don't need to protect ourselves from
3909     // interference with mutators because they can't
3910     // manipulate the discovered reference lists nor affect
3911     // the computed reachability of the referents, the
3912     // only properties manipulated by the precleaning
3913     // of these reference lists.
3914     stopTimer();
3915     CMSTokenSyncWithLocks x(true /* is cms thread */,
3916                             bitMapLock());
3917     startTimer();
3918     sample_eden();
3919 
3920     // The following will yield to allow foreground
3921     // collection to proceed promptly. XXX YSR:
3922     // The code in this method may need further
3923     // tweaking for better performance and some restructuring
3924     // for cleaner interfaces.
3925     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3926     rp->preclean_discovered_references(
3927           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3928           gc_timer, _gc_tracer_cm->gc_id());
3929   }
3930 
3931   if (clean_survivor) {  // preclean the active survivor space(s)
3932     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3933                              &_markBitMap, &_modUnionTable,
3934                              &_markStack, true /* precleaning phase */);
3935     stopTimer();
3936     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3937                              bitMapLock());
3938     startTimer();
3939     unsigned int before_count =
3940       GenCollectedHeap::heap()->total_collections();
3941     SurvivorSpacePrecleanClosure
3942       sss_cl(this, _span, &_markBitMap, &_markStack,
3943              &pam_cl, before_count, CMSYield);
3944     _young_gen->from()->object_iterate_careful(&sss_cl);
3945     _young_gen->to()->object_iterate_careful(&sss_cl);
3946   }
3947   MarkRefsIntoAndScanClosure
3948     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3949              &_markStack, this, CMSYield,
3950              true /* precleaning phase */);
3951   // CAUTION: The following closure has persistent state that may need to
3952   // be reset upon a decrease in the sequence of addresses it
3953   // processes.
3954   ScanMarkedObjectsAgainCarefullyClosure
3955     smoac_cl(this, _span,
3956       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3957 
3958   // Preclean dirty cards in ModUnionTable and CardTable using
3959   // appropriate convergence criterion;
3960   // repeat CMSPrecleanIter times unless we find that
3961   // we are losing.
3962   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3963   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3964          "Bad convergence multiplier");
3965   assert(CMSPrecleanThreshold >= 100,
3966          "Unreasonably low CMSPrecleanThreshold");
3967 
3968   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3969   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3970        numIter < CMSPrecleanIter;
3971        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3972     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3973     if (Verbose && PrintGCDetails) {
3974       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3975     }
3976     // Either there are very few dirty cards, so re-mark
3977     // pause will be small anyway, or our pre-cleaning isn't
3978     // that much faster than the rate at which cards are being
3979     // dirtied, so we might as well stop and re-mark since
3980     // precleaning won't improve our re-mark time by much.
3981     if (curNumCards <= CMSPrecleanThreshold ||
3982         (numIter > 0 &&
3983          (curNumCards * CMSPrecleanDenominator >
3984          lastNumCards * CMSPrecleanNumerator))) {
3985       numIter++;
3986       cumNumCards += curNumCards;
3987       break;
3988     }
3989   }
3990 
3991   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3992 
3993   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3994   cumNumCards += curNumCards;
3995   if (PrintGCDetails && PrintCMSStatistics != 0) {
3996     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3997                   curNumCards, cumNumCards, numIter);
3998   }
3999   return cumNumCards;   // as a measure of useful work done
4000 }
4001 
4002 // PRECLEANING NOTES:
4003 // Precleaning involves:
4004 // . reading the bits of the modUnionTable and clearing the set bits.
4005 // . For the cards corresponding to the set bits, we scan the
4006 //   objects on those cards. This means we need the free_list_lock
4007 //   so that we can safely iterate over the CMS space when scanning
4008 //   for oops.
4009 // . When we scan the objects, we'll be both reading and setting
4010 //   marks in the marking bit map, so we'll need the marking bit map.
4011 // . For protecting _collector_state transitions, we take the CGC_lock.
4012 //   Note that any races in the reading of of card table entries by the
4013 //   CMS thread on the one hand and the clearing of those entries by the
4014 //   VM thread or the setting of those entries by the mutator threads on the
4015 //   other are quite benign. However, for efficiency it makes sense to keep
4016 //   the VM thread from racing with the CMS thread while the latter is
4017 //   dirty card info to the modUnionTable. We therefore also use the
4018 //   CGC_lock to protect the reading of the card table and the mod union
4019 //   table by the CM thread.
4020 // . We run concurrently with mutator updates, so scanning
4021 //   needs to be done carefully  -- we should not try to scan
4022 //   potentially uninitialized objects.
4023 //
4024 // Locking strategy: While holding the CGC_lock, we scan over and
4025 // reset a maximal dirty range of the mod union / card tables, then lock
4026 // the free_list_lock and bitmap lock to do a full marking, then
4027 // release these locks; and repeat the cycle. This allows for a
4028 // certain amount of fairness in the sharing of these locks between
4029 // the CMS collector on the one hand, and the VM thread and the
4030 // mutators on the other.
4031 
4032 // NOTE: preclean_mod_union_table() and preclean_card_table()
4033 // further below are largely identical; if you need to modify
4034 // one of these methods, please check the other method too.
4035 
4036 size_t CMSCollector::preclean_mod_union_table(
4037   ConcurrentMarkSweepGeneration* old_gen,
4038   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4039   verify_work_stacks_empty();
4040   verify_overflow_empty();
4041 
4042   // strategy: starting with the first card, accumulate contiguous
4043   // ranges of dirty cards; clear these cards, then scan the region
4044   // covered by these cards.
4045 
4046   // Since all of the MUT is committed ahead, we can just use
4047   // that, in case the generations expand while we are precleaning.
4048   // It might also be fine to just use the committed part of the
4049   // generation, but we might potentially miss cards when the
4050   // generation is rapidly expanding while we are in the midst
4051   // of precleaning.
4052   HeapWord* startAddr = old_gen->reserved().start();
4053   HeapWord* endAddr   = old_gen->reserved().end();
4054 
4055   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4056 
4057   size_t numDirtyCards, cumNumDirtyCards;
4058   HeapWord *nextAddr, *lastAddr;
4059   for (cumNumDirtyCards = numDirtyCards = 0,
4060        nextAddr = lastAddr = startAddr;
4061        nextAddr < endAddr;
4062        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4063 
4064     ResourceMark rm;
4065     HandleMark   hm;
4066 
4067     MemRegion dirtyRegion;
4068     {
4069       stopTimer();
4070       // Potential yield point
4071       CMSTokenSync ts(true);
4072       startTimer();
4073       sample_eden();
4074       // Get dirty region starting at nextOffset (inclusive),
4075       // simultaneously clearing it.
4076       dirtyRegion =
4077         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4078       assert(dirtyRegion.start() >= nextAddr,
4079              "returned region inconsistent?");
4080     }
4081     // Remember where the next search should begin.
4082     // The returned region (if non-empty) is a right open interval,
4083     // so lastOffset is obtained from the right end of that
4084     // interval.
4085     lastAddr = dirtyRegion.end();
4086     // Should do something more transparent and less hacky XXX
4087     numDirtyCards =
4088       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4089 
4090     // We'll scan the cards in the dirty region (with periodic
4091     // yields for foreground GC as needed).
4092     if (!dirtyRegion.is_empty()) {
4093       assert(numDirtyCards > 0, "consistency check");
4094       HeapWord* stop_point = NULL;
4095       stopTimer();
4096       // Potential yield point
4097       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4098                                bitMapLock());
4099       startTimer();
4100       {
4101         verify_work_stacks_empty();
4102         verify_overflow_empty();
4103         sample_eden();
4104         stop_point =
4105           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4106       }
4107       if (stop_point != NULL) {
4108         // The careful iteration stopped early either because it found an
4109         // uninitialized object, or because we were in the midst of an
4110         // "abortable preclean", which should now be aborted. Redirty
4111         // the bits corresponding to the partially-scanned or unscanned
4112         // cards. We'll either restart at the next block boundary or
4113         // abort the preclean.
4114         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4115                "Should only be AbortablePreclean.");
4116         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4117         if (should_abort_preclean()) {
4118           break; // out of preclean loop
4119         } else {
4120           // Compute the next address at which preclean should pick up;
4121           // might need bitMapLock in order to read P-bits.
4122           lastAddr = next_card_start_after_block(stop_point);
4123         }
4124       }
4125     } else {
4126       assert(lastAddr == endAddr, "consistency check");
4127       assert(numDirtyCards == 0, "consistency check");
4128       break;
4129     }
4130   }
4131   verify_work_stacks_empty();
4132   verify_overflow_empty();
4133   return cumNumDirtyCards;
4134 }
4135 
4136 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4137 // below are largely identical; if you need to modify
4138 // one of these methods, please check the other method too.
4139 
4140 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4141   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4142   // strategy: it's similar to precleamModUnionTable above, in that
4143   // we accumulate contiguous ranges of dirty cards, mark these cards
4144   // precleaned, then scan the region covered by these cards.
4145   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4146   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4147 
4148   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4149 
4150   size_t numDirtyCards, cumNumDirtyCards;
4151   HeapWord *lastAddr, *nextAddr;
4152 
4153   for (cumNumDirtyCards = numDirtyCards = 0,
4154        nextAddr = lastAddr = startAddr;
4155        nextAddr < endAddr;
4156        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4157 
4158     ResourceMark rm;
4159     HandleMark   hm;
4160 
4161     MemRegion dirtyRegion;
4162     {
4163       // See comments in "Precleaning notes" above on why we
4164       // do this locking. XXX Could the locking overheads be
4165       // too high when dirty cards are sparse? [I don't think so.]
4166       stopTimer();
4167       CMSTokenSync x(true); // is cms thread
4168       startTimer();
4169       sample_eden();
4170       // Get and clear dirty region from card table
4171       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4172                                     MemRegion(nextAddr, endAddr),
4173                                     true,
4174                                     CardTableModRefBS::precleaned_card_val());
4175 
4176       assert(dirtyRegion.start() >= nextAddr,
4177              "returned region inconsistent?");
4178     }
4179     lastAddr = dirtyRegion.end();
4180     numDirtyCards =
4181       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4182 
4183     if (!dirtyRegion.is_empty()) {
4184       stopTimer();
4185       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4186       startTimer();
4187       sample_eden();
4188       verify_work_stacks_empty();
4189       verify_overflow_empty();
4190       HeapWord* stop_point =
4191         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4192       if (stop_point != NULL) {
4193         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4194                "Should only be AbortablePreclean.");
4195         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4196         if (should_abort_preclean()) {
4197           break; // out of preclean loop
4198         } else {
4199           // Compute the next address at which preclean should pick up.
4200           lastAddr = next_card_start_after_block(stop_point);
4201         }
4202       }
4203     } else {
4204       break;
4205     }
4206   }
4207   verify_work_stacks_empty();
4208   verify_overflow_empty();
4209   return cumNumDirtyCards;
4210 }
4211 
4212 class PrecleanKlassClosure : public KlassClosure {
4213   KlassToOopClosure _cm_klass_closure;
4214  public:
4215   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4216   void do_klass(Klass* k) {
4217     if (k->has_accumulated_modified_oops()) {
4218       k->clear_accumulated_modified_oops();
4219 
4220       _cm_klass_closure.do_klass(k);
4221     }
4222   }
4223 };
4224 
4225 // The freelist lock is needed to prevent asserts, is it really needed?
4226 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4227 
4228   cl->set_freelistLock(freelistLock);
4229 
4230   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4231 
4232   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4233   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4234   PrecleanKlassClosure preclean_klass_closure(cl);
4235   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4236 
4237   verify_work_stacks_empty();
4238   verify_overflow_empty();
4239 }
4240 
4241 void CMSCollector::checkpointRootsFinal() {
4242   assert(_collectorState == FinalMarking, "incorrect state transition?");
4243   check_correct_thread_executing();
4244   // world is stopped at this checkpoint
4245   assert(SafepointSynchronize::is_at_safepoint(),
4246          "world should be stopped");
4247   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4248 
4249   verify_work_stacks_empty();
4250   verify_overflow_empty();
4251 
4252   if (PrintGCDetails) {
4253     gclog_or_tty->print("[YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)]",
4254                         _young_gen->used() / K,
4255                         _young_gen->capacity() / K);
4256   }
4257   {
4258     if (CMSScavengeBeforeRemark) {
4259       GenCollectedHeap* gch = GenCollectedHeap::heap();
4260       // Temporarily set flag to false, GCH->do_collection will
4261       // expect it to be false and set to true
4262       FlagSetting fl(gch->_is_gc_active, false);
4263       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4264         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4265       gch->do_collection(true,                      // full (i.e. force, see below)
4266                          false,                     // !clear_all_soft_refs
4267                          0,                         // size
4268                          false,                     // is_tlab
4269                          GenCollectedHeap::YoungGen // type
4270         );
4271     }
4272     FreelistLocker x(this);
4273     MutexLockerEx y(bitMapLock(),
4274                     Mutex::_no_safepoint_check_flag);
4275     checkpointRootsFinalWork();
4276   }
4277   verify_work_stacks_empty();
4278   verify_overflow_empty();
4279 }
4280 
4281 void CMSCollector::checkpointRootsFinalWork() {
4282   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4283 
4284   assert(haveFreelistLocks(), "must have free list locks");
4285   assert_lock_strong(bitMapLock());
4286 
4287   ResourceMark rm;
4288   HandleMark   hm;
4289 
4290   GenCollectedHeap* gch = GenCollectedHeap::heap();
4291 
4292   if (should_unload_classes()) {
4293     CodeCache::gc_prologue();
4294   }
4295   assert(haveFreelistLocks(), "must have free list locks");
4296   assert_lock_strong(bitMapLock());
4297 
4298   // We might assume that we need not fill TLAB's when
4299   // CMSScavengeBeforeRemark is set, because we may have just done
4300   // a scavenge which would have filled all TLAB's -- and besides
4301   // Eden would be empty. This however may not always be the case --
4302   // for instance although we asked for a scavenge, it may not have
4303   // happened because of a JNI critical section. We probably need
4304   // a policy for deciding whether we can in that case wait until
4305   // the critical section releases and then do the remark following
4306   // the scavenge, and skip it here. In the absence of that policy,
4307   // or of an indication of whether the scavenge did indeed occur,
4308   // we cannot rely on TLAB's having been filled and must do
4309   // so here just in case a scavenge did not happen.
4310   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4311   // Update the saved marks which may affect the root scans.
4312   gch->save_marks();
4313 
4314   if (CMSPrintEdenSurvivorChunks) {
4315     print_eden_and_survivor_chunk_arrays();
4316   }
4317 
4318   {
4319     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4320 
4321     // Note on the role of the mod union table:
4322     // Since the marker in "markFromRoots" marks concurrently with
4323     // mutators, it is possible for some reachable objects not to have been
4324     // scanned. For instance, an only reference to an object A was
4325     // placed in object B after the marker scanned B. Unless B is rescanned,
4326     // A would be collected. Such updates to references in marked objects
4327     // are detected via the mod union table which is the set of all cards
4328     // dirtied since the first checkpoint in this GC cycle and prior to
4329     // the most recent young generation GC, minus those cleaned up by the
4330     // concurrent precleaning.
4331     if (CMSParallelRemarkEnabled) {
4332       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4333       do_remark_parallel();
4334     } else {
4335       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4336                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4337       do_remark_non_parallel();
4338     }
4339   }
4340   verify_work_stacks_empty();
4341   verify_overflow_empty();
4342 
4343   {
4344     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4345     refProcessingWork();
4346   }
4347   verify_work_stacks_empty();
4348   verify_overflow_empty();
4349 
4350   if (should_unload_classes()) {
4351     CodeCache::gc_epilogue();
4352   }
4353   JvmtiExport::gc_epilogue();
4354 
4355   // If we encountered any (marking stack / work queue) overflow
4356   // events during the current CMS cycle, take appropriate
4357   // remedial measures, where possible, so as to try and avoid
4358   // recurrence of that condition.
4359   assert(_markStack.isEmpty(), "No grey objects");
4360   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4361                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4362   if (ser_ovflw > 0) {
4363     if (PrintCMSStatistics != 0) {
4364       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4365         "(pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT
4366         ", kac_preclean=" SIZE_FORMAT ")",
4367         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4368         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4369     }
4370     _markStack.expand();
4371     _ser_pmc_remark_ovflw = 0;
4372     _ser_pmc_preclean_ovflw = 0;
4373     _ser_kac_preclean_ovflw = 0;
4374     _ser_kac_ovflw = 0;
4375   }
4376   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4377     if (PrintCMSStatistics != 0) {
4378       gclog_or_tty->print_cr("Work queue overflow (benign) "
4379         "(pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4380         _par_pmc_remark_ovflw, _par_kac_ovflw);
4381     }
4382     _par_pmc_remark_ovflw = 0;
4383     _par_kac_ovflw = 0;
4384   }
4385   if (PrintCMSStatistics != 0) {
4386      if (_markStack._hit_limit > 0) {
4387        gclog_or_tty->print_cr(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4388                               _markStack._hit_limit);
4389      }
4390      if (_markStack._failed_double > 0) {
4391        gclog_or_tty->print_cr(" (benign) Failed stack doubling (" SIZE_FORMAT "),"
4392                               " current capacity " SIZE_FORMAT,
4393                               _markStack._failed_double,
4394                               _markStack.capacity());
4395      }
4396   }
4397   _markStack._hit_limit = 0;
4398   _markStack._failed_double = 0;
4399 
4400   if ((VerifyAfterGC || VerifyDuringGC) &&
4401       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4402     verify_after_remark();
4403   }
4404 
4405   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4406 
4407   // Change under the freelistLocks.
4408   _collectorState = Sweeping;
4409   // Call isAllClear() under bitMapLock
4410   assert(_modUnionTable.isAllClear(),
4411       "Should be clear by end of the final marking");
4412   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4413       "Should be clear by end of the final marking");
4414 }
4415 
4416 void CMSParInitialMarkTask::work(uint worker_id) {
4417   elapsedTimer _timer;
4418   ResourceMark rm;
4419   HandleMark   hm;
4420 
4421   // ---------- scan from roots --------------
4422   _timer.start();
4423   GenCollectedHeap* gch = GenCollectedHeap::heap();
4424   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4425 
4426   // ---------- young gen roots --------------
4427   {
4428     work_on_young_gen_roots(worker_id, &par_mri_cl);
4429     _timer.stop();
4430     if (PrintCMSStatistics != 0) {
4431       gclog_or_tty->print_cr(
4432         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4433         worker_id, _timer.seconds());
4434     }
4435   }
4436 
4437   // ---------- remaining roots --------------
4438   _timer.reset();
4439   _timer.start();
4440 
4441   CLDToOopClosure cld_closure(&par_mri_cl, true);
4442 
4443   gch->gen_process_roots(_strong_roots_scope,
4444                          GenCollectedHeap::OldGen,
4445                          false,     // yg was scanned above
4446                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4447                          _collector->should_unload_classes(),
4448                          &par_mri_cl,
4449                          NULL,
4450                          &cld_closure);
4451   assert(_collector->should_unload_classes()
4452          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4453          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4454   _timer.stop();
4455   if (PrintCMSStatistics != 0) {
4456     gclog_or_tty->print_cr(
4457       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4458       worker_id, _timer.seconds());
4459   }
4460 }
4461 
4462 // Parallel remark task
4463 class CMSParRemarkTask: public CMSParMarkTask {
4464   CompactibleFreeListSpace* _cms_space;
4465 
4466   // The per-thread work queues, available here for stealing.
4467   OopTaskQueueSet*       _task_queues;
4468   ParallelTaskTerminator _term;
4469   StrongRootsScope*      _strong_roots_scope;
4470 
4471  public:
4472   // A value of 0 passed to n_workers will cause the number of
4473   // workers to be taken from the active workers in the work gang.
4474   CMSParRemarkTask(CMSCollector* collector,
4475                    CompactibleFreeListSpace* cms_space,
4476                    uint n_workers, WorkGang* workers,
4477                    OopTaskQueueSet* task_queues,
4478                    StrongRootsScope* strong_roots_scope):
4479     CMSParMarkTask("Rescan roots and grey objects in parallel",
4480                    collector, n_workers),
4481     _cms_space(cms_space),
4482     _task_queues(task_queues),
4483     _term(n_workers, task_queues),
4484     _strong_roots_scope(strong_roots_scope) { }
4485 
4486   OopTaskQueueSet* task_queues() { return _task_queues; }
4487 
4488   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4489 
4490   ParallelTaskTerminator* terminator() { return &_term; }
4491   uint n_workers() { return _n_workers; }
4492 
4493   void work(uint worker_id);
4494 
4495  private:
4496   // ... of  dirty cards in old space
4497   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4498                                   Par_MarkRefsIntoAndScanClosure* cl);
4499 
4500   // ... work stealing for the above
4501   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4502 };
4503 
4504 class RemarkKlassClosure : public KlassClosure {
4505   KlassToOopClosure _cm_klass_closure;
4506  public:
4507   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4508   void do_klass(Klass* k) {
4509     // Check if we have modified any oops in the Klass during the concurrent marking.
4510     if (k->has_accumulated_modified_oops()) {
4511       k->clear_accumulated_modified_oops();
4512 
4513       // We could have transfered the current modified marks to the accumulated marks,
4514       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4515     } else if (k->has_modified_oops()) {
4516       // Don't clear anything, this info is needed by the next young collection.
4517     } else {
4518       // No modified oops in the Klass.
4519       return;
4520     }
4521 
4522     // The klass has modified fields, need to scan the klass.
4523     _cm_klass_closure.do_klass(k);
4524   }
4525 };
4526 
4527 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4528   ParNewGeneration* young_gen = _collector->_young_gen;
4529   ContiguousSpace* eden_space = young_gen->eden();
4530   ContiguousSpace* from_space = young_gen->from();
4531   ContiguousSpace* to_space   = young_gen->to();
4532 
4533   HeapWord** eca = _collector->_eden_chunk_array;
4534   size_t     ect = _collector->_eden_chunk_index;
4535   HeapWord** sca = _collector->_survivor_chunk_array;
4536   size_t     sct = _collector->_survivor_chunk_index;
4537 
4538   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4539   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4540 
4541   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4542   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4543   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4544 }
4545 
4546 // work_queue(i) is passed to the closure
4547 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4548 // also is passed to do_dirty_card_rescan_tasks() and to
4549 // do_work_steal() to select the i-th task_queue.
4550 
4551 void CMSParRemarkTask::work(uint worker_id) {
4552   elapsedTimer _timer;
4553   ResourceMark rm;
4554   HandleMark   hm;
4555 
4556   // ---------- rescan from roots --------------
4557   _timer.start();
4558   GenCollectedHeap* gch = GenCollectedHeap::heap();
4559   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4560     _collector->_span, _collector->ref_processor(),
4561     &(_collector->_markBitMap),
4562     work_queue(worker_id));
4563 
4564   // Rescan young gen roots first since these are likely
4565   // coarsely partitioned and may, on that account, constitute
4566   // the critical path; thus, it's best to start off that
4567   // work first.
4568   // ---------- young gen roots --------------
4569   {
4570     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4571     _timer.stop();
4572     if (PrintCMSStatistics != 0) {
4573       gclog_or_tty->print_cr(
4574         "Finished young gen rescan work in %dth thread: %3.3f sec",
4575         worker_id, _timer.seconds());
4576     }
4577   }
4578 
4579   // ---------- remaining roots --------------
4580   _timer.reset();
4581   _timer.start();
4582   gch->gen_process_roots(_strong_roots_scope,
4583                          GenCollectedHeap::OldGen,
4584                          false,     // yg was scanned above
4585                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4586                          _collector->should_unload_classes(),
4587                          &par_mrias_cl,
4588                          NULL,
4589                          NULL);     // The dirty klasses will be handled below
4590 
4591   assert(_collector->should_unload_classes()
4592          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4593          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4594   _timer.stop();
4595   if (PrintCMSStatistics != 0) {
4596     gclog_or_tty->print_cr(
4597       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4598       worker_id, _timer.seconds());
4599   }
4600 
4601   // ---------- unhandled CLD scanning ----------
4602   if (worker_id == 0) { // Single threaded at the moment.
4603     _timer.reset();
4604     _timer.start();
4605 
4606     // Scan all new class loader data objects and new dependencies that were
4607     // introduced during concurrent marking.
4608     ResourceMark rm;
4609     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4610     for (int i = 0; i < array->length(); i++) {
4611       par_mrias_cl.do_cld_nv(array->at(i));
4612     }
4613 
4614     // We don't need to keep track of new CLDs anymore.
4615     ClassLoaderDataGraph::remember_new_clds(false);
4616 
4617     _timer.stop();
4618     if (PrintCMSStatistics != 0) {
4619       gclog_or_tty->print_cr(
4620           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4621           worker_id, _timer.seconds());
4622     }
4623   }
4624 
4625   // ---------- dirty klass scanning ----------
4626   if (worker_id == 0) { // Single threaded at the moment.
4627     _timer.reset();
4628     _timer.start();
4629 
4630     // Scan all classes that was dirtied during the concurrent marking phase.
4631     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4632     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4633 
4634     _timer.stop();
4635     if (PrintCMSStatistics != 0) {
4636       gclog_or_tty->print_cr(
4637           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4638           worker_id, _timer.seconds());
4639     }
4640   }
4641 
4642   // We might have added oops to ClassLoaderData::_handles during the
4643   // concurrent marking phase. These oops point to newly allocated objects
4644   // that are guaranteed to be kept alive. Either by the direct allocation
4645   // code, or when the young collector processes the roots. Hence,
4646   // we don't have to revisit the _handles block during the remark phase.
4647 
4648   // ---------- rescan dirty cards ------------
4649   _timer.reset();
4650   _timer.start();
4651 
4652   // Do the rescan tasks for each of the two spaces
4653   // (cms_space) in turn.
4654   // "worker_id" is passed to select the task_queue for "worker_id"
4655   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4656   _timer.stop();
4657   if (PrintCMSStatistics != 0) {
4658     gclog_or_tty->print_cr(
4659       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4660       worker_id, _timer.seconds());
4661   }
4662 
4663   // ---------- steal work from other threads ...
4664   // ---------- ... and drain overflow list.
4665   _timer.reset();
4666   _timer.start();
4667   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4668   _timer.stop();
4669   if (PrintCMSStatistics != 0) {
4670     gclog_or_tty->print_cr(
4671       "Finished work stealing in %dth thread: %3.3f sec",
4672       worker_id, _timer.seconds());
4673   }
4674 }
4675 
4676 // Note that parameter "i" is not used.
4677 void
4678 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4679   OopsInGenClosure* cl, ContiguousSpace* space,
4680   HeapWord** chunk_array, size_t chunk_top) {
4681   // Until all tasks completed:
4682   // . claim an unclaimed task
4683   // . compute region boundaries corresponding to task claimed
4684   //   using chunk_array
4685   // . par_oop_iterate(cl) over that region
4686 
4687   ResourceMark rm;
4688   HandleMark   hm;
4689 
4690   SequentialSubTasksDone* pst = space->par_seq_tasks();
4691 
4692   uint nth_task = 0;
4693   uint n_tasks  = pst->n_tasks();
4694 
4695   if (n_tasks > 0) {
4696     assert(pst->valid(), "Uninitialized use?");
4697     HeapWord *start, *end;
4698     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4699       // We claimed task # nth_task; compute its boundaries.
4700       if (chunk_top == 0) {  // no samples were taken
4701         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4702         start = space->bottom();
4703         end   = space->top();
4704       } else if (nth_task == 0) {
4705         start = space->bottom();
4706         end   = chunk_array[nth_task];
4707       } else if (nth_task < (uint)chunk_top) {
4708         assert(nth_task >= 1, "Control point invariant");
4709         start = chunk_array[nth_task - 1];
4710         end   = chunk_array[nth_task];
4711       } else {
4712         assert(nth_task == (uint)chunk_top, "Control point invariant");
4713         start = chunk_array[chunk_top - 1];
4714         end   = space->top();
4715       }
4716       MemRegion mr(start, end);
4717       // Verify that mr is in space
4718       assert(mr.is_empty() || space->used_region().contains(mr),
4719              "Should be in space");
4720       // Verify that "start" is an object boundary
4721       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4722              "Should be an oop");
4723       space->par_oop_iterate(mr, cl);
4724     }
4725     pst->all_tasks_completed();
4726   }
4727 }
4728 
4729 void
4730 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4731   CompactibleFreeListSpace* sp, int i,
4732   Par_MarkRefsIntoAndScanClosure* cl) {
4733   // Until all tasks completed:
4734   // . claim an unclaimed task
4735   // . compute region boundaries corresponding to task claimed
4736   // . transfer dirty bits ct->mut for that region
4737   // . apply rescanclosure to dirty mut bits for that region
4738 
4739   ResourceMark rm;
4740   HandleMark   hm;
4741 
4742   OopTaskQueue* work_q = work_queue(i);
4743   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4744   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4745   // CAUTION: This closure has state that persists across calls to
4746   // the work method dirty_range_iterate_clear() in that it has
4747   // embedded in it a (subtype of) UpwardsObjectClosure. The
4748   // use of that state in the embedded UpwardsObjectClosure instance
4749   // assumes that the cards are always iterated (even if in parallel
4750   // by several threads) in monotonically increasing order per each
4751   // thread. This is true of the implementation below which picks
4752   // card ranges (chunks) in monotonically increasing order globally
4753   // and, a-fortiori, in monotonically increasing order per thread
4754   // (the latter order being a subsequence of the former).
4755   // If the work code below is ever reorganized into a more chaotic
4756   // work-partitioning form than the current "sequential tasks"
4757   // paradigm, the use of that persistent state will have to be
4758   // revisited and modified appropriately. See also related
4759   // bug 4756801 work on which should examine this code to make
4760   // sure that the changes there do not run counter to the
4761   // assumptions made here and necessary for correctness and
4762   // efficiency. Note also that this code might yield inefficient
4763   // behavior in the case of very large objects that span one or
4764   // more work chunks. Such objects would potentially be scanned
4765   // several times redundantly. Work on 4756801 should try and
4766   // address that performance anomaly if at all possible. XXX
4767   MemRegion  full_span  = _collector->_span;
4768   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4769   MarkFromDirtyCardsClosure
4770     greyRescanClosure(_collector, full_span, // entire span of interest
4771                       sp, bm, work_q, cl);
4772 
4773   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4774   assert(pst->valid(), "Uninitialized use?");
4775   uint nth_task = 0;
4776   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4777   MemRegion span = sp->used_region();
4778   HeapWord* start_addr = span.start();
4779   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4780                                            alignment);
4781   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4782   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4783          start_addr, "Check alignment");
4784   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4785          chunk_size, "Check alignment");
4786 
4787   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4788     // Having claimed the nth_task, compute corresponding mem-region,
4789     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4790     // The alignment restriction ensures that we do not need any
4791     // synchronization with other gang-workers while setting or
4792     // clearing bits in thus chunk of the MUT.
4793     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4794                                     start_addr + (nth_task+1)*chunk_size);
4795     // The last chunk's end might be way beyond end of the
4796     // used region. In that case pull back appropriately.
4797     if (this_span.end() > end_addr) {
4798       this_span.set_end(end_addr);
4799       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4800     }
4801     // Iterate over the dirty cards covering this chunk, marking them
4802     // precleaned, and setting the corresponding bits in the mod union
4803     // table. Since we have been careful to partition at Card and MUT-word
4804     // boundaries no synchronization is needed between parallel threads.
4805     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4806                                                  &modUnionClosure);
4807 
4808     // Having transferred these marks into the modUnionTable,
4809     // rescan the marked objects on the dirty cards in the modUnionTable.
4810     // Even if this is at a synchronous collection, the initial marking
4811     // may have been done during an asynchronous collection so there
4812     // may be dirty bits in the mod-union table.
4813     _collector->_modUnionTable.dirty_range_iterate_clear(
4814                   this_span, &greyRescanClosure);
4815     _collector->_modUnionTable.verifyNoOneBitsInRange(
4816                                  this_span.start(),
4817                                  this_span.end());
4818   }
4819   pst->all_tasks_completed();  // declare that i am done
4820 }
4821 
4822 // . see if we can share work_queues with ParNew? XXX
4823 void
4824 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4825                                 int* seed) {
4826   OopTaskQueue* work_q = work_queue(i);
4827   NOT_PRODUCT(int num_steals = 0;)
4828   oop obj_to_scan;
4829   CMSBitMap* bm = &(_collector->_markBitMap);
4830 
4831   while (true) {
4832     // Completely finish any left over work from (an) earlier round(s)
4833     cl->trim_queue(0);
4834     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4835                                          (size_t)ParGCDesiredObjsFromOverflowList);
4836     // Now check if there's any work in the overflow list
4837     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4838     // only affects the number of attempts made to get work from the
4839     // overflow list and does not affect the number of workers.  Just
4840     // pass ParallelGCThreads so this behavior is unchanged.
4841     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4842                                                 work_q,
4843                                                 ParallelGCThreads)) {
4844       // found something in global overflow list;
4845       // not yet ready to go stealing work from others.
4846       // We'd like to assert(work_q->size() != 0, ...)
4847       // because we just took work from the overflow list,
4848       // but of course we can't since all of that could have
4849       // been already stolen from us.
4850       // "He giveth and He taketh away."
4851       continue;
4852     }
4853     // Verify that we have no work before we resort to stealing
4854     assert(work_q->size() == 0, "Have work, shouldn't steal");
4855     // Try to steal from other queues that have work
4856     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4857       NOT_PRODUCT(num_steals++;)
4858       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4859       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4860       // Do scanning work
4861       obj_to_scan->oop_iterate(cl);
4862       // Loop around, finish this work, and try to steal some more
4863     } else if (terminator()->offer_termination()) {
4864         break;  // nirvana from the infinite cycle
4865     }
4866   }
4867   NOT_PRODUCT(
4868     if (PrintCMSStatistics != 0) {
4869       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4870     }
4871   )
4872   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4873          "Else our work is not yet done");
4874 }
4875 
4876 // Record object boundaries in _eden_chunk_array by sampling the eden
4877 // top in the slow-path eden object allocation code path and record
4878 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4879 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4880 // sampling in sample_eden() that activates during the part of the
4881 // preclean phase.
4882 void CMSCollector::sample_eden_chunk() {
4883   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4884     if (_eden_chunk_lock->try_lock()) {
4885       // Record a sample. This is the critical section. The contents
4886       // of the _eden_chunk_array have to be non-decreasing in the
4887       // address order.
4888       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4889       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4890              "Unexpected state of Eden");
4891       if (_eden_chunk_index == 0 ||
4892           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4893            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4894                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4895         _eden_chunk_index++;  // commit sample
4896       }
4897       _eden_chunk_lock->unlock();
4898     }
4899   }
4900 }
4901 
4902 // Return a thread-local PLAB recording array, as appropriate.
4903 void* CMSCollector::get_data_recorder(int thr_num) {
4904   if (_survivor_plab_array != NULL &&
4905       (CMSPLABRecordAlways ||
4906        (_collectorState > Marking && _collectorState < FinalMarking))) {
4907     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4908     ChunkArray* ca = &_survivor_plab_array[thr_num];
4909     ca->reset();   // clear it so that fresh data is recorded
4910     return (void*) ca;
4911   } else {
4912     return NULL;
4913   }
4914 }
4915 
4916 // Reset all the thread-local PLAB recording arrays
4917 void CMSCollector::reset_survivor_plab_arrays() {
4918   for (uint i = 0; i < ParallelGCThreads; i++) {
4919     _survivor_plab_array[i].reset();
4920   }
4921 }
4922 
4923 // Merge the per-thread plab arrays into the global survivor chunk
4924 // array which will provide the partitioning of the survivor space
4925 // for CMS initial scan and rescan.
4926 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4927                                               int no_of_gc_threads) {
4928   assert(_survivor_plab_array  != NULL, "Error");
4929   assert(_survivor_chunk_array != NULL, "Error");
4930   assert(_collectorState == FinalMarking ||
4931          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4932   for (int j = 0; j < no_of_gc_threads; j++) {
4933     _cursor[j] = 0;
4934   }
4935   HeapWord* top = surv->top();
4936   size_t i;
4937   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4938     HeapWord* min_val = top;          // Higher than any PLAB address
4939     uint      min_tid = 0;            // position of min_val this round
4940     for (int j = 0; j < no_of_gc_threads; j++) {
4941       ChunkArray* cur_sca = &_survivor_plab_array[j];
4942       if (_cursor[j] == cur_sca->end()) {
4943         continue;
4944       }
4945       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4946       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4947       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4948       if (cur_val < min_val) {
4949         min_tid = j;
4950         min_val = cur_val;
4951       } else {
4952         assert(cur_val < top, "All recorded addresses should be less");
4953       }
4954     }
4955     // At this point min_val and min_tid are respectively
4956     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4957     // and the thread (j) that witnesses that address.
4958     // We record this address in the _survivor_chunk_array[i]
4959     // and increment _cursor[min_tid] prior to the next round i.
4960     if (min_val == top) {
4961       break;
4962     }
4963     _survivor_chunk_array[i] = min_val;
4964     _cursor[min_tid]++;
4965   }
4966   // We are all done; record the size of the _survivor_chunk_array
4967   _survivor_chunk_index = i; // exclusive: [0, i)
4968   if (PrintCMSStatistics > 0) {
4969     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4970   }
4971   // Verify that we used up all the recorded entries
4972   #ifdef ASSERT
4973     size_t total = 0;
4974     for (int j = 0; j < no_of_gc_threads; j++) {
4975       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4976       total += _cursor[j];
4977     }
4978     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4979     // Check that the merged array is in sorted order
4980     if (total > 0) {
4981       for (size_t i = 0; i < total - 1; i++) {
4982         if (PrintCMSStatistics > 0) {
4983           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4984                               i, p2i(_survivor_chunk_array[i]));
4985         }
4986         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4987                "Not sorted");
4988       }
4989     }
4990   #endif // ASSERT
4991 }
4992 
4993 // Set up the space's par_seq_tasks structure for work claiming
4994 // for parallel initial scan and rescan of young gen.
4995 // See ParRescanTask where this is currently used.
4996 void
4997 CMSCollector::
4998 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4999   assert(n_threads > 0, "Unexpected n_threads argument");
5000 
5001   // Eden space
5002   if (!_young_gen->eden()->is_empty()) {
5003     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5004     assert(!pst->valid(), "Clobbering existing data?");
5005     // Each valid entry in [0, _eden_chunk_index) represents a task.
5006     size_t n_tasks = _eden_chunk_index + 1;
5007     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5008     // Sets the condition for completion of the subtask (how many threads
5009     // need to finish in order to be done).
5010     pst->set_n_threads(n_threads);
5011     pst->set_n_tasks((int)n_tasks);
5012   }
5013 
5014   // Merge the survivor plab arrays into _survivor_chunk_array
5015   if (_survivor_plab_array != NULL) {
5016     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5017   } else {
5018     assert(_survivor_chunk_index == 0, "Error");
5019   }
5020 
5021   // To space
5022   {
5023     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5024     assert(!pst->valid(), "Clobbering existing data?");
5025     // Sets the condition for completion of the subtask (how many threads
5026     // need to finish in order to be done).
5027     pst->set_n_threads(n_threads);
5028     pst->set_n_tasks(1);
5029     assert(pst->valid(), "Error");
5030   }
5031 
5032   // From space
5033   {
5034     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5035     assert(!pst->valid(), "Clobbering existing data?");
5036     size_t n_tasks = _survivor_chunk_index + 1;
5037     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5038     // Sets the condition for completion of the subtask (how many threads
5039     // need to finish in order to be done).
5040     pst->set_n_threads(n_threads);
5041     pst->set_n_tasks((int)n_tasks);
5042     assert(pst->valid(), "Error");
5043   }
5044 }
5045 
5046 // Parallel version of remark
5047 void CMSCollector::do_remark_parallel() {
5048   GenCollectedHeap* gch = GenCollectedHeap::heap();
5049   WorkGang* workers = gch->workers();
5050   assert(workers != NULL, "Need parallel worker threads.");
5051   // Choose to use the number of GC workers most recently set
5052   // into "active_workers".
5053   uint n_workers = workers->active_workers();
5054 
5055   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5056 
5057   StrongRootsScope srs(n_workers);
5058 
5059   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
5060 
5061   // We won't be iterating over the cards in the card table updating
5062   // the younger_gen cards, so we shouldn't call the following else
5063   // the verification code as well as subsequent younger_refs_iterate
5064   // code would get confused. XXX
5065   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5066 
5067   // The young gen rescan work will not be done as part of
5068   // process_roots (which currently doesn't know how to
5069   // parallelize such a scan), but rather will be broken up into
5070   // a set of parallel tasks (via the sampling that the [abortable]
5071   // preclean phase did of eden, plus the [two] tasks of
5072   // scanning the [two] survivor spaces. Further fine-grain
5073   // parallelization of the scanning of the survivor spaces
5074   // themselves, and of precleaning of the young gen itself
5075   // is deferred to the future.
5076   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5077 
5078   // The dirty card rescan work is broken up into a "sequence"
5079   // of parallel tasks (per constituent space) that are dynamically
5080   // claimed by the parallel threads.
5081   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5082 
5083   // It turns out that even when we're using 1 thread, doing the work in a
5084   // separate thread causes wide variance in run times.  We can't help this
5085   // in the multi-threaded case, but we special-case n=1 here to get
5086   // repeatable measurements of the 1-thread overhead of the parallel code.
5087   if (n_workers > 1) {
5088     // Make refs discovery MT-safe, if it isn't already: it may not
5089     // necessarily be so, since it's possible that we are doing
5090     // ST marking.
5091     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5092     workers->run_task(&tsk);
5093   } else {
5094     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5095     tsk.work(0);
5096   }
5097 
5098   // restore, single-threaded for now, any preserved marks
5099   // as a result of work_q overflow
5100   restore_preserved_marks_if_any();
5101 }
5102 
5103 // Non-parallel version of remark
5104 void CMSCollector::do_remark_non_parallel() {
5105   ResourceMark rm;
5106   HandleMark   hm;
5107   GenCollectedHeap* gch = GenCollectedHeap::heap();
5108   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5109 
5110   MarkRefsIntoAndScanClosure
5111     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5112              &_markStack, this,
5113              false /* should_yield */, false /* not precleaning */);
5114   MarkFromDirtyCardsClosure
5115     markFromDirtyCardsClosure(this, _span,
5116                               NULL,  // space is set further below
5117                               &_markBitMap, &_markStack, &mrias_cl);
5118   {
5119     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5120     // Iterate over the dirty cards, setting the corresponding bits in the
5121     // mod union table.
5122     {
5123       ModUnionClosure modUnionClosure(&_modUnionTable);
5124       _ct->ct_bs()->dirty_card_iterate(
5125                       _cmsGen->used_region(),
5126                       &modUnionClosure);
5127     }
5128     // Having transferred these marks into the modUnionTable, we just need
5129     // to rescan the marked objects on the dirty cards in the modUnionTable.
5130     // The initial marking may have been done during an asynchronous
5131     // collection so there may be dirty bits in the mod-union table.
5132     const int alignment =
5133       CardTableModRefBS::card_size * BitsPerWord;
5134     {
5135       // ... First handle dirty cards in CMS gen
5136       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5137       MemRegion ur = _cmsGen->used_region();
5138       HeapWord* lb = ur.start();
5139       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5140       MemRegion cms_span(lb, ub);
5141       _modUnionTable.dirty_range_iterate_clear(cms_span,
5142                                                &markFromDirtyCardsClosure);
5143       verify_work_stacks_empty();
5144       if (PrintCMSStatistics != 0) {
5145         gclog_or_tty->print(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ",
5146           markFromDirtyCardsClosure.num_dirty_cards());
5147       }
5148     }
5149   }
5150   if (VerifyDuringGC &&
5151       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5152     HandleMark hm;  // Discard invalid handles created during verification
5153     Universe::verify();
5154   }
5155   {
5156     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5157 
5158     verify_work_stacks_empty();
5159 
5160     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5161     StrongRootsScope srs(1);
5162 
5163     gch->gen_process_roots(&srs,
5164                            GenCollectedHeap::OldGen,
5165                            true,  // young gen as roots
5166                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5167                            should_unload_classes(),
5168                            &mrias_cl,
5169                            NULL,
5170                            NULL); // The dirty klasses will be handled below
5171 
5172     assert(should_unload_classes()
5173            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5174            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5175   }
5176 
5177   {
5178     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5179 
5180     verify_work_stacks_empty();
5181 
5182     // Scan all class loader data objects that might have been introduced
5183     // during concurrent marking.
5184     ResourceMark rm;
5185     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5186     for (int i = 0; i < array->length(); i++) {
5187       mrias_cl.do_cld_nv(array->at(i));
5188     }
5189 
5190     // We don't need to keep track of new CLDs anymore.
5191     ClassLoaderDataGraph::remember_new_clds(false);
5192 
5193     verify_work_stacks_empty();
5194   }
5195 
5196   {
5197     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5198 
5199     verify_work_stacks_empty();
5200 
5201     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5202     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5203 
5204     verify_work_stacks_empty();
5205   }
5206 
5207   // We might have added oops to ClassLoaderData::_handles during the
5208   // concurrent marking phase. These oops point to newly allocated objects
5209   // that are guaranteed to be kept alive. Either by the direct allocation
5210   // code, or when the young collector processes the roots. Hence,
5211   // we don't have to revisit the _handles block during the remark phase.
5212 
5213   verify_work_stacks_empty();
5214   // Restore evacuated mark words, if any, used for overflow list links
5215   if (!CMSOverflowEarlyRestoration) {
5216     restore_preserved_marks_if_any();
5217   }
5218   verify_overflow_empty();
5219 }
5220 
5221 ////////////////////////////////////////////////////////
5222 // Parallel Reference Processing Task Proxy Class
5223 ////////////////////////////////////////////////////////
5224 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5225   OopTaskQueueSet*       _queues;
5226   ParallelTaskTerminator _terminator;
5227  public:
5228   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5229     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5230   ParallelTaskTerminator* terminator() { return &_terminator; }
5231   OopTaskQueueSet* queues() { return _queues; }
5232 };
5233 
5234 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5235   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5236   CMSCollector*          _collector;
5237   CMSBitMap*             _mark_bit_map;
5238   const MemRegion        _span;
5239   ProcessTask&           _task;
5240 
5241 public:
5242   CMSRefProcTaskProxy(ProcessTask&     task,
5243                       CMSCollector*    collector,
5244                       const MemRegion& span,
5245                       CMSBitMap*       mark_bit_map,
5246                       AbstractWorkGang* workers,
5247                       OopTaskQueueSet* task_queues):
5248     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5249       task_queues,
5250       workers->active_workers()),
5251     _task(task),
5252     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5253   {
5254     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5255            "Inconsistency in _span");
5256   }
5257 
5258   OopTaskQueueSet* task_queues() { return queues(); }
5259 
5260   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5261 
5262   void do_work_steal(int i,
5263                      CMSParDrainMarkingStackClosure* drain,
5264                      CMSParKeepAliveClosure* keep_alive,
5265                      int* seed);
5266 
5267   virtual void work(uint worker_id);
5268 };
5269 
5270 void CMSRefProcTaskProxy::work(uint worker_id) {
5271   ResourceMark rm;
5272   HandleMark hm;
5273   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5274   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5275                                         _mark_bit_map,
5276                                         work_queue(worker_id));
5277   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5278                                                  _mark_bit_map,
5279                                                  work_queue(worker_id));
5280   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5281   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5282   if (_task.marks_oops_alive()) {
5283     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5284                   _collector->hash_seed(worker_id));
5285   }
5286   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5287   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5288 }
5289 
5290 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5291   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5292   EnqueueTask& _task;
5293 
5294 public:
5295   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5296     : AbstractGangTask("Enqueue reference objects in parallel"),
5297       _task(task)
5298   { }
5299 
5300   virtual void work(uint worker_id)
5301   {
5302     _task.work(worker_id);
5303   }
5304 };
5305 
5306 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5307   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5308    _span(span),
5309    _bit_map(bit_map),
5310    _work_queue(work_queue),
5311    _mark_and_push(collector, span, bit_map, work_queue),
5312    _low_water_mark(MIN2((work_queue->max_elems()/4),
5313                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5314 { }
5315 
5316 // . see if we can share work_queues with ParNew? XXX
5317 void CMSRefProcTaskProxy::do_work_steal(int i,
5318   CMSParDrainMarkingStackClosure* drain,
5319   CMSParKeepAliveClosure* keep_alive,
5320   int* seed) {
5321   OopTaskQueue* work_q = work_queue(i);
5322   NOT_PRODUCT(int num_steals = 0;)
5323   oop obj_to_scan;
5324 
5325   while (true) {
5326     // Completely finish any left over work from (an) earlier round(s)
5327     drain->trim_queue(0);
5328     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5329                                          (size_t)ParGCDesiredObjsFromOverflowList);
5330     // Now check if there's any work in the overflow list
5331     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5332     // only affects the number of attempts made to get work from the
5333     // overflow list and does not affect the number of workers.  Just
5334     // pass ParallelGCThreads so this behavior is unchanged.
5335     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5336                                                 work_q,
5337                                                 ParallelGCThreads)) {
5338       // Found something in global overflow list;
5339       // not yet ready to go stealing work from others.
5340       // We'd like to assert(work_q->size() != 0, ...)
5341       // because we just took work from the overflow list,
5342       // but of course we can't, since all of that might have
5343       // been already stolen from us.
5344       continue;
5345     }
5346     // Verify that we have no work before we resort to stealing
5347     assert(work_q->size() == 0, "Have work, shouldn't steal");
5348     // Try to steal from other queues that have work
5349     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5350       NOT_PRODUCT(num_steals++;)
5351       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5352       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5353       // Do scanning work
5354       obj_to_scan->oop_iterate(keep_alive);
5355       // Loop around, finish this work, and try to steal some more
5356     } else if (terminator()->offer_termination()) {
5357       break;  // nirvana from the infinite cycle
5358     }
5359   }
5360   NOT_PRODUCT(
5361     if (PrintCMSStatistics != 0) {
5362       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5363     }
5364   )
5365 }
5366 
5367 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5368 {
5369   GenCollectedHeap* gch = GenCollectedHeap::heap();
5370   WorkGang* workers = gch->workers();
5371   assert(workers != NULL, "Need parallel worker threads.");
5372   CMSRefProcTaskProxy rp_task(task, &_collector,
5373                               _collector.ref_processor()->span(),
5374                               _collector.markBitMap(),
5375                               workers, _collector.task_queues());
5376   workers->run_task(&rp_task);
5377 }
5378 
5379 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5380 {
5381 
5382   GenCollectedHeap* gch = GenCollectedHeap::heap();
5383   WorkGang* workers = gch->workers();
5384   assert(workers != NULL, "Need parallel worker threads.");
5385   CMSRefEnqueueTaskProxy enq_task(task);
5386   workers->run_task(&enq_task);
5387 }
5388 
5389 void CMSCollector::refProcessingWork() {
5390   ResourceMark rm;
5391   HandleMark   hm;
5392 
5393   ReferenceProcessor* rp = ref_processor();
5394   assert(rp->span().equals(_span), "Spans should be equal");
5395   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5396   // Process weak references.
5397   rp->setup_policy(false);
5398   verify_work_stacks_empty();
5399 
5400   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5401                                           &_markStack, false /* !preclean */);
5402   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5403                                 _span, &_markBitMap, &_markStack,
5404                                 &cmsKeepAliveClosure, false /* !preclean */);
5405   {
5406     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5407 
5408     ReferenceProcessorStats stats;
5409     if (rp->processing_is_mt()) {
5410       // Set the degree of MT here.  If the discovery is done MT, there
5411       // may have been a different number of threads doing the discovery
5412       // and a different number of discovered lists may have Ref objects.
5413       // That is OK as long as the Reference lists are balanced (see
5414       // balance_all_queues() and balance_queues()).
5415       GenCollectedHeap* gch = GenCollectedHeap::heap();
5416       uint active_workers = ParallelGCThreads;
5417       WorkGang* workers = gch->workers();
5418       if (workers != NULL) {
5419         active_workers = workers->active_workers();
5420         // The expectation is that active_workers will have already
5421         // been set to a reasonable value.  If it has not been set,
5422         // investigate.
5423         assert(active_workers > 0, "Should have been set during scavenge");
5424       }
5425       rp->set_active_mt_degree(active_workers);
5426       CMSRefProcTaskExecutor task_executor(*this);
5427       stats = rp->process_discovered_references(&_is_alive_closure,
5428                                         &cmsKeepAliveClosure,
5429                                         &cmsDrainMarkingStackClosure,
5430                                         &task_executor,
5431                                         _gc_timer_cm,
5432                                         _gc_tracer_cm->gc_id());
5433     } else {
5434       stats = rp->process_discovered_references(&_is_alive_closure,
5435                                         &cmsKeepAliveClosure,
5436                                         &cmsDrainMarkingStackClosure,
5437                                         NULL,
5438                                         _gc_timer_cm,
5439                                         _gc_tracer_cm->gc_id());
5440     }
5441     _gc_tracer_cm->report_gc_reference_stats(stats);
5442 
5443   }
5444 
5445   // This is the point where the entire marking should have completed.
5446   verify_work_stacks_empty();
5447 
5448   if (should_unload_classes()) {
5449     {
5450       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5451 
5452       // Unload classes and purge the SystemDictionary.
5453       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5454 
5455       // Unload nmethods.
5456       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5457 
5458       // Prune dead klasses from subklass/sibling/implementor lists.
5459       Klass::clean_weak_klass_links(&_is_alive_closure);
5460     }
5461 
5462     {
5463       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5464       // Clean up unreferenced symbols in symbol table.
5465       SymbolTable::unlink();
5466     }
5467 
5468     {
5469       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5470       // Delete entries for dead interned strings.
5471       StringTable::unlink(&_is_alive_closure);
5472     }
5473   }
5474 
5475 
5476   // Restore any preserved marks as a result of mark stack or
5477   // work queue overflow
5478   restore_preserved_marks_if_any();  // done single-threaded for now
5479 
5480   rp->set_enqueuing_is_done(true);
5481   if (rp->processing_is_mt()) {
5482     rp->balance_all_queues();
5483     CMSRefProcTaskExecutor task_executor(*this);
5484     rp->enqueue_discovered_references(&task_executor);
5485   } else {
5486     rp->enqueue_discovered_references(NULL);
5487   }
5488   rp->verify_no_references_recorded();
5489   assert(!rp->discovery_enabled(), "should have been disabled");
5490 }
5491 
5492 #ifndef PRODUCT
5493 void CMSCollector::check_correct_thread_executing() {
5494   Thread* t = Thread::current();
5495   // Only the VM thread or the CMS thread should be here.
5496   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5497          "Unexpected thread type");
5498   // If this is the vm thread, the foreground process
5499   // should not be waiting.  Note that _foregroundGCIsActive is
5500   // true while the foreground collector is waiting.
5501   if (_foregroundGCShouldWait) {
5502     // We cannot be the VM thread
5503     assert(t->is_ConcurrentGC_thread(),
5504            "Should be CMS thread");
5505   } else {
5506     // We can be the CMS thread only if we are in a stop-world
5507     // phase of CMS collection.
5508     if (t->is_ConcurrentGC_thread()) {
5509       assert(_collectorState == InitialMarking ||
5510              _collectorState == FinalMarking,
5511              "Should be a stop-world phase");
5512       // The CMS thread should be holding the CMS_token.
5513       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5514              "Potential interference with concurrently "
5515              "executing VM thread");
5516     }
5517   }
5518 }
5519 #endif
5520 
5521 void CMSCollector::sweep() {
5522   assert(_collectorState == Sweeping, "just checking");
5523   check_correct_thread_executing();
5524   verify_work_stacks_empty();
5525   verify_overflow_empty();
5526   increment_sweep_count();
5527   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5528 
5529   _inter_sweep_timer.stop();
5530   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5531 
5532   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5533   _intra_sweep_timer.reset();
5534   _intra_sweep_timer.start();
5535   {
5536     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5537     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5538     // First sweep the old gen
5539     {
5540       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5541                                bitMapLock());
5542       sweepWork(_cmsGen);
5543     }
5544 
5545     // Update Universe::_heap_*_at_gc figures.
5546     // We need all the free list locks to make the abstract state
5547     // transition from Sweeping to Resetting. See detailed note
5548     // further below.
5549     {
5550       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5551       // Update heap occupancy information which is used as
5552       // input to soft ref clearing policy at the next gc.
5553       Universe::update_heap_info_at_gc();
5554       _collectorState = Resizing;
5555     }
5556   }
5557   verify_work_stacks_empty();
5558   verify_overflow_empty();
5559 
5560   if (should_unload_classes()) {
5561     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5562     // requires that the virtual spaces are stable and not deleted.
5563     ClassLoaderDataGraph::set_should_purge(true);
5564   }
5565 
5566   _intra_sweep_timer.stop();
5567   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5568 
5569   _inter_sweep_timer.reset();
5570   _inter_sweep_timer.start();
5571 
5572   // We need to use a monotonically non-decreasing time in ms
5573   // or we will see time-warp warnings and os::javaTimeMillis()
5574   // does not guarantee monotonicity.
5575   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5576   update_time_of_last_gc(now);
5577 
5578   // NOTE on abstract state transitions:
5579   // Mutators allocate-live and/or mark the mod-union table dirty
5580   // based on the state of the collection.  The former is done in
5581   // the interval [Marking, Sweeping] and the latter in the interval
5582   // [Marking, Sweeping).  Thus the transitions into the Marking state
5583   // and out of the Sweeping state must be synchronously visible
5584   // globally to the mutators.
5585   // The transition into the Marking state happens with the world
5586   // stopped so the mutators will globally see it.  Sweeping is
5587   // done asynchronously by the background collector so the transition
5588   // from the Sweeping state to the Resizing state must be done
5589   // under the freelistLock (as is the check for whether to
5590   // allocate-live and whether to dirty the mod-union table).
5591   assert(_collectorState == Resizing, "Change of collector state to"
5592     " Resizing must be done under the freelistLocks (plural)");
5593 
5594   // Now that sweeping has been completed, we clear
5595   // the incremental_collection_failed flag,
5596   // thus inviting a younger gen collection to promote into
5597   // this generation. If such a promotion may still fail,
5598   // the flag will be set again when a young collection is
5599   // attempted.
5600   GenCollectedHeap* gch = GenCollectedHeap::heap();
5601   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5602   gch->update_full_collections_completed(_collection_count_start);
5603 }
5604 
5605 // FIX ME!!! Looks like this belongs in CFLSpace, with
5606 // CMSGen merely delegating to it.
5607 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5608   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5609   HeapWord*  minAddr        = _cmsSpace->bottom();
5610   HeapWord*  largestAddr    =
5611     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5612   if (largestAddr == NULL) {
5613     // The dictionary appears to be empty.  In this case
5614     // try to coalesce at the end of the heap.
5615     largestAddr = _cmsSpace->end();
5616   }
5617   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5618   size_t nearLargestOffset =
5619     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5620   if (PrintFLSStatistics != 0) {
5621     gclog_or_tty->print_cr(
5622       "CMS: Large Block: " PTR_FORMAT ";"
5623       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5624       p2i(largestAddr),
5625       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5626   }
5627   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5628 }
5629 
5630 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5631   return addr >= _cmsSpace->nearLargestChunk();
5632 }
5633 
5634 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5635   return _cmsSpace->find_chunk_at_end();
5636 }
5637 
5638 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5639                                                     bool full) {
5640   // If the young generation has been collected, gather any statistics
5641   // that are of interest at this point.
5642   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5643   if (!full && current_is_young) {
5644     // Gather statistics on the young generation collection.
5645     collector()->stats().record_gc0_end(used());
5646   }
5647 }
5648 
5649 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5650   // We iterate over the space(s) underlying this generation,
5651   // checking the mark bit map to see if the bits corresponding
5652   // to specific blocks are marked or not. Blocks that are
5653   // marked are live and are not swept up. All remaining blocks
5654   // are swept up, with coalescing on-the-fly as we sweep up
5655   // contiguous free and/or garbage blocks:
5656   // We need to ensure that the sweeper synchronizes with allocators
5657   // and stop-the-world collectors. In particular, the following
5658   // locks are used:
5659   // . CMS token: if this is held, a stop the world collection cannot occur
5660   // . freelistLock: if this is held no allocation can occur from this
5661   //                 generation by another thread
5662   // . bitMapLock: if this is held, no other thread can access or update
5663   //
5664 
5665   // Note that we need to hold the freelistLock if we use
5666   // block iterate below; else the iterator might go awry if
5667   // a mutator (or promotion) causes block contents to change
5668   // (for instance if the allocator divvies up a block).
5669   // If we hold the free list lock, for all practical purposes
5670   // young generation GC's can't occur (they'll usually need to
5671   // promote), so we might as well prevent all young generation
5672   // GC's while we do a sweeping step. For the same reason, we might
5673   // as well take the bit map lock for the entire duration
5674 
5675   // check that we hold the requisite locks
5676   assert(have_cms_token(), "Should hold cms token");
5677   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5678   assert_lock_strong(old_gen->freelistLock());
5679   assert_lock_strong(bitMapLock());
5680 
5681   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5682   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5683   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5684                                           _inter_sweep_estimate.padded_average(),
5685                                           _intra_sweep_estimate.padded_average());
5686   old_gen->setNearLargestChunk();
5687 
5688   {
5689     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5690     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5691     // We need to free-up/coalesce garbage/blocks from a
5692     // co-terminal free run. This is done in the SweepClosure
5693     // destructor; so, do not remove this scope, else the
5694     // end-of-sweep-census below will be off by a little bit.
5695   }
5696   old_gen->cmsSpace()->sweep_completed();
5697   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5698   if (should_unload_classes()) {                // unloaded classes this cycle,
5699     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5700   } else {                                      // did not unload classes,
5701     _concurrent_cycles_since_last_unload++;     // ... increment count
5702   }
5703 }
5704 
5705 // Reset CMS data structures (for now just the marking bit map)
5706 // preparatory for the next cycle.
5707 void CMSCollector::reset(bool concurrent) {
5708   if (concurrent) {
5709     CMSTokenSyncWithLocks ts(true, bitMapLock());
5710 
5711     // If the state is not "Resetting", the foreground  thread
5712     // has done a collection and the resetting.
5713     if (_collectorState != Resetting) {
5714       assert(_collectorState == Idling, "The state should only change"
5715         " because the foreground collector has finished the collection");
5716       return;
5717     }
5718 
5719     // Clear the mark bitmap (no grey objects to start with)
5720     // for the next cycle.
5721     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5722     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5723 
5724     HeapWord* curAddr = _markBitMap.startWord();
5725     while (curAddr < _markBitMap.endWord()) {
5726       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5727       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5728       _markBitMap.clear_large_range(chunk);
5729       if (ConcurrentMarkSweepThread::should_yield() &&
5730           !foregroundGCIsActive() &&
5731           CMSYield) {
5732         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5733                "CMS thread should hold CMS token");
5734         assert_lock_strong(bitMapLock());
5735         bitMapLock()->unlock();
5736         ConcurrentMarkSweepThread::desynchronize(true);
5737         stopTimer();
5738         if (PrintCMSStatistics != 0) {
5739           incrementYields();
5740         }
5741 
5742         // See the comment in coordinator_yield()
5743         for (unsigned i = 0; i < CMSYieldSleepCount &&
5744                          ConcurrentMarkSweepThread::should_yield() &&
5745                          !CMSCollector::foregroundGCIsActive(); ++i) {
5746           os::sleep(Thread::current(), 1, false);
5747         }
5748 
5749         ConcurrentMarkSweepThread::synchronize(true);
5750         bitMapLock()->lock_without_safepoint_check();
5751         startTimer();
5752       }
5753       curAddr = chunk.end();
5754     }
5755     // A successful mostly concurrent collection has been done.
5756     // Because only the full (i.e., concurrent mode failure) collections
5757     // are being measured for gc overhead limits, clean the "near" flag
5758     // and count.
5759     size_policy()->reset_gc_overhead_limit_count();
5760     _collectorState = Idling;
5761   } else {
5762     // already have the lock
5763     assert(_collectorState == Resetting, "just checking");
5764     assert_lock_strong(bitMapLock());
5765     _markBitMap.clear_all();
5766     _collectorState = Idling;
5767   }
5768 
5769   register_gc_end();
5770 }
5771 
5772 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5773   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5774   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5775   TraceCollectorStats tcs(counters());
5776 
5777   switch (op) {
5778     case CMS_op_checkpointRootsInitial: {
5779       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5780       checkpointRootsInitial();
5781       if (PrintGC) {
5782         _cmsGen->printOccupancy("initial-mark");
5783       }
5784       break;
5785     }
5786     case CMS_op_checkpointRootsFinal: {
5787       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5788       checkpointRootsFinal();
5789       if (PrintGC) {
5790         _cmsGen->printOccupancy("remark");
5791       }
5792       break;
5793     }
5794     default:
5795       fatal("No such CMS_op");
5796   }
5797 }
5798 
5799 #ifndef PRODUCT
5800 size_t const CMSCollector::skip_header_HeapWords() {
5801   return FreeChunk::header_size();
5802 }
5803 
5804 // Try and collect here conditions that should hold when
5805 // CMS thread is exiting. The idea is that the foreground GC
5806 // thread should not be blocked if it wants to terminate
5807 // the CMS thread and yet continue to run the VM for a while
5808 // after that.
5809 void CMSCollector::verify_ok_to_terminate() const {
5810   assert(Thread::current()->is_ConcurrentGC_thread(),
5811          "should be called by CMS thread");
5812   assert(!_foregroundGCShouldWait, "should be false");
5813   // We could check here that all the various low-level locks
5814   // are not held by the CMS thread, but that is overkill; see
5815   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5816   // is checked.
5817 }
5818 #endif
5819 
5820 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5821    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5822           "missing Printezis mark?");
5823   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5824   size_t size = pointer_delta(nextOneAddr + 1, addr);
5825   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5826          "alignment problem");
5827   assert(size >= 3, "Necessary for Printezis marks to work");
5828   return size;
5829 }
5830 
5831 // A variant of the above (block_size_using_printezis_bits()) except
5832 // that we return 0 if the P-bits are not yet set.
5833 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5834   if (_markBitMap.isMarked(addr + 1)) {
5835     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5836     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5837     size_t size = pointer_delta(nextOneAddr + 1, addr);
5838     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5839            "alignment problem");
5840     assert(size >= 3, "Necessary for Printezis marks to work");
5841     return size;
5842   }
5843   return 0;
5844 }
5845 
5846 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5847   size_t sz = 0;
5848   oop p = (oop)addr;
5849   if (p->klass_or_null() != NULL) {
5850     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5851   } else {
5852     sz = block_size_using_printezis_bits(addr);
5853   }
5854   assert(sz > 0, "size must be nonzero");
5855   HeapWord* next_block = addr + sz;
5856   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5857                                              CardTableModRefBS::card_size);
5858   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5859          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5860          "must be different cards");
5861   return next_card;
5862 }
5863 
5864 
5865 // CMS Bit Map Wrapper /////////////////////////////////////////
5866 
5867 // Construct a CMS bit map infrastructure, but don't create the
5868 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5869 // further below.
5870 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5871   _bm(),
5872   _shifter(shifter),
5873   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5874                                     Monitor::_safepoint_check_sometimes) : NULL)
5875 {
5876   _bmStartWord = 0;
5877   _bmWordSize  = 0;
5878 }
5879 
5880 bool CMSBitMap::allocate(MemRegion mr) {
5881   _bmStartWord = mr.start();
5882   _bmWordSize  = mr.word_size();
5883   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5884                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5885   if (!brs.is_reserved()) {
5886     warning("CMS bit map allocation failure");
5887     return false;
5888   }
5889   // For now we'll just commit all of the bit map up front.
5890   // Later on we'll try to be more parsimonious with swap.
5891   if (!_virtual_space.initialize(brs, brs.size())) {
5892     warning("CMS bit map backing store failure");
5893     return false;
5894   }
5895   assert(_virtual_space.committed_size() == brs.size(),
5896          "didn't reserve backing store for all of CMS bit map?");
5897   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5898   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5899          _bmWordSize, "inconsistency in bit map sizing");
5900   _bm.set_size(_bmWordSize >> _shifter);
5901 
5902   // bm.clear(); // can we rely on getting zero'd memory? verify below
5903   assert(isAllClear(),
5904          "Expected zero'd memory from ReservedSpace constructor");
5905   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5906          "consistency check");
5907   return true;
5908 }
5909 
5910 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5911   HeapWord *next_addr, *end_addr, *last_addr;
5912   assert_locked();
5913   assert(covers(mr), "out-of-range error");
5914   // XXX assert that start and end are appropriately aligned
5915   for (next_addr = mr.start(), end_addr = mr.end();
5916        next_addr < end_addr; next_addr = last_addr) {
5917     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5918     last_addr = dirty_region.end();
5919     if (!dirty_region.is_empty()) {
5920       cl->do_MemRegion(dirty_region);
5921     } else {
5922       assert(last_addr == end_addr, "program logic");
5923       return;
5924     }
5925   }
5926 }
5927 
5928 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5929   _bm.print_on_error(st, prefix);
5930 }
5931 
5932 #ifndef PRODUCT
5933 void CMSBitMap::assert_locked() const {
5934   CMSLockVerifier::assert_locked(lock());
5935 }
5936 
5937 bool CMSBitMap::covers(MemRegion mr) const {
5938   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5939   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5940          "size inconsistency");
5941   return (mr.start() >= _bmStartWord) &&
5942          (mr.end()   <= endWord());
5943 }
5944 
5945 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5946     return (start >= _bmStartWord && (start + size) <= endWord());
5947 }
5948 
5949 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5950   // verify that there are no 1 bits in the interval [left, right)
5951   FalseBitMapClosure falseBitMapClosure;
5952   iterate(&falseBitMapClosure, left, right);
5953 }
5954 
5955 void CMSBitMap::region_invariant(MemRegion mr)
5956 {
5957   assert_locked();
5958   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5959   assert(!mr.is_empty(), "unexpected empty region");
5960   assert(covers(mr), "mr should be covered by bit map");
5961   // convert address range into offset range
5962   size_t start_ofs = heapWordToOffset(mr.start());
5963   // Make sure that end() is appropriately aligned
5964   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5965                         (1 << (_shifter+LogHeapWordSize))),
5966          "Misaligned mr.end()");
5967   size_t end_ofs   = heapWordToOffset(mr.end());
5968   assert(end_ofs > start_ofs, "Should mark at least one bit");
5969 }
5970 
5971 #endif
5972 
5973 bool CMSMarkStack::allocate(size_t size) {
5974   // allocate a stack of the requisite depth
5975   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5976                    size * sizeof(oop)));
5977   if (!rs.is_reserved()) {
5978     warning("CMSMarkStack allocation failure");
5979     return false;
5980   }
5981   if (!_virtual_space.initialize(rs, rs.size())) {
5982     warning("CMSMarkStack backing store failure");
5983     return false;
5984   }
5985   assert(_virtual_space.committed_size() == rs.size(),
5986          "didn't reserve backing store for all of CMS stack?");
5987   _base = (oop*)(_virtual_space.low());
5988   _index = 0;
5989   _capacity = size;
5990   NOT_PRODUCT(_max_depth = 0);
5991   return true;
5992 }
5993 
5994 // XXX FIX ME !!! In the MT case we come in here holding a
5995 // leaf lock. For printing we need to take a further lock
5996 // which has lower rank. We need to recalibrate the two
5997 // lock-ranks involved in order to be able to print the
5998 // messages below. (Or defer the printing to the caller.
5999 // For now we take the expedient path of just disabling the
6000 // messages for the problematic case.)
6001 void CMSMarkStack::expand() {
6002   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6003   if (_capacity == MarkStackSizeMax) {
6004     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6005       // We print a warning message only once per CMS cycle.
6006       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6007     }
6008     return;
6009   }
6010   // Double capacity if possible
6011   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6012   // Do not give up existing stack until we have managed to
6013   // get the double capacity that we desired.
6014   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6015                    new_capacity * sizeof(oop)));
6016   if (rs.is_reserved()) {
6017     // Release the backing store associated with old stack
6018     _virtual_space.release();
6019     // Reinitialize virtual space for new stack
6020     if (!_virtual_space.initialize(rs, rs.size())) {
6021       fatal("Not enough swap for expanded marking stack");
6022     }
6023     _base = (oop*)(_virtual_space.low());
6024     _index = 0;
6025     _capacity = new_capacity;
6026   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6027     // Failed to double capacity, continue;
6028     // we print a detail message only once per CMS cycle.
6029     gclog_or_tty->print(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to "
6030             SIZE_FORMAT "K",
6031             _capacity / K, new_capacity / K);
6032   }
6033 }
6034 
6035 
6036 // Closures
6037 // XXX: there seems to be a lot of code  duplication here;
6038 // should refactor and consolidate common code.
6039 
6040 // This closure is used to mark refs into the CMS generation in
6041 // the CMS bit map. Called at the first checkpoint. This closure
6042 // assumes that we do not need to re-mark dirty cards; if the CMS
6043 // generation on which this is used is not an oldest
6044 // generation then this will lose younger_gen cards!
6045 
6046 MarkRefsIntoClosure::MarkRefsIntoClosure(
6047   MemRegion span, CMSBitMap* bitMap):
6048     _span(span),
6049     _bitMap(bitMap)
6050 {
6051     assert(_ref_processor == NULL, "deliberately left NULL");
6052     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6053 }
6054 
6055 void MarkRefsIntoClosure::do_oop(oop obj) {
6056   // if p points into _span, then mark corresponding bit in _markBitMap
6057   assert(obj->is_oop(), "expected an oop");
6058   HeapWord* addr = (HeapWord*)obj;
6059   if (_span.contains(addr)) {
6060     // this should be made more efficient
6061     _bitMap->mark(addr);
6062   }
6063 }
6064 
6065 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6066 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6067 
6068 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6069   MemRegion span, CMSBitMap* bitMap):
6070     _span(span),
6071     _bitMap(bitMap)
6072 {
6073     assert(_ref_processor == NULL, "deliberately left NULL");
6074     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6075 }
6076 
6077 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6078   // if p points into _span, then mark corresponding bit in _markBitMap
6079   assert(obj->is_oop(), "expected an oop");
6080   HeapWord* addr = (HeapWord*)obj;
6081   if (_span.contains(addr)) {
6082     // this should be made more efficient
6083     _bitMap->par_mark(addr);
6084   }
6085 }
6086 
6087 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6088 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6089 
6090 // A variant of the above, used for CMS marking verification.
6091 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6092   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6093     _span(span),
6094     _verification_bm(verification_bm),
6095     _cms_bm(cms_bm)
6096 {
6097     assert(_ref_processor == NULL, "deliberately left NULL");
6098     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6099 }
6100 
6101 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6102   // if p points into _span, then mark corresponding bit in _markBitMap
6103   assert(obj->is_oop(), "expected an oop");
6104   HeapWord* addr = (HeapWord*)obj;
6105   if (_span.contains(addr)) {
6106     _verification_bm->mark(addr);
6107     if (!_cms_bm->isMarked(addr)) {
6108       oop(addr)->print();
6109       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6110       fatal("... aborting");
6111     }
6112   }
6113 }
6114 
6115 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6116 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6117 
6118 //////////////////////////////////////////////////
6119 // MarkRefsIntoAndScanClosure
6120 //////////////////////////////////////////////////
6121 
6122 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6123                                                        ReferenceProcessor* rp,
6124                                                        CMSBitMap* bit_map,
6125                                                        CMSBitMap* mod_union_table,
6126                                                        CMSMarkStack*  mark_stack,
6127                                                        CMSCollector* collector,
6128                                                        bool should_yield,
6129                                                        bool concurrent_precleaning):
6130   _collector(collector),
6131   _span(span),
6132   _bit_map(bit_map),
6133   _mark_stack(mark_stack),
6134   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6135                       mark_stack, concurrent_precleaning),
6136   _yield(should_yield),
6137   _concurrent_precleaning(concurrent_precleaning),
6138   _freelistLock(NULL)
6139 {
6140   _ref_processor = rp;
6141   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6142 }
6143 
6144 // This closure is used to mark refs into the CMS generation at the
6145 // second (final) checkpoint, and to scan and transitively follow
6146 // the unmarked oops. It is also used during the concurrent precleaning
6147 // phase while scanning objects on dirty cards in the CMS generation.
6148 // The marks are made in the marking bit map and the marking stack is
6149 // used for keeping the (newly) grey objects during the scan.
6150 // The parallel version (Par_...) appears further below.
6151 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6152   if (obj != NULL) {
6153     assert(obj->is_oop(), "expected an oop");
6154     HeapWord* addr = (HeapWord*)obj;
6155     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6156     assert(_collector->overflow_list_is_empty(),
6157            "overflow list should be empty");
6158     if (_span.contains(addr) &&
6159         !_bit_map->isMarked(addr)) {
6160       // mark bit map (object is now grey)
6161       _bit_map->mark(addr);
6162       // push on marking stack (stack should be empty), and drain the
6163       // stack by applying this closure to the oops in the oops popped
6164       // from the stack (i.e. blacken the grey objects)
6165       bool res = _mark_stack->push(obj);
6166       assert(res, "Should have space to push on empty stack");
6167       do {
6168         oop new_oop = _mark_stack->pop();
6169         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6170         assert(_bit_map->isMarked((HeapWord*)new_oop),
6171                "only grey objects on this stack");
6172         // iterate over the oops in this oop, marking and pushing
6173         // the ones in CMS heap (i.e. in _span).
6174         new_oop->oop_iterate(&_pushAndMarkClosure);
6175         // check if it's time to yield
6176         do_yield_check();
6177       } while (!_mark_stack->isEmpty() ||
6178                (!_concurrent_precleaning && take_from_overflow_list()));
6179         // if marking stack is empty, and we are not doing this
6180         // during precleaning, then check the overflow list
6181     }
6182     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6183     assert(_collector->overflow_list_is_empty(),
6184            "overflow list was drained above");
6185     // We could restore evacuated mark words, if any, used for
6186     // overflow list links here because the overflow list is
6187     // provably empty here. That would reduce the maximum
6188     // size requirements for preserved_{oop,mark}_stack.
6189     // But we'll just postpone it until we are all done
6190     // so we can just stream through.
6191     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6192       _collector->restore_preserved_marks_if_any();
6193       assert(_collector->no_preserved_marks(), "No preserved marks");
6194     }
6195     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6196            "All preserved marks should have been restored above");
6197   }
6198 }
6199 
6200 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6201 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6202 
6203 void MarkRefsIntoAndScanClosure::do_yield_work() {
6204   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6205          "CMS thread should hold CMS token");
6206   assert_lock_strong(_freelistLock);
6207   assert_lock_strong(_bit_map->lock());
6208   // relinquish the free_list_lock and bitMaplock()
6209   _bit_map->lock()->unlock();
6210   _freelistLock->unlock();
6211   ConcurrentMarkSweepThread::desynchronize(true);
6212   _collector->stopTimer();
6213   if (PrintCMSStatistics != 0) {
6214     _collector->incrementYields();
6215   }
6216 
6217   // See the comment in coordinator_yield()
6218   for (unsigned i = 0;
6219        i < CMSYieldSleepCount &&
6220        ConcurrentMarkSweepThread::should_yield() &&
6221        !CMSCollector::foregroundGCIsActive();
6222        ++i) {
6223     os::sleep(Thread::current(), 1, false);
6224   }
6225 
6226   ConcurrentMarkSweepThread::synchronize(true);
6227   _freelistLock->lock_without_safepoint_check();
6228   _bit_map->lock()->lock_without_safepoint_check();
6229   _collector->startTimer();
6230 }
6231 
6232 ///////////////////////////////////////////////////////////
6233 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6234 //                                 MarkRefsIntoAndScanClosure
6235 ///////////////////////////////////////////////////////////
6236 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6237   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6238   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6239   _span(span),
6240   _bit_map(bit_map),
6241   _work_queue(work_queue),
6242   _low_water_mark(MIN2((work_queue->max_elems()/4),
6243                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6244   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6245 {
6246   _ref_processor = rp;
6247   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6248 }
6249 
6250 // This closure is used to mark refs into the CMS generation at the
6251 // second (final) checkpoint, and to scan and transitively follow
6252 // the unmarked oops. The marks are made in the marking bit map and
6253 // the work_queue is used for keeping the (newly) grey objects during
6254 // the scan phase whence they are also available for stealing by parallel
6255 // threads. Since the marking bit map is shared, updates are
6256 // synchronized (via CAS).
6257 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6258   if (obj != NULL) {
6259     // Ignore mark word because this could be an already marked oop
6260     // that may be chained at the end of the overflow list.
6261     assert(obj->is_oop(true), "expected an oop");
6262     HeapWord* addr = (HeapWord*)obj;
6263     if (_span.contains(addr) &&
6264         !_bit_map->isMarked(addr)) {
6265       // mark bit map (object will become grey):
6266       // It is possible for several threads to be
6267       // trying to "claim" this object concurrently;
6268       // the unique thread that succeeds in marking the
6269       // object first will do the subsequent push on
6270       // to the work queue (or overflow list).
6271       if (_bit_map->par_mark(addr)) {
6272         // push on work_queue (which may not be empty), and trim the
6273         // queue to an appropriate length by applying this closure to
6274         // the oops in the oops popped from the stack (i.e. blacken the
6275         // grey objects)
6276         bool res = _work_queue->push(obj);
6277         assert(res, "Low water mark should be less than capacity?");
6278         trim_queue(_low_water_mark);
6279       } // Else, another thread claimed the object
6280     }
6281   }
6282 }
6283 
6284 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6285 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6286 
6287 // This closure is used to rescan the marked objects on the dirty cards
6288 // in the mod union table and the card table proper.
6289 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6290   oop p, MemRegion mr) {
6291 
6292   size_t size = 0;
6293   HeapWord* addr = (HeapWord*)p;
6294   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6295   assert(_span.contains(addr), "we are scanning the CMS generation");
6296   // check if it's time to yield
6297   if (do_yield_check()) {
6298     // We yielded for some foreground stop-world work,
6299     // and we have been asked to abort this ongoing preclean cycle.
6300     return 0;
6301   }
6302   if (_bitMap->isMarked(addr)) {
6303     // it's marked; is it potentially uninitialized?
6304     if (p->klass_or_null() != NULL) {
6305         // an initialized object; ignore mark word in verification below
6306         // since we are running concurrent with mutators
6307         assert(p->is_oop(true), "should be an oop");
6308         if (p->is_objArray()) {
6309           // objArrays are precisely marked; restrict scanning
6310           // to dirty cards only.
6311           size = CompactibleFreeListSpace::adjustObjectSize(
6312                    p->oop_iterate_size(_scanningClosure, mr));
6313         } else {
6314           // A non-array may have been imprecisely marked; we need
6315           // to scan object in its entirety.
6316           size = CompactibleFreeListSpace::adjustObjectSize(
6317                    p->oop_iterate_size(_scanningClosure));
6318         }
6319         #ifdef ASSERT
6320           size_t direct_size =
6321             CompactibleFreeListSpace::adjustObjectSize(p->size());
6322           assert(size == direct_size, "Inconsistency in size");
6323           assert(size >= 3, "Necessary for Printezis marks to work");
6324           if (!_bitMap->isMarked(addr+1)) {
6325             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6326           } else {
6327             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6328             assert(_bitMap->isMarked(addr+size-1),
6329                    "inconsistent Printezis mark");
6330           }
6331         #endif // ASSERT
6332     } else {
6333       // An uninitialized object.
6334       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6335       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6336       size = pointer_delta(nextOneAddr + 1, addr);
6337       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6338              "alignment problem");
6339       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6340       // will dirty the card when the klass pointer is installed in the
6341       // object (signaling the completion of initialization).
6342     }
6343   } else {
6344     // Either a not yet marked object or an uninitialized object
6345     if (p->klass_or_null() == NULL) {
6346       // An uninitialized object, skip to the next card, since
6347       // we may not be able to read its P-bits yet.
6348       assert(size == 0, "Initial value");
6349     } else {
6350       // An object not (yet) reached by marking: we merely need to
6351       // compute its size so as to go look at the next block.
6352       assert(p->is_oop(true), "should be an oop");
6353       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6354     }
6355   }
6356   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6357   return size;
6358 }
6359 
6360 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6361   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6362          "CMS thread should hold CMS token");
6363   assert_lock_strong(_freelistLock);
6364   assert_lock_strong(_bitMap->lock());
6365   // relinquish the free_list_lock and bitMaplock()
6366   _bitMap->lock()->unlock();
6367   _freelistLock->unlock();
6368   ConcurrentMarkSweepThread::desynchronize(true);
6369   _collector->stopTimer();
6370   if (PrintCMSStatistics != 0) {
6371     _collector->incrementYields();
6372   }
6373 
6374   // See the comment in coordinator_yield()
6375   for (unsigned i = 0; i < CMSYieldSleepCount &&
6376                    ConcurrentMarkSweepThread::should_yield() &&
6377                    !CMSCollector::foregroundGCIsActive(); ++i) {
6378     os::sleep(Thread::current(), 1, false);
6379   }
6380 
6381   ConcurrentMarkSweepThread::synchronize(true);
6382   _freelistLock->lock_without_safepoint_check();
6383   _bitMap->lock()->lock_without_safepoint_check();
6384   _collector->startTimer();
6385 }
6386 
6387 
6388 //////////////////////////////////////////////////////////////////
6389 // SurvivorSpacePrecleanClosure
6390 //////////////////////////////////////////////////////////////////
6391 // This (single-threaded) closure is used to preclean the oops in
6392 // the survivor spaces.
6393 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6394 
6395   HeapWord* addr = (HeapWord*)p;
6396   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6397   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6398   assert(p->klass_or_null() != NULL, "object should be initialized");
6399   // an initialized object; ignore mark word in verification below
6400   // since we are running concurrent with mutators
6401   assert(p->is_oop(true), "should be an oop");
6402   // Note that we do not yield while we iterate over
6403   // the interior oops of p, pushing the relevant ones
6404   // on our marking stack.
6405   size_t size = p->oop_iterate_size(_scanning_closure);
6406   do_yield_check();
6407   // Observe that below, we do not abandon the preclean
6408   // phase as soon as we should; rather we empty the
6409   // marking stack before returning. This is to satisfy
6410   // some existing assertions. In general, it may be a
6411   // good idea to abort immediately and complete the marking
6412   // from the grey objects at a later time.
6413   while (!_mark_stack->isEmpty()) {
6414     oop new_oop = _mark_stack->pop();
6415     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6416     assert(_bit_map->isMarked((HeapWord*)new_oop),
6417            "only grey objects on this stack");
6418     // iterate over the oops in this oop, marking and pushing
6419     // the ones in CMS heap (i.e. in _span).
6420     new_oop->oop_iterate(_scanning_closure);
6421     // check if it's time to yield
6422     do_yield_check();
6423   }
6424   unsigned int after_count =
6425     GenCollectedHeap::heap()->total_collections();
6426   bool abort = (_before_count != after_count) ||
6427                _collector->should_abort_preclean();
6428   return abort ? 0 : size;
6429 }
6430 
6431 void SurvivorSpacePrecleanClosure::do_yield_work() {
6432   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6433          "CMS thread should hold CMS token");
6434   assert_lock_strong(_bit_map->lock());
6435   // Relinquish the bit map lock
6436   _bit_map->lock()->unlock();
6437   ConcurrentMarkSweepThread::desynchronize(true);
6438   _collector->stopTimer();
6439   if (PrintCMSStatistics != 0) {
6440     _collector->incrementYields();
6441   }
6442 
6443   // See the comment in coordinator_yield()
6444   for (unsigned i = 0; i < CMSYieldSleepCount &&
6445                        ConcurrentMarkSweepThread::should_yield() &&
6446                        !CMSCollector::foregroundGCIsActive(); ++i) {
6447     os::sleep(Thread::current(), 1, false);
6448   }
6449 
6450   ConcurrentMarkSweepThread::synchronize(true);
6451   _bit_map->lock()->lock_without_safepoint_check();
6452   _collector->startTimer();
6453 }
6454 
6455 // This closure is used to rescan the marked objects on the dirty cards
6456 // in the mod union table and the card table proper. In the parallel
6457 // case, although the bitMap is shared, we do a single read so the
6458 // isMarked() query is "safe".
6459 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6460   // Ignore mark word because we are running concurrent with mutators
6461   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6462   HeapWord* addr = (HeapWord*)p;
6463   assert(_span.contains(addr), "we are scanning the CMS generation");
6464   bool is_obj_array = false;
6465   #ifdef ASSERT
6466     if (!_parallel) {
6467       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6468       assert(_collector->overflow_list_is_empty(),
6469              "overflow list should be empty");
6470 
6471     }
6472   #endif // ASSERT
6473   if (_bit_map->isMarked(addr)) {
6474     // Obj arrays are precisely marked, non-arrays are not;
6475     // so we scan objArrays precisely and non-arrays in their
6476     // entirety.
6477     if (p->is_objArray()) {
6478       is_obj_array = true;
6479       if (_parallel) {
6480         p->oop_iterate(_par_scan_closure, mr);
6481       } else {
6482         p->oop_iterate(_scan_closure, mr);
6483       }
6484     } else {
6485       if (_parallel) {
6486         p->oop_iterate(_par_scan_closure);
6487       } else {
6488         p->oop_iterate(_scan_closure);
6489       }
6490     }
6491   }
6492   #ifdef ASSERT
6493     if (!_parallel) {
6494       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6495       assert(_collector->overflow_list_is_empty(),
6496              "overflow list should be empty");
6497 
6498     }
6499   #endif // ASSERT
6500   return is_obj_array;
6501 }
6502 
6503 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6504                         MemRegion span,
6505                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6506                         bool should_yield, bool verifying):
6507   _collector(collector),
6508   _span(span),
6509   _bitMap(bitMap),
6510   _mut(&collector->_modUnionTable),
6511   _markStack(markStack),
6512   _yield(should_yield),
6513   _skipBits(0)
6514 {
6515   assert(_markStack->isEmpty(), "stack should be empty");
6516   _finger = _bitMap->startWord();
6517   _threshold = _finger;
6518   assert(_collector->_restart_addr == NULL, "Sanity check");
6519   assert(_span.contains(_finger), "Out of bounds _finger?");
6520   DEBUG_ONLY(_verifying = verifying;)
6521 }
6522 
6523 void MarkFromRootsClosure::reset(HeapWord* addr) {
6524   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6525   assert(_span.contains(addr), "Out of bounds _finger?");
6526   _finger = addr;
6527   _threshold = (HeapWord*)round_to(
6528                  (intptr_t)_finger, CardTableModRefBS::card_size);
6529 }
6530 
6531 // Should revisit to see if this should be restructured for
6532 // greater efficiency.
6533 bool MarkFromRootsClosure::do_bit(size_t offset) {
6534   if (_skipBits > 0) {
6535     _skipBits--;
6536     return true;
6537   }
6538   // convert offset into a HeapWord*
6539   HeapWord* addr = _bitMap->startWord() + offset;
6540   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6541          "address out of range");
6542   assert(_bitMap->isMarked(addr), "tautology");
6543   if (_bitMap->isMarked(addr+1)) {
6544     // this is an allocated but not yet initialized object
6545     assert(_skipBits == 0, "tautology");
6546     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6547     oop p = oop(addr);
6548     if (p->klass_or_null() == NULL) {
6549       DEBUG_ONLY(if (!_verifying) {)
6550         // We re-dirty the cards on which this object lies and increase
6551         // the _threshold so that we'll come back to scan this object
6552         // during the preclean or remark phase. (CMSCleanOnEnter)
6553         if (CMSCleanOnEnter) {
6554           size_t sz = _collector->block_size_using_printezis_bits(addr);
6555           HeapWord* end_card_addr   = (HeapWord*)round_to(
6556                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6557           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6558           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6559           // Bump _threshold to end_card_addr; note that
6560           // _threshold cannot possibly exceed end_card_addr, anyhow.
6561           // This prevents future clearing of the card as the scan proceeds
6562           // to the right.
6563           assert(_threshold <= end_card_addr,
6564                  "Because we are just scanning into this object");
6565           if (_threshold < end_card_addr) {
6566             _threshold = end_card_addr;
6567           }
6568           if (p->klass_or_null() != NULL) {
6569             // Redirty the range of cards...
6570             _mut->mark_range(redirty_range);
6571           } // ...else the setting of klass will dirty the card anyway.
6572         }
6573       DEBUG_ONLY(})
6574       return true;
6575     }
6576   }
6577   scanOopsInOop(addr);
6578   return true;
6579 }
6580 
6581 // We take a break if we've been at this for a while,
6582 // so as to avoid monopolizing the locks involved.
6583 void MarkFromRootsClosure::do_yield_work() {
6584   // First give up the locks, then yield, then re-lock
6585   // We should probably use a constructor/destructor idiom to
6586   // do this unlock/lock or modify the MutexUnlocker class to
6587   // serve our purpose. XXX
6588   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6589          "CMS thread should hold CMS token");
6590   assert_lock_strong(_bitMap->lock());
6591   _bitMap->lock()->unlock();
6592   ConcurrentMarkSweepThread::desynchronize(true);
6593   _collector->stopTimer();
6594   if (PrintCMSStatistics != 0) {
6595     _collector->incrementYields();
6596   }
6597 
6598   // See the comment in coordinator_yield()
6599   for (unsigned i = 0; i < CMSYieldSleepCount &&
6600                        ConcurrentMarkSweepThread::should_yield() &&
6601                        !CMSCollector::foregroundGCIsActive(); ++i) {
6602     os::sleep(Thread::current(), 1, false);
6603   }
6604 
6605   ConcurrentMarkSweepThread::synchronize(true);
6606   _bitMap->lock()->lock_without_safepoint_check();
6607   _collector->startTimer();
6608 }
6609 
6610 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6611   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6612   assert(_markStack->isEmpty(),
6613          "should drain stack to limit stack usage");
6614   // convert ptr to an oop preparatory to scanning
6615   oop obj = oop(ptr);
6616   // Ignore mark word in verification below, since we
6617   // may be running concurrent with mutators.
6618   assert(obj->is_oop(true), "should be an oop");
6619   assert(_finger <= ptr, "_finger runneth ahead");
6620   // advance the finger to right end of this object
6621   _finger = ptr + obj->size();
6622   assert(_finger > ptr, "we just incremented it above");
6623   // On large heaps, it may take us some time to get through
6624   // the marking phase. During
6625   // this time it's possible that a lot of mutations have
6626   // accumulated in the card table and the mod union table --
6627   // these mutation records are redundant until we have
6628   // actually traced into the corresponding card.
6629   // Here, we check whether advancing the finger would make
6630   // us cross into a new card, and if so clear corresponding
6631   // cards in the MUT (preclean them in the card-table in the
6632   // future).
6633 
6634   DEBUG_ONLY(if (!_verifying) {)
6635     // The clean-on-enter optimization is disabled by default,
6636     // until we fix 6178663.
6637     if (CMSCleanOnEnter && (_finger > _threshold)) {
6638       // [_threshold, _finger) represents the interval
6639       // of cards to be cleared  in MUT (or precleaned in card table).
6640       // The set of cards to be cleared is all those that overlap
6641       // with the interval [_threshold, _finger); note that
6642       // _threshold is always kept card-aligned but _finger isn't
6643       // always card-aligned.
6644       HeapWord* old_threshold = _threshold;
6645       assert(old_threshold == (HeapWord*)round_to(
6646               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6647              "_threshold should always be card-aligned");
6648       _threshold = (HeapWord*)round_to(
6649                      (intptr_t)_finger, CardTableModRefBS::card_size);
6650       MemRegion mr(old_threshold, _threshold);
6651       assert(!mr.is_empty(), "Control point invariant");
6652       assert(_span.contains(mr), "Should clear within span");
6653       _mut->clear_range(mr);
6654     }
6655   DEBUG_ONLY(})
6656   // Note: the finger doesn't advance while we drain
6657   // the stack below.
6658   PushOrMarkClosure pushOrMarkClosure(_collector,
6659                                       _span, _bitMap, _markStack,
6660                                       _finger, this);
6661   bool res = _markStack->push(obj);
6662   assert(res, "Empty non-zero size stack should have space for single push");
6663   while (!_markStack->isEmpty()) {
6664     oop new_oop = _markStack->pop();
6665     // Skip verifying header mark word below because we are
6666     // running concurrent with mutators.
6667     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6668     // now scan this oop's oops
6669     new_oop->oop_iterate(&pushOrMarkClosure);
6670     do_yield_check();
6671   }
6672   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6673 }
6674 
6675 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6676                        CMSCollector* collector, MemRegion span,
6677                        CMSBitMap* bit_map,
6678                        OopTaskQueue* work_queue,
6679                        CMSMarkStack*  overflow_stack):
6680   _collector(collector),
6681   _whole_span(collector->_span),
6682   _span(span),
6683   _bit_map(bit_map),
6684   _mut(&collector->_modUnionTable),
6685   _work_queue(work_queue),
6686   _overflow_stack(overflow_stack),
6687   _skip_bits(0),
6688   _task(task)
6689 {
6690   assert(_work_queue->size() == 0, "work_queue should be empty");
6691   _finger = span.start();
6692   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6693   assert(_span.contains(_finger), "Out of bounds _finger?");
6694 }
6695 
6696 // Should revisit to see if this should be restructured for
6697 // greater efficiency.
6698 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6699   if (_skip_bits > 0) {
6700     _skip_bits--;
6701     return true;
6702   }
6703   // convert offset into a HeapWord*
6704   HeapWord* addr = _bit_map->startWord() + offset;
6705   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6706          "address out of range");
6707   assert(_bit_map->isMarked(addr), "tautology");
6708   if (_bit_map->isMarked(addr+1)) {
6709     // this is an allocated object that might not yet be initialized
6710     assert(_skip_bits == 0, "tautology");
6711     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6712     oop p = oop(addr);
6713     if (p->klass_or_null() == NULL) {
6714       // in the case of Clean-on-Enter optimization, redirty card
6715       // and avoid clearing card by increasing  the threshold.
6716       return true;
6717     }
6718   }
6719   scan_oops_in_oop(addr);
6720   return true;
6721 }
6722 
6723 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6724   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6725   // Should we assert that our work queue is empty or
6726   // below some drain limit?
6727   assert(_work_queue->size() == 0,
6728          "should drain stack to limit stack usage");
6729   // convert ptr to an oop preparatory to scanning
6730   oop obj = oop(ptr);
6731   // Ignore mark word in verification below, since we
6732   // may be running concurrent with mutators.
6733   assert(obj->is_oop(true), "should be an oop");
6734   assert(_finger <= ptr, "_finger runneth ahead");
6735   // advance the finger to right end of this object
6736   _finger = ptr + obj->size();
6737   assert(_finger > ptr, "we just incremented it above");
6738   // On large heaps, it may take us some time to get through
6739   // the marking phase. During
6740   // this time it's possible that a lot of mutations have
6741   // accumulated in the card table and the mod union table --
6742   // these mutation records are redundant until we have
6743   // actually traced into the corresponding card.
6744   // Here, we check whether advancing the finger would make
6745   // us cross into a new card, and if so clear corresponding
6746   // cards in the MUT (preclean them in the card-table in the
6747   // future).
6748 
6749   // The clean-on-enter optimization is disabled by default,
6750   // until we fix 6178663.
6751   if (CMSCleanOnEnter && (_finger > _threshold)) {
6752     // [_threshold, _finger) represents the interval
6753     // of cards to be cleared  in MUT (or precleaned in card table).
6754     // The set of cards to be cleared is all those that overlap
6755     // with the interval [_threshold, _finger); note that
6756     // _threshold is always kept card-aligned but _finger isn't
6757     // always card-aligned.
6758     HeapWord* old_threshold = _threshold;
6759     assert(old_threshold == (HeapWord*)round_to(
6760             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6761            "_threshold should always be card-aligned");
6762     _threshold = (HeapWord*)round_to(
6763                    (intptr_t)_finger, CardTableModRefBS::card_size);
6764     MemRegion mr(old_threshold, _threshold);
6765     assert(!mr.is_empty(), "Control point invariant");
6766     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6767     _mut->clear_range(mr);
6768   }
6769 
6770   // Note: the local finger doesn't advance while we drain
6771   // the stack below, but the global finger sure can and will.
6772   HeapWord** gfa = _task->global_finger_addr();
6773   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6774                                       _span, _bit_map,
6775                                       _work_queue,
6776                                       _overflow_stack,
6777                                       _finger,
6778                                       gfa, this);
6779   bool res = _work_queue->push(obj);   // overflow could occur here
6780   assert(res, "Will hold once we use workqueues");
6781   while (true) {
6782     oop new_oop;
6783     if (!_work_queue->pop_local(new_oop)) {
6784       // We emptied our work_queue; check if there's stuff that can
6785       // be gotten from the overflow stack.
6786       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6787             _overflow_stack, _work_queue)) {
6788         do_yield_check();
6789         continue;
6790       } else {  // done
6791         break;
6792       }
6793     }
6794     // Skip verifying header mark word below because we are
6795     // running concurrent with mutators.
6796     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6797     // now scan this oop's oops
6798     new_oop->oop_iterate(&pushOrMarkClosure);
6799     do_yield_check();
6800   }
6801   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6802 }
6803 
6804 // Yield in response to a request from VM Thread or
6805 // from mutators.
6806 void Par_MarkFromRootsClosure::do_yield_work() {
6807   assert(_task != NULL, "sanity");
6808   _task->yield();
6809 }
6810 
6811 // A variant of the above used for verifying CMS marking work.
6812 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6813                         MemRegion span,
6814                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6815                         CMSMarkStack*  mark_stack):
6816   _collector(collector),
6817   _span(span),
6818   _verification_bm(verification_bm),
6819   _cms_bm(cms_bm),
6820   _mark_stack(mark_stack),
6821   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6822                       mark_stack)
6823 {
6824   assert(_mark_stack->isEmpty(), "stack should be empty");
6825   _finger = _verification_bm->startWord();
6826   assert(_collector->_restart_addr == NULL, "Sanity check");
6827   assert(_span.contains(_finger), "Out of bounds _finger?");
6828 }
6829 
6830 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6831   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6832   assert(_span.contains(addr), "Out of bounds _finger?");
6833   _finger = addr;
6834 }
6835 
6836 // Should revisit to see if this should be restructured for
6837 // greater efficiency.
6838 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6839   // convert offset into a HeapWord*
6840   HeapWord* addr = _verification_bm->startWord() + offset;
6841   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6842          "address out of range");
6843   assert(_verification_bm->isMarked(addr), "tautology");
6844   assert(_cms_bm->isMarked(addr), "tautology");
6845 
6846   assert(_mark_stack->isEmpty(),
6847          "should drain stack to limit stack usage");
6848   // convert addr to an oop preparatory to scanning
6849   oop obj = oop(addr);
6850   assert(obj->is_oop(), "should be an oop");
6851   assert(_finger <= addr, "_finger runneth ahead");
6852   // advance the finger to right end of this object
6853   _finger = addr + obj->size();
6854   assert(_finger > addr, "we just incremented it above");
6855   // Note: the finger doesn't advance while we drain
6856   // the stack below.
6857   bool res = _mark_stack->push(obj);
6858   assert(res, "Empty non-zero size stack should have space for single push");
6859   while (!_mark_stack->isEmpty()) {
6860     oop new_oop = _mark_stack->pop();
6861     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6862     // now scan this oop's oops
6863     new_oop->oop_iterate(&_pam_verify_closure);
6864   }
6865   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6866   return true;
6867 }
6868 
6869 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6870   CMSCollector* collector, MemRegion span,
6871   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6872   CMSMarkStack*  mark_stack):
6873   MetadataAwareOopClosure(collector->ref_processor()),
6874   _collector(collector),
6875   _span(span),
6876   _verification_bm(verification_bm),
6877   _cms_bm(cms_bm),
6878   _mark_stack(mark_stack)
6879 { }
6880 
6881 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6882 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6883 
6884 // Upon stack overflow, we discard (part of) the stack,
6885 // remembering the least address amongst those discarded
6886 // in CMSCollector's _restart_address.
6887 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6888   // Remember the least grey address discarded
6889   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6890   _collector->lower_restart_addr(ra);
6891   _mark_stack->reset();  // discard stack contents
6892   _mark_stack->expand(); // expand the stack if possible
6893 }
6894 
6895 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6896   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6897   HeapWord* addr = (HeapWord*)obj;
6898   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6899     // Oop lies in _span and isn't yet grey or black
6900     _verification_bm->mark(addr);            // now grey
6901     if (!_cms_bm->isMarked(addr)) {
6902       oop(addr)->print();
6903       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6904                              p2i(addr));
6905       fatal("... aborting");
6906     }
6907 
6908     if (!_mark_stack->push(obj)) { // stack overflow
6909       if (PrintCMSStatistics != 0) {
6910         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6911                                SIZE_FORMAT, _mark_stack->capacity());
6912       }
6913       assert(_mark_stack->isFull(), "Else push should have succeeded");
6914       handle_stack_overflow(addr);
6915     }
6916     // anything including and to the right of _finger
6917     // will be scanned as we iterate over the remainder of the
6918     // bit map
6919   }
6920 }
6921 
6922 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6923                      MemRegion span,
6924                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6925                      HeapWord* finger, MarkFromRootsClosure* parent) :
6926   MetadataAwareOopClosure(collector->ref_processor()),
6927   _collector(collector),
6928   _span(span),
6929   _bitMap(bitMap),
6930   _markStack(markStack),
6931   _finger(finger),
6932   _parent(parent)
6933 { }
6934 
6935 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6936                      MemRegion span,
6937                      CMSBitMap* bit_map,
6938                      OopTaskQueue* work_queue,
6939                      CMSMarkStack*  overflow_stack,
6940                      HeapWord* finger,
6941                      HeapWord** global_finger_addr,
6942                      Par_MarkFromRootsClosure* parent) :
6943   MetadataAwareOopClosure(collector->ref_processor()),
6944   _collector(collector),
6945   _whole_span(collector->_span),
6946   _span(span),
6947   _bit_map(bit_map),
6948   _work_queue(work_queue),
6949   _overflow_stack(overflow_stack),
6950   _finger(finger),
6951   _global_finger_addr(global_finger_addr),
6952   _parent(parent)
6953 { }
6954 
6955 // Assumes thread-safe access by callers, who are
6956 // responsible for mutual exclusion.
6957 void CMSCollector::lower_restart_addr(HeapWord* low) {
6958   assert(_span.contains(low), "Out of bounds addr");
6959   if (_restart_addr == NULL) {
6960     _restart_addr = low;
6961   } else {
6962     _restart_addr = MIN2(_restart_addr, low);
6963   }
6964 }
6965 
6966 // Upon stack overflow, we discard (part of) the stack,
6967 // remembering the least address amongst those discarded
6968 // in CMSCollector's _restart_address.
6969 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6970   // Remember the least grey address discarded
6971   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6972   _collector->lower_restart_addr(ra);
6973   _markStack->reset();  // discard stack contents
6974   _markStack->expand(); // expand the stack if possible
6975 }
6976 
6977 // Upon stack overflow, we discard (part of) the stack,
6978 // remembering the least address amongst those discarded
6979 // in CMSCollector's _restart_address.
6980 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6981   // We need to do this under a mutex to prevent other
6982   // workers from interfering with the work done below.
6983   MutexLockerEx ml(_overflow_stack->par_lock(),
6984                    Mutex::_no_safepoint_check_flag);
6985   // Remember the least grey address discarded
6986   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6987   _collector->lower_restart_addr(ra);
6988   _overflow_stack->reset();  // discard stack contents
6989   _overflow_stack->expand(); // expand the stack if possible
6990 }
6991 
6992 void PushOrMarkClosure::do_oop(oop obj) {
6993   // Ignore mark word because we are running concurrent with mutators.
6994   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6995   HeapWord* addr = (HeapWord*)obj;
6996   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6997     // Oop lies in _span and isn't yet grey or black
6998     _bitMap->mark(addr);            // now grey
6999     if (addr < _finger) {
7000       // the bit map iteration has already either passed, or
7001       // sampled, this bit in the bit map; we'll need to
7002       // use the marking stack to scan this oop's oops.
7003       bool simulate_overflow = false;
7004       NOT_PRODUCT(
7005         if (CMSMarkStackOverflowALot &&
7006             _collector->simulate_overflow()) {
7007           // simulate a stack overflow
7008           simulate_overflow = true;
7009         }
7010       )
7011       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7012         if (PrintCMSStatistics != 0) {
7013           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7014                                  SIZE_FORMAT, _markStack->capacity());
7015         }
7016         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7017         handle_stack_overflow(addr);
7018       }
7019     }
7020     // anything including and to the right of _finger
7021     // will be scanned as we iterate over the remainder of the
7022     // bit map
7023     do_yield_check();
7024   }
7025 }
7026 
7027 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7028 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7029 
7030 void Par_PushOrMarkClosure::do_oop(oop obj) {
7031   // Ignore mark word because we are running concurrent with mutators.
7032   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7033   HeapWord* addr = (HeapWord*)obj;
7034   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7035     // Oop lies in _span and isn't yet grey or black
7036     // We read the global_finger (volatile read) strictly after marking oop
7037     bool res = _bit_map->par_mark(addr);    // now grey
7038     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7039     // Should we push this marked oop on our stack?
7040     // -- if someone else marked it, nothing to do
7041     // -- if target oop is above global finger nothing to do
7042     // -- if target oop is in chunk and above local finger
7043     //      then nothing to do
7044     // -- else push on work queue
7045     if (   !res       // someone else marked it, they will deal with it
7046         || (addr >= *gfa)  // will be scanned in a later task
7047         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7048       return;
7049     }
7050     // the bit map iteration has already either passed, or
7051     // sampled, this bit in the bit map; we'll need to
7052     // use the marking stack to scan this oop's oops.
7053     bool simulate_overflow = false;
7054     NOT_PRODUCT(
7055       if (CMSMarkStackOverflowALot &&
7056           _collector->simulate_overflow()) {
7057         // simulate a stack overflow
7058         simulate_overflow = true;
7059       }
7060     )
7061     if (simulate_overflow ||
7062         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7063       // stack overflow
7064       if (PrintCMSStatistics != 0) {
7065         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7066                                SIZE_FORMAT, _overflow_stack->capacity());
7067       }
7068       // We cannot assert that the overflow stack is full because
7069       // it may have been emptied since.
7070       assert(simulate_overflow ||
7071              _work_queue->size() == _work_queue->max_elems(),
7072             "Else push should have succeeded");
7073       handle_stack_overflow(addr);
7074     }
7075     do_yield_check();
7076   }
7077 }
7078 
7079 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7080 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7081 
7082 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7083                                        MemRegion span,
7084                                        ReferenceProcessor* rp,
7085                                        CMSBitMap* bit_map,
7086                                        CMSBitMap* mod_union_table,
7087                                        CMSMarkStack*  mark_stack,
7088                                        bool           concurrent_precleaning):
7089   MetadataAwareOopClosure(rp),
7090   _collector(collector),
7091   _span(span),
7092   _bit_map(bit_map),
7093   _mod_union_table(mod_union_table),
7094   _mark_stack(mark_stack),
7095   _concurrent_precleaning(concurrent_precleaning)
7096 {
7097   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7098 }
7099 
7100 // Grey object rescan during pre-cleaning and second checkpoint phases --
7101 // the non-parallel version (the parallel version appears further below.)
7102 void PushAndMarkClosure::do_oop(oop obj) {
7103   // Ignore mark word verification. If during concurrent precleaning,
7104   // the object monitor may be locked. If during the checkpoint
7105   // phases, the object may already have been reached by a  different
7106   // path and may be at the end of the global overflow list (so
7107   // the mark word may be NULL).
7108   assert(obj->is_oop_or_null(true /* ignore mark word */),
7109          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7110   HeapWord* addr = (HeapWord*)obj;
7111   // Check if oop points into the CMS generation
7112   // and is not marked
7113   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7114     // a white object ...
7115     _bit_map->mark(addr);         // ... now grey
7116     // push on the marking stack (grey set)
7117     bool simulate_overflow = false;
7118     NOT_PRODUCT(
7119       if (CMSMarkStackOverflowALot &&
7120           _collector->simulate_overflow()) {
7121         // simulate a stack overflow
7122         simulate_overflow = true;
7123       }
7124     )
7125     if (simulate_overflow || !_mark_stack->push(obj)) {
7126       if (_concurrent_precleaning) {
7127          // During precleaning we can just dirty the appropriate card(s)
7128          // in the mod union table, thus ensuring that the object remains
7129          // in the grey set  and continue. In the case of object arrays
7130          // we need to dirty all of the cards that the object spans,
7131          // since the rescan of object arrays will be limited to the
7132          // dirty cards.
7133          // Note that no one can be interfering with us in this action
7134          // of dirtying the mod union table, so no locking or atomics
7135          // are required.
7136          if (obj->is_objArray()) {
7137            size_t sz = obj->size();
7138            HeapWord* end_card_addr = (HeapWord*)round_to(
7139                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7140            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7141            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7142            _mod_union_table->mark_range(redirty_range);
7143          } else {
7144            _mod_union_table->mark(addr);
7145          }
7146          _collector->_ser_pmc_preclean_ovflw++;
7147       } else {
7148          // During the remark phase, we need to remember this oop
7149          // in the overflow list.
7150          _collector->push_on_overflow_list(obj);
7151          _collector->_ser_pmc_remark_ovflw++;
7152       }
7153     }
7154   }
7155 }
7156 
7157 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7158                                                MemRegion span,
7159                                                ReferenceProcessor* rp,
7160                                                CMSBitMap* bit_map,
7161                                                OopTaskQueue* work_queue):
7162   MetadataAwareOopClosure(rp),
7163   _collector(collector),
7164   _span(span),
7165   _bit_map(bit_map),
7166   _work_queue(work_queue)
7167 {
7168   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7169 }
7170 
7171 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7172 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7173 
7174 // Grey object rescan during second checkpoint phase --
7175 // the parallel version.
7176 void Par_PushAndMarkClosure::do_oop(oop obj) {
7177   // In the assert below, we ignore the mark word because
7178   // this oop may point to an already visited object that is
7179   // on the overflow stack (in which case the mark word has
7180   // been hijacked for chaining into the overflow stack --
7181   // if this is the last object in the overflow stack then
7182   // its mark word will be NULL). Because this object may
7183   // have been subsequently popped off the global overflow
7184   // stack, and the mark word possibly restored to the prototypical
7185   // value, by the time we get to examined this failing assert in
7186   // the debugger, is_oop_or_null(false) may subsequently start
7187   // to hold.
7188   assert(obj->is_oop_or_null(true),
7189          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
7190   HeapWord* addr = (HeapWord*)obj;
7191   // Check if oop points into the CMS generation
7192   // and is not marked
7193   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7194     // a white object ...
7195     // If we manage to "claim" the object, by being the
7196     // first thread to mark it, then we push it on our
7197     // marking stack
7198     if (_bit_map->par_mark(addr)) {     // ... now grey
7199       // push on work queue (grey set)
7200       bool simulate_overflow = false;
7201       NOT_PRODUCT(
7202         if (CMSMarkStackOverflowALot &&
7203             _collector->par_simulate_overflow()) {
7204           // simulate a stack overflow
7205           simulate_overflow = true;
7206         }
7207       )
7208       if (simulate_overflow || !_work_queue->push(obj)) {
7209         _collector->par_push_on_overflow_list(obj);
7210         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7211       }
7212     } // Else, some other thread got there first
7213   }
7214 }
7215 
7216 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7217 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7218 
7219 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7220   Mutex* bml = _collector->bitMapLock();
7221   assert_lock_strong(bml);
7222   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7223          "CMS thread should hold CMS token");
7224 
7225   bml->unlock();
7226   ConcurrentMarkSweepThread::desynchronize(true);
7227 
7228   _collector->stopTimer();
7229   if (PrintCMSStatistics != 0) {
7230     _collector->incrementYields();
7231   }
7232 
7233   // See the comment in coordinator_yield()
7234   for (unsigned i = 0; i < CMSYieldSleepCount &&
7235                        ConcurrentMarkSweepThread::should_yield() &&
7236                        !CMSCollector::foregroundGCIsActive(); ++i) {
7237     os::sleep(Thread::current(), 1, false);
7238   }
7239 
7240   ConcurrentMarkSweepThread::synchronize(true);
7241   bml->lock();
7242 
7243   _collector->startTimer();
7244 }
7245 
7246 bool CMSPrecleanRefsYieldClosure::should_return() {
7247   if (ConcurrentMarkSweepThread::should_yield()) {
7248     do_yield_work();
7249   }
7250   return _collector->foregroundGCIsActive();
7251 }
7252 
7253 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7254   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7255          "mr should be aligned to start at a card boundary");
7256   // We'd like to assert:
7257   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7258   //        "mr should be a range of cards");
7259   // However, that would be too strong in one case -- the last
7260   // partition ends at _unallocated_block which, in general, can be
7261   // an arbitrary boundary, not necessarily card aligned.
7262   if (PrintCMSStatistics != 0) {
7263     _num_dirty_cards +=
7264          mr.word_size()/CardTableModRefBS::card_size_in_words;
7265   }
7266   _space->object_iterate_mem(mr, &_scan_cl);
7267 }
7268 
7269 SweepClosure::SweepClosure(CMSCollector* collector,
7270                            ConcurrentMarkSweepGeneration* g,
7271                            CMSBitMap* bitMap, bool should_yield) :
7272   _collector(collector),
7273   _g(g),
7274   _sp(g->cmsSpace()),
7275   _limit(_sp->sweep_limit()),
7276   _freelistLock(_sp->freelistLock()),
7277   _bitMap(bitMap),
7278   _yield(should_yield),
7279   _inFreeRange(false),           // No free range at beginning of sweep
7280   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7281   _lastFreeRangeCoalesced(false),
7282   _freeFinger(g->used_region().start())
7283 {
7284   NOT_PRODUCT(
7285     _numObjectsFreed = 0;
7286     _numWordsFreed   = 0;
7287     _numObjectsLive = 0;
7288     _numWordsLive = 0;
7289     _numObjectsAlreadyFree = 0;
7290     _numWordsAlreadyFree = 0;
7291     _last_fc = NULL;
7292 
7293     _sp->initializeIndexedFreeListArrayReturnedBytes();
7294     _sp->dictionary()->initialize_dict_returned_bytes();
7295   )
7296   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7297          "sweep _limit out of bounds");
7298   if (CMSTraceSweeper) {
7299     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7300                         p2i(_limit));
7301   }
7302 }
7303 
7304 void SweepClosure::print_on(outputStream* st) const {
7305   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7306                 p2i(_sp->bottom()), p2i(_sp->end()));
7307   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7308   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7309   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7310   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7311                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7312 }
7313 
7314 #ifndef PRODUCT
7315 // Assertion checking only:  no useful work in product mode --
7316 // however, if any of the flags below become product flags,
7317 // you may need to review this code to see if it needs to be
7318 // enabled in product mode.
7319 SweepClosure::~SweepClosure() {
7320   assert_lock_strong(_freelistLock);
7321   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7322          "sweep _limit out of bounds");
7323   if (inFreeRange()) {
7324     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7325     print();
7326     ShouldNotReachHere();
7327   }
7328   if (Verbose && PrintGC) {
7329     gclog_or_tty->print("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7330                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7331     gclog_or_tty->print_cr("\nLive " SIZE_FORMAT " objects,  "
7332                            SIZE_FORMAT " bytes  "
7333       "Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7334       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7335       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7336     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7337                         * sizeof(HeapWord);
7338     gclog_or_tty->print_cr("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7339 
7340     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7341       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7342       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7343       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7344       gclog_or_tty->print("Returned " SIZE_FORMAT " bytes", returned_bytes);
7345       gclog_or_tty->print("   Indexed List Returned " SIZE_FORMAT " bytes",
7346         indexListReturnedBytes);
7347       gclog_or_tty->print_cr("        Dictionary Returned " SIZE_FORMAT " bytes",
7348         dict_returned_bytes);
7349     }
7350   }
7351   if (CMSTraceSweeper) {
7352     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7353                            p2i(_limit));
7354   }
7355 }
7356 #endif  // PRODUCT
7357 
7358 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7359     bool freeRangeInFreeLists) {
7360   if (CMSTraceSweeper) {
7361     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7362                p2i(freeFinger), freeRangeInFreeLists);
7363   }
7364   assert(!inFreeRange(), "Trampling existing free range");
7365   set_inFreeRange(true);
7366   set_lastFreeRangeCoalesced(false);
7367 
7368   set_freeFinger(freeFinger);
7369   set_freeRangeInFreeLists(freeRangeInFreeLists);
7370   if (CMSTestInFreeList) {
7371     if (freeRangeInFreeLists) {
7372       FreeChunk* fc = (FreeChunk*) freeFinger;
7373       assert(fc->is_free(), "A chunk on the free list should be free.");
7374       assert(fc->size() > 0, "Free range should have a size");
7375       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7376     }
7377   }
7378 }
7379 
7380 // Note that the sweeper runs concurrently with mutators. Thus,
7381 // it is possible for direct allocation in this generation to happen
7382 // in the middle of the sweep. Note that the sweeper also coalesces
7383 // contiguous free blocks. Thus, unless the sweeper and the allocator
7384 // synchronize appropriately freshly allocated blocks may get swept up.
7385 // This is accomplished by the sweeper locking the free lists while
7386 // it is sweeping. Thus blocks that are determined to be free are
7387 // indeed free. There is however one additional complication:
7388 // blocks that have been allocated since the final checkpoint and
7389 // mark, will not have been marked and so would be treated as
7390 // unreachable and swept up. To prevent this, the allocator marks
7391 // the bit map when allocating during the sweep phase. This leads,
7392 // however, to a further complication -- objects may have been allocated
7393 // but not yet initialized -- in the sense that the header isn't yet
7394 // installed. The sweeper can not then determine the size of the block
7395 // in order to skip over it. To deal with this case, we use a technique
7396 // (due to Printezis) to encode such uninitialized block sizes in the
7397 // bit map. Since the bit map uses a bit per every HeapWord, but the
7398 // CMS generation has a minimum object size of 3 HeapWords, it follows
7399 // that "normal marks" won't be adjacent in the bit map (there will
7400 // always be at least two 0 bits between successive 1 bits). We make use
7401 // of these "unused" bits to represent uninitialized blocks -- the bit
7402 // corresponding to the start of the uninitialized object and the next
7403 // bit are both set. Finally, a 1 bit marks the end of the object that
7404 // started with the two consecutive 1 bits to indicate its potentially
7405 // uninitialized state.
7406 
7407 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7408   FreeChunk* fc = (FreeChunk*)addr;
7409   size_t res;
7410 
7411   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7412   // than "addr == _limit" because although _limit was a block boundary when
7413   // we started the sweep, it may no longer be one because heap expansion
7414   // may have caused us to coalesce the block ending at the address _limit
7415   // with a newly expanded chunk (this happens when _limit was set to the
7416   // previous _end of the space), so we may have stepped past _limit:
7417   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7418   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7419     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7420            "sweep _limit out of bounds");
7421     assert(addr < _sp->end(), "addr out of bounds");
7422     // Flush any free range we might be holding as a single
7423     // coalesced chunk to the appropriate free list.
7424     if (inFreeRange()) {
7425       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7426              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7427       flush_cur_free_chunk(freeFinger(),
7428                            pointer_delta(addr, freeFinger()));
7429       if (CMSTraceSweeper) {
7430         gclog_or_tty->print("Sweep: last chunk: ");
7431         gclog_or_tty->print("put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") "
7432                    "[coalesced:%d]\n",
7433                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7434                    lastFreeRangeCoalesced() ? 1 : 0);
7435       }
7436     }
7437 
7438     // help the iterator loop finish
7439     return pointer_delta(_sp->end(), addr);
7440   }
7441 
7442   assert(addr < _limit, "sweep invariant");
7443   // check if we should yield
7444   do_yield_check(addr);
7445   if (fc->is_free()) {
7446     // Chunk that is already free
7447     res = fc->size();
7448     do_already_free_chunk(fc);
7449     debug_only(_sp->verifyFreeLists());
7450     // If we flush the chunk at hand in lookahead_and_flush()
7451     // and it's coalesced with a preceding chunk, then the
7452     // process of "mangling" the payload of the coalesced block
7453     // will cause erasure of the size information from the
7454     // (erstwhile) header of all the coalesced blocks but the
7455     // first, so the first disjunct in the assert will not hold
7456     // in that specific case (in which case the second disjunct
7457     // will hold).
7458     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7459            "Otherwise the size info doesn't change at this step");
7460     NOT_PRODUCT(
7461       _numObjectsAlreadyFree++;
7462       _numWordsAlreadyFree += res;
7463     )
7464     NOT_PRODUCT(_last_fc = fc;)
7465   } else if (!_bitMap->isMarked(addr)) {
7466     // Chunk is fresh garbage
7467     res = do_garbage_chunk(fc);
7468     debug_only(_sp->verifyFreeLists());
7469     NOT_PRODUCT(
7470       _numObjectsFreed++;
7471       _numWordsFreed += res;
7472     )
7473   } else {
7474     // Chunk that is alive.
7475     res = do_live_chunk(fc);
7476     debug_only(_sp->verifyFreeLists());
7477     NOT_PRODUCT(
7478         _numObjectsLive++;
7479         _numWordsLive += res;
7480     )
7481   }
7482   return res;
7483 }
7484 
7485 // For the smart allocation, record following
7486 //  split deaths - a free chunk is removed from its free list because
7487 //      it is being split into two or more chunks.
7488 //  split birth - a free chunk is being added to its free list because
7489 //      a larger free chunk has been split and resulted in this free chunk.
7490 //  coal death - a free chunk is being removed from its free list because
7491 //      it is being coalesced into a large free chunk.
7492 //  coal birth - a free chunk is being added to its free list because
7493 //      it was created when two or more free chunks where coalesced into
7494 //      this free chunk.
7495 //
7496 // These statistics are used to determine the desired number of free
7497 // chunks of a given size.  The desired number is chosen to be relative
7498 // to the end of a CMS sweep.  The desired number at the end of a sweep
7499 // is the
7500 //      count-at-end-of-previous-sweep (an amount that was enough)
7501 //              - count-at-beginning-of-current-sweep  (the excess)
7502 //              + split-births  (gains in this size during interval)
7503 //              - split-deaths  (demands on this size during interval)
7504 // where the interval is from the end of one sweep to the end of the
7505 // next.
7506 //
7507 // When sweeping the sweeper maintains an accumulated chunk which is
7508 // the chunk that is made up of chunks that have been coalesced.  That
7509 // will be termed the left-hand chunk.  A new chunk of garbage that
7510 // is being considered for coalescing will be referred to as the
7511 // right-hand chunk.
7512 //
7513 // When making a decision on whether to coalesce a right-hand chunk with
7514 // the current left-hand chunk, the current count vs. the desired count
7515 // of the left-hand chunk is considered.  Also if the right-hand chunk
7516 // is near the large chunk at the end of the heap (see
7517 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7518 // left-hand chunk is coalesced.
7519 //
7520 // When making a decision about whether to split a chunk, the desired count
7521 // vs. the current count of the candidate to be split is also considered.
7522 // If the candidate is underpopulated (currently fewer chunks than desired)
7523 // a chunk of an overpopulated (currently more chunks than desired) size may
7524 // be chosen.  The "hint" associated with a free list, if non-null, points
7525 // to a free list which may be overpopulated.
7526 //
7527 
7528 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7529   const size_t size = fc->size();
7530   // Chunks that cannot be coalesced are not in the
7531   // free lists.
7532   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7533     assert(_sp->verify_chunk_in_free_list(fc),
7534       "free chunk should be in free lists");
7535   }
7536   // a chunk that is already free, should not have been
7537   // marked in the bit map
7538   HeapWord* const addr = (HeapWord*) fc;
7539   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7540   // Verify that the bit map has no bits marked between
7541   // addr and purported end of this block.
7542   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7543 
7544   // Some chunks cannot be coalesced under any circumstances.
7545   // See the definition of cantCoalesce().
7546   if (!fc->cantCoalesce()) {
7547     // This chunk can potentially be coalesced.
7548     if (_sp->adaptive_freelists()) {
7549       // All the work is done in
7550       do_post_free_or_garbage_chunk(fc, size);
7551     } else {  // Not adaptive free lists
7552       // this is a free chunk that can potentially be coalesced by the sweeper;
7553       if (!inFreeRange()) {
7554         // if the next chunk is a free block that can't be coalesced
7555         // it doesn't make sense to remove this chunk from the free lists
7556         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7557         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7558         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7559             nextChunk->is_free()               &&     // ... which is free...
7560             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7561           // nothing to do
7562         } else {
7563           // Potentially the start of a new free range:
7564           // Don't eagerly remove it from the free lists.
7565           // No need to remove it if it will just be put
7566           // back again.  (Also from a pragmatic point of view
7567           // if it is a free block in a region that is beyond
7568           // any allocated blocks, an assertion will fail)
7569           // Remember the start of a free run.
7570           initialize_free_range(addr, true);
7571           // end - can coalesce with next chunk
7572         }
7573       } else {
7574         // the midst of a free range, we are coalescing
7575         print_free_block_coalesced(fc);
7576         if (CMSTraceSweeper) {
7577           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7578         }
7579         // remove it from the free lists
7580         _sp->removeFreeChunkFromFreeLists(fc);
7581         set_lastFreeRangeCoalesced(true);
7582         // If the chunk is being coalesced and the current free range is
7583         // in the free lists, remove the current free range so that it
7584         // will be returned to the free lists in its entirety - all
7585         // the coalesced pieces included.
7586         if (freeRangeInFreeLists()) {
7587           FreeChunk* ffc = (FreeChunk*) freeFinger();
7588           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7589             "Size of free range is inconsistent with chunk size.");
7590           if (CMSTestInFreeList) {
7591             assert(_sp->verify_chunk_in_free_list(ffc),
7592               "free range is not in free lists");
7593           }
7594           _sp->removeFreeChunkFromFreeLists(ffc);
7595           set_freeRangeInFreeLists(false);
7596         }
7597       }
7598     }
7599     // Note that if the chunk is not coalescable (the else arm
7600     // below), we unconditionally flush, without needing to do
7601     // a "lookahead," as we do below.
7602     if (inFreeRange()) lookahead_and_flush(fc, size);
7603   } else {
7604     // Code path common to both original and adaptive free lists.
7605 
7606     // cant coalesce with previous block; this should be treated
7607     // as the end of a free run if any
7608     if (inFreeRange()) {
7609       // we kicked some butt; time to pick up the garbage
7610       assert(freeFinger() < addr, "freeFinger points too high");
7611       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7612     }
7613     // else, nothing to do, just continue
7614   }
7615 }
7616 
7617 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7618   // This is a chunk of garbage.  It is not in any free list.
7619   // Add it to a free list or let it possibly be coalesced into
7620   // a larger chunk.
7621   HeapWord* const addr = (HeapWord*) fc;
7622   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7623 
7624   if (_sp->adaptive_freelists()) {
7625     // Verify that the bit map has no bits marked between
7626     // addr and purported end of just dead object.
7627     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7628 
7629     do_post_free_or_garbage_chunk(fc, size);
7630   } else {
7631     if (!inFreeRange()) {
7632       // start of a new free range
7633       assert(size > 0, "A free range should have a size");
7634       initialize_free_range(addr, false);
7635     } else {
7636       // this will be swept up when we hit the end of the
7637       // free range
7638       if (CMSTraceSweeper) {
7639         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7640       }
7641       // If the chunk is being coalesced and the current free range is
7642       // in the free lists, remove the current free range so that it
7643       // will be returned to the free lists in its entirety - all
7644       // the coalesced pieces included.
7645       if (freeRangeInFreeLists()) {
7646         FreeChunk* ffc = (FreeChunk*)freeFinger();
7647         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7648           "Size of free range is inconsistent with chunk size.");
7649         if (CMSTestInFreeList) {
7650           assert(_sp->verify_chunk_in_free_list(ffc),
7651             "free range is not in free lists");
7652         }
7653         _sp->removeFreeChunkFromFreeLists(ffc);
7654         set_freeRangeInFreeLists(false);
7655       }
7656       set_lastFreeRangeCoalesced(true);
7657     }
7658     // this will be swept up when we hit the end of the free range
7659 
7660     // Verify that the bit map has no bits marked between
7661     // addr and purported end of just dead object.
7662     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7663   }
7664   assert(_limit >= addr + size,
7665          "A freshly garbage chunk can't possibly straddle over _limit");
7666   if (inFreeRange()) lookahead_and_flush(fc, size);
7667   return size;
7668 }
7669 
7670 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7671   HeapWord* addr = (HeapWord*) fc;
7672   // The sweeper has just found a live object. Return any accumulated
7673   // left hand chunk to the free lists.
7674   if (inFreeRange()) {
7675     assert(freeFinger() < addr, "freeFinger points too high");
7676     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7677   }
7678 
7679   // This object is live: we'd normally expect this to be
7680   // an oop, and like to assert the following:
7681   // assert(oop(addr)->is_oop(), "live block should be an oop");
7682   // However, as we commented above, this may be an object whose
7683   // header hasn't yet been initialized.
7684   size_t size;
7685   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7686   if (_bitMap->isMarked(addr + 1)) {
7687     // Determine the size from the bit map, rather than trying to
7688     // compute it from the object header.
7689     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7690     size = pointer_delta(nextOneAddr + 1, addr);
7691     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7692            "alignment problem");
7693 
7694 #ifdef ASSERT
7695       if (oop(addr)->klass_or_null() != NULL) {
7696         // Ignore mark word because we are running concurrent with mutators
7697         assert(oop(addr)->is_oop(true), "live block should be an oop");
7698         assert(size ==
7699                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7700                "P-mark and computed size do not agree");
7701       }
7702 #endif
7703 
7704   } else {
7705     // This should be an initialized object that's alive.
7706     assert(oop(addr)->klass_or_null() != NULL,
7707            "Should be an initialized object");
7708     // Ignore mark word because we are running concurrent with mutators
7709     assert(oop(addr)->is_oop(true), "live block should be an oop");
7710     // Verify that the bit map has no bits marked between
7711     // addr and purported end of this block.
7712     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7713     assert(size >= 3, "Necessary for Printezis marks to work");
7714     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7715     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7716   }
7717   return size;
7718 }
7719 
7720 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7721                                                  size_t chunkSize) {
7722   // do_post_free_or_garbage_chunk() should only be called in the case
7723   // of the adaptive free list allocator.
7724   const bool fcInFreeLists = fc->is_free();
7725   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7726   assert((HeapWord*)fc <= _limit, "sweep invariant");
7727   if (CMSTestInFreeList && fcInFreeLists) {
7728     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7729   }
7730 
7731   if (CMSTraceSweeper) {
7732     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7733   }
7734 
7735   HeapWord* const fc_addr = (HeapWord*) fc;
7736 
7737   bool coalesce;
7738   const size_t left  = pointer_delta(fc_addr, freeFinger());
7739   const size_t right = chunkSize;
7740   switch (FLSCoalescePolicy) {
7741     // numeric value forms a coalition aggressiveness metric
7742     case 0:  { // never coalesce
7743       coalesce = false;
7744       break;
7745     }
7746     case 1: { // coalesce if left & right chunks on overpopulated lists
7747       coalesce = _sp->coalOverPopulated(left) &&
7748                  _sp->coalOverPopulated(right);
7749       break;
7750     }
7751     case 2: { // coalesce if left chunk on overpopulated list (default)
7752       coalesce = _sp->coalOverPopulated(left);
7753       break;
7754     }
7755     case 3: { // coalesce if left OR right chunk on overpopulated list
7756       coalesce = _sp->coalOverPopulated(left) ||
7757                  _sp->coalOverPopulated(right);
7758       break;
7759     }
7760     case 4: { // always coalesce
7761       coalesce = true;
7762       break;
7763     }
7764     default:
7765      ShouldNotReachHere();
7766   }
7767 
7768   // Should the current free range be coalesced?
7769   // If the chunk is in a free range and either we decided to coalesce above
7770   // or the chunk is near the large block at the end of the heap
7771   // (isNearLargestChunk() returns true), then coalesce this chunk.
7772   const bool doCoalesce = inFreeRange()
7773                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7774   if (doCoalesce) {
7775     // Coalesce the current free range on the left with the new
7776     // chunk on the right.  If either is on a free list,
7777     // it must be removed from the list and stashed in the closure.
7778     if (freeRangeInFreeLists()) {
7779       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7780       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7781         "Size of free range is inconsistent with chunk size.");
7782       if (CMSTestInFreeList) {
7783         assert(_sp->verify_chunk_in_free_list(ffc),
7784           "Chunk is not in free lists");
7785       }
7786       _sp->coalDeath(ffc->size());
7787       _sp->removeFreeChunkFromFreeLists(ffc);
7788       set_freeRangeInFreeLists(false);
7789     }
7790     if (fcInFreeLists) {
7791       _sp->coalDeath(chunkSize);
7792       assert(fc->size() == chunkSize,
7793         "The chunk has the wrong size or is not in the free lists");
7794       _sp->removeFreeChunkFromFreeLists(fc);
7795     }
7796     set_lastFreeRangeCoalesced(true);
7797     print_free_block_coalesced(fc);
7798   } else {  // not in a free range and/or should not coalesce
7799     // Return the current free range and start a new one.
7800     if (inFreeRange()) {
7801       // In a free range but cannot coalesce with the right hand chunk.
7802       // Put the current free range into the free lists.
7803       flush_cur_free_chunk(freeFinger(),
7804                            pointer_delta(fc_addr, freeFinger()));
7805     }
7806     // Set up for new free range.  Pass along whether the right hand
7807     // chunk is in the free lists.
7808     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7809   }
7810 }
7811 
7812 // Lookahead flush:
7813 // If we are tracking a free range, and this is the last chunk that
7814 // we'll look at because its end crosses past _limit, we'll preemptively
7815 // flush it along with any free range we may be holding on to. Note that
7816 // this can be the case only for an already free or freshly garbage
7817 // chunk. If this block is an object, it can never straddle
7818 // over _limit. The "straddling" occurs when _limit is set at
7819 // the previous end of the space when this cycle started, and
7820 // a subsequent heap expansion caused the previously co-terminal
7821 // free block to be coalesced with the newly expanded portion,
7822 // thus rendering _limit a non-block-boundary making it dangerous
7823 // for the sweeper to step over and examine.
7824 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7825   assert(inFreeRange(), "Should only be called if currently in a free range.");
7826   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7827   assert(_sp->used_region().contains(eob - 1),
7828          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7829          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7830          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7831          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7832   if (eob >= _limit) {
7833     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7834     if (CMSTraceSweeper) {
7835       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7836                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7837                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7838                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7839     }
7840     // Return the storage we are tracking back into the free lists.
7841     if (CMSTraceSweeper) {
7842       gclog_or_tty->print_cr("Flushing ... ");
7843     }
7844     assert(freeFinger() < eob, "Error");
7845     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7846   }
7847 }
7848 
7849 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7850   assert(inFreeRange(), "Should only be called if currently in a free range.");
7851   assert(size > 0,
7852     "A zero sized chunk cannot be added to the free lists.");
7853   if (!freeRangeInFreeLists()) {
7854     if (CMSTestInFreeList) {
7855       FreeChunk* fc = (FreeChunk*) chunk;
7856       fc->set_size(size);
7857       assert(!_sp->verify_chunk_in_free_list(fc),
7858         "chunk should not be in free lists yet");
7859     }
7860     if (CMSTraceSweeper) {
7861       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7862                     p2i(chunk), size);
7863     }
7864     // A new free range is going to be starting.  The current
7865     // free range has not been added to the free lists yet or
7866     // was removed so add it back.
7867     // If the current free range was coalesced, then the death
7868     // of the free range was recorded.  Record a birth now.
7869     if (lastFreeRangeCoalesced()) {
7870       _sp->coalBirth(size);
7871     }
7872     _sp->addChunkAndRepairOffsetTable(chunk, size,
7873             lastFreeRangeCoalesced());
7874   } else if (CMSTraceSweeper) {
7875     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7876   }
7877   set_inFreeRange(false);
7878   set_freeRangeInFreeLists(false);
7879 }
7880 
7881 // We take a break if we've been at this for a while,
7882 // so as to avoid monopolizing the locks involved.
7883 void SweepClosure::do_yield_work(HeapWord* addr) {
7884   // Return current free chunk being used for coalescing (if any)
7885   // to the appropriate freelist.  After yielding, the next
7886   // free block encountered will start a coalescing range of
7887   // free blocks.  If the next free block is adjacent to the
7888   // chunk just flushed, they will need to wait for the next
7889   // sweep to be coalesced.
7890   if (inFreeRange()) {
7891     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7892   }
7893 
7894   // First give up the locks, then yield, then re-lock.
7895   // We should probably use a constructor/destructor idiom to
7896   // do this unlock/lock or modify the MutexUnlocker class to
7897   // serve our purpose. XXX
7898   assert_lock_strong(_bitMap->lock());
7899   assert_lock_strong(_freelistLock);
7900   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7901          "CMS thread should hold CMS token");
7902   _bitMap->lock()->unlock();
7903   _freelistLock->unlock();
7904   ConcurrentMarkSweepThread::desynchronize(true);
7905   _collector->stopTimer();
7906   if (PrintCMSStatistics != 0) {
7907     _collector->incrementYields();
7908   }
7909 
7910   // See the comment in coordinator_yield()
7911   for (unsigned i = 0; i < CMSYieldSleepCount &&
7912                        ConcurrentMarkSweepThread::should_yield() &&
7913                        !CMSCollector::foregroundGCIsActive(); ++i) {
7914     os::sleep(Thread::current(), 1, false);
7915   }
7916 
7917   ConcurrentMarkSweepThread::synchronize(true);
7918   _freelistLock->lock();
7919   _bitMap->lock()->lock_without_safepoint_check();
7920   _collector->startTimer();
7921 }
7922 
7923 #ifndef PRODUCT
7924 // This is actually very useful in a product build if it can
7925 // be called from the debugger.  Compile it into the product
7926 // as needed.
7927 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7928   return debug_cms_space->verify_chunk_in_free_list(fc);
7929 }
7930 #endif
7931 
7932 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7933   if (CMSTraceSweeper) {
7934     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7935                            p2i(fc), fc->size());
7936   }
7937 }
7938 
7939 // CMSIsAliveClosure
7940 bool CMSIsAliveClosure::do_object_b(oop obj) {
7941   HeapWord* addr = (HeapWord*)obj;
7942   return addr != NULL &&
7943          (!_span.contains(addr) || _bit_map->isMarked(addr));
7944 }
7945 
7946 
7947 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7948                       MemRegion span,
7949                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7950                       bool cpc):
7951   _collector(collector),
7952   _span(span),
7953   _bit_map(bit_map),
7954   _mark_stack(mark_stack),
7955   _concurrent_precleaning(cpc) {
7956   assert(!_span.is_empty(), "Empty span could spell trouble");
7957 }
7958 
7959 
7960 // CMSKeepAliveClosure: the serial version
7961 void CMSKeepAliveClosure::do_oop(oop obj) {
7962   HeapWord* addr = (HeapWord*)obj;
7963   if (_span.contains(addr) &&
7964       !_bit_map->isMarked(addr)) {
7965     _bit_map->mark(addr);
7966     bool simulate_overflow = false;
7967     NOT_PRODUCT(
7968       if (CMSMarkStackOverflowALot &&
7969           _collector->simulate_overflow()) {
7970         // simulate a stack overflow
7971         simulate_overflow = true;
7972       }
7973     )
7974     if (simulate_overflow || !_mark_stack->push(obj)) {
7975       if (_concurrent_precleaning) {
7976         // We dirty the overflown object and let the remark
7977         // phase deal with it.
7978         assert(_collector->overflow_list_is_empty(), "Error");
7979         // In the case of object arrays, we need to dirty all of
7980         // the cards that the object spans. No locking or atomics
7981         // are needed since no one else can be mutating the mod union
7982         // table.
7983         if (obj->is_objArray()) {
7984           size_t sz = obj->size();
7985           HeapWord* end_card_addr =
7986             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7987           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7988           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7989           _collector->_modUnionTable.mark_range(redirty_range);
7990         } else {
7991           _collector->_modUnionTable.mark(addr);
7992         }
7993         _collector->_ser_kac_preclean_ovflw++;
7994       } else {
7995         _collector->push_on_overflow_list(obj);
7996         _collector->_ser_kac_ovflw++;
7997       }
7998     }
7999   }
8000 }
8001 
8002 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8003 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8004 
8005 // CMSParKeepAliveClosure: a parallel version of the above.
8006 // The work queues are private to each closure (thread),
8007 // but (may be) available for stealing by other threads.
8008 void CMSParKeepAliveClosure::do_oop(oop obj) {
8009   HeapWord* addr = (HeapWord*)obj;
8010   if (_span.contains(addr) &&
8011       !_bit_map->isMarked(addr)) {
8012     // In general, during recursive tracing, several threads
8013     // may be concurrently getting here; the first one to
8014     // "tag" it, claims it.
8015     if (_bit_map->par_mark(addr)) {
8016       bool res = _work_queue->push(obj);
8017       assert(res, "Low water mark should be much less than capacity");
8018       // Do a recursive trim in the hope that this will keep
8019       // stack usage lower, but leave some oops for potential stealers
8020       trim_queue(_low_water_mark);
8021     } // Else, another thread got there first
8022   }
8023 }
8024 
8025 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8026 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8027 
8028 void CMSParKeepAliveClosure::trim_queue(uint max) {
8029   while (_work_queue->size() > max) {
8030     oop new_oop;
8031     if (_work_queue->pop_local(new_oop)) {
8032       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8033       assert(_bit_map->isMarked((HeapWord*)new_oop),
8034              "no white objects on this stack!");
8035       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8036       // iterate over the oops in this oop, marking and pushing
8037       // the ones in CMS heap (i.e. in _span).
8038       new_oop->oop_iterate(&_mark_and_push);
8039     }
8040   }
8041 }
8042 
8043 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8044                                 CMSCollector* collector,
8045                                 MemRegion span, CMSBitMap* bit_map,
8046                                 OopTaskQueue* work_queue):
8047   _collector(collector),
8048   _span(span),
8049   _bit_map(bit_map),
8050   _work_queue(work_queue) { }
8051 
8052 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8053   HeapWord* addr = (HeapWord*)obj;
8054   if (_span.contains(addr) &&
8055       !_bit_map->isMarked(addr)) {
8056     if (_bit_map->par_mark(addr)) {
8057       bool simulate_overflow = false;
8058       NOT_PRODUCT(
8059         if (CMSMarkStackOverflowALot &&
8060             _collector->par_simulate_overflow()) {
8061           // simulate a stack overflow
8062           simulate_overflow = true;
8063         }
8064       )
8065       if (simulate_overflow || !_work_queue->push(obj)) {
8066         _collector->par_push_on_overflow_list(obj);
8067         _collector->_par_kac_ovflw++;
8068       }
8069     } // Else another thread got there already
8070   }
8071 }
8072 
8073 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8074 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8075 
8076 //////////////////////////////////////////////////////////////////
8077 //  CMSExpansionCause                /////////////////////////////
8078 //////////////////////////////////////////////////////////////////
8079 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8080   switch (cause) {
8081     case _no_expansion:
8082       return "No expansion";
8083     case _satisfy_free_ratio:
8084       return "Free ratio";
8085     case _satisfy_promotion:
8086       return "Satisfy promotion";
8087     case _satisfy_allocation:
8088       return "allocation";
8089     case _allocate_par_lab:
8090       return "Par LAB";
8091     case _allocate_par_spooling_space:
8092       return "Par Spooling Space";
8093     case _adaptive_size_policy:
8094       return "Ergonomics";
8095     default:
8096       return "unknown";
8097   }
8098 }
8099 
8100 void CMSDrainMarkingStackClosure::do_void() {
8101   // the max number to take from overflow list at a time
8102   const size_t num = _mark_stack->capacity()/4;
8103   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8104          "Overflow list should be NULL during concurrent phases");
8105   while (!_mark_stack->isEmpty() ||
8106          // if stack is empty, check the overflow list
8107          _collector->take_from_overflow_list(num, _mark_stack)) {
8108     oop obj = _mark_stack->pop();
8109     HeapWord* addr = (HeapWord*)obj;
8110     assert(_span.contains(addr), "Should be within span");
8111     assert(_bit_map->isMarked(addr), "Should be marked");
8112     assert(obj->is_oop(), "Should be an oop");
8113     obj->oop_iterate(_keep_alive);
8114   }
8115 }
8116 
8117 void CMSParDrainMarkingStackClosure::do_void() {
8118   // drain queue
8119   trim_queue(0);
8120 }
8121 
8122 // Trim our work_queue so its length is below max at return
8123 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8124   while (_work_queue->size() > max) {
8125     oop new_oop;
8126     if (_work_queue->pop_local(new_oop)) {
8127       assert(new_oop->is_oop(), "Expected an oop");
8128       assert(_bit_map->isMarked((HeapWord*)new_oop),
8129              "no white objects on this stack!");
8130       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8131       // iterate over the oops in this oop, marking and pushing
8132       // the ones in CMS heap (i.e. in _span).
8133       new_oop->oop_iterate(&_mark_and_push);
8134     }
8135   }
8136 }
8137 
8138 ////////////////////////////////////////////////////////////////////
8139 // Support for Marking Stack Overflow list handling and related code
8140 ////////////////////////////////////////////////////////////////////
8141 // Much of the following code is similar in shape and spirit to the
8142 // code used in ParNewGC. We should try and share that code
8143 // as much as possible in the future.
8144 
8145 #ifndef PRODUCT
8146 // Debugging support for CMSStackOverflowALot
8147 
8148 // It's OK to call this multi-threaded;  the worst thing
8149 // that can happen is that we'll get a bunch of closely
8150 // spaced simulated overflows, but that's OK, in fact
8151 // probably good as it would exercise the overflow code
8152 // under contention.
8153 bool CMSCollector::simulate_overflow() {
8154   if (_overflow_counter-- <= 0) { // just being defensive
8155     _overflow_counter = CMSMarkStackOverflowInterval;
8156     return true;
8157   } else {
8158     return false;
8159   }
8160 }
8161 
8162 bool CMSCollector::par_simulate_overflow() {
8163   return simulate_overflow();
8164 }
8165 #endif
8166 
8167 // Single-threaded
8168 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8169   assert(stack->isEmpty(), "Expected precondition");
8170   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8171   size_t i = num;
8172   oop  cur = _overflow_list;
8173   const markOop proto = markOopDesc::prototype();
8174   NOT_PRODUCT(ssize_t n = 0;)
8175   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8176     next = oop(cur->mark());
8177     cur->set_mark(proto);   // until proven otherwise
8178     assert(cur->is_oop(), "Should be an oop");
8179     bool res = stack->push(cur);
8180     assert(res, "Bit off more than can chew?");
8181     NOT_PRODUCT(n++;)
8182   }
8183   _overflow_list = cur;
8184 #ifndef PRODUCT
8185   assert(_num_par_pushes >= n, "Too many pops?");
8186   _num_par_pushes -=n;
8187 #endif
8188   return !stack->isEmpty();
8189 }
8190 
8191 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8192 // (MT-safe) Get a prefix of at most "num" from the list.
8193 // The overflow list is chained through the mark word of
8194 // each object in the list. We fetch the entire list,
8195 // break off a prefix of the right size and return the
8196 // remainder. If other threads try to take objects from
8197 // the overflow list at that time, they will wait for
8198 // some time to see if data becomes available. If (and
8199 // only if) another thread places one or more object(s)
8200 // on the global list before we have returned the suffix
8201 // to the global list, we will walk down our local list
8202 // to find its end and append the global list to
8203 // our suffix before returning it. This suffix walk can
8204 // prove to be expensive (quadratic in the amount of traffic)
8205 // when there are many objects in the overflow list and
8206 // there is much producer-consumer contention on the list.
8207 // *NOTE*: The overflow list manipulation code here and
8208 // in ParNewGeneration:: are very similar in shape,
8209 // except that in the ParNew case we use the old (from/eden)
8210 // copy of the object to thread the list via its klass word.
8211 // Because of the common code, if you make any changes in
8212 // the code below, please check the ParNew version to see if
8213 // similar changes might be needed.
8214 // CR 6797058 has been filed to consolidate the common code.
8215 bool CMSCollector::par_take_from_overflow_list(size_t num,
8216                                                OopTaskQueue* work_q,
8217                                                int no_of_gc_threads) {
8218   assert(work_q->size() == 0, "First empty local work queue");
8219   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8220   if (_overflow_list == NULL) {
8221     return false;
8222   }
8223   // Grab the entire list; we'll put back a suffix
8224   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8225   Thread* tid = Thread::current();
8226   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8227   // set to ParallelGCThreads.
8228   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8229   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8230   // If the list is busy, we spin for a short while,
8231   // sleeping between attempts to get the list.
8232   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8233     os::sleep(tid, sleep_time_millis, false);
8234     if (_overflow_list == NULL) {
8235       // Nothing left to take
8236       return false;
8237     } else if (_overflow_list != BUSY) {
8238       // Try and grab the prefix
8239       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8240     }
8241   }
8242   // If the list was found to be empty, or we spun long
8243   // enough, we give up and return empty-handed. If we leave
8244   // the list in the BUSY state below, it must be the case that
8245   // some other thread holds the overflow list and will set it
8246   // to a non-BUSY state in the future.
8247   if (prefix == NULL || prefix == BUSY) {
8248      // Nothing to take or waited long enough
8249      if (prefix == NULL) {
8250        // Write back the NULL in case we overwrote it with BUSY above
8251        // and it is still the same value.
8252        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8253      }
8254      return false;
8255   }
8256   assert(prefix != NULL && prefix != BUSY, "Error");
8257   size_t i = num;
8258   oop cur = prefix;
8259   // Walk down the first "num" objects, unless we reach the end.
8260   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8261   if (cur->mark() == NULL) {
8262     // We have "num" or fewer elements in the list, so there
8263     // is nothing to return to the global list.
8264     // Write back the NULL in lieu of the BUSY we wrote
8265     // above, if it is still the same value.
8266     if (_overflow_list == BUSY) {
8267       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8268     }
8269   } else {
8270     // Chop off the suffix and return it to the global list.
8271     assert(cur->mark() != BUSY, "Error");
8272     oop suffix_head = cur->mark(); // suffix will be put back on global list
8273     cur->set_mark(NULL);           // break off suffix
8274     // It's possible that the list is still in the empty(busy) state
8275     // we left it in a short while ago; in that case we may be
8276     // able to place back the suffix without incurring the cost
8277     // of a walk down the list.
8278     oop observed_overflow_list = _overflow_list;
8279     oop cur_overflow_list = observed_overflow_list;
8280     bool attached = false;
8281     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8282       observed_overflow_list =
8283         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8284       if (cur_overflow_list == observed_overflow_list) {
8285         attached = true;
8286         break;
8287       } else cur_overflow_list = observed_overflow_list;
8288     }
8289     if (!attached) {
8290       // Too bad, someone else sneaked in (at least) an element; we'll need
8291       // to do a splice. Find tail of suffix so we can prepend suffix to global
8292       // list.
8293       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8294       oop suffix_tail = cur;
8295       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8296              "Tautology");
8297       observed_overflow_list = _overflow_list;
8298       do {
8299         cur_overflow_list = observed_overflow_list;
8300         if (cur_overflow_list != BUSY) {
8301           // Do the splice ...
8302           suffix_tail->set_mark(markOop(cur_overflow_list));
8303         } else { // cur_overflow_list == BUSY
8304           suffix_tail->set_mark(NULL);
8305         }
8306         // ... and try to place spliced list back on overflow_list ...
8307         observed_overflow_list =
8308           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8309       } while (cur_overflow_list != observed_overflow_list);
8310       // ... until we have succeeded in doing so.
8311     }
8312   }
8313 
8314   // Push the prefix elements on work_q
8315   assert(prefix != NULL, "control point invariant");
8316   const markOop proto = markOopDesc::prototype();
8317   oop next;
8318   NOT_PRODUCT(ssize_t n = 0;)
8319   for (cur = prefix; cur != NULL; cur = next) {
8320     next = oop(cur->mark());
8321     cur->set_mark(proto);   // until proven otherwise
8322     assert(cur->is_oop(), "Should be an oop");
8323     bool res = work_q->push(cur);
8324     assert(res, "Bit off more than we can chew?");
8325     NOT_PRODUCT(n++;)
8326   }
8327 #ifndef PRODUCT
8328   assert(_num_par_pushes >= n, "Too many pops?");
8329   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8330 #endif
8331   return true;
8332 }
8333 
8334 // Single-threaded
8335 void CMSCollector::push_on_overflow_list(oop p) {
8336   NOT_PRODUCT(_num_par_pushes++;)
8337   assert(p->is_oop(), "Not an oop");
8338   preserve_mark_if_necessary(p);
8339   p->set_mark((markOop)_overflow_list);
8340   _overflow_list = p;
8341 }
8342 
8343 // Multi-threaded; use CAS to prepend to overflow list
8344 void CMSCollector::par_push_on_overflow_list(oop p) {
8345   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8346   assert(p->is_oop(), "Not an oop");
8347   par_preserve_mark_if_necessary(p);
8348   oop observed_overflow_list = _overflow_list;
8349   oop cur_overflow_list;
8350   do {
8351     cur_overflow_list = observed_overflow_list;
8352     if (cur_overflow_list != BUSY) {
8353       p->set_mark(markOop(cur_overflow_list));
8354     } else {
8355       p->set_mark(NULL);
8356     }
8357     observed_overflow_list =
8358       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8359   } while (cur_overflow_list != observed_overflow_list);
8360 }
8361 #undef BUSY
8362 
8363 // Single threaded
8364 // General Note on GrowableArray: pushes may silently fail
8365 // because we are (temporarily) out of C-heap for expanding
8366 // the stack. The problem is quite ubiquitous and affects
8367 // a lot of code in the JVM. The prudent thing for GrowableArray
8368 // to do (for now) is to exit with an error. However, that may
8369 // be too draconian in some cases because the caller may be
8370 // able to recover without much harm. For such cases, we
8371 // should probably introduce a "soft_push" method which returns
8372 // an indication of success or failure with the assumption that
8373 // the caller may be able to recover from a failure; code in
8374 // the VM can then be changed, incrementally, to deal with such
8375 // failures where possible, thus, incrementally hardening the VM
8376 // in such low resource situations.
8377 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8378   _preserved_oop_stack.push(p);
8379   _preserved_mark_stack.push(m);
8380   assert(m == p->mark(), "Mark word changed");
8381   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8382          "bijection");
8383 }
8384 
8385 // Single threaded
8386 void CMSCollector::preserve_mark_if_necessary(oop p) {
8387   markOop m = p->mark();
8388   if (m->must_be_preserved(p)) {
8389     preserve_mark_work(p, m);
8390   }
8391 }
8392 
8393 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8394   markOop m = p->mark();
8395   if (m->must_be_preserved(p)) {
8396     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8397     // Even though we read the mark word without holding
8398     // the lock, we are assured that it will not change
8399     // because we "own" this oop, so no other thread can
8400     // be trying to push it on the overflow list; see
8401     // the assertion in preserve_mark_work() that checks
8402     // that m == p->mark().
8403     preserve_mark_work(p, m);
8404   }
8405 }
8406 
8407 // We should be able to do this multi-threaded,
8408 // a chunk of stack being a task (this is
8409 // correct because each oop only ever appears
8410 // once in the overflow list. However, it's
8411 // not very easy to completely overlap this with
8412 // other operations, so will generally not be done
8413 // until all work's been completed. Because we
8414 // expect the preserved oop stack (set) to be small,
8415 // it's probably fine to do this single-threaded.
8416 // We can explore cleverer concurrent/overlapped/parallel
8417 // processing of preserved marks if we feel the
8418 // need for this in the future. Stack overflow should
8419 // be so rare in practice and, when it happens, its
8420 // effect on performance so great that this will
8421 // likely just be in the noise anyway.
8422 void CMSCollector::restore_preserved_marks_if_any() {
8423   assert(SafepointSynchronize::is_at_safepoint(),
8424          "world should be stopped");
8425   assert(Thread::current()->is_ConcurrentGC_thread() ||
8426          Thread::current()->is_VM_thread(),
8427          "should be single-threaded");
8428   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8429          "bijection");
8430 
8431   while (!_preserved_oop_stack.is_empty()) {
8432     oop p = _preserved_oop_stack.pop();
8433     assert(p->is_oop(), "Should be an oop");
8434     assert(_span.contains(p), "oop should be in _span");
8435     assert(p->mark() == markOopDesc::prototype(),
8436            "Set when taken from overflow list");
8437     markOop m = _preserved_mark_stack.pop();
8438     p->set_mark(m);
8439   }
8440   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8441          "stacks were cleared above");
8442 }
8443 
8444 #ifndef PRODUCT
8445 bool CMSCollector::no_preserved_marks() const {
8446   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8447 }
8448 #endif
8449 
8450 // Transfer some number of overflown objects to usual marking
8451 // stack. Return true if some objects were transferred.
8452 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8453   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8454                     (size_t)ParGCDesiredObjsFromOverflowList);
8455 
8456   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8457   assert(_collector->overflow_list_is_empty() || res,
8458          "If list is not empty, we should have taken something");
8459   assert(!res || !_mark_stack->isEmpty(),
8460          "If we took something, it should now be on our stack");
8461   return res;
8462 }
8463 
8464 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8465   size_t res = _sp->block_size_no_stall(addr, _collector);
8466   if (_sp->block_is_obj(addr)) {
8467     if (_live_bit_map->isMarked(addr)) {
8468       // It can't have been dead in a previous cycle
8469       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8470     } else {
8471       _dead_bit_map->mark(addr);      // mark the dead object
8472     }
8473   }
8474   // Could be 0, if the block size could not be computed without stalling.
8475   return res;
8476 }
8477 
8478 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8479 
8480   switch (phase) {
8481     case CMSCollector::InitialMarking:
8482       initialize(true  /* fullGC */ ,
8483                  cause /* cause of the GC */,
8484                  true  /* recordGCBeginTime */,
8485                  true  /* recordPreGCUsage */,
8486                  false /* recordPeakUsage */,
8487                  false /* recordPostGCusage */,
8488                  true  /* recordAccumulatedGCTime */,
8489                  false /* recordGCEndTime */,
8490                  false /* countCollection */  );
8491       break;
8492 
8493     case CMSCollector::FinalMarking:
8494       initialize(true  /* fullGC */ ,
8495                  cause /* cause of the GC */,
8496                  false /* recordGCBeginTime */,
8497                  false /* recordPreGCUsage */,
8498                  false /* recordPeakUsage */,
8499                  false /* recordPostGCusage */,
8500                  true  /* recordAccumulatedGCTime */,
8501                  false /* recordGCEndTime */,
8502                  false /* countCollection */  );
8503       break;
8504 
8505     case CMSCollector::Sweeping:
8506       initialize(true  /* fullGC */ ,
8507                  cause /* cause of the GC */,
8508                  false /* recordGCBeginTime */,
8509                  false /* recordPreGCUsage */,
8510                  true  /* recordPeakUsage */,
8511                  true  /* recordPostGCusage */,
8512                  false /* recordAccumulatedGCTime */,
8513                  true  /* recordGCEndTime */,
8514                  true  /* countCollection */  );
8515       break;
8516 
8517     default:
8518       ShouldNotReachHere();
8519   }
8520 }