< prev index next >

src/share/vm/gc/g1/g1Allocator.cpp

Print this page




  37   _survivor_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Young)),
  38   _old_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Old)) {
  39 }
  40 
  41 void G1DefaultAllocator::init_mutator_alloc_region() {
  42   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  43   _mutator_alloc_region.init();
  44 }
  45 
  46 void G1DefaultAllocator::release_mutator_alloc_region() {
  47   _mutator_alloc_region.release();
  48   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  49 }
  50 
  51 void G1Allocator::reuse_retained_old_region(EvacuationInfo& evacuation_info,
  52                                             OldGCAllocRegion* old,
  53                                             HeapRegion** retained_old) {
  54   HeapRegion* retained_region = *retained_old;
  55   *retained_old = NULL;
  56   assert(retained_region == NULL || !retained_region->is_archive(),
  57          err_msg("Archive region should not be alloc region (index %u)", retained_region->hrm_index()));
  58 
  59   // We will discard the current GC alloc region if:
  60   // a) it's in the collection set (it can happen!),
  61   // b) it's already full (no point in using it),
  62   // c) it's empty (this means that it was emptied during
  63   // a cleanup and it should be on the free list now), or
  64   // d) it's humongous (this means that it was emptied
  65   // during a cleanup and was added to the free list, but
  66   // has been subsequently used to allocate a humongous
  67   // object that may be less than the region size).
  68   if (retained_region != NULL &&
  69       !retained_region->in_collection_set() &&
  70       !(retained_region->top() == retained_region->end()) &&
  71       !retained_region->is_empty() &&
  72       !retained_region->is_humongous()) {
  73     retained_region->record_timestamp();
  74     // The retained region was added to the old region set when it was
  75     // retired. We have to remove it now, since we don't allow regions
  76     // we allocate to in the region sets. We'll re-add it later, when
  77     // it's retired again.


 130 
 131   // Also, this value can be at most the humongous object threshold,
 132   // since we can't allow tlabs to grow big enough to accommodate
 133   // humongous objects.
 134 
 135   HeapRegion* hr = mutator_alloc_region(context)->get();
 136   size_t max_tlab = _g1h->max_tlab_size() * wordSize;
 137   if (hr == NULL) {
 138     return max_tlab;
 139   } else {
 140     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
 141   }
 142 }
 143 
 144 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 145                                               size_t word_size,
 146                                               AllocationContext_t context) {
 147   size_t temp = 0;
 148   HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp, context);
 149   assert(result == NULL || temp == word_size,
 150          err_msg("Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 151                  word_size, temp, p2i(result)));
 152   return result;
 153 }
 154 
 155 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 156                                               size_t min_word_size,
 157                                               size_t desired_word_size,
 158                                               size_t* actual_word_size,
 159                                               AllocationContext_t context) {
 160   switch (dest.value()) {
 161     case InCSetState::Young:
 162       return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context);
 163     case InCSetState::Old:
 164       return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context);
 165     default:
 166       ShouldNotReachHere();
 167       return NULL; // Keep some compilers happy
 168   }
 169 }
 170 
 171 bool G1Allocator::survivor_is_full(AllocationContext_t context) const {


 259                                                        bool* plab_refill_failed) {
 260   size_t plab_word_size = G1CollectedHeap::heap()->desired_plab_sz(dest);
 261   size_t required_in_plab = PLAB::size_required_for_allocation(word_sz);
 262 
 263   // Only get a new PLAB if the allocation fits and it would not waste more than
 264   // ParallelGCBufferWastePct in the existing buffer.
 265   if ((required_in_plab <= plab_word_size) &&
 266     may_throw_away_buffer(required_in_plab, plab_word_size)) {
 267 
 268     G1PLAB* alloc_buf = alloc_buffer(dest, context);
 269     alloc_buf->retire();
 270 
 271     size_t actual_plab_size = 0;
 272     HeapWord* buf = _allocator->par_allocate_during_gc(dest,
 273                                                        required_in_plab,
 274                                                        plab_word_size,
 275                                                        &actual_plab_size,
 276                                                        context);
 277 
 278     assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)),
 279            err_msg("Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 280                    required_in_plab, plab_word_size, actual_plab_size, p2i(buf)));
 281 
 282     if (buf != NULL) {
 283       alloc_buf->set_buf(buf, actual_plab_size);
 284 
 285       HeapWord* const obj = alloc_buf->allocate(word_sz);
 286       assert(obj != NULL, err_msg("PLAB should have been big enough, tried to allocate "
 287                                   SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT,
 288                                   word_sz, required_in_plab, plab_word_size));
 289       return obj;
 290     }
 291     // Otherwise.
 292     *plab_refill_failed = true;
 293   }
 294   // Try direct allocation.
 295   HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz, context);
 296   if (result != NULL) {
 297     _direct_allocated[dest.value()] += word_sz;
 298   }
 299   return result;
 300 }
 301 
 302 void G1PLABAllocator::undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz, AllocationContext_t context) {
 303   alloc_buffer(dest, context)->undo_allocation(obj, word_sz);
 304 }
 305 
 306 G1DefaultPLABAllocator::G1DefaultPLABAllocator(G1Allocator* allocator) :
 307   G1PLABAllocator(allocator),
 308   _surviving_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Young)),


 337     }
 338   }
 339 }
 340 
 341 G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h) {
 342   // Create the archive allocator, and also enable archive object checking
 343   // in mark-sweep, since we will be creating archive regions.
 344   G1ArchiveAllocator* result =  new G1ArchiveAllocator(g1h);
 345   G1MarkSweep::enable_archive_object_check();
 346   return result;
 347 }
 348 
 349 bool G1ArchiveAllocator::alloc_new_region() {
 350   // Allocate the highest free region in the reserved heap,
 351   // and add it to our list of allocated regions. It is marked
 352   // archive and added to the old set.
 353   HeapRegion* hr = _g1h->alloc_highest_free_region();
 354   if (hr == NULL) {
 355     return false;
 356   }
 357   assert(hr->is_empty(), err_msg("expected empty region (index %u)", hr->hrm_index()));
 358   hr->set_archive();
 359   _g1h->old_set_add(hr);
 360   _g1h->hr_printer()->alloc(hr, G1HRPrinter::Archive);
 361   _allocated_regions.append(hr);
 362   _allocation_region = hr;
 363 
 364   // Set up _bottom and _max to begin allocating in the lowest
 365   // min_region_size'd chunk of the allocated G1 region.
 366   _bottom = hr->bottom();
 367   _max = _bottom + HeapRegion::min_region_size_in_words();
 368 
 369   // Tell mark-sweep that objects in this region are not to be marked.
 370   G1MarkSweep::set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), true);
 371 
 372   // Since we've modified the old set, call update_sizes.
 373   _g1h->g1mm()->update_sizes();
 374   return true;
 375 }
 376 
 377 HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) {
 378   assert(word_size != 0, "size must not be zero");
 379   if (_allocation_region == NULL) {
 380     if (!alloc_new_region()) {
 381       return NULL;
 382     }
 383   }
 384   HeapWord* old_top = _allocation_region->top();
 385   assert(_bottom >= _allocation_region->bottom(),
 386          err_msg("inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT,
 387                  p2i(_bottom), p2i(_allocation_region->bottom())));
 388   assert(_max <= _allocation_region->end(),
 389          err_msg("inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT,
 390                  p2i(_max), p2i(_allocation_region->end())));
 391   assert(_bottom <= old_top && old_top <= _max,
 392          err_msg("inconsistent allocation state: expected "
 393                  PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT,
 394                  p2i(_bottom), p2i(old_top), p2i(_max)));
 395 
 396   // Allocate the next word_size words in the current allocation chunk.
 397   // If allocation would cross the _max boundary, insert a filler and begin
 398   // at the base of the next min_region_size'd chunk. Also advance to the next
 399   // chunk if we don't yet cross the boundary, but the remainder would be too
 400   // small to fill.
 401   HeapWord* new_top = old_top + word_size;
 402   size_t remainder = pointer_delta(_max, new_top);
 403   if ((new_top > _max) ||
 404       ((new_top < _max) && (remainder < CollectedHeap::min_fill_size()))) {
 405     if (old_top != _max) {
 406       size_t fill_size = pointer_delta(_max, old_top);
 407       CollectedHeap::fill_with_object(old_top, fill_size);
 408       _summary_bytes_used += fill_size * HeapWordSize;
 409     }
 410     _allocation_region->set_top(_max);
 411     old_top = _bottom = _max;
 412 
 413     // Check if we've just used up the last min_region_size'd chunk
 414     // in the current region, and if so, allocate a new one.
 415     if (_bottom != _allocation_region->end()) {
 416       _max = _bottom + HeapRegion::min_region_size_in_words();
 417     } else {
 418       if (!alloc_new_region()) {
 419         return NULL;
 420       }
 421       old_top = _allocation_region->bottom();
 422     }
 423   }
 424   _allocation_region->set_top(old_top + word_size);
 425   _summary_bytes_used += word_size * HeapWordSize;
 426 
 427   return old_top;
 428 }
 429 
 430 void G1ArchiveAllocator::complete_archive(GrowableArray<MemRegion>* ranges,
 431                                           size_t end_alignment_in_bytes) {
 432   assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(),
 433           err_msg("alignment " SIZE_FORMAT " too large", end_alignment_in_bytes));
 434   assert(is_size_aligned(end_alignment_in_bytes, HeapWordSize),
 435          err_msg("alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize));
 436 
 437   // If we've allocated nothing, simply return.
 438   if (_allocation_region == NULL) {
 439     return;
 440   }
 441 
 442   // If an end alignment was requested, insert filler objects.
 443   if (end_alignment_in_bytes != 0) {
 444     HeapWord* currtop = _allocation_region->top();
 445     HeapWord* newtop = (HeapWord*)align_pointer_up(currtop, end_alignment_in_bytes);
 446     size_t fill_size = pointer_delta(newtop, currtop);
 447     if (fill_size != 0) {
 448       if (fill_size < CollectedHeap::min_fill_size()) {
 449         // If the required fill is smaller than we can represent,
 450         // bump up to the next aligned address. We know we won't exceed the current
 451         // region boundary because the max supported alignment is smaller than the min
 452         // region size, and because the allocation code never leaves space smaller than
 453         // the min_fill_size at the top of the current allocation region.
 454         newtop = (HeapWord*)align_pointer_up(currtop + CollectedHeap::min_fill_size(),
 455                                              end_alignment_in_bytes);
 456         fill_size = pointer_delta(newtop, currtop);
 457       }
 458       HeapWord* fill = archive_mem_allocate(fill_size);
 459       CollectedHeap::fill_with_objects(fill, fill_size);
 460     }
 461   }
 462 
 463   // Loop through the allocated regions, and create MemRegions summarizing
 464   // the allocated address range, combining contiguous ranges. Add the
 465   // MemRegions to the GrowableArray provided by the caller.
 466   int index = _allocated_regions.length() - 1;
 467   assert(_allocated_regions.at(index) == _allocation_region,
 468          err_msg("expected region %u at end of array, found %u",
 469                  _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index()));
 470   HeapWord* base_address = _allocation_region->bottom();
 471   HeapWord* top = base_address;
 472 
 473   while (index >= 0) {
 474     HeapRegion* next = _allocated_regions.at(index);
 475     HeapWord* new_base = next->bottom();
 476     HeapWord* new_top = next->top();
 477     if (new_base != top) {
 478       ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 479       base_address = new_base;
 480     }
 481     top = new_top;
 482     index = index - 1;
 483   }
 484 
 485   assert(top != base_address, err_msg("zero-sized range, address " PTR_FORMAT, p2i(base_address)));
 486   ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 487   _allocated_regions.clear();
 488   _allocation_region = NULL;
 489 };


  37   _survivor_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Young)),
  38   _old_gc_alloc_region(heap->alloc_buffer_stats(InCSetState::Old)) {
  39 }
  40 
  41 void G1DefaultAllocator::init_mutator_alloc_region() {
  42   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
  43   _mutator_alloc_region.init();
  44 }
  45 
  46 void G1DefaultAllocator::release_mutator_alloc_region() {
  47   _mutator_alloc_region.release();
  48   assert(_mutator_alloc_region.get() == NULL, "post-condition");
  49 }
  50 
  51 void G1Allocator::reuse_retained_old_region(EvacuationInfo& evacuation_info,
  52                                             OldGCAllocRegion* old,
  53                                             HeapRegion** retained_old) {
  54   HeapRegion* retained_region = *retained_old;
  55   *retained_old = NULL;
  56   assert(retained_region == NULL || !retained_region->is_archive(),
  57          "Archive region should not be alloc region (index %u)", retained_region->hrm_index());
  58 
  59   // We will discard the current GC alloc region if:
  60   // a) it's in the collection set (it can happen!),
  61   // b) it's already full (no point in using it),
  62   // c) it's empty (this means that it was emptied during
  63   // a cleanup and it should be on the free list now), or
  64   // d) it's humongous (this means that it was emptied
  65   // during a cleanup and was added to the free list, but
  66   // has been subsequently used to allocate a humongous
  67   // object that may be less than the region size).
  68   if (retained_region != NULL &&
  69       !retained_region->in_collection_set() &&
  70       !(retained_region->top() == retained_region->end()) &&
  71       !retained_region->is_empty() &&
  72       !retained_region->is_humongous()) {
  73     retained_region->record_timestamp();
  74     // The retained region was added to the old region set when it was
  75     // retired. We have to remove it now, since we don't allow regions
  76     // we allocate to in the region sets. We'll re-add it later, when
  77     // it's retired again.


 130 
 131   // Also, this value can be at most the humongous object threshold,
 132   // since we can't allow tlabs to grow big enough to accommodate
 133   // humongous objects.
 134 
 135   HeapRegion* hr = mutator_alloc_region(context)->get();
 136   size_t max_tlab = _g1h->max_tlab_size() * wordSize;
 137   if (hr == NULL) {
 138     return max_tlab;
 139   } else {
 140     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
 141   }
 142 }
 143 
 144 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 145                                               size_t word_size,
 146                                               AllocationContext_t context) {
 147   size_t temp = 0;
 148   HeapWord* result = par_allocate_during_gc(dest, word_size, word_size, &temp, context);
 149   assert(result == NULL || temp == word_size,
 150          "Requested " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 151          word_size, temp, p2i(result));
 152   return result;
 153 }
 154 
 155 HeapWord* G1Allocator::par_allocate_during_gc(InCSetState dest,
 156                                               size_t min_word_size,
 157                                               size_t desired_word_size,
 158                                               size_t* actual_word_size,
 159                                               AllocationContext_t context) {
 160   switch (dest.value()) {
 161     case InCSetState::Young:
 162       return survivor_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context);
 163     case InCSetState::Old:
 164       return old_attempt_allocation(min_word_size, desired_word_size, actual_word_size, context);
 165     default:
 166       ShouldNotReachHere();
 167       return NULL; // Keep some compilers happy
 168   }
 169 }
 170 
 171 bool G1Allocator::survivor_is_full(AllocationContext_t context) const {


 259                                                        bool* plab_refill_failed) {
 260   size_t plab_word_size = G1CollectedHeap::heap()->desired_plab_sz(dest);
 261   size_t required_in_plab = PLAB::size_required_for_allocation(word_sz);
 262 
 263   // Only get a new PLAB if the allocation fits and it would not waste more than
 264   // ParallelGCBufferWastePct in the existing buffer.
 265   if ((required_in_plab <= plab_word_size) &&
 266     may_throw_away_buffer(required_in_plab, plab_word_size)) {
 267 
 268     G1PLAB* alloc_buf = alloc_buffer(dest, context);
 269     alloc_buf->retire();
 270 
 271     size_t actual_plab_size = 0;
 272     HeapWord* buf = _allocator->par_allocate_during_gc(dest,
 273                                                        required_in_plab,
 274                                                        plab_word_size,
 275                                                        &actual_plab_size,
 276                                                        context);
 277 
 278     assert(buf == NULL || ((actual_plab_size >= required_in_plab) && (actual_plab_size <= plab_word_size)),
 279            "Requested at minimum " SIZE_FORMAT ", desired " SIZE_FORMAT " words, but got " SIZE_FORMAT " at " PTR_FORMAT,
 280            required_in_plab, plab_word_size, actual_plab_size, p2i(buf));
 281 
 282     if (buf != NULL) {
 283       alloc_buf->set_buf(buf, actual_plab_size);
 284 
 285       HeapWord* const obj = alloc_buf->allocate(word_sz);
 286       assert(obj != NULL, "PLAB should have been big enough, tried to allocate "
 287                           SIZE_FORMAT " requiring " SIZE_FORMAT " PLAB size " SIZE_FORMAT,
 288                           word_sz, required_in_plab, plab_word_size);
 289       return obj;
 290     }
 291     // Otherwise.
 292     *plab_refill_failed = true;
 293   }
 294   // Try direct allocation.
 295   HeapWord* result = _allocator->par_allocate_during_gc(dest, word_sz, context);
 296   if (result != NULL) {
 297     _direct_allocated[dest.value()] += word_sz;
 298   }
 299   return result;
 300 }
 301 
 302 void G1PLABAllocator::undo_allocation(InCSetState dest, HeapWord* obj, size_t word_sz, AllocationContext_t context) {
 303   alloc_buffer(dest, context)->undo_allocation(obj, word_sz);
 304 }
 305 
 306 G1DefaultPLABAllocator::G1DefaultPLABAllocator(G1Allocator* allocator) :
 307   G1PLABAllocator(allocator),
 308   _surviving_alloc_buffer(_g1h->desired_plab_sz(InCSetState::Young)),


 337     }
 338   }
 339 }
 340 
 341 G1ArchiveAllocator* G1ArchiveAllocator::create_allocator(G1CollectedHeap* g1h) {
 342   // Create the archive allocator, and also enable archive object checking
 343   // in mark-sweep, since we will be creating archive regions.
 344   G1ArchiveAllocator* result =  new G1ArchiveAllocator(g1h);
 345   G1MarkSweep::enable_archive_object_check();
 346   return result;
 347 }
 348 
 349 bool G1ArchiveAllocator::alloc_new_region() {
 350   // Allocate the highest free region in the reserved heap,
 351   // and add it to our list of allocated regions. It is marked
 352   // archive and added to the old set.
 353   HeapRegion* hr = _g1h->alloc_highest_free_region();
 354   if (hr == NULL) {
 355     return false;
 356   }
 357   assert(hr->is_empty(), "expected empty region (index %u)", hr->hrm_index());
 358   hr->set_archive();
 359   _g1h->old_set_add(hr);
 360   _g1h->hr_printer()->alloc(hr, G1HRPrinter::Archive);
 361   _allocated_regions.append(hr);
 362   _allocation_region = hr;
 363 
 364   // Set up _bottom and _max to begin allocating in the lowest
 365   // min_region_size'd chunk of the allocated G1 region.
 366   _bottom = hr->bottom();
 367   _max = _bottom + HeapRegion::min_region_size_in_words();
 368 
 369   // Tell mark-sweep that objects in this region are not to be marked.
 370   G1MarkSweep::set_range_archive(MemRegion(_bottom, HeapRegion::GrainWords), true);
 371 
 372   // Since we've modified the old set, call update_sizes.
 373   _g1h->g1mm()->update_sizes();
 374   return true;
 375 }
 376 
 377 HeapWord* G1ArchiveAllocator::archive_mem_allocate(size_t word_size) {
 378   assert(word_size != 0, "size must not be zero");
 379   if (_allocation_region == NULL) {
 380     if (!alloc_new_region()) {
 381       return NULL;
 382     }
 383   }
 384   HeapWord* old_top = _allocation_region->top();
 385   assert(_bottom >= _allocation_region->bottom(),
 386          "inconsistent allocation state: " PTR_FORMAT " < " PTR_FORMAT,
 387          p2i(_bottom), p2i(_allocation_region->bottom()));
 388   assert(_max <= _allocation_region->end(),
 389          "inconsistent allocation state: " PTR_FORMAT " > " PTR_FORMAT,
 390          p2i(_max), p2i(_allocation_region->end()));
 391   assert(_bottom <= old_top && old_top <= _max,
 392          "inconsistent allocation state: expected "
 393          PTR_FORMAT " <= " PTR_FORMAT " <= " PTR_FORMAT,
 394          p2i(_bottom), p2i(old_top), p2i(_max));
 395 
 396   // Allocate the next word_size words in the current allocation chunk.
 397   // If allocation would cross the _max boundary, insert a filler and begin
 398   // at the base of the next min_region_size'd chunk. Also advance to the next
 399   // chunk if we don't yet cross the boundary, but the remainder would be too
 400   // small to fill.
 401   HeapWord* new_top = old_top + word_size;
 402   size_t remainder = pointer_delta(_max, new_top);
 403   if ((new_top > _max) ||
 404       ((new_top < _max) && (remainder < CollectedHeap::min_fill_size()))) {
 405     if (old_top != _max) {
 406       size_t fill_size = pointer_delta(_max, old_top);
 407       CollectedHeap::fill_with_object(old_top, fill_size);
 408       _summary_bytes_used += fill_size * HeapWordSize;
 409     }
 410     _allocation_region->set_top(_max);
 411     old_top = _bottom = _max;
 412 
 413     // Check if we've just used up the last min_region_size'd chunk
 414     // in the current region, and if so, allocate a new one.
 415     if (_bottom != _allocation_region->end()) {
 416       _max = _bottom + HeapRegion::min_region_size_in_words();
 417     } else {
 418       if (!alloc_new_region()) {
 419         return NULL;
 420       }
 421       old_top = _allocation_region->bottom();
 422     }
 423   }
 424   _allocation_region->set_top(old_top + word_size);
 425   _summary_bytes_used += word_size * HeapWordSize;
 426 
 427   return old_top;
 428 }
 429 
 430 void G1ArchiveAllocator::complete_archive(GrowableArray<MemRegion>* ranges,
 431                                           size_t end_alignment_in_bytes) {
 432   assert((end_alignment_in_bytes >> LogHeapWordSize) < HeapRegion::min_region_size_in_words(),
 433          "alignment " SIZE_FORMAT " too large", end_alignment_in_bytes);
 434   assert(is_size_aligned(end_alignment_in_bytes, HeapWordSize),
 435          "alignment " SIZE_FORMAT " is not HeapWord (%u) aligned", end_alignment_in_bytes, HeapWordSize);
 436 
 437   // If we've allocated nothing, simply return.
 438   if (_allocation_region == NULL) {
 439     return;
 440   }
 441 
 442   // If an end alignment was requested, insert filler objects.
 443   if (end_alignment_in_bytes != 0) {
 444     HeapWord* currtop = _allocation_region->top();
 445     HeapWord* newtop = (HeapWord*)align_pointer_up(currtop, end_alignment_in_bytes);
 446     size_t fill_size = pointer_delta(newtop, currtop);
 447     if (fill_size != 0) {
 448       if (fill_size < CollectedHeap::min_fill_size()) {
 449         // If the required fill is smaller than we can represent,
 450         // bump up to the next aligned address. We know we won't exceed the current
 451         // region boundary because the max supported alignment is smaller than the min
 452         // region size, and because the allocation code never leaves space smaller than
 453         // the min_fill_size at the top of the current allocation region.
 454         newtop = (HeapWord*)align_pointer_up(currtop + CollectedHeap::min_fill_size(),
 455                                              end_alignment_in_bytes);
 456         fill_size = pointer_delta(newtop, currtop);
 457       }
 458       HeapWord* fill = archive_mem_allocate(fill_size);
 459       CollectedHeap::fill_with_objects(fill, fill_size);
 460     }
 461   }
 462 
 463   // Loop through the allocated regions, and create MemRegions summarizing
 464   // the allocated address range, combining contiguous ranges. Add the
 465   // MemRegions to the GrowableArray provided by the caller.
 466   int index = _allocated_regions.length() - 1;
 467   assert(_allocated_regions.at(index) == _allocation_region,
 468          "expected region %u at end of array, found %u",
 469          _allocation_region->hrm_index(), _allocated_regions.at(index)->hrm_index());
 470   HeapWord* base_address = _allocation_region->bottom();
 471   HeapWord* top = base_address;
 472 
 473   while (index >= 0) {
 474     HeapRegion* next = _allocated_regions.at(index);
 475     HeapWord* new_base = next->bottom();
 476     HeapWord* new_top = next->top();
 477     if (new_base != top) {
 478       ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 479       base_address = new_base;
 480     }
 481     top = new_top;
 482     index = index - 1;
 483   }
 484 
 485   assert(top != base_address, "zero-sized range, address " PTR_FORMAT, p2i(base_address));
 486   ranges->append(MemRegion(base_address, pointer_delta(top, base_address)));
 487   _allocated_regions.clear();
 488   _allocation_region = NULL;
 489 };
< prev index next >