1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1OopClosures.inline.hpp"
  29 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  30 #include "gc/g1/g1StringDedup.hpp"
  31 #include "gc/shared/taskqueue.inline.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/prefetch.inline.hpp"
  34 
  35 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  36   : _g1h(g1h),
  37     _refs(g1h->task_queue(worker_id)),
  38     _dcq(&g1h->dirty_card_queue_set()),
  39     _ct_bs(g1h->g1_barrier_set()),
  40     _g1_rem(g1h->g1_rem_set()),
  41     _hash_seed(17),
  42     _worker_id(worker_id),
  43     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  44     _age_table(false),
  45     _scanner(g1h),
  46     _old_gen_is_full(false)
  47 {
  48   _scanner.set_par_scan_thread_state(this);
  49   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  50   // we "sacrifice" entry 0 to keep track of surviving bytes for
  51   // non-young regions (where the age is -1)
  52   // We also add a few elements at the beginning and at the end in
  53   // an attempt to eliminate cache contention
  54   size_t real_length = 1 + young_cset_length;
  55   size_t array_length = PADDING_ELEM_NUM +
  56                       real_length +
  57                       PADDING_ELEM_NUM;
  58   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  59   if (_surviving_young_words_base == NULL)
  60     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  61                           "Not enough space for young surv histo.");
  62   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  63   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  64 
  65   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  66 
  67   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  68   // The dest for Young is used when the objects are aged enough to
  69   // need to be moved to the next space.
  70   _dest[InCSetState::Young]        = InCSetState::Old;
  71   _dest[InCSetState::Old]          = InCSetState::Old;
  72 }
  73 
  74 // Pass locally gathered statistics to global state.
  75 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  76   _dcq.flush();
  77   // Update allocation statistics.
  78   _plab_allocator->flush_and_retire_stats();
  79   _g1h->g1_policy()->record_age_table(&_age_table);
  80 
  81   uint length = _g1h->g1_policy()->young_cset_region_length();
  82   for (uint region_index = 0; region_index < length; region_index++) {
  83     surviving_young_words[region_index] += _surviving_young_words[region_index];
  84   }
  85 }
  86 
  87 G1ParScanThreadState::~G1ParScanThreadState() {
  88   delete _plab_allocator;
  89   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  90 }
  91 
  92 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
  93   _plab_allocator->waste(wasted, undo_wasted);
  94 }
  95 
  96 #ifdef ASSERT
  97 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
  98   assert(ref != NULL, "invariant");
  99   assert(UseCompressedOops, "sanity");
 100   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 101   oop p = oopDesc::load_decode_heap_oop(ref);
 102   assert(_g1h->is_in_g1_reserved(p),
 103          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 104   return true;
 105 }
 106 
 107 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 108   assert(ref != NULL, "invariant");
 109   if (has_partial_array_mask(ref)) {
 110     // Must be in the collection set--it's already been copied.
 111     oop p = clear_partial_array_mask(ref);
 112     assert(_g1h->obj_in_cs(p),
 113            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 114   } else {
 115     oop p = oopDesc::load_decode_heap_oop(ref);
 116     assert(_g1h->is_in_g1_reserved(p),
 117            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 118   }
 119   return true;
 120 }
 121 
 122 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 123   if (ref.is_narrow()) {
 124     return verify_ref((narrowOop*) ref);
 125   } else {
 126     return verify_ref((oop*) ref);
 127   }
 128 }
 129 #endif // ASSERT
 130 
 131 void G1ParScanThreadState::trim_queue() {
 132   StarTask ref;
 133   do {
 134     // Drain the overflow stack first, so other threads can steal.
 135     while (_refs->pop_overflow(ref)) {
 136       dispatch_reference(ref);
 137     }
 138 
 139     while (_refs->pop_local(ref)) {
 140       dispatch_reference(ref);
 141     }
 142   } while (!_refs->is_empty());
 143 }
 144 
 145 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 146                                                       InCSetState* dest,
 147                                                       size_t word_sz,
 148                                                       AllocationContext_t const context,
 149                                                       bool previous_plab_refill_failed) {
 150   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 151   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 152 
 153   // Right now we only have two types of regions (young / old) so
 154   // let's keep the logic here simple. We can generalize it when necessary.
 155   if (dest->is_young()) {
 156     bool plab_refill_in_old_failed = false;
 157     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 158                                                         word_sz,
 159                                                         context,
 160                                                         &plab_refill_in_old_failed);
 161     // Make sure that we won't attempt to copy any other objects out
 162     // of a survivor region (given that apparently we cannot allocate
 163     // any new ones) to avoid coming into this slow path again and again.
 164     // Only consider failed PLAB refill here: failed inline allocations are
 165     // typically large, so not indicative of remaining space.
 166     if (previous_plab_refill_failed) {
 167       _tenuring_threshold = 0;
 168     }
 169 
 170     if (obj_ptr != NULL) {
 171       dest->set_old();
 172     } else {
 173       // We just failed to allocate in old gen. The same idea as explained above
 174       // for making survivor gen unavailable for allocation applies for old gen.
 175       _old_gen_is_full = plab_refill_in_old_failed;
 176     }
 177     return obj_ptr;
 178   } else {
 179     _old_gen_is_full = previous_plab_refill_failed;
 180     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 181     // no other space to try.
 182     return NULL;
 183   }
 184 }
 185 
 186 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 187   if (state.is_young()) {
 188     age = !m->has_displaced_mark_helper() ? m->age()
 189                                           : m->displaced_mark_helper()->age();
 190     if (age < _tenuring_threshold) {
 191       return state;
 192     }
 193   }
 194   return dest(state);
 195 }
 196 
 197 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 198                                                   oop const old, size_t word_sz, uint age,
 199                                                   HeapWord * const obj_ptr,
 200                                                   const AllocationContext_t context) const {
 201   G1PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state, context);
 202   if (alloc_buf->contains(obj_ptr)) {
 203     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 204                                                              dest_state.value() == InCSetState::Old,
 205                                                              alloc_buf->word_sz());
 206   } else {
 207     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 208                                                               dest_state.value() == InCSetState::Old);
 209   }
 210 }
 211 
 212 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 213                                                  oop const old,
 214                                                  markOop const old_mark) {
 215   const size_t word_sz = old->size();
 216   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 217   // +1 to make the -1 indexes valid...
 218   const int young_index = from_region->young_index_in_cset()+1;
 219   assert( (from_region->is_young() && young_index >  0) ||
 220          (!from_region->is_young() && young_index == 0), "invariant" );
 221   const AllocationContext_t context = from_region->allocation_context();
 222 
 223   uint age = 0;
 224   InCSetState dest_state = next_state(state, old_mark, age);
 225   // The second clause is to prevent premature evacuation failure in case there
 226   // is still space in survivor, but old gen is full.
 227   if (_old_gen_is_full && dest_state.is_old()) {
 228     return handle_evacuation_failure_par(old, old_mark);
 229   }
 230   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 231 
 232   // PLAB allocations should succeed most of the time, so we'll
 233   // normally check against NULL once and that's it.
 234   if (obj_ptr == NULL) {
 235     bool plab_refill_failed = false;
 236     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 237     if (obj_ptr == NULL) {
 238       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 239       if (obj_ptr == NULL) {
 240         // This will either forward-to-self, or detect that someone else has
 241         // installed a forwarding pointer.
 242         return handle_evacuation_failure_par(old, old_mark);
 243       }
 244     }
 245     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 246       // The events are checked individually as part of the actual commit
 247       report_promotion_event(dest_state, old, word_sz, age, obj_ptr, context);
 248     }
 249   }
 250 
 251   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 252   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 253 
 254 #ifndef PRODUCT
 255   // Should this evacuation fail?
 256   if (_g1h->evacuation_should_fail()) {
 257     // Doing this after all the allocation attempts also tests the
 258     // undo_allocation() method too.
 259     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 260     return handle_evacuation_failure_par(old, old_mark);
 261   }
 262 #endif // !PRODUCT
 263 
 264   // We're going to allocate linearly, so might as well prefetch ahead.
 265   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 266 
 267   const oop obj = oop(obj_ptr);
 268   const oop forward_ptr = old->forward_to_atomic(obj);
 269   if (forward_ptr == NULL) {
 270     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 271 
 272     if (dest_state.is_young()) {
 273       if (age < markOopDesc::max_age) {
 274         age++;
 275       }
 276       if (old_mark->has_displaced_mark_helper()) {
 277         // In this case, we have to install the mark word first,
 278         // otherwise obj looks to be forwarded (the old mark word,
 279         // which contains the forward pointer, was copied)
 280         obj->set_mark(old_mark);
 281         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 282         old_mark->set_displaced_mark_helper(new_mark);
 283       } else {
 284         obj->set_mark(old_mark->set_age(age));
 285       }
 286       _age_table.add(age, word_sz);
 287     } else {
 288       obj->set_mark(old_mark);
 289     }
 290 
 291     if (G1StringDedup::is_enabled()) {
 292       const bool is_from_young = state.is_young();
 293       const bool is_to_young = dest_state.is_young();
 294       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 295              "sanity");
 296       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 297              "sanity");
 298       G1StringDedup::enqueue_from_evacuation(is_from_young,
 299                                              is_to_young,
 300                                              _worker_id,
 301                                              obj);
 302     }
 303 
 304     _surviving_young_words[young_index] += word_sz;
 305 
 306     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 307       // We keep track of the next start index in the length field of
 308       // the to-space object. The actual length can be found in the
 309       // length field of the from-space object.
 310       arrayOop(obj)->set_length(0);
 311       oop* old_p = set_partial_array_mask(old);
 312       push_on_queue(old_p);
 313     } else {
 314       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 315       _scanner.set_region(to_region);
 316       obj->oop_iterate_backwards(&_scanner);
 317     }
 318     return obj;
 319   } else {
 320     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 321     return forward_ptr;
 322   }
 323 }
 324 
 325 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 326   assert(worker_id < _n_workers, "out of bounds access");
 327   return _states[worker_id];
 328 }
 329 
 330 void G1ParScanThreadStateSet::add_cards_scanned(uint worker_id, size_t cards_scanned) {
 331   assert(worker_id < _n_workers, "out of bounds access");
 332   _cards_scanned[worker_id] += cards_scanned;
 333 }
 334 
 335 size_t G1ParScanThreadStateSet::total_cards_scanned() const {
 336   assert(_flushed, "thread local state from the per thread states should have been flushed");
 337   return _total_cards_scanned;
 338 }
 339 
 340 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 341   assert(_flushed, "thread local state from the per thread states should have been flushed");
 342   return _surviving_young_words_total;
 343 }
 344 
 345 void G1ParScanThreadStateSet::flush() {
 346   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 347   assert(_total_cards_scanned == 0, "should have been cleared");
 348 
 349   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 350     G1ParScanThreadState* pss = _states[worker_index];
 351 
 352     _total_cards_scanned += _cards_scanned[worker_index];
 353 
 354     pss->flush(_surviving_young_words_total);
 355     delete pss;
 356     _states[worker_index] = NULL;
 357   }
 358   _flushed = true;
 359 }
 360 
 361 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 362   assert(_g1h->obj_in_cs(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 363 
 364   oop forward_ptr = old->forward_to_atomic(old);
 365   if (forward_ptr == NULL) {
 366     // Forward-to-self succeeded. We are the "owner" of the object.
 367     HeapRegion* r = _g1h->heap_region_containing(old);
 368 
 369     if (!r->evacuation_failed()) {
 370       r->set_evacuation_failed(true);
 371      _g1h->hr_printer()->evac_failure(r);
 372     }
 373 
 374     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 375 
 376     _scanner.set_region(r);
 377     old->oop_iterate_backwards(&_scanner);
 378 
 379     return old;
 380   } else {
 381     // Forward-to-self failed. Either someone else managed to allocate
 382     // space for this object (old != forward_ptr) or they beat us in
 383     // self-forwarding it (old == forward_ptr).
 384     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 385            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 386            "should not be in the CSet",
 387            p2i(old), p2i(forward_ptr));
 388     return forward_ptr;
 389   }
 390 }
 391