1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "ci/ciCallSite.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciMemberName.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/callGenerator.hpp"
  35 #include "opto/callnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/parse.hpp"
  39 #include "opto/rootnode.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 // Utility function.
  45 const TypeFunc* CallGenerator::tf() const {
  46   return TypeFunc::make(method());
  47 }
  48 
  49 //-----------------------------ParseGenerator---------------------------------
  50 // Internal class which handles all direct bytecode traversal.
  51 class ParseGenerator : public InlineCallGenerator {
  52 private:
  53   bool  _is_osr;
  54   float _expected_uses;
  55 
  56 public:
  57   ParseGenerator(ciMethod* method, float expected_uses, bool is_osr = false)
  58     : InlineCallGenerator(method)
  59   {
  60     _is_osr        = is_osr;
  61     _expected_uses = expected_uses;
  62     assert(InlineTree::check_can_parse(method) == NULL, "parse must be possible");
  63   }
  64 
  65   virtual bool      is_parse() const           { return true; }
  66   virtual JVMState* generate(JVMState* jvms);
  67   int is_osr() { return _is_osr; }
  68 
  69 };
  70 
  71 JVMState* ParseGenerator::generate(JVMState* jvms) {
  72   Compile* C = Compile::current();
  73   C->print_inlining_update(this);
  74 
  75   if (is_osr()) {
  76     // The JVMS for a OSR has a single argument (see its TypeFunc).
  77     assert(jvms->depth() == 1, "no inline OSR");
  78   }
  79 
  80   if (C->failing()) {
  81     return NULL;  // bailing out of the compile; do not try to parse
  82   }
  83 
  84   Parse parser(jvms, method(), _expected_uses);
  85   // Grab signature for matching/allocation
  86 #ifdef ASSERT
  87   if (parser.tf() != (parser.depth() == 1 ? C->tf() : tf())) {
  88     MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
  89     assert(C->env()->system_dictionary_modification_counter_changed(),
  90            "Must invalidate if TypeFuncs differ");
  91   }
  92 #endif
  93 
  94   GraphKit& exits = parser.exits();
  95 
  96   if (C->failing()) {
  97     while (exits.pop_exception_state() != NULL) ;
  98     return NULL;
  99   }
 100 
 101   assert(exits.jvms()->same_calls_as(jvms), "sanity");
 102 
 103   // Simply return the exit state of the parser,
 104   // augmented by any exceptional states.
 105   return exits.transfer_exceptions_into_jvms();
 106 }
 107 
 108 //---------------------------DirectCallGenerator------------------------------
 109 // Internal class which handles all out-of-line calls w/o receiver type checks.
 110 class DirectCallGenerator : public CallGenerator {
 111  private:
 112   CallStaticJavaNode* _call_node;
 113   // Force separate memory and I/O projections for the exceptional
 114   // paths to facilitate late inlinig.
 115   bool                _separate_io_proj;
 116 
 117  public:
 118   DirectCallGenerator(ciMethod* method, bool separate_io_proj)
 119     : CallGenerator(method),
 120       _separate_io_proj(separate_io_proj)
 121   {
 122   }
 123   virtual JVMState* generate(JVMState* jvms);
 124 
 125   CallStaticJavaNode* call_node() const { return _call_node; }
 126 };
 127 
 128 JVMState* DirectCallGenerator::generate(JVMState* jvms) {
 129   GraphKit kit(jvms);
 130   kit.C->print_inlining_update(this);
 131   bool is_static = method()->is_static();
 132   address target = is_static ? SharedRuntime::get_resolve_static_call_stub()
 133                              : SharedRuntime::get_resolve_opt_virtual_call_stub();
 134 
 135   if (kit.C->log() != NULL) {
 136     kit.C->log()->elem("direct_call bci='%d'", jvms->bci());
 137   }
 138 
 139   CallStaticJavaNode *call = new CallStaticJavaNode(kit.C, tf(), target, method(), kit.bci());
 140   _call_node = call;  // Save the call node in case we need it later
 141   if (!is_static) {
 142     // Make an explicit receiver null_check as part of this call.
 143     // Since we share a map with the caller, his JVMS gets adjusted.
 144     kit.null_check_receiver_before_call(method());
 145     if (kit.stopped()) {
 146       // And dump it back to the caller, decorated with any exceptions:
 147       return kit.transfer_exceptions_into_jvms();
 148     }
 149     // Mark the call node as virtual, sort of:
 150     call->set_optimized_virtual(true);
 151     if (method()->is_method_handle_intrinsic() ||
 152         method()->is_compiled_lambda_form()) {
 153       call->set_method_handle_invoke(true);
 154     }
 155   }
 156   kit.set_arguments_for_java_call(call);
 157   kit.set_edges_for_java_call(call, false, _separate_io_proj);
 158   Node* ret = kit.set_results_for_java_call(call, _separate_io_proj);
 159   kit.push_node(method()->return_type()->basic_type(), ret);
 160   return kit.transfer_exceptions_into_jvms();
 161 }
 162 
 163 //--------------------------VirtualCallGenerator------------------------------
 164 // Internal class which handles all out-of-line calls checking receiver type.
 165 class VirtualCallGenerator : public CallGenerator {
 166 private:
 167   int _vtable_index;
 168 public:
 169   VirtualCallGenerator(ciMethod* method, int vtable_index)
 170     : CallGenerator(method), _vtable_index(vtable_index)
 171   {
 172     assert(vtable_index == Method::invalid_vtable_index ||
 173            vtable_index >= 0, "either invalid or usable");
 174   }
 175   virtual bool      is_virtual() const          { return true; }
 176   virtual JVMState* generate(JVMState* jvms);
 177 };
 178 
 179 JVMState* VirtualCallGenerator::generate(JVMState* jvms) {
 180   GraphKit kit(jvms);
 181   Node* receiver = kit.argument(0);
 182 
 183   kit.C->print_inlining_update(this);
 184 
 185   if (kit.C->log() != NULL) {
 186     kit.C->log()->elem("virtual_call bci='%d'", jvms->bci());
 187   }
 188 
 189   // If the receiver is a constant null, do not torture the system
 190   // by attempting to call through it.  The compile will proceed
 191   // correctly, but may bail out in final_graph_reshaping, because
 192   // the call instruction will have a seemingly deficient out-count.
 193   // (The bailout says something misleading about an "infinite loop".)
 194   if (kit.gvn().type(receiver)->higher_equal(TypePtr::NULL_PTR)) {
 195     kit.inc_sp(method()->arg_size());  // restore arguments
 196     kit.uncommon_trap(Deoptimization::Reason_null_check,
 197                       Deoptimization::Action_none,
 198                       NULL, "null receiver");
 199     return kit.transfer_exceptions_into_jvms();
 200   }
 201 
 202   // Ideally we would unconditionally do a null check here and let it
 203   // be converted to an implicit check based on profile information.
 204   // However currently the conversion to implicit null checks in
 205   // Block::implicit_null_check() only looks for loads and stores, not calls.
 206   ciMethod *caller = kit.method();
 207   ciMethodData *caller_md = (caller == NULL) ? NULL : caller->method_data();
 208   if (!UseInlineCaches || !ImplicitNullChecks || !os::zero_page_read_protected() ||
 209        ((ImplicitNullCheckThreshold > 0) && caller_md &&
 210        (caller_md->trap_count(Deoptimization::Reason_null_check)
 211        >= (uint)ImplicitNullCheckThreshold))) {
 212     // Make an explicit receiver null_check as part of this call.
 213     // Since we share a map with the caller, his JVMS gets adjusted.
 214     receiver = kit.null_check_receiver_before_call(method());
 215     if (kit.stopped()) {
 216       // And dump it back to the caller, decorated with any exceptions:
 217       return kit.transfer_exceptions_into_jvms();
 218     }
 219   }
 220 
 221   assert(!method()->is_static(), "virtual call must not be to static");
 222   assert(!method()->is_final(), "virtual call should not be to final");
 223   assert(!method()->is_private(), "virtual call should not be to private");
 224   assert(_vtable_index == Method::invalid_vtable_index || !UseInlineCaches,
 225          "no vtable calls if +UseInlineCaches ");
 226   address target = SharedRuntime::get_resolve_virtual_call_stub();
 227   // Normal inline cache used for call
 228   CallDynamicJavaNode *call = new CallDynamicJavaNode(tf(), target, method(), _vtable_index, kit.bci());
 229   kit.set_arguments_for_java_call(call);
 230   kit.set_edges_for_java_call(call);
 231   Node* ret = kit.set_results_for_java_call(call);
 232   kit.push_node(method()->return_type()->basic_type(), ret);
 233 
 234   // Represent the effect of an implicit receiver null_check
 235   // as part of this call.  Since we share a map with the caller,
 236   // his JVMS gets adjusted.
 237   kit.cast_not_null(receiver);
 238   return kit.transfer_exceptions_into_jvms();
 239 }
 240 
 241 CallGenerator* CallGenerator::for_inline(ciMethod* m, float expected_uses) {
 242   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 243   return new ParseGenerator(m, expected_uses);
 244 }
 245 
 246 // As a special case, the JVMS passed to this CallGenerator is
 247 // for the method execution already in progress, not just the JVMS
 248 // of the caller.  Thus, this CallGenerator cannot be mixed with others!
 249 CallGenerator* CallGenerator::for_osr(ciMethod* m, int osr_bci) {
 250   if (InlineTree::check_can_parse(m) != NULL)  return NULL;
 251   float past_uses = m->interpreter_invocation_count();
 252   float expected_uses = past_uses;
 253   return new ParseGenerator(m, expected_uses, true);
 254 }
 255 
 256 CallGenerator* CallGenerator::for_direct_call(ciMethod* m, bool separate_io_proj) {
 257   assert(!m->is_abstract(), "for_direct_call mismatch");
 258   return new DirectCallGenerator(m, separate_io_proj);
 259 }
 260 
 261 CallGenerator* CallGenerator::for_virtual_call(ciMethod* m, int vtable_index) {
 262   assert(!m->is_static(), "for_virtual_call mismatch");
 263   assert(!m->is_method_handle_intrinsic(), "should be a direct call");
 264   return new VirtualCallGenerator(m, vtable_index);
 265 }
 266 
 267 // Allow inlining decisions to be delayed
 268 class LateInlineCallGenerator : public DirectCallGenerator {
 269  private:
 270   // unique id for log compilation
 271   jlong _unique_id;
 272 
 273  protected:
 274   CallGenerator* _inline_cg;
 275   virtual bool do_late_inline_check(JVMState* jvms) { return true; }
 276 
 277  public:
 278   LateInlineCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 279     DirectCallGenerator(method, true), _inline_cg(inline_cg), _unique_id(0) {}
 280 
 281   virtual bool is_late_inline() const { return true; }
 282 
 283   // Convert the CallStaticJava into an inline
 284   virtual void do_late_inline();
 285 
 286   virtual JVMState* generate(JVMState* jvms) {
 287     Compile *C = Compile::current();
 288 
 289     C->log_inline_id(this);
 290 
 291     // Record that this call site should be revisited once the main
 292     // parse is finished.
 293     if (!is_mh_late_inline()) {
 294       C->add_late_inline(this);
 295     }
 296 
 297     // Emit the CallStaticJava and request separate projections so
 298     // that the late inlining logic can distinguish between fall
 299     // through and exceptional uses of the memory and io projections
 300     // as is done for allocations and macro expansion.
 301     return DirectCallGenerator::generate(jvms);
 302   }
 303 
 304   virtual void print_inlining_late(const char* msg) {
 305     CallNode* call = call_node();
 306     Compile* C = Compile::current();
 307     C->print_inlining_assert_ready();
 308     C->print_inlining(method(), call->jvms()->depth()-1, call->jvms()->bci(), msg);
 309     C->print_inlining_move_to(this);
 310     C->print_inlining_update_delayed(this);
 311   }
 312 
 313   virtual void set_unique_id(jlong id) {
 314     _unique_id = id;
 315   }
 316 
 317   virtual jlong unique_id() const {
 318     return _unique_id;
 319   }
 320 };
 321 
 322 void LateInlineCallGenerator::do_late_inline() {
 323   // Can't inline it
 324   CallStaticJavaNode* call = call_node();
 325   if (call == NULL || call->outcnt() == 0 ||
 326       call->in(0) == NULL || call->in(0)->is_top()) {
 327     return;
 328   }
 329 
 330   const TypeTuple *r = call->tf()->domain();
 331   for (int i1 = 0; i1 < method()->arg_size(); i1++) {
 332     if (call->in(TypeFunc::Parms + i1)->is_top() && r->field_at(TypeFunc::Parms + i1) != Type::HALF) {
 333       assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 334       return;
 335     }
 336   }
 337 
 338   if (call->in(TypeFunc::Memory)->is_top()) {
 339     assert(Compile::current()->inlining_incrementally(), "shouldn't happen during parsing");
 340     return;
 341   }
 342 
 343   Compile* C = Compile::current();
 344   // Remove inlined methods from Compiler's lists.
 345   if (call->is_macro()) {
 346     C->remove_macro_node(call);
 347   }
 348 
 349   // Make a clone of the JVMState that appropriate to use for driving a parse
 350   JVMState* old_jvms = call->jvms();
 351   JVMState* jvms = old_jvms->clone_shallow(C);
 352   uint size = call->req();
 353   SafePointNode* map = new SafePointNode(size, jvms);
 354   for (uint i1 = 0; i1 < size; i1++) {
 355     map->init_req(i1, call->in(i1));
 356   }
 357 
 358   // Make sure the state is a MergeMem for parsing.
 359   if (!map->in(TypeFunc::Memory)->is_MergeMem()) {
 360     Node* mem = MergeMemNode::make(map->in(TypeFunc::Memory));
 361     C->initial_gvn()->set_type_bottom(mem);
 362     map->set_req(TypeFunc::Memory, mem);
 363   }
 364 
 365   uint nargs = method()->arg_size();
 366   // blow away old call arguments
 367   Node* top = C->top();
 368   for (uint i1 = 0; i1 < nargs; i1++) {
 369     map->set_req(TypeFunc::Parms + i1, top);
 370   }
 371   jvms->set_map(map);
 372 
 373   // Make enough space in the expression stack to transfer
 374   // the incoming arguments and return value.
 375   map->ensure_stack(jvms, jvms->method()->max_stack());
 376   for (uint i1 = 0; i1 < nargs; i1++) {
 377     map->set_argument(jvms, i1, call->in(TypeFunc::Parms + i1));
 378   }
 379 
 380   C->print_inlining_assert_ready();
 381 
 382   C->print_inlining_move_to(this);
 383 
 384   C->log_late_inline(this);
 385 
 386   // This check is done here because for_method_handle_inline() method
 387   // needs jvms for inlined state.
 388   if (!do_late_inline_check(jvms)) {
 389     map->disconnect_inputs(NULL, C);
 390     return;
 391   }
 392 
 393   // Setup default node notes to be picked up by the inlining
 394   Node_Notes* old_nn = C->node_notes_at(call->_idx);
 395   if (old_nn != NULL) {
 396     Node_Notes* entry_nn = old_nn->clone(C);
 397     entry_nn->set_jvms(jvms);
 398     C->set_default_node_notes(entry_nn);
 399   }
 400 
 401   // Now perform the inlining using the synthesized JVMState
 402   JVMState* new_jvms = _inline_cg->generate(jvms);
 403   if (new_jvms == NULL)  return;  // no change
 404   if (C->failing())      return;
 405 
 406   // Capture any exceptional control flow
 407   GraphKit kit(new_jvms);
 408 
 409   // Find the result object
 410   Node* result = C->top();
 411   int   result_size = method()->return_type()->size();
 412   if (result_size != 0 && !kit.stopped()) {
 413     result = (result_size == 1) ? kit.pop() : kit.pop_pair();
 414   }
 415 
 416   C->set_has_loops(C->has_loops() || _inline_cg->method()->has_loops());
 417   C->env()->notice_inlined_method(_inline_cg->method());
 418   C->set_inlining_progress(true);
 419 
 420   kit.replace_call(call, result, true);
 421 }
 422 
 423 
 424 CallGenerator* CallGenerator::for_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 425   return new LateInlineCallGenerator(method, inline_cg);
 426 }
 427 
 428 class LateInlineMHCallGenerator : public LateInlineCallGenerator {
 429   ciMethod* _caller;
 430   int _attempt;
 431   bool _input_not_const;
 432 
 433   virtual bool do_late_inline_check(JVMState* jvms);
 434   virtual bool already_attempted() const { return _attempt > 0; }
 435 
 436  public:
 437   LateInlineMHCallGenerator(ciMethod* caller, ciMethod* callee, bool input_not_const) :
 438     LateInlineCallGenerator(callee, NULL), _caller(caller), _attempt(0), _input_not_const(input_not_const) {}
 439 
 440   virtual bool is_mh_late_inline() const { return true; }
 441 
 442   virtual JVMState* generate(JVMState* jvms) {
 443     JVMState* new_jvms = LateInlineCallGenerator::generate(jvms);
 444 
 445     Compile* C = Compile::current();
 446     if (_input_not_const) {
 447       // inlining won't be possible so no need to enqueue right now.
 448       call_node()->set_generator(this);
 449     } else {
 450       C->add_late_inline(this);
 451     }
 452     return new_jvms;
 453   }
 454 };
 455 
 456 bool LateInlineMHCallGenerator::do_late_inline_check(JVMState* jvms) {
 457 
 458   CallGenerator* cg = for_method_handle_inline(jvms, _caller, method(), _input_not_const);
 459 
 460   Compile::current()->print_inlining_update_delayed(this);
 461 
 462   if (!_input_not_const) {
 463     _attempt++;
 464   }
 465 
 466   if (cg != NULL) {
 467     assert(!cg->is_late_inline() && cg->is_inline(), "we're doing late inlining");
 468     _inline_cg = cg;
 469     Compile::current()->dec_number_of_mh_late_inlines();
 470     return true;
 471   }
 472 
 473   call_node()->set_generator(this);
 474   return false;
 475 }
 476 
 477 CallGenerator* CallGenerator::for_mh_late_inline(ciMethod* caller, ciMethod* callee, bool input_not_const) {
 478   Compile::current()->inc_number_of_mh_late_inlines();
 479   CallGenerator* cg = new LateInlineMHCallGenerator(caller, callee, input_not_const);
 480   return cg;
 481 }
 482 
 483 class LateInlineStringCallGenerator : public LateInlineCallGenerator {
 484 
 485  public:
 486   LateInlineStringCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 487     LateInlineCallGenerator(method, inline_cg) {}
 488 
 489   virtual JVMState* generate(JVMState* jvms) {
 490     Compile *C = Compile::current();
 491 
 492     C->log_inline_id(this);
 493 
 494     C->add_string_late_inline(this);
 495 
 496     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 497     return new_jvms;
 498   }
 499 
 500   virtual bool is_string_late_inline() const { return true; }
 501 };
 502 
 503 CallGenerator* CallGenerator::for_string_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 504   return new LateInlineStringCallGenerator(method, inline_cg);
 505 }
 506 
 507 class LateInlineBoxingCallGenerator : public LateInlineCallGenerator {
 508 
 509  public:
 510   LateInlineBoxingCallGenerator(ciMethod* method, CallGenerator* inline_cg) :
 511     LateInlineCallGenerator(method, inline_cg) {}
 512 
 513   virtual JVMState* generate(JVMState* jvms) {
 514     Compile *C = Compile::current();
 515 
 516     C->log_inline_id(this);
 517 
 518     C->add_boxing_late_inline(this);
 519 
 520     JVMState* new_jvms =  DirectCallGenerator::generate(jvms);
 521     return new_jvms;
 522   }
 523 };
 524 
 525 CallGenerator* CallGenerator::for_boxing_late_inline(ciMethod* method, CallGenerator* inline_cg) {
 526   return new LateInlineBoxingCallGenerator(method, inline_cg);
 527 }
 528 
 529 //---------------------------WarmCallGenerator--------------------------------
 530 // Internal class which handles initial deferral of inlining decisions.
 531 class WarmCallGenerator : public CallGenerator {
 532   WarmCallInfo*   _call_info;
 533   CallGenerator*  _if_cold;
 534   CallGenerator*  _if_hot;
 535   bool            _is_virtual;   // caches virtuality of if_cold
 536   bool            _is_inline;    // caches inline-ness of if_hot
 537 
 538 public:
 539   WarmCallGenerator(WarmCallInfo* ci,
 540                     CallGenerator* if_cold,
 541                     CallGenerator* if_hot)
 542     : CallGenerator(if_cold->method())
 543   {
 544     assert(method() == if_hot->method(), "consistent choices");
 545     _call_info  = ci;
 546     _if_cold    = if_cold;
 547     _if_hot     = if_hot;
 548     _is_virtual = if_cold->is_virtual();
 549     _is_inline  = if_hot->is_inline();
 550   }
 551 
 552   virtual bool      is_inline() const           { return _is_inline; }
 553   virtual bool      is_virtual() const          { return _is_virtual; }
 554   virtual bool      is_deferred() const         { return true; }
 555 
 556   virtual JVMState* generate(JVMState* jvms);
 557 };
 558 
 559 
 560 CallGenerator* CallGenerator::for_warm_call(WarmCallInfo* ci,
 561                                             CallGenerator* if_cold,
 562                                             CallGenerator* if_hot) {
 563   return new WarmCallGenerator(ci, if_cold, if_hot);
 564 }
 565 
 566 JVMState* WarmCallGenerator::generate(JVMState* jvms) {
 567   Compile* C = Compile::current();
 568   C->print_inlining_update(this);
 569 
 570   if (C->log() != NULL) {
 571     C->log()->elem("warm_call bci='%d'", jvms->bci());
 572   }
 573   jvms = _if_cold->generate(jvms);
 574   if (jvms != NULL) {
 575     Node* m = jvms->map()->control();
 576     if (m->is_CatchProj()) m = m->in(0);  else m = C->top();
 577     if (m->is_Catch())     m = m->in(0);  else m = C->top();
 578     if (m->is_Proj())      m = m->in(0);  else m = C->top();
 579     if (m->is_CallJava()) {
 580       _call_info->set_call(m->as_Call());
 581       _call_info->set_hot_cg(_if_hot);
 582 #ifndef PRODUCT
 583       if (PrintOpto || PrintOptoInlining) {
 584         tty->print_cr("Queueing for warm inlining at bci %d:", jvms->bci());
 585         tty->print("WCI: ");
 586         _call_info->print();
 587       }
 588 #endif
 589       _call_info->set_heat(_call_info->compute_heat());
 590       C->set_warm_calls(_call_info->insert_into(C->warm_calls()));
 591     }
 592   }
 593   return jvms;
 594 }
 595 
 596 void WarmCallInfo::make_hot() {
 597   Unimplemented();
 598 }
 599 
 600 void WarmCallInfo::make_cold() {
 601   // No action:  Just dequeue.
 602 }
 603 
 604 
 605 //------------------------PredictedCallGenerator------------------------------
 606 // Internal class which handles all out-of-line calls checking receiver type.
 607 class PredictedCallGenerator : public CallGenerator {
 608   ciKlass*       _predicted_receiver;
 609   CallGenerator* _if_missed;
 610   CallGenerator* _if_hit;
 611   float          _hit_prob;
 612 
 613 public:
 614   PredictedCallGenerator(ciKlass* predicted_receiver,
 615                          CallGenerator* if_missed,
 616                          CallGenerator* if_hit, float hit_prob)
 617     : CallGenerator(if_missed->method())
 618   {
 619     // The call profile data may predict the hit_prob as extreme as 0 or 1.
 620     // Remove the extremes values from the range.
 621     if (hit_prob > PROB_MAX)   hit_prob = PROB_MAX;
 622     if (hit_prob < PROB_MIN)   hit_prob = PROB_MIN;
 623 
 624     _predicted_receiver = predicted_receiver;
 625     _if_missed          = if_missed;
 626     _if_hit             = if_hit;
 627     _hit_prob           = hit_prob;
 628   }
 629 
 630   virtual bool      is_virtual()   const    { return true; }
 631   virtual bool      is_inline()    const    { return _if_hit->is_inline(); }
 632   virtual bool      is_deferred()  const    { return _if_hit->is_deferred(); }
 633 
 634   virtual JVMState* generate(JVMState* jvms);
 635 };
 636 
 637 
 638 CallGenerator* CallGenerator::for_predicted_call(ciKlass* predicted_receiver,
 639                                                  CallGenerator* if_missed,
 640                                                  CallGenerator* if_hit,
 641                                                  float hit_prob) {
 642   return new PredictedCallGenerator(predicted_receiver, if_missed, if_hit, hit_prob);
 643 }
 644 
 645 
 646 JVMState* PredictedCallGenerator::generate(JVMState* jvms) {
 647   GraphKit kit(jvms);
 648   kit.C->print_inlining_update(this);
 649   PhaseGVN& gvn = kit.gvn();
 650   // We need an explicit receiver null_check before checking its type.
 651   // We share a map with the caller, so his JVMS gets adjusted.
 652   Node* receiver = kit.argument(0);
 653   CompileLog* log = kit.C->log();
 654   if (log != NULL) {
 655     log->elem("predicted_call bci='%d' klass='%d'",
 656               jvms->bci(), log->identify(_predicted_receiver));
 657   }
 658 
 659   receiver = kit.null_check_receiver_before_call(method());
 660   if (kit.stopped()) {
 661     return kit.transfer_exceptions_into_jvms();
 662   }
 663 
 664   // Make a copy of the replaced nodes in case we need to restore them
 665   ReplacedNodes replaced_nodes = kit.map()->replaced_nodes();
 666   replaced_nodes.clone();
 667 
 668   Node* exact_receiver = receiver;  // will get updated in place...
 669   Node* slow_ctl = kit.type_check_receiver(receiver,
 670                                            _predicted_receiver, _hit_prob,
 671                                            &exact_receiver);
 672 
 673   SafePointNode* slow_map = NULL;
 674   JVMState* slow_jvms;
 675   { PreserveJVMState pjvms(&kit);
 676     kit.set_control(slow_ctl);
 677     if (!kit.stopped()) {
 678       slow_jvms = _if_missed->generate(kit.sync_jvms());
 679       if (kit.failing())
 680         return NULL;  // might happen because of NodeCountInliningCutoff
 681       assert(slow_jvms != NULL, "must be");
 682       kit.add_exception_states_from(slow_jvms);
 683       kit.set_map(slow_jvms->map());
 684       if (!kit.stopped())
 685         slow_map = kit.stop();
 686     }
 687   }
 688 
 689   if (kit.stopped()) {
 690     // Instance exactly does not matches the desired type.
 691     kit.set_jvms(slow_jvms);
 692     return kit.transfer_exceptions_into_jvms();
 693   }
 694 
 695   // fall through if the instance exactly matches the desired type
 696   kit.replace_in_map(receiver, exact_receiver);
 697 
 698   // Make the hot call:
 699   JVMState* new_jvms = _if_hit->generate(kit.sync_jvms());
 700   if (new_jvms == NULL) {
 701     // Inline failed, so make a direct call.
 702     assert(_if_hit->is_inline(), "must have been a failed inline");
 703     CallGenerator* cg = CallGenerator::for_direct_call(_if_hit->method());
 704     new_jvms = cg->generate(kit.sync_jvms());
 705   }
 706   kit.add_exception_states_from(new_jvms);
 707   kit.set_jvms(new_jvms);
 708 
 709   // Need to merge slow and fast?
 710   if (slow_map == NULL) {
 711     // The fast path is the only path remaining.
 712     return kit.transfer_exceptions_into_jvms();
 713   }
 714 
 715   if (kit.stopped()) {
 716     // Inlined method threw an exception, so it's just the slow path after all.
 717     kit.set_jvms(slow_jvms);
 718     return kit.transfer_exceptions_into_jvms();
 719   }
 720 
 721   // There are 2 branches and the replaced nodes are only valid on
 722   // one: restore the replaced nodes to what they were before the
 723   // branch.
 724   kit.map()->set_replaced_nodes(replaced_nodes);
 725 
 726   // Finish the diamond.
 727   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
 728   RegionNode* region = new RegionNode(3);
 729   region->init_req(1, kit.control());
 730   region->init_req(2, slow_map->control());
 731   kit.set_control(gvn.transform(region));
 732   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
 733   iophi->set_req(2, slow_map->i_o());
 734   kit.set_i_o(gvn.transform(iophi));
 735   // Merge memory
 736   kit.merge_memory(slow_map->merged_memory(), region, 2);
 737   // Transform new memory Phis.
 738   for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) {
 739     Node* phi = mms.memory();
 740     if (phi->is_Phi() && phi->in(0) == region) {
 741       mms.set_memory(gvn.transform(phi));
 742     }
 743   }
 744   uint tos = kit.jvms()->stkoff() + kit.sp();
 745   uint limit = slow_map->req();
 746   for (uint i = TypeFunc::Parms; i < limit; i++) {
 747     // Skip unused stack slots; fast forward to monoff();
 748     if (i == tos) {
 749       i = kit.jvms()->monoff();
 750       if( i >= limit ) break;
 751     }
 752     Node* m = kit.map()->in(i);
 753     Node* n = slow_map->in(i);
 754     if (m != n) {
 755       const Type* t = gvn.type(m)->meet_speculative(gvn.type(n));
 756       Node* phi = PhiNode::make(region, m, t);
 757       phi->set_req(2, n);
 758       kit.map()->set_req(i, gvn.transform(phi));
 759     }
 760   }
 761   return kit.transfer_exceptions_into_jvms();
 762 }
 763 
 764 
 765 CallGenerator* CallGenerator::for_method_handle_call(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool delayed_forbidden) {
 766   assert(callee->is_method_handle_intrinsic() ||
 767          callee->is_compiled_lambda_form(), "for_method_handle_call mismatch");
 768   bool input_not_const;
 769   CallGenerator* cg = CallGenerator::for_method_handle_inline(jvms, caller, callee, input_not_const);
 770   Compile* C = Compile::current();
 771   if (cg != NULL) {
 772     if (!delayed_forbidden && AlwaysIncrementalInline) {
 773       return CallGenerator::for_late_inline(callee, cg);
 774     } else {
 775       return cg;
 776     }
 777   }
 778   int bci = jvms->bci();
 779   ciCallProfile profile = caller->call_profile_at_bci(bci);
 780   int call_site_count = caller->scale_count(profile.count());
 781 
 782   if (IncrementalInline && call_site_count > 0 &&
 783       (input_not_const || !C->inlining_incrementally() || C->over_inlining_cutoff())) {
 784     return CallGenerator::for_mh_late_inline(caller, callee, input_not_const);
 785   } else {
 786     // Out-of-line call.
 787     return CallGenerator::for_direct_call(callee);
 788   }
 789 }
 790 
 791 CallGenerator* CallGenerator::for_method_handle_inline(JVMState* jvms, ciMethod* caller, ciMethod* callee, bool& input_not_const) {
 792   GraphKit kit(jvms);
 793   PhaseGVN& gvn = kit.gvn();
 794   Compile* C = kit.C;
 795   vmIntrinsics::ID iid = callee->intrinsic_id();
 796   input_not_const = true;
 797   switch (iid) {
 798   case vmIntrinsics::_invokeBasic:
 799     {
 800       // Get MethodHandle receiver:
 801       Node* receiver = kit.argument(0);
 802       if (receiver->Opcode() == Op_ConP) {
 803         input_not_const = false;
 804         const TypeOopPtr* oop_ptr = receiver->bottom_type()->is_oopptr();
 805         ciMethod* target = oop_ptr->const_oop()->as_method_handle()->get_vmtarget();
 806         guarantee(!target->is_method_handle_intrinsic(), "should not happen");  // XXX remove
 807         const int vtable_index = Method::invalid_vtable_index;
 808         CallGenerator* cg = C->call_generator(target, vtable_index, false, jvms, true, PROB_ALWAYS, NULL, true, true);
 809         assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 810         if (cg != NULL && cg->is_inline())
 811           return cg;
 812       } else {
 813         const char* msg = "receiver not constant";
 814         if (PrintInlining)  C->print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg);
 815         C->log_inline_failure(msg);
 816       }
 817     }
 818     break;
 819 
 820   case vmIntrinsics::_linkToVirtual:
 821   case vmIntrinsics::_linkToStatic:
 822   case vmIntrinsics::_linkToSpecial:
 823   case vmIntrinsics::_linkToInterface:
 824     {
 825       // Get MemberName argument:
 826       Node* member_name = kit.argument(callee->arg_size() - 1);
 827       if (member_name->Opcode() == Op_ConP) {
 828         input_not_const = false;
 829         const TypeOopPtr* oop_ptr = member_name->bottom_type()->is_oopptr();
 830         ciMethod* target = oop_ptr->const_oop()->as_member_name()->get_vmtarget();
 831 
 832         // In lamda forms we erase signature types to avoid resolving issues
 833         // involving class loaders.  When we optimize a method handle invoke
 834         // to a direct call we must cast the receiver and arguments to its
 835         // actual types.
 836         ciSignature* signature = target->signature();
 837         const int receiver_skip = target->is_static() ? 0 : 1;
 838         // Cast receiver to its type.
 839         if (!target->is_static()) {
 840           Node* arg = kit.argument(0);
 841           const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 842           const Type*       sig_type = TypeOopPtr::make_from_klass(signature->accessing_klass());
 843           if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 844             Node* cast_obj = gvn.transform(new CheckCastPPNode(kit.control(), arg, sig_type));
 845             kit.set_argument(0, cast_obj);
 846           }
 847         }
 848         // Cast reference arguments to its type.
 849         for (int i = 0; i < signature->count(); i++) {
 850           ciType* t = signature->type_at(i);
 851           if (t->is_klass()) {
 852             Node* arg = kit.argument(receiver_skip + i);
 853             const TypeOopPtr* arg_type = arg->bottom_type()->isa_oopptr();
 854             const Type*       sig_type = TypeOopPtr::make_from_klass(t->as_klass());
 855             if (arg_type != NULL && !arg_type->higher_equal(sig_type)) {
 856               Node* cast_obj = gvn.transform(new CheckCastPPNode(kit.control(), arg, sig_type));
 857               kit.set_argument(receiver_skip + i, cast_obj);
 858             }
 859           }
 860         }
 861 
 862         // Try to get the most accurate receiver type
 863         const bool is_virtual              = (iid == vmIntrinsics::_linkToVirtual);
 864         const bool is_virtual_or_interface = (is_virtual || iid == vmIntrinsics::_linkToInterface);
 865         int  vtable_index       = Method::invalid_vtable_index;
 866         bool call_does_dispatch = false;
 867 
 868         ciKlass* speculative_receiver_type = NULL;
 869         if (is_virtual_or_interface) {
 870           ciInstanceKlass* klass = target->holder();
 871           Node*             receiver_node = kit.argument(0);
 872           const TypeOopPtr* receiver_type = gvn.type(receiver_node)->isa_oopptr();
 873           // call_does_dispatch and vtable_index are out-parameters.  They might be changed.
 874           // optimize_virtual_call() takes 2 different holder
 875           // arguments for a corner case that doesn't apply here (see
 876           // Parse::do_call())
 877           target = C->optimize_virtual_call(caller, jvms->bci(), klass, klass,
 878                                             target, receiver_type, is_virtual,
 879                                             call_does_dispatch, vtable_index, // out-parameters
 880                                             /*check_access=*/false);
 881           // We lack profiling at this call but type speculation may
 882           // provide us with a type
 883           speculative_receiver_type = (receiver_type != NULL) ? receiver_type->speculative_type() : NULL;
 884         }
 885         CallGenerator* cg = C->call_generator(target, vtable_index, call_does_dispatch, jvms, true, PROB_ALWAYS, speculative_receiver_type, true, true);
 886         assert(cg == NULL || !cg->is_late_inline() || cg->is_mh_late_inline(), "no late inline here");
 887         if (cg != NULL && cg->is_inline())
 888           return cg;
 889       } else {
 890         const char* msg = "member_name not constant";
 891         if (PrintInlining)  C->print_inlining(callee, jvms->depth() - 1, jvms->bci(), msg);
 892         C->log_inline_failure(msg);
 893       }
 894     }
 895     break;
 896 
 897   default:
 898     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 899     break;
 900   }
 901   return NULL;
 902 }
 903 
 904 
 905 //------------------------PredicatedIntrinsicGenerator------------------------------
 906 // Internal class which handles all predicated Intrinsic calls.
 907 class PredicatedIntrinsicGenerator : public CallGenerator {
 908   CallGenerator* _intrinsic;
 909   CallGenerator* _cg;
 910 
 911 public:
 912   PredicatedIntrinsicGenerator(CallGenerator* intrinsic,
 913                                CallGenerator* cg)
 914     : CallGenerator(cg->method())
 915   {
 916     _intrinsic = intrinsic;
 917     _cg        = cg;
 918   }
 919 
 920   virtual bool      is_virtual()   const    { return true; }
 921   virtual bool      is_inlined()   const    { return true; }
 922   virtual bool      is_intrinsic() const    { return true; }
 923 
 924   virtual JVMState* generate(JVMState* jvms);
 925 };
 926 
 927 
 928 CallGenerator* CallGenerator::for_predicated_intrinsic(CallGenerator* intrinsic,
 929                                                        CallGenerator* cg) {
 930   return new PredicatedIntrinsicGenerator(intrinsic, cg);
 931 }
 932 
 933 
 934 JVMState* PredicatedIntrinsicGenerator::generate(JVMState* jvms) {
 935   // The code we want to generate here is:
 936   //    if (receiver == NULL)
 937   //        uncommon_Trap
 938   //    if (predicate(0))
 939   //        do_intrinsic(0)
 940   //    else
 941   //    if (predicate(1))
 942   //        do_intrinsic(1)
 943   //    ...
 944   //    else
 945   //        do_java_comp
 946 
 947   GraphKit kit(jvms);
 948   PhaseGVN& gvn = kit.gvn();
 949 
 950   CompileLog* log = kit.C->log();
 951   if (log != NULL) {
 952     log->elem("predicated_intrinsic bci='%d' method='%d'",
 953               jvms->bci(), log->identify(method()));
 954   }
 955 
 956   if (!method()->is_static()) {
 957     // We need an explicit receiver null_check before checking its type in predicate.
 958     // We share a map with the caller, so his JVMS gets adjusted.
 959     Node* receiver = kit.null_check_receiver_before_call(method());
 960     if (kit.stopped()) {
 961       return kit.transfer_exceptions_into_jvms();
 962     }
 963   }
 964 
 965   int n_predicates = _intrinsic->predicates_count();
 966   assert(n_predicates > 0, "sanity");
 967 
 968   JVMState** result_jvms = NEW_RESOURCE_ARRAY(JVMState*, (n_predicates+1));
 969 
 970   // Region for normal compilation code if intrinsic failed.
 971   Node* slow_region = new RegionNode(1);
 972 
 973   int results = 0;
 974   for (int predicate = 0; (predicate < n_predicates) && !kit.stopped(); predicate++) {
 975 #ifdef ASSERT
 976     JVMState* old_jvms = kit.jvms();
 977     SafePointNode* old_map = kit.map();
 978     Node* old_io  = old_map->i_o();
 979     Node* old_mem = old_map->memory();
 980     Node* old_exc = old_map->next_exception();
 981 #endif
 982     Node* else_ctrl = _intrinsic->generate_predicate(kit.sync_jvms(), predicate);
 983 #ifdef ASSERT
 984     // Assert(no_new_memory && no_new_io && no_new_exceptions) after generate_predicate.
 985     assert(old_jvms == kit.jvms(), "generate_predicate should not change jvm state");
 986     SafePointNode* new_map = kit.map();
 987     assert(old_io  == new_map->i_o(), "generate_predicate should not change i_o");
 988     assert(old_mem == new_map->memory(), "generate_predicate should not change memory");
 989     assert(old_exc == new_map->next_exception(), "generate_predicate should not add exceptions");
 990 #endif
 991     if (!kit.stopped()) {
 992       PreserveJVMState pjvms(&kit);
 993       // Generate intrinsic code:
 994       JVMState* new_jvms = _intrinsic->generate(kit.sync_jvms());
 995       if (new_jvms == NULL) {
 996         // Intrinsic failed, use normal compilation path for this predicate.
 997         slow_region->add_req(kit.control());
 998       } else {
 999         kit.add_exception_states_from(new_jvms);
1000         kit.set_jvms(new_jvms);
1001         if (!kit.stopped()) {
1002           result_jvms[results++] = kit.jvms();
1003         }
1004       }
1005     }
1006     if (else_ctrl == NULL) {
1007       else_ctrl = kit.C->top();
1008     }
1009     kit.set_control(else_ctrl);
1010   }
1011   if (!kit.stopped()) {
1012     // Final 'else' after predicates.
1013     slow_region->add_req(kit.control());
1014   }
1015   if (slow_region->req() > 1) {
1016     PreserveJVMState pjvms(&kit);
1017     // Generate normal compilation code:
1018     kit.set_control(gvn.transform(slow_region));
1019     JVMState* new_jvms = _cg->generate(kit.sync_jvms());
1020     if (kit.failing())
1021       return NULL;  // might happen because of NodeCountInliningCutoff
1022     assert(new_jvms != NULL, "must be");
1023     kit.add_exception_states_from(new_jvms);
1024     kit.set_jvms(new_jvms);
1025     if (!kit.stopped()) {
1026       result_jvms[results++] = kit.jvms();
1027     }
1028   }
1029 
1030   if (results == 0) {
1031     // All paths ended in uncommon traps.
1032     (void) kit.stop();
1033     return kit.transfer_exceptions_into_jvms();
1034   }
1035 
1036   if (results == 1) { // Only one path
1037     kit.set_jvms(result_jvms[0]);
1038     return kit.transfer_exceptions_into_jvms();
1039   }
1040 
1041   // Merge all paths.
1042   kit.C->set_has_split_ifs(true); // Has chance for split-if optimization
1043   RegionNode* region = new RegionNode(results + 1);
1044   Node* iophi = PhiNode::make(region, kit.i_o(), Type::ABIO);
1045   for (int i = 0; i < results; i++) {
1046     JVMState* jvms = result_jvms[i];
1047     int path = i + 1;
1048     SafePointNode* map = jvms->map();
1049     region->init_req(path, map->control());
1050     iophi->set_req(path, map->i_o());
1051     if (i == 0) {
1052       kit.set_jvms(jvms);
1053     } else {
1054       kit.merge_memory(map->merged_memory(), region, path);
1055     }
1056   }
1057   kit.set_control(gvn.transform(region));
1058   kit.set_i_o(gvn.transform(iophi));
1059   // Transform new memory Phis.
1060   for (MergeMemStream mms(kit.merged_memory()); mms.next_non_empty();) {
1061     Node* phi = mms.memory();
1062     if (phi->is_Phi() && phi->in(0) == region) {
1063       mms.set_memory(gvn.transform(phi));
1064     }
1065   }
1066 
1067   // Merge debug info.
1068   Node** ins = NEW_RESOURCE_ARRAY(Node*, results);
1069   uint tos = kit.jvms()->stkoff() + kit.sp();
1070   Node* map = kit.map();
1071   uint limit = map->req();
1072   for (uint i = TypeFunc::Parms; i < limit; i++) {
1073     // Skip unused stack slots; fast forward to monoff();
1074     if (i == tos) {
1075       i = kit.jvms()->monoff();
1076       if( i >= limit ) break;
1077     }
1078     Node* n = map->in(i);
1079     ins[0] = n;
1080     const Type* t = gvn.type(n);
1081     bool needs_phi = false;
1082     for (int j = 1; j < results; j++) {
1083       JVMState* jvms = result_jvms[j];
1084       Node* jmap = jvms->map();
1085       Node* m = NULL;
1086       if (jmap->req() > i) {
1087         m = jmap->in(i);
1088         if (m != n) {
1089           needs_phi = true;
1090           t = t->meet_speculative(gvn.type(m));
1091         }
1092       }
1093       ins[j] = m;
1094     }
1095     if (needs_phi) {
1096       Node* phi = PhiNode::make(region, n, t);
1097       for (int j = 1; j < results; j++) {
1098         phi->set_req(j + 1, ins[j]);
1099       }
1100       map->set_req(i, gvn.transform(phi));
1101     }
1102   }
1103 
1104   return kit.transfer_exceptions_into_jvms();
1105 }
1106 
1107 //-------------------------UncommonTrapCallGenerator-----------------------------
1108 // Internal class which handles all out-of-line calls checking receiver type.
1109 class UncommonTrapCallGenerator : public CallGenerator {
1110   Deoptimization::DeoptReason _reason;
1111   Deoptimization::DeoptAction _action;
1112 
1113 public:
1114   UncommonTrapCallGenerator(ciMethod* m,
1115                             Deoptimization::DeoptReason reason,
1116                             Deoptimization::DeoptAction action)
1117     : CallGenerator(m)
1118   {
1119     _reason = reason;
1120     _action = action;
1121   }
1122 
1123   virtual bool      is_virtual() const          { ShouldNotReachHere(); return false; }
1124   virtual bool      is_trap() const             { return true; }
1125 
1126   virtual JVMState* generate(JVMState* jvms);
1127 };
1128 
1129 
1130 CallGenerator*
1131 CallGenerator::for_uncommon_trap(ciMethod* m,
1132                                  Deoptimization::DeoptReason reason,
1133                                  Deoptimization::DeoptAction action) {
1134   return new UncommonTrapCallGenerator(m, reason, action);
1135 }
1136 
1137 
1138 JVMState* UncommonTrapCallGenerator::generate(JVMState* jvms) {
1139   GraphKit kit(jvms);
1140   kit.C->print_inlining_update(this);
1141   // Take the trap with arguments pushed on the stack.  (Cf. null_check_receiver).
1142   int nargs = method()->arg_size();
1143   kit.inc_sp(nargs);
1144   assert(nargs <= kit.sp() && kit.sp() <= jvms->stk_size(), "sane sp w/ args pushed");
1145   if (_reason == Deoptimization::Reason_class_check &&
1146       _action == Deoptimization::Action_maybe_recompile) {
1147     // Temp fix for 6529811
1148     // Don't allow uncommon_trap to override our decision to recompile in the event
1149     // of a class cast failure for a monomorphic call as it will never let us convert
1150     // the call to either bi-morphic or megamorphic and can lead to unc-trap loops
1151     bool keep_exact_action = true;
1152     kit.uncommon_trap(_reason, _action, NULL, "monomorphic vcall checkcast", false, keep_exact_action);
1153   } else {
1154     kit.uncommon_trap(_reason, _action);
1155   }
1156   return kit.transfer_exceptions_into_jvms();
1157 }
1158 
1159 // (Note:  Moved hook_up_call to GraphKit::set_edges_for_java_call.)
1160 
1161 // (Node:  Merged hook_up_exits into ParseGenerator::generate.)
1162 
1163 #define NODES_OVERHEAD_PER_METHOD (30.0)
1164 #define NODES_PER_BYTECODE (9.5)
1165 
1166 void WarmCallInfo::init(JVMState* call_site, ciMethod* call_method, ciCallProfile& profile, float prof_factor) {
1167   int call_count = profile.count();
1168   int code_size = call_method->code_size();
1169 
1170   // Expected execution count is based on the historical count:
1171   _count = call_count < 0 ? 1 : call_site->method()->scale_count(call_count, prof_factor);
1172 
1173   // Expected profit from inlining, in units of simple call-overheads.
1174   _profit = 1.0;
1175 
1176   // Expected work performed by the call in units of call-overheads.
1177   // %%% need an empirical curve fit for "work" (time in call)
1178   float bytecodes_per_call = 3;
1179   _work = 1.0 + code_size / bytecodes_per_call;
1180 
1181   // Expected size of compilation graph:
1182   // -XX:+PrintParseStatistics once reported:
1183   //  Methods seen: 9184  Methods parsed: 9184  Nodes created: 1582391
1184   //  Histogram of 144298 parsed bytecodes:
1185   // %%% Need an better predictor for graph size.
1186   _size = NODES_OVERHEAD_PER_METHOD + (NODES_PER_BYTECODE * code_size);
1187 }
1188 
1189 // is_cold:  Return true if the node should never be inlined.
1190 // This is true if any of the key metrics are extreme.
1191 bool WarmCallInfo::is_cold() const {
1192   if (count()  <  WarmCallMinCount)        return true;
1193   if (profit() <  WarmCallMinProfit)       return true;
1194   if (work()   >  WarmCallMaxWork)         return true;
1195   if (size()   >  WarmCallMaxSize)         return true;
1196   return false;
1197 }
1198 
1199 // is_hot:  Return true if the node should be inlined immediately.
1200 // This is true if any of the key metrics are extreme.
1201 bool WarmCallInfo::is_hot() const {
1202   assert(!is_cold(), "eliminate is_cold cases before testing is_hot");
1203   if (count()  >= HotCallCountThreshold)   return true;
1204   if (profit() >= HotCallProfitThreshold)  return true;
1205   if (work()   <= HotCallTrivialWork)      return true;
1206   if (size()   <= HotCallTrivialSize)      return true;
1207   return false;
1208 }
1209 
1210 // compute_heat:
1211 float WarmCallInfo::compute_heat() const {
1212   assert(!is_cold(), "compute heat only on warm nodes");
1213   assert(!is_hot(),  "compute heat only on warm nodes");
1214   int min_size = MAX2(0,   (int)HotCallTrivialSize);
1215   int max_size = MIN2(500, (int)WarmCallMaxSize);
1216   float method_size = (size() - min_size) / MAX2(1, max_size - min_size);
1217   float size_factor;
1218   if      (method_size < 0.05)  size_factor = 4;   // 2 sigmas better than avg.
1219   else if (method_size < 0.15)  size_factor = 2;   // 1 sigma better than avg.
1220   else if (method_size < 0.5)   size_factor = 1;   // better than avg.
1221   else                          size_factor = 0.5; // worse than avg.
1222   return (count() * profit() * size_factor);
1223 }
1224 
1225 bool WarmCallInfo::warmer_than(WarmCallInfo* that) {
1226   assert(this != that, "compare only different WCIs");
1227   assert(this->heat() != 0 && that->heat() != 0, "call compute_heat 1st");
1228   if (this->heat() > that->heat())   return true;
1229   if (this->heat() < that->heat())   return false;
1230   assert(this->heat() == that->heat(), "no NaN heat allowed");
1231   // Equal heat.  Break the tie some other way.
1232   if (!this->call() || !that->call())  return (address)this > (address)that;
1233   return this->call()->_idx > that->call()->_idx;
1234 }
1235 
1236 //#define UNINIT_NEXT ((WarmCallInfo*)badAddress)
1237 #define UNINIT_NEXT ((WarmCallInfo*)NULL)
1238 
1239 WarmCallInfo* WarmCallInfo::insert_into(WarmCallInfo* head) {
1240   assert(next() == UNINIT_NEXT, "not yet on any list");
1241   WarmCallInfo* prev_p = NULL;
1242   WarmCallInfo* next_p = head;
1243   while (next_p != NULL && next_p->warmer_than(this)) {
1244     prev_p = next_p;
1245     next_p = prev_p->next();
1246   }
1247   // Install this between prev_p and next_p.
1248   this->set_next(next_p);
1249   if (prev_p == NULL)
1250     head = this;
1251   else
1252     prev_p->set_next(this);
1253   return head;
1254 }
1255 
1256 WarmCallInfo* WarmCallInfo::remove_from(WarmCallInfo* head) {
1257   WarmCallInfo* prev_p = NULL;
1258   WarmCallInfo* next_p = head;
1259   while (next_p != this) {
1260     assert(next_p != NULL, "this must be in the list somewhere");
1261     prev_p = next_p;
1262     next_p = prev_p->next();
1263   }
1264   next_p = this->next();
1265   debug_only(this->set_next(UNINIT_NEXT));
1266   // Remove this from between prev_p and next_p.
1267   if (prev_p == NULL)
1268     head = next_p;
1269   else
1270     prev_p->set_next(next_p);
1271   return head;
1272 }
1273 
1274 WarmCallInfo WarmCallInfo::_always_hot(WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE(),
1275                                        WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE());
1276 WarmCallInfo WarmCallInfo::_always_cold(WarmCallInfo::MIN_VALUE(), WarmCallInfo::MIN_VALUE(),
1277                                         WarmCallInfo::MAX_VALUE(), WarmCallInfo::MAX_VALUE());
1278 
1279 WarmCallInfo* WarmCallInfo::always_hot() {
1280   assert(_always_hot.is_hot(), "must always be hot");
1281   return &_always_hot;
1282 }
1283 
1284 WarmCallInfo* WarmCallInfo::always_cold() {
1285   assert(_always_cold.is_cold(), "must always be cold");
1286   return &_always_cold;
1287 }
1288 
1289 
1290 #ifndef PRODUCT
1291 
1292 void WarmCallInfo::print() const {
1293   tty->print("%s : C=%6.1f P=%6.1f W=%6.1f S=%6.1f H=%6.1f -> %p",
1294              is_cold() ? "cold" : is_hot() ? "hot " : "warm",
1295              count(), profit(), work(), size(), compute_heat(), next());
1296   tty->cr();
1297   if (call() != NULL)  call()->dump();
1298 }
1299 
1300 void print_wci(WarmCallInfo* ci) {
1301   ci->print();
1302 }
1303 
1304 void WarmCallInfo::print_all() const {
1305   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1306     p->print();
1307 }
1308 
1309 int WarmCallInfo::count_all() const {
1310   int cnt = 0;
1311   for (const WarmCallInfo* p = this; p != NULL; p = p->next())
1312     cnt++;
1313   return cnt;
1314 }
1315 
1316 #endif //PRODUCT