/* * Copyright (c) 2008, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "asm/macroAssembler.hpp" #include "classfile/javaClasses.inline.hpp" #include "interpreter/interpreter.hpp" #include "interpreter/interp_masm.hpp" #include "memory/allocation.inline.hpp" #include "prims/methodHandles.hpp" #define __ _masm-> #ifdef PRODUCT #define BLOCK_COMMENT(str) /* nothing */ #define STOP(error) stop(error) #else #define BLOCK_COMMENT(str) __ block_comment(str) #define STOP(error) block_comment(error); __ stop(error) #endif #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") // Workaround for C++ overloading nastiness on '0' for RegisterOrConstant. static RegisterOrConstant constant(int value) { return RegisterOrConstant(value); } void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg, Register temp_reg, Register temp2_reg) { if (VerifyMethodHandles) verify_klass(_masm, klass_reg, SystemDictionary::WK_KLASS_ENUM_NAME(java_lang_Class), temp_reg, temp2_reg, "MH argument is a Class"); __ ld_ptr(Address(klass_reg, java_lang_Class::klass_offset_in_bytes()), klass_reg); } #ifdef ASSERT static int check_nonzero(const char* xname, int x) { assert(x != 0, "%s should be nonzero", xname); return x; } #define NONZERO(x) check_nonzero(#x, x) #else //ASSERT #define NONZERO(x) (x) #endif //ASSERT #ifdef ASSERT void MethodHandles::verify_klass(MacroAssembler* _masm, Register obj_reg, SystemDictionary::WKID klass_id, Register temp_reg, Register temp2_reg, const char* error_message) { Klass** klass_addr = SystemDictionary::well_known_klass_addr(klass_id); KlassHandle klass = SystemDictionary::well_known_klass(klass_id); bool did_save = false; if (temp_reg == noreg || temp2_reg == noreg) { temp_reg = L1; temp2_reg = L2; __ save_frame_and_mov(0, obj_reg, L0); obj_reg = L0; did_save = true; } Label L_ok, L_bad; BLOCK_COMMENT("verify_klass {"); __ verify_oop(obj_reg); __ br_null_short(obj_reg, Assembler::pn, L_bad); __ load_klass(obj_reg, temp_reg); __ set(ExternalAddress((Metadata**)klass_addr), temp2_reg); __ ld_ptr(Address(temp2_reg, 0), temp2_reg); __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok); intptr_t super_check_offset = klass->super_check_offset(); __ ld_ptr(Address(temp_reg, super_check_offset), temp_reg); __ set(ExternalAddress((Metadata**)klass_addr), temp2_reg); __ ld_ptr(Address(temp2_reg, 0), temp2_reg); __ cmp_and_brx_short(temp_reg, temp2_reg, Assembler::equal, Assembler::pt, L_ok); __ BIND(L_bad); if (did_save) __ restore(); __ STOP(error_message); __ BIND(L_ok); if (did_save) __ restore(); BLOCK_COMMENT("} verify_klass"); } void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) { Label L; BLOCK_COMMENT("verify_ref_kind {"); __ lduw(Address(member_reg, NONZERO(java_lang_invoke_MemberName::flags_offset_in_bytes())), temp); __ srl( temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_SHIFT, temp); __ and3(temp, java_lang_invoke_MemberName::MN_REFERENCE_KIND_MASK, temp); __ cmp_and_br_short(temp, ref_kind, Assembler::equal, Assembler::pt, L); { char* buf = NEW_C_HEAP_ARRAY(char, 100, mtInternal); jio_snprintf(buf, 100, "verify_ref_kind expected %x", ref_kind); if (ref_kind == JVM_REF_invokeVirtual || ref_kind == JVM_REF_invokeSpecial) // could do this for all ref_kinds, but would explode assembly code size trace_method_handle(_masm, buf); __ STOP(buf); } BLOCK_COMMENT("} verify_ref_kind"); __ bind(L); } #endif // ASSERT void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register target, Register temp, bool for_compiler_entry) { Label L_no_such_method; assert(method == G5_method, "interpreter calling convention"); assert_different_registers(method, target, temp); if (!for_compiler_entry && JvmtiExport::can_post_interpreter_events()) { Label run_compiled_code; // JVMTI events, such as single-stepping, are implemented partly by avoiding running // compiled code in threads for which the event is enabled. Check here for // interp_only_mode if these events CAN be enabled. __ verify_thread(); const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset()); __ ld(interp_only, temp); __ cmp_and_br_short(temp, 0, Assembler::zero, Assembler::pt, run_compiled_code); // Null method test is replicated below in compiled case, // it might be able to address across the verify_thread() __ br_null_short(G5_method, Assembler::pn, L_no_such_method); __ ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target); __ jmp(target, 0); __ delayed()->nop(); __ BIND(run_compiled_code); // Note: we could fill some delay slots here, but // it doesn't matter, since this is interpreter code. } // Compiled case, either static or fall-through from runtime conditional __ br_null_short(G5_method, Assembler::pn, L_no_such_method); const ByteSize entry_offset = for_compiler_entry ? Method::from_compiled_offset() : Method::from_interpreted_offset(); __ ld_ptr(G5_method, in_bytes(entry_offset), target); __ jmp(target, 0); __ delayed()->nop(); __ bind(L_no_such_method); AddressLiteral ame(StubRoutines::throw_AbstractMethodError_entry()); __ jump_to(ame, temp); __ delayed()->nop(); } void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm, Register recv, Register method_temp, Register temp2, Register temp3, bool for_compiler_entry) { BLOCK_COMMENT("jump_to_lambda_form {"); // This is the initial entry point of a lazy method handle. // After type checking, it picks up the invoker from the LambdaForm. assert_different_registers(recv, method_temp, temp2); // temp3 is only passed on assert(method_temp == G5_method, "required register for loading method"); //NOT_PRODUCT({ FlagSetting fs(TraceMethodHandles, true); trace_method_handle(_masm, "LZMH"); }); // Load the invoker, as MH -> MH.form -> LF.vmentry __ verify_oop(recv); __ load_heap_oop(Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset_in_bytes())), method_temp); __ verify_oop(method_temp); __ load_heap_oop(Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset_in_bytes())), method_temp); __ verify_oop(method_temp); // the following assumes that a Method* is normally compressed in the vmtarget field: __ ld_ptr( Address(method_temp, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes())), method_temp); if (VerifyMethodHandles && !for_compiler_entry) { // make sure recv is already on stack __ ld_ptr(method_temp, in_bytes(Method::const_offset()), temp2); __ load_sized_value(Address(temp2, ConstMethod::size_of_parameters_offset()), temp2, sizeof(u2), /*is_signed*/ false); // assert(sizeof(u2) == sizeof(Method::_size_of_parameters), ""); Label L; __ ld_ptr(__ argument_address(temp2, temp2, -1), temp2); __ cmp_and_br_short(temp2, recv, Assembler::equal, Assembler::pt, L); __ STOP("receiver not on stack"); __ BIND(L); } jump_from_method_handle(_masm, method_temp, temp2, temp3, for_compiler_entry); BLOCK_COMMENT("} jump_to_lambda_form"); } // Code generation address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm, vmIntrinsics::ID iid) { const bool not_for_compiler_entry = false; // this is the interpreter entry assert(is_signature_polymorphic(iid), "expected invoke iid"); if (iid == vmIntrinsics::_invokeGeneric || iid == vmIntrinsics::_compiledLambdaForm) { // Perhaps surprisingly, the symbolic references visible to Java are not directly used. // They are linked to Java-generated adapters via MethodHandleNatives.linkMethod. // They all allow an appendix argument. __ should_not_reach_here(); // empty stubs make SG sick return NULL; } // I5_savedSP/O5_savedSP: sender SP (must preserve; see prepare_to_jump_from_interpreted) // G5_method: Method* // G4 (Gargs): incoming argument list (must preserve) // O0: used as temp to hold mh or receiver // O1, O4: garbage temps, blown away Register O1_scratch = O1; Register O4_param_size = O4; // size of parameters // here's where control starts out: __ align(CodeEntryAlignment); address entry_point = __ pc(); if (VerifyMethodHandles) { assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); Label L; BLOCK_COMMENT("verify_intrinsic_id {"); __ lduh(Address(G5_method, Method::intrinsic_id_offset_in_bytes()), O1_scratch); __ cmp_and_br_short(O1_scratch, (int) iid, Assembler::equal, Assembler::pt, L); if (iid == vmIntrinsics::_linkToVirtual || iid == vmIntrinsics::_linkToSpecial) { // could do this for all kinds, but would explode assembly code size trace_method_handle(_masm, "bad Method*::intrinsic_id"); } __ STOP("bad Method*::intrinsic_id"); __ bind(L); BLOCK_COMMENT("} verify_intrinsic_id"); } // First task: Find out how big the argument list is. Address O4_first_arg_addr; int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid); assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic"); if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) { __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O4_param_size); __ load_sized_value(Address(O4_param_size, ConstMethod::size_of_parameters_offset()), O4_param_size, sizeof(u2), /*is_signed*/ false); // assert(sizeof(u2) == sizeof(Method::_size_of_parameters), ""); O4_first_arg_addr = __ argument_address(O4_param_size, O4_param_size, -1); } else { DEBUG_ONLY(O4_param_size = noreg); } Register O0_mh = noreg; if (!is_signature_polymorphic_static(iid)) { __ ld_ptr(O4_first_arg_addr, O0_mh = O0); DEBUG_ONLY(O4_param_size = noreg); } // O4_first_arg_addr is live! if (TraceMethodHandles) { if (O0_mh != noreg) __ mov(O0_mh, G3_method_handle); // make stub happy trace_method_handle_interpreter_entry(_masm, iid); } if (iid == vmIntrinsics::_invokeBasic) { generate_method_handle_dispatch(_masm, iid, O0_mh, noreg, not_for_compiler_entry); } else { // Adjust argument list by popping the trailing MemberName argument. Register O0_recv = noreg; if (MethodHandles::ref_kind_has_receiver(ref_kind)) { // Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack. __ ld_ptr(O4_first_arg_addr, O0_recv = O0); DEBUG_ONLY(O4_param_size = noreg); } Register G5_member = G5_method; // MemberName ptr; incoming method ptr is dead now __ ld_ptr(__ argument_address(constant(0)), G5_member); __ add(Gargs, Interpreter::stackElementSize, Gargs); generate_method_handle_dispatch(_masm, iid, O0_recv, G5_member, not_for_compiler_entry); } return entry_point; } void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm, vmIntrinsics::ID iid, Register receiver_reg, Register member_reg, bool for_compiler_entry) { assert(is_signature_polymorphic(iid), "expected invoke iid"); Register temp1 = (for_compiler_entry ? G1_scratch : O1); Register temp2 = (for_compiler_entry ? G3_scratch : O2); Register temp3 = (for_compiler_entry ? G4_scratch : O3); Register temp4 = (for_compiler_entry ? noreg : O4); if (for_compiler_entry) { assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : O0), "only valid assignment"); assert_different_registers(temp1, O0, O1, O2, O3, O4, O5); assert_different_registers(temp2, O0, O1, O2, O3, O4, O5); assert_different_registers(temp3, O0, O1, O2, O3, O4, O5); assert_different_registers(temp4, O0, O1, O2, O3, O4, O5); } else { assert_different_registers(temp1, temp2, temp3, temp4, O5_savedSP); // don't trash lastSP } if (receiver_reg != noreg) assert_different_registers(temp1, temp2, temp3, temp4, receiver_reg); if (member_reg != noreg) assert_different_registers(temp1, temp2, temp3, temp4, member_reg); if (iid == vmIntrinsics::_invokeBasic) { // indirect through MH.form.vmentry.vmtarget jump_to_lambda_form(_masm, receiver_reg, G5_method, temp1, temp2, for_compiler_entry); } else { // The method is a member invoker used by direct method handles. if (VerifyMethodHandles) { // make sure the trailing argument really is a MemberName (caller responsibility) verify_klass(_masm, member_reg, SystemDictionary::WK_KLASS_ENUM_NAME(MemberName_klass), temp1, temp2, "MemberName required for invokeVirtual etc."); } Address member_clazz( member_reg, NONZERO(java_lang_invoke_MemberName::clazz_offset_in_bytes())); Address member_vmindex( member_reg, NONZERO(java_lang_invoke_MemberName::vmindex_offset_in_bytes())); Address member_vmtarget( member_reg, NONZERO(java_lang_invoke_MemberName::vmtarget_offset_in_bytes())); Register temp1_recv_klass = temp1; if (iid != vmIntrinsics::_linkToStatic) { __ verify_oop(receiver_reg); if (iid == vmIntrinsics::_linkToSpecial) { // Don't actually load the klass; just null-check the receiver. __ null_check(receiver_reg); } else { // load receiver klass itself __ null_check(receiver_reg, oopDesc::klass_offset_in_bytes()); __ load_klass(receiver_reg, temp1_recv_klass); __ verify_klass_ptr(temp1_recv_klass); } BLOCK_COMMENT("check_receiver {"); // The receiver for the MemberName must be in receiver_reg. // Check the receiver against the MemberName.clazz if (VerifyMethodHandles && iid == vmIntrinsics::_linkToSpecial) { // Did not load it above... __ load_klass(receiver_reg, temp1_recv_klass); __ verify_klass_ptr(temp1_recv_klass); } if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) { Label L_ok; Register temp2_defc = temp2; __ load_heap_oop(member_clazz, temp2_defc); load_klass_from_Class(_masm, temp2_defc, temp3, temp4); __ verify_klass_ptr(temp2_defc); __ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, temp4, L_ok); // If we get here, the type check failed! __ STOP("receiver class disagrees with MemberName.clazz"); __ bind(L_ok); } BLOCK_COMMENT("} check_receiver"); } if (iid == vmIntrinsics::_linkToSpecial || iid == vmIntrinsics::_linkToStatic) { DEBUG_ONLY(temp1_recv_klass = noreg); // these guys didn't load the recv_klass } // Live registers at this point: // member_reg - MemberName that was the trailing argument // temp1_recv_klass - klass of stacked receiver, if needed // O5_savedSP - interpreter linkage (if interpreted) // O0..O5 - compiler arguments (if compiled) Label L_incompatible_class_change_error; switch (iid) { case vmIntrinsics::_linkToSpecial: if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp2); } __ ld_ptr(member_vmtarget, G5_method); break; case vmIntrinsics::_linkToStatic: if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp2); } __ ld_ptr(member_vmtarget, G5_method); break; case vmIntrinsics::_linkToVirtual: { // same as TemplateTable::invokevirtual, // minus the CP setup and profiling: if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeVirtual, member_reg, temp2); } // pick out the vtable index from the MemberName, and then we can discard it: Register temp2_index = temp2; __ ld_ptr(member_vmindex, temp2_index); if (VerifyMethodHandles) { Label L_index_ok; __ cmp_and_br_short(temp2_index, (int) 0, Assembler::greaterEqual, Assembler::pn, L_index_ok); __ STOP("no virtual index"); __ BIND(L_index_ok); } // Note: The verifier invariants allow us to ignore MemberName.clazz and vmtarget // at this point. And VerifyMethodHandles has already checked clazz, if needed. // get target Method* & entry point __ lookup_virtual_method(temp1_recv_klass, temp2_index, G5_method); break; } case vmIntrinsics::_linkToInterface: { // same as TemplateTable::invokeinterface // (minus the CP setup and profiling, with different argument motion) if (VerifyMethodHandles) { verify_ref_kind(_masm, JVM_REF_invokeInterface, member_reg, temp2); } Register temp2_intf = temp2; __ load_heap_oop(member_clazz, temp2_intf); load_klass_from_Class(_masm, temp2_intf, temp3, temp4); __ verify_klass_ptr(temp2_intf); Register G5_index = G5_method; __ ld_ptr(member_vmindex, G5_index); if (VerifyMethodHandles) { Label L; __ cmp_and_br_short(G5_index, 0, Assembler::greaterEqual, Assembler::pt, L); __ STOP("invalid vtable index for MH.invokeInterface"); __ bind(L); } // given intf, index, and recv klass, dispatch to the implementation method __ lookup_interface_method(temp1_recv_klass, temp2_intf, // note: next two args must be the same: G5_index, G5_method, temp3, temp4, L_incompatible_class_change_error); break; } default: fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)); break; } // Live at this point: // G5_method // O5_savedSP (if interpreted) // After figuring out which concrete method to call, jump into it. // Note that this works in the interpreter with no data motion. // But the compiled version will require that rcx_recv be shifted out. __ verify_method_ptr(G5_method); jump_from_method_handle(_masm, G5_method, temp1, temp2, for_compiler_entry); if (iid == vmIntrinsics::_linkToInterface) { __ BIND(L_incompatible_class_change_error); AddressLiteral icce(StubRoutines::throw_IncompatibleClassChangeError_entry()); __ jump_to(icce, temp1); __ delayed()->nop(); } } } #ifndef PRODUCT void trace_method_handle_stub(const char* adaptername, oopDesc* mh, intptr_t* saved_sp, intptr_t* args, intptr_t* tracing_fp) { bool has_mh = (strstr(adaptername, "/static") == NULL && strstr(adaptername, "linkTo") == NULL); // static linkers don't have MH const char* mh_reg_name = has_mh ? "G3_mh" : "G3"; tty->print_cr("MH %s %s=" INTPTR_FORMAT " saved_sp=" INTPTR_FORMAT " args=" INTPTR_FORMAT, adaptername, mh_reg_name, p2i(mh), p2i(saved_sp), p2i(args)); if (Verbose) { // dumping last frame with frame::describe JavaThread* p = JavaThread::active(); ResourceMark rm; PRESERVE_EXCEPTION_MARK; // may not be needed by safer and unexpensive here FrameValues values; // Note: We want to allow trace_method_handle from any call site. // While trace_method_handle creates a frame, it may be entered // without a valid return PC in O7 (e.g. not just after a call). // Walking that frame could lead to failures due to that invalid PC. // => carefully detect that frame when doing the stack walking // walk up to the right frame using the "tracing_fp" argument intptr_t* cur_sp = StubRoutines::Sparc::flush_callers_register_windows_func()(); frame cur_frame(cur_sp, frame::unpatchable, NULL); while (cur_frame.fp() != (intptr_t *)(STACK_BIAS+(uintptr_t)tracing_fp)) { cur_frame = os::get_sender_for_C_frame(&cur_frame); } // safely create a frame and call frame::describe intptr_t *dump_sp = cur_frame.sender_sp(); intptr_t *dump_fp = cur_frame.link(); bool walkable = has_mh; // whether the traced frame shoud be walkable // the sender for cur_frame is the caller of trace_method_handle if (walkable) { // The previous definition of walkable may have to be refined // if new call sites cause the next frame constructor to start // failing. Alternatively, frame constructors could be // modified to support the current or future non walkable // frames (but this is more intrusive and is not considered as // part of this RFE, which will instead use a simpler output). frame dump_frame = frame(dump_sp, cur_frame.sp(), // younger_sp false); // no adaptation dump_frame.describe(values, 1); } else { // Robust dump for frames which cannot be constructed from sp/younger_sp // Add descriptions without building a Java frame to avoid issues values.describe(-1, dump_fp, "fp for #1 "); values.describe(-1, dump_sp, "sp"); } bool has_args = has_mh; // whether Gargs is meaningful // mark args, if seems valid (may not be valid for some adapters) if (has_args) { if ((args >= dump_sp) && (args < dump_fp)) { values.describe(-1, args, "*G4_args"); } } // mark saved_sp, if seems valid (may not be valid for some adapters) intptr_t *unbiased_sp = (intptr_t *)(STACK_BIAS+(uintptr_t)saved_sp); const int ARG_LIMIT = 255, SLOP = 45, UNREASONABLE_STACK_MOVE = (ARG_LIMIT + SLOP); if ((unbiased_sp >= dump_sp - UNREASONABLE_STACK_MOVE) && (unbiased_sp < dump_fp)) { values.describe(-1, unbiased_sp, "*saved_sp+STACK_BIAS"); } // Note: the unextended_sp may not be correct tty->print_cr(" stack layout:"); values.print(p); if (has_mh && mh->is_oop()) { mh->print(); if (java_lang_invoke_MethodHandle::is_instance(mh)) { if (java_lang_invoke_MethodHandle::form_offset_in_bytes() != 0) java_lang_invoke_MethodHandle::form(mh)->print(); } } } } void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { if (!TraceMethodHandles) return; BLOCK_COMMENT("trace_method_handle {"); // save: Gargs, O5_savedSP __ save_frame(16); // need space for saving required FPU state __ set((intptr_t) adaptername, O0); __ mov(G3_method_handle, O1); __ mov(I5_savedSP, O2); __ mov(Gargs, O3); __ mov(I6, O4); // frame identifier for safe stack walking // Save scratched registers that might be needed. Robustness is more // important than optimizing the saves for this debug only code. // save FP result, valid at some call sites (adapter_opt_return_float, ...) Address d_save(FP, -sizeof(jdouble) + STACK_BIAS); __ stf(FloatRegisterImpl::D, Ftos_d, d_save); // Safely save all globals but G2 (handled by call_VM_leaf) and G7 // (OS reserved). __ mov(G3_method_handle, L3); __ mov(Gargs, L4); __ mov(G5_method_type, L5); __ mov(G6, L6); __ mov(G1, L1); __ call_VM_leaf(L2 /* for G2 */, CAST_FROM_FN_PTR(address, trace_method_handle_stub)); __ mov(L3, G3_method_handle); __ mov(L4, Gargs); __ mov(L5, G5_method_type); __ mov(L6, G6); __ mov(L1, G1); __ ldf(FloatRegisterImpl::D, d_save, Ftos_d); __ restore(); BLOCK_COMMENT("} trace_method_handle"); } #endif // PRODUCT