/* * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ // no precompiled headers #include "asm/macroAssembler.hpp" #include "classfile/classLoader.hpp" #include "classfile/systemDictionary.hpp" #include "classfile/vmSymbols.hpp" #include "code/icBuffer.hpp" #include "code/vtableStubs.hpp" #include "interpreter/interpreter.hpp" #include "jvm_solaris.h" #include "memory/allocation.inline.hpp" #include "mutex_solaris.inline.hpp" #include "os_share_solaris.hpp" #include "prims/jniFastGetField.hpp" #include "prims/jvm.h" #include "prims/jvm_misc.hpp" #include "runtime/arguments.hpp" #include "runtime/atomic.inline.hpp" #include "runtime/extendedPC.hpp" #include "runtime/frame.inline.hpp" #include "runtime/interfaceSupport.hpp" #include "runtime/java.hpp" #include "runtime/javaCalls.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/osThread.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "runtime/thread.inline.hpp" #include "runtime/timer.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" // put OS-includes here # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include # include // see comment in #ifndef AMD64 // QQQ seems useless at this point # define _STRUCTURED_PROC 1 // this gets us the new structured proc interfaces of 5.6 & later #endif // AMD64 # include // see comment in #define MAX_PATH (2 * K) // Minimum stack size for the VM. It's easier to document a constant value // but it's different for x86 and sparc because the page sizes are different. #ifdef AMD64 size_t os::Solaris::min_stack_allowed = 224*K; #define REG_SP REG_RSP #define REG_PC REG_RIP #define REG_FP REG_RBP #else size_t os::Solaris::min_stack_allowed = 64*K; #define REG_SP UESP #define REG_PC EIP #define REG_FP EBP // 4900493 counter to prevent runaway LDTR refresh attempt static volatile int ldtr_refresh = 0; // the libthread instruction that faults because of the stale LDTR static const unsigned char movlfs[] = { 0x8e, 0xe0 // movl %eax,%fs }; #endif // AMD64 char* os::non_memory_address_word() { // Must never look like an address returned by reserve_memory, // even in its subfields (as defined by the CPU immediate fields, // if the CPU splits constants across multiple instructions). return (char*) -1; } // // Validate a ucontext retrieved from walking a uc_link of a ucontext. // There are issues with libthread giving out uc_links for different threads // on the same uc_link chain and bad or circular links. // bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) { if (valid >= suspect || valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags || valid->uc_stack.ss_sp != suspect->uc_stack.ss_sp || valid->uc_stack.ss_size != suspect->uc_stack.ss_size) { DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");) return false; } if (thread->is_Java_thread()) { if (!valid_stack_address(thread, (address)suspect)) { DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");) return false; } if (!valid_stack_address(thread, (address) suspect->uc_mcontext.gregs[REG_SP])) { DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");) return false; } } return true; } // We will only follow one level of uc_link since there are libthread // issues with ucontext linking and it is better to be safe and just // let caller retry later. ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread, ucontext_t *uc) { ucontext_t *retuc = NULL; if (uc != NULL) { if (uc->uc_link == NULL) { // cannot validate without uc_link so accept current ucontext retuc = uc; } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) { // first ucontext is valid so try the next one uc = uc->uc_link; if (uc->uc_link == NULL) { // cannot validate without uc_link so accept current ucontext retuc = uc; } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) { // the ucontext one level down is also valid so return it retuc = uc; } } } return retuc; } // Assumes ucontext is valid ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) { return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]); } void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) { uc->uc_mcontext.gregs [REG_PC] = (greg_t) pc; } // Assumes ucontext is valid intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) { return (intptr_t*)uc->uc_mcontext.gregs[REG_SP]; } // Assumes ucontext is valid intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) { return (intptr_t*)uc->uc_mcontext.gregs[REG_FP]; } address os::Solaris::ucontext_get_pc(ucontext_t *uc) { return (address) uc->uc_mcontext.gregs[REG_PC]; } // For Forte Analyzer AsyncGetCallTrace profiling support - thread // is currently interrupted by SIGPROF. // // The difference between this and os::fetch_frame_from_context() is that // here we try to skip nested signal frames. ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread, ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) { assert(thread != NULL, "just checking"); assert(ret_sp != NULL, "just checking"); assert(ret_fp != NULL, "just checking"); ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc); return os::fetch_frame_from_context(luc, ret_sp, ret_fp); } ExtendedPC os::fetch_frame_from_context(void* ucVoid, intptr_t** ret_sp, intptr_t** ret_fp) { ExtendedPC epc; ucontext_t *uc = (ucontext_t*)ucVoid; if (uc != NULL) { epc = os::Solaris::ucontext_get_ExtendedPC(uc); if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc); if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc); } else { // construct empty ExtendedPC for return value checking epc = ExtendedPC(NULL); if (ret_sp) *ret_sp = (intptr_t *)NULL; if (ret_fp) *ret_fp = (intptr_t *)NULL; } return epc; } frame os::fetch_frame_from_context(void* ucVoid) { intptr_t* sp; intptr_t* fp; ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp); return frame(sp, fp, epc.pc()); } frame os::get_sender_for_C_frame(frame* fr) { return frame(fr->sender_sp(), fr->link(), fr->sender_pc()); } extern "C" intptr_t *_get_current_sp(); // in .il file address os::current_stack_pointer() { return (address)_get_current_sp(); } extern "C" intptr_t *_get_current_fp(); // in .il file frame os::current_frame() { intptr_t* fp = _get_current_fp(); // it's inlined so want current fp frame myframe((intptr_t*)os::current_stack_pointer(), (intptr_t*)fp, CAST_FROM_FN_PTR(address, os::current_frame)); if (os::is_first_C_frame(&myframe)) { // stack is not walkable frame ret; // This will be a null useless frame return ret; } else { return os::get_sender_for_C_frame(&myframe); } } #ifndef AMD64 // Detecting SSE support by OS // From solaris_i486.s extern "C" bool sse_check(); extern "C" bool sse_unavailable(); enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED}; static int sse_status = SSE_UNKNOWN; static void check_for_sse_support() { if (!VM_Version::supports_sse()) { sse_status = SSE_NOT_SUPPORTED; return; } // looking for _sse_hw in libc.so, if it does not exist or // the value (int) is 0, OS has no support for SSE int *sse_hwp; void *h; if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) { //open failed, presume no support for SSE sse_status = SSE_NOT_SUPPORTED; return; } if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) { sse_status = SSE_NOT_SUPPORTED; } else if (*sse_hwp == 0) { sse_status = SSE_NOT_SUPPORTED; } dlclose(h); if (sse_status == SSE_UNKNOWN) { bool (*try_sse)() = (bool (*)())sse_check; sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED; } } #endif // AMD64 bool os::supports_sse() { #ifdef AMD64 return true; #else if (sse_status == SSE_UNKNOWN) check_for_sse_support(); return sse_status == SSE_SUPPORTED; #endif // AMD64 } bool os::is_allocatable(size_t bytes) { #ifdef AMD64 return true; #else if (bytes < 2 * G) { return true; } char* addr = reserve_memory(bytes, NULL); if (addr != NULL) { release_memory(addr, bytes); } return addr != NULL; #endif // AMD64 } extern "C" JNIEXPORT int JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid, int abort_if_unrecognized) { ucontext_t* uc = (ucontext_t*) ucVoid; #ifndef AMD64 if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) { // the SSE instruction faulted. supports_sse() need return false. uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable; return true; } #endif // !AMD64 Thread* t = ThreadLocalStorage::get_thread_slow(); // slow & steady // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away // (no destructors can be run) os::WatcherThreadCrashProtection::check_crash_protection(sig, t); SignalHandlerMark shm(t); if(sig == SIGPIPE || sig == SIGXFSZ) { if (os::Solaris::chained_handler(sig, info, ucVoid)) { return true; } else { if (PrintMiscellaneous && (WizardMode || Verbose)) { char buf[64]; warning("Ignoring %s - see 4229104 or 6499219", os::exception_name(sig, buf, sizeof(buf))); } return true; } } JavaThread* thread = NULL; VMThread* vmthread = NULL; if (os::Solaris::signal_handlers_are_installed) { if (t != NULL ){ if(t->is_Java_thread()) { thread = (JavaThread*)t; } else if(t->is_VM_thread()){ vmthread = (VMThread *)t; } } } guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs"); if (sig == os::Solaris::SIGasync()) { if(thread || vmthread){ OSThread::SR_handler(t, uc); return true; } else if (os::Solaris::chained_handler(sig, info, ucVoid)) { return true; } else { // If os::Solaris::SIGasync not chained, and this is a non-vm and // non-java thread return true; } } if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) { // can't decode this kind of signal info = NULL; } else { assert(sig == info->si_signo, "bad siginfo"); } // decide if this trap can be handled by a stub address stub = NULL; address pc = NULL; //%note os_trap_1 if (info != NULL && uc != NULL && thread != NULL) { // factor me: getPCfromContext pc = (address) uc->uc_mcontext.gregs[REG_PC]; if (StubRoutines::is_safefetch_fault(pc)) { os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc)); return true; } // Handle ALL stack overflow variations here if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) { address addr = (address) info->si_addr; if (thread->in_stack_yellow_zone(addr)) { thread->disable_stack_yellow_zone(); if (thread->thread_state() == _thread_in_Java) { // Throw a stack overflow exception. Guard pages will be reenabled // while unwinding the stack. stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW); } else { // Thread was in the vm or native code. Return and try to finish. return true; } } else if (thread->in_stack_red_zone(addr)) { // Fatal red zone violation. Disable the guard pages and fall through // to handle_unexpected_exception way down below. thread->disable_stack_red_zone(); tty->print_raw_cr("An irrecoverable stack overflow has occurred."); } } if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) { // Verify that OS save/restore AVX registers. stub = VM_Version::cpuinfo_cont_addr(); } if (thread->thread_state() == _thread_in_vm) { if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) { stub = StubRoutines::handler_for_unsafe_access(); } } if (thread->thread_state() == _thread_in_Java) { // Support Safepoint Polling if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) { stub = SharedRuntime::get_poll_stub(pc); } else if (sig == SIGBUS && info->si_code == BUS_OBJERR) { // BugId 4454115: A read from a MappedByteBuffer can fault // here if the underlying file has been truncated. // Do not crash the VM in such a case. CodeBlob* cb = CodeCache::find_blob_unsafe(pc); if (cb != NULL) { nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL; if (nm != NULL && nm->has_unsafe_access()) { stub = StubRoutines::handler_for_unsafe_access(); } } } else if (sig == SIGFPE && info->si_code == FPE_INTDIV) { // integer divide by zero stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); } #ifndef AMD64 else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) { // floating-point divide by zero stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO); } else if (sig == SIGFPE && info->si_code == FPE_FLTINV) { // The encoding of D2I in i486.ad can cause an exception prior // to the fist instruction if there was an invalid operation // pending. We want to dismiss that exception. From the win_32 // side it also seems that if it really was the fist causing // the exception that we do the d2i by hand with different // rounding. Seems kind of weird. QQQ TODO // Note that we take the exception at the NEXT floating point instruction. if (pc[0] == 0xDB) { assert(pc[0] == 0xDB, "not a FIST opcode"); assert(pc[1] == 0x14, "not a FIST opcode"); assert(pc[2] == 0x24, "not a FIST opcode"); return true; } else { assert(pc[-3] == 0xDB, "not an flt invalid opcode"); assert(pc[-2] == 0x14, "not an flt invalid opcode"); assert(pc[-1] == 0x24, "not an flt invalid opcode"); } } else if (sig == SIGFPE ) { tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code); } #endif // !AMD64 // QQQ It doesn't seem that we need to do this on x86 because we should be able // to return properly from the handler without this extra stuff on the back side. else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) { // Determination of interpreter/vtable stub/compiled code null exception stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL); } } // jni_fast_GetField can trap at certain pc's if a GC kicks in // and the heap gets shrunk before the field access. if ((sig == SIGSEGV) || (sig == SIGBUS)) { address addr = JNI_FastGetField::find_slowcase_pc(pc); if (addr != (address)-1) { stub = addr; } } // Check to see if we caught the safepoint code in the // process of write protecting the memory serialization page. // It write enables the page immediately after protecting it // so we can just return to retry the write. if ((sig == SIGSEGV) && os::is_memory_serialize_page(thread, (address)info->si_addr)) { // Block current thread until the memory serialize page permission restored. os::block_on_serialize_page_trap(); return true; } } // Execution protection violation // // Preventative code for future versions of Solaris which may // enable execution protection when running the 32-bit VM on AMD64. // // This should be kept as the last step in the triage. We don't // have a dedicated trap number for a no-execute fault, so be // conservative and allow other handlers the first shot. // // Note: We don't test that info->si_code == SEGV_ACCERR here. // this si_code is so generic that it is almost meaningless; and // the si_code for this condition may change in the future. // Furthermore, a false-positive should be harmless. if (UnguardOnExecutionViolation > 0 && (sig == SIGSEGV || sig == SIGBUS) && uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) { // page fault int page_size = os::vm_page_size(); address addr = (address) info->si_addr; address pc = (address) uc->uc_mcontext.gregs[REG_PC]; // Make sure the pc and the faulting address are sane. // // If an instruction spans a page boundary, and the page containing // the beginning of the instruction is executable but the following // page is not, the pc and the faulting address might be slightly // different - we still want to unguard the 2nd page in this case. // // 15 bytes seems to be a (very) safe value for max instruction size. bool pc_is_near_addr = (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15); bool instr_spans_page_boundary = (align_size_down((intptr_t) pc ^ (intptr_t) addr, (intptr_t) page_size) > 0); if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) { static volatile address last_addr = (address) os::non_memory_address_word(); // In conservative mode, don't unguard unless the address is in the VM if (addr != last_addr && (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) { // Make memory rwx and retry address page_start = (address) align_size_down((intptr_t) addr, (intptr_t) page_size); bool res = os::protect_memory((char*) page_start, page_size, os::MEM_PROT_RWX); if (PrintMiscellaneous && Verbose) { char buf[256]; jio_snprintf(buf, sizeof(buf), "Execution protection violation " "at " INTPTR_FORMAT ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr, page_start, (res ? "success" : "failed"), errno); tty->print_raw_cr(buf); } stub = pc; // Set last_addr so if we fault again at the same address, we don't end // up in an endless loop. // // There are two potential complications here. Two threads trapping at // the same address at the same time could cause one of the threads to // think it already unguarded, and abort the VM. Likely very rare. // // The other race involves two threads alternately trapping at // different addresses and failing to unguard the page, resulting in // an endless loop. This condition is probably even more unlikely than // the first. // // Although both cases could be avoided by using locks or thread local // last_addr, these solutions are unnecessary complication: this // handler is a best-effort safety net, not a complete solution. It is // disabled by default and should only be used as a workaround in case // we missed any no-execute-unsafe VM code. last_addr = addr; } } } if (stub != NULL) { // save all thread context in case we need to restore it if (thread != NULL) thread->set_saved_exception_pc(pc); // 12/02/99: On Sparc it appears that the full context is also saved // but as yet, no one looks at or restores that saved context os::Solaris::ucontext_set_pc(uc, stub); return true; } // signal-chaining if (os::Solaris::chained_handler(sig, info, ucVoid)) { return true; } #ifndef AMD64 // Workaround (bug 4900493) for Solaris kernel bug 4966651. // Handle an undefined selector caused by an attempt to assign // fs in libthread getipriptr(). With the current libthread design every 512 // thread creations the LDT for a private thread data structure is extended // and thre is a hazard that and another thread attempting a thread creation // will use a stale LDTR that doesn't reflect the structure's growth, // causing a GP fault. // Enforce the probable limit of passes through here to guard against an // infinite loop if some other move to fs caused the GP fault. Note that // this loop counter is ultimately a heuristic as it is possible for // more than one thread to generate this fault at a time in an MP system. // In the case of the loop count being exceeded or if the poll fails // just fall through to a fatal error. // If there is some other source of T_GPFLT traps and the text at EIP is // unreadable this code will loop infinitely until the stack is exausted. // The key to diagnosis in this case is to look for the bottom signal handler // frame. if(! IgnoreLibthreadGPFault) { if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) { const unsigned char *p = (unsigned const char *) uc->uc_mcontext.gregs[EIP]; // Expected instruction? if(p[0] == movlfs[0] && p[1] == movlfs[1]) { Atomic::inc(&ldtr_refresh); // Infinite loop? if(ldtr_refresh < ((2 << 16) / PAGESIZE)) { // No, force scheduling to get a fresh view of the LDTR if(poll(NULL, 0, 10) == 0) { // Retry the move return false; } } } } } #endif // !AMD64 if (!abort_if_unrecognized) { // caller wants another chance, so give it to him return false; } if (!os::Solaris::libjsig_is_loaded) { struct sigaction oldAct; sigaction(sig, (struct sigaction *)0, &oldAct); if (oldAct.sa_sigaction != signalHandler) { void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction) : CAST_FROM_FN_PTR(void*, oldAct.sa_handler); warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand); } } if (pc == NULL && uc != NULL) { pc = (address) uc->uc_mcontext.gregs[REG_PC]; } // unmask current signal sigset_t newset; sigemptyset(&newset); sigaddset(&newset, sig); sigprocmask(SIG_UNBLOCK, &newset, NULL); // Determine which sort of error to throw. Out of swap may signal // on the thread stack, which could get a mapping error when touched. address addr = (address) info->si_addr; if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) { vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack."); } VMError::report_and_die(t, sig, pc, info, ucVoid); ShouldNotReachHere(); return false; } void os::print_context(outputStream *st, void *context) { if (context == NULL) return; ucontext_t *uc = (ucontext_t*)context; st->print_cr("Registers:"); #ifdef AMD64 st->print( "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]); st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]); st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]); st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]); st->cr(); st->print( "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]); st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]); st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]); st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]); st->cr(); st->print( "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]); st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]); st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]); st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]); st->cr(); st->print( "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]); st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]); st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]); st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]); st->cr(); st->print( "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]); st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]); #else st->print( "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]); st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]); st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]); st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]); st->cr(); st->print( "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]); st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]); st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]); st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]); st->cr(); st->print( "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]); st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]); #endif // AMD64 st->cr(); st->cr(); intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc); st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp); print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t)); st->cr(); // Note: it may be unsafe to inspect memory near pc. For example, pc may // point to garbage if entry point in an nmethod is corrupted. Leave // this at the end, and hope for the best. ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc); address pc = epc.pc(); st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc); print_hex_dump(st, pc - 32, pc + 32, sizeof(char)); } void os::print_register_info(outputStream *st, void *context) { if (context == NULL) return; ucontext_t *uc = (ucontext_t*)context; st->print_cr("Register to memory mapping:"); st->cr(); // this is horrendously verbose but the layout of the registers in the // context does not match how we defined our abstract Register set, so // we can't just iterate through the gregs area // this is only for the "general purpose" registers #ifdef AMD64 st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]); st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]); st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]); st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]); st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]); st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]); st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]); st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]); st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]); st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]); st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]); st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]); st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]); st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]); st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]); st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]); #else st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]); st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]); st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]); st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]); st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]); st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]); st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]); st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]); #endif st->cr(); } #ifdef AMD64 void os::Solaris::init_thread_fpu_state(void) { // Nothing to do } #else // From solaris_i486.s extern "C" void fixcw(); void os::Solaris::init_thread_fpu_state(void) { // Set fpu to 53 bit precision. This happens too early to use a stub. fixcw(); } // These routines are the initial value of atomic_xchg_entry(), // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry() // until initialization is complete. // TODO - replace with .il implementation when compiler supports it. typedef jint xchg_func_t (jint, volatile jint*); typedef jint cmpxchg_func_t (jint, volatile jint*, jint); typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong); typedef jint add_func_t (jint, volatile jint*); jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) { // try to use the stub: xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry()); if (func != NULL) { os::atomic_xchg_func = func; return (*func)(exchange_value, dest); } assert(Threads::number_of_threads() == 0, "for bootstrap only"); jint old_value = *dest; *dest = exchange_value; return old_value; } jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) { // try to use the stub: cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry()); if (func != NULL) { os::atomic_cmpxchg_func = func; return (*func)(exchange_value, dest, compare_value); } assert(Threads::number_of_threads() == 0, "for bootstrap only"); jint old_value = *dest; if (old_value == compare_value) *dest = exchange_value; return old_value; } jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) { // try to use the stub: cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry()); if (func != NULL) { os::atomic_cmpxchg_long_func = func; return (*func)(exchange_value, dest, compare_value); } assert(Threads::number_of_threads() == 0, "for bootstrap only"); jlong old_value = *dest; if (old_value == compare_value) *dest = exchange_value; return old_value; } jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) { // try to use the stub: add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry()); if (func != NULL) { os::atomic_add_func = func; return (*func)(add_value, dest); } assert(Threads::number_of_threads() == 0, "for bootstrap only"); return (*dest) += add_value; } xchg_func_t* os::atomic_xchg_func = os::atomic_xchg_bootstrap; cmpxchg_func_t* os::atomic_cmpxchg_func = os::atomic_cmpxchg_bootstrap; cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap; add_func_t* os::atomic_add_func = os::atomic_add_bootstrap; extern "C" void _solaris_raw_setup_fpu(address ptr); void os::setup_fpu() { address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std(); _solaris_raw_setup_fpu(fpu_cntrl); } #endif // AMD64 #ifndef PRODUCT void os::verify_stack_alignment() { #ifdef AMD64 assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment"); #endif } #endif int os::extra_bang_size_in_bytes() { // JDK-8050147 requires the full cache line bang for x86. return VM_Version::L1_line_size(); }