1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ErgoVerbose.hpp"
  35 #include "gc/g1/g1Log.hpp"
  36 #include "gc/g1/g1OopClosures.inline.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionManager.inline.hpp"
  41 #include "gc/g1/heapRegionRemSet.hpp"
  42 #include "gc/g1/heapRegionSet.inline.hpp"
  43 #include "gc/g1/suspendibleThreadSet.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/referencePolicy.hpp"
  49 #include "gc/shared/strongRootsScope.hpp"
  50 #include "gc/shared/taskqueue.inline.hpp"
  51 #include "gc/shared/vmGCOperations.hpp"
  52 #include "memory/allocation.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "runtime/atomic.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/prefetch.inline.hpp"
  59 #include "services/memTracker.hpp"
  60 
  61 // Concurrent marking bit map wrapper
  62 
  63 CMBitMapRO::CMBitMapRO(int shifter) :
  64   _bm(),
  65   _shifter(shifter) {
  66   _bmStartWord = 0;
  67   _bmWordSize = 0;
  68 }
  69 
  70 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  71                                                const HeapWord* limit) const {
  72   // First we must round addr *up* to a possible object boundary.
  73   addr = (HeapWord*)align_size_up((intptr_t)addr,
  74                                   HeapWordSize << _shifter);
  75   size_t addrOffset = heapWordToOffset(addr);
  76   if (limit == NULL) {
  77     limit = _bmStartWord + _bmWordSize;
  78   }
  79   size_t limitOffset = heapWordToOffset(limit);
  80   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  81   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  82   assert(nextAddr >= addr, "get_next_one postcondition");
  83   assert(nextAddr == limit || isMarked(nextAddr),
  84          "get_next_one postcondition");
  85   return nextAddr;
  86 }
  87 
  88 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  89                                                  const HeapWord* limit) const {
  90   size_t addrOffset = heapWordToOffset(addr);
  91   if (limit == NULL) {
  92     limit = _bmStartWord + _bmWordSize;
  93   }
  94   size_t limitOffset = heapWordToOffset(limit);
  95   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  96   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  97   assert(nextAddr >= addr, "get_next_one postcondition");
  98   assert(nextAddr == limit || !isMarked(nextAddr),
  99          "get_next_one postcondition");
 100   return nextAddr;
 101 }
 102 
 103 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 104   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 105   return (int) (diff >> _shifter);
 106 }
 107 
 108 #ifndef PRODUCT
 109 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 110   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 111   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 112          "size inconsistency");
 113   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 114          _bmWordSize  == heap_rs.word_size();
 115 }
 116 #endif
 117 
 118 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 119   _bm.print_on_error(st, prefix);
 120 }
 121 
 122 size_t CMBitMap::compute_size(size_t heap_size) {
 123   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 124 }
 125 
 126 size_t CMBitMap::mark_distance() {
 127   return MinObjAlignmentInBytes * BitsPerByte;
 128 }
 129 
 130 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 131   _bmStartWord = heap.start();
 132   _bmWordSize = heap.word_size();
 133 
 134   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 135   _bm.set_size(_bmWordSize >> _shifter);
 136 
 137   storage->set_mapping_changed_listener(&_listener);
 138 }
 139 
 140 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 141   if (zero_filled) {
 142     return;
 143   }
 144   // We need to clear the bitmap on commit, removing any existing information.
 145   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 146   _bm->clearRange(mr);
 147 }
 148 
 149 // Closure used for clearing the given mark bitmap.
 150 class ClearBitmapHRClosure : public HeapRegionClosure {
 151  private:
 152   ConcurrentMark* _cm;
 153   CMBitMap* _bitmap;
 154   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 155  public:
 156   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 157     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 158   }
 159 
 160   virtual bool doHeapRegion(HeapRegion* r) {
 161     size_t const chunk_size_in_words = M / HeapWordSize;
 162 
 163     HeapWord* cur = r->bottom();
 164     HeapWord* const end = r->end();
 165 
 166     while (cur < end) {
 167       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 168       _bitmap->clearRange(mr);
 169 
 170       cur += chunk_size_in_words;
 171 
 172       // Abort iteration if after yielding the marking has been aborted.
 173       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 174         return true;
 175       }
 176       // Repeat the asserts from before the start of the closure. We will do them
 177       // as asserts here to minimize their overhead on the product. However, we
 178       // will have them as guarantees at the beginning / end of the bitmap
 179       // clearing to get some checking in the product.
 180       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 181       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 182     }
 183 
 184     return false;
 185   }
 186 };
 187 
 188 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 189   ClearBitmapHRClosure* _cl;
 190   HeapRegionClaimer     _hrclaimer;
 191   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 192 
 193 public:
 194   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 195       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 196 
 197   void work(uint worker_id) {
 198     SuspendibleThreadSetJoiner sts_join(_suspendible);
 199     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 200   }
 201 };
 202 
 203 void CMBitMap::clearAll() {
 204   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 205   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 206   uint n_workers = g1h->workers()->active_workers();
 207   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 208   g1h->workers()->run_task(&task);
 209   guarantee(cl.complete(), "Must have completed iteration.");
 210   return;
 211 }
 212 
 213 void CMBitMap::markRange(MemRegion mr) {
 214   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 215   assert(!mr.is_empty(), "unexpected empty region");
 216   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 217           ((HeapWord *) mr.end())),
 218          "markRange memory region end is not card aligned");
 219   // convert address range into offset range
 220   _bm.at_put_range(heapWordToOffset(mr.start()),
 221                    heapWordToOffset(mr.end()), true);
 222 }
 223 
 224 void CMBitMap::clearRange(MemRegion mr) {
 225   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 226   assert(!mr.is_empty(), "unexpected empty region");
 227   // convert address range into offset range
 228   _bm.at_put_range(heapWordToOffset(mr.start()),
 229                    heapWordToOffset(mr.end()), false);
 230 }
 231 
 232 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 233                                             HeapWord* end_addr) {
 234   HeapWord* start = getNextMarkedWordAddress(addr);
 235   start = MIN2(start, end_addr);
 236   HeapWord* end   = getNextUnmarkedWordAddress(start);
 237   end = MIN2(end, end_addr);
 238   assert(start <= end, "Consistency check");
 239   MemRegion mr(start, end);
 240   if (!mr.is_empty()) {
 241     clearRange(mr);
 242   }
 243   return mr;
 244 }
 245 
 246 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 247   _base(NULL), _cm(cm)
 248 #ifdef ASSERT
 249   , _drain_in_progress(false)
 250   , _drain_in_progress_yields(false)
 251 #endif
 252 {}
 253 
 254 bool CMMarkStack::allocate(size_t capacity) {
 255   // allocate a stack of the requisite depth
 256   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 257   if (!rs.is_reserved()) {
 258     warning("ConcurrentMark MarkStack allocation failure");
 259     return false;
 260   }
 261   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 262   if (!_virtual_space.initialize(rs, rs.size())) {
 263     warning("ConcurrentMark MarkStack backing store failure");
 264     // Release the virtual memory reserved for the marking stack
 265     rs.release();
 266     return false;
 267   }
 268   assert(_virtual_space.committed_size() == rs.size(),
 269          "Didn't reserve backing store for all of ConcurrentMark stack?");
 270   _base = (oop*) _virtual_space.low();
 271   setEmpty();
 272   _capacity = (jint) capacity;
 273   _saved_index = -1;
 274   _should_expand = false;
 275   return true;
 276 }
 277 
 278 void CMMarkStack::expand() {
 279   // Called, during remark, if we've overflown the marking stack during marking.
 280   assert(isEmpty(), "stack should been emptied while handling overflow");
 281   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 282   // Clear expansion flag
 283   _should_expand = false;
 284   if (_capacity == (jint) MarkStackSizeMax) {
 285     if (PrintGCDetails && Verbose) {
 286       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 287     }
 288     return;
 289   }
 290   // Double capacity if possible
 291   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 292   // Do not give up existing stack until we have managed to
 293   // get the double capacity that we desired.
 294   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 295                                                            sizeof(oop)));
 296   if (rs.is_reserved()) {
 297     // Release the backing store associated with old stack
 298     _virtual_space.release();
 299     // Reinitialize virtual space for new stack
 300     if (!_virtual_space.initialize(rs, rs.size())) {
 301       fatal("Not enough swap for expanded marking stack capacity");
 302     }
 303     _base = (oop*)(_virtual_space.low());
 304     _index = 0;
 305     _capacity = new_capacity;
 306   } else {
 307     if (PrintGCDetails && Verbose) {
 308       // Failed to double capacity, continue;
 309       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 310                           SIZE_FORMAT "K to " SIZE_FORMAT "K",
 311                           _capacity / K, new_capacity / K);
 312     }
 313   }
 314 }
 315 
 316 void CMMarkStack::set_should_expand() {
 317   // If we're resetting the marking state because of an
 318   // marking stack overflow, record that we should, if
 319   // possible, expand the stack.
 320   _should_expand = _cm->has_overflown();
 321 }
 322 
 323 CMMarkStack::~CMMarkStack() {
 324   if (_base != NULL) {
 325     _base = NULL;
 326     _virtual_space.release();
 327   }
 328 }
 329 
 330 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 331   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 332   jint start = _index;
 333   jint next_index = start + n;
 334   if (next_index > _capacity) {
 335     _overflow = true;
 336     return;
 337   }
 338   // Otherwise.
 339   _index = next_index;
 340   for (int i = 0; i < n; i++) {
 341     int ind = start + i;
 342     assert(ind < _capacity, "By overflow test above.");
 343     _base[ind] = ptr_arr[i];
 344   }
 345 }
 346 
 347 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 348   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 349   jint index = _index;
 350   if (index == 0) {
 351     *n = 0;
 352     return false;
 353   } else {
 354     int k = MIN2(max, index);
 355     jint  new_ind = index - k;
 356     for (int j = 0; j < k; j++) {
 357       ptr_arr[j] = _base[new_ind + j];
 358     }
 359     _index = new_ind;
 360     *n = k;
 361     return true;
 362   }
 363 }
 364 
 365 template<class OopClosureClass>
 366 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 367   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 368          || SafepointSynchronize::is_at_safepoint(),
 369          "Drain recursion must be yield-safe.");
 370   bool res = true;
 371   debug_only(_drain_in_progress = true);
 372   debug_only(_drain_in_progress_yields = yield_after);
 373   while (!isEmpty()) {
 374     oop newOop = pop();
 375     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 376     assert(newOop->is_oop(), "Expected an oop");
 377     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 378            "only grey objects on this stack");
 379     newOop->oop_iterate(cl);
 380     if (yield_after && _cm->do_yield_check()) {
 381       res = false;
 382       break;
 383     }
 384   }
 385   debug_only(_drain_in_progress = false);
 386   return res;
 387 }
 388 
 389 void CMMarkStack::note_start_of_gc() {
 390   assert(_saved_index == -1,
 391          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 392   _saved_index = _index;
 393 }
 394 
 395 void CMMarkStack::note_end_of_gc() {
 396   // This is intentionally a guarantee, instead of an assert. If we
 397   // accidentally add something to the mark stack during GC, it
 398   // will be a correctness issue so it's better if we crash. we'll
 399   // only check this once per GC anyway, so it won't be a performance
 400   // issue in any way.
 401   guarantee(_saved_index == _index,
 402             err_msg("saved index: %d index: %d", _saved_index, _index));
 403   _saved_index = -1;
 404 }
 405 
 406 CMRootRegions::CMRootRegions() :
 407   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 408   _should_abort(false),  _next_survivor(NULL) { }
 409 
 410 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 411   _young_list = g1h->young_list();
 412   _cm = cm;
 413 }
 414 
 415 void CMRootRegions::prepare_for_scan() {
 416   assert(!scan_in_progress(), "pre-condition");
 417 
 418   // Currently, only survivors can be root regions.
 419   assert(_next_survivor == NULL, "pre-condition");
 420   _next_survivor = _young_list->first_survivor_region();
 421   _scan_in_progress = (_next_survivor != NULL);
 422   _should_abort = false;
 423 }
 424 
 425 HeapRegion* CMRootRegions::claim_next() {
 426   if (_should_abort) {
 427     // If someone has set the should_abort flag, we return NULL to
 428     // force the caller to bail out of their loop.
 429     return NULL;
 430   }
 431 
 432   // Currently, only survivors can be root regions.
 433   HeapRegion* res = _next_survivor;
 434   if (res != NULL) {
 435     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 436     // Read it again in case it changed while we were waiting for the lock.
 437     res = _next_survivor;
 438     if (res != NULL) {
 439       if (res == _young_list->last_survivor_region()) {
 440         // We just claimed the last survivor so store NULL to indicate
 441         // that we're done.
 442         _next_survivor = NULL;
 443       } else {
 444         _next_survivor = res->get_next_young_region();
 445       }
 446     } else {
 447       // Someone else claimed the last survivor while we were trying
 448       // to take the lock so nothing else to do.
 449     }
 450   }
 451   assert(res == NULL || res->is_survivor(), "post-condition");
 452 
 453   return res;
 454 }
 455 
 456 void CMRootRegions::scan_finished() {
 457   assert(scan_in_progress(), "pre-condition");
 458 
 459   // Currently, only survivors can be root regions.
 460   if (!_should_abort) {
 461     assert(_next_survivor == NULL, "we should have claimed all survivors");
 462   }
 463   _next_survivor = NULL;
 464 
 465   {
 466     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 467     _scan_in_progress = false;
 468     RootRegionScan_lock->notify_all();
 469   }
 470 }
 471 
 472 bool CMRootRegions::wait_until_scan_finished() {
 473   if (!scan_in_progress()) return false;
 474 
 475   {
 476     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 477     while (scan_in_progress()) {
 478       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 479     }
 480   }
 481   return true;
 482 }
 483 
 484 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 485 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 486 #endif // _MSC_VER
 487 
 488 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 489   return MAX2((n_par_threads + 2) / 4, 1U);
 490 }
 491 
 492 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 493   _g1h(g1h),
 494   _markBitMap1(),
 495   _markBitMap2(),
 496   _parallel_marking_threads(0),
 497   _max_parallel_marking_threads(0),
 498   _sleep_factor(0.0),
 499   _marking_task_overhead(1.0),
 500   _cleanup_sleep_factor(0.0),
 501   _cleanup_task_overhead(1.0),
 502   _cleanup_list("Cleanup List"),
 503   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 504   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 505             CardTableModRefBS::card_shift,
 506             false /* in_resource_area*/),
 507 
 508   _prevMarkBitMap(&_markBitMap1),
 509   _nextMarkBitMap(&_markBitMap2),
 510 
 511   _markStack(this),
 512   // _finger set in set_non_marking_state
 513 
 514   _max_worker_id(ParallelGCThreads),
 515   // _active_tasks set in set_non_marking_state
 516   // _tasks set inside the constructor
 517   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 518   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 519 
 520   _has_overflown(false),
 521   _concurrent(false),
 522   _has_aborted(false),
 523   _aborted_gc_id(GCId::undefined()),
 524   _restart_for_overflow(false),
 525   _concurrent_marking_in_progress(false),
 526 
 527   // _verbose_level set below
 528 
 529   _init_times(),
 530   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 531   _cleanup_times(),
 532   _total_counting_time(0.0),
 533   _total_rs_scrub_time(0.0),
 534 
 535   _parallel_workers(NULL),
 536 
 537   _count_card_bitmaps(NULL),
 538   _count_marked_bytes(NULL),
 539   _completed_initialization(false) {
 540   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 541   if (verbose_level < no_verbose) {
 542     verbose_level = no_verbose;
 543   }
 544   if (verbose_level > high_verbose) {
 545     verbose_level = high_verbose;
 546   }
 547   _verbose_level = verbose_level;
 548 
 549   if (verbose_low()) {
 550     gclog_or_tty->print_cr("[global] init, heap start = " PTR_FORMAT ", "
 551                            "heap end = " PTR_FORMAT, p2i(_heap_start), p2i(_heap_end));
 552   }
 553 
 554   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 555   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 556 
 557   // Create & start a ConcurrentMark thread.
 558   _cmThread = new ConcurrentMarkThread(this);
 559   assert(cmThread() != NULL, "CM Thread should have been created");
 560   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 561   if (_cmThread->osthread() == NULL) {
 562       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 563   }
 564 
 565   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 566   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 567   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 568 
 569   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 570   satb_qs.set_buffer_size(G1SATBBufferSize);
 571 
 572   _root_regions.init(_g1h, this);
 573 
 574   if (ConcGCThreads > ParallelGCThreads) {
 575     warning("Can't have more ConcGCThreads (%u) "
 576             "than ParallelGCThreads (%u).",
 577             ConcGCThreads, ParallelGCThreads);
 578     return;
 579   }
 580   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 581     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 582     // if both are set
 583     _sleep_factor             = 0.0;
 584     _marking_task_overhead    = 1.0;
 585   } else if (G1MarkingOverheadPercent > 0) {
 586     // We will calculate the number of parallel marking threads based
 587     // on a target overhead with respect to the soft real-time goal
 588     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 589     double overall_cm_overhead =
 590       (double) MaxGCPauseMillis * marking_overhead /
 591       (double) GCPauseIntervalMillis;
 592     double cpu_ratio = 1.0 / (double) os::processor_count();
 593     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 594     double marking_task_overhead =
 595       overall_cm_overhead / marking_thread_num *
 596                                               (double) os::processor_count();
 597     double sleep_factor =
 598                        (1.0 - marking_task_overhead) / marking_task_overhead;
 599 
 600     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 601     _sleep_factor             = sleep_factor;
 602     _marking_task_overhead    = marking_task_overhead;
 603   } else {
 604     // Calculate the number of parallel marking threads by scaling
 605     // the number of parallel GC threads.
 606     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 607     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 608     _sleep_factor             = 0.0;
 609     _marking_task_overhead    = 1.0;
 610   }
 611 
 612   assert(ConcGCThreads > 0, "Should have been set");
 613   _parallel_marking_threads = ConcGCThreads;
 614   _max_parallel_marking_threads = _parallel_marking_threads;
 615 
 616   if (parallel_marking_threads() > 1) {
 617     _cleanup_task_overhead = 1.0;
 618   } else {
 619     _cleanup_task_overhead = marking_task_overhead();
 620   }
 621   _cleanup_sleep_factor =
 622                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 623 
 624 #if 0
 625   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 626   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 627   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 628   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 629   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 630 #endif
 631 
 632   _parallel_workers = new WorkGang("G1 Marker",
 633        _max_parallel_marking_threads, false, true);
 634   if (_parallel_workers == NULL) {
 635     vm_exit_during_initialization("Failed necessary allocation.");
 636   } else {
 637     _parallel_workers->initialize_workers();
 638   }
 639 
 640   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 641     size_t mark_stack_size =
 642       MIN2(MarkStackSizeMax,
 643           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 644     // Verify that the calculated value for MarkStackSize is in range.
 645     // It would be nice to use the private utility routine from Arguments.
 646     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 647       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 648               "must be between 1 and " SIZE_FORMAT,
 649               mark_stack_size, MarkStackSizeMax);
 650       return;
 651     }
 652     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 653   } else {
 654     // Verify MarkStackSize is in range.
 655     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 656       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 657         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 658           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 659                   "must be between 1 and " SIZE_FORMAT,
 660                   MarkStackSize, MarkStackSizeMax);
 661           return;
 662         }
 663       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 664         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 665           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 666                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 667                   MarkStackSize, MarkStackSizeMax);
 668           return;
 669         }
 670       }
 671     }
 672   }
 673 
 674   if (!_markStack.allocate(MarkStackSize)) {
 675     warning("Failed to allocate CM marking stack");
 676     return;
 677   }
 678 
 679   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 680   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 681 
 682   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 683   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 684 
 685   BitMap::idx_t card_bm_size = _card_bm.size();
 686 
 687   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 688   _active_tasks = _max_worker_id;
 689 
 690   uint max_regions = _g1h->max_regions();
 691   for (uint i = 0; i < _max_worker_id; ++i) {
 692     CMTaskQueue* task_queue = new CMTaskQueue();
 693     task_queue->initialize();
 694     _task_queues->register_queue(i, task_queue);
 695 
 696     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 697     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 698 
 699     _tasks[i] = new CMTask(i, this,
 700                            _count_marked_bytes[i],
 701                            &_count_card_bitmaps[i],
 702                            task_queue, _task_queues);
 703 
 704     _accum_task_vtime[i] = 0.0;
 705   }
 706 
 707   // Calculate the card number for the bottom of the heap. Used
 708   // in biasing indexes into the accounting card bitmaps.
 709   _heap_bottom_card_num =
 710     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 711                                 CardTableModRefBS::card_shift);
 712 
 713   // Clear all the liveness counting data
 714   clear_all_count_data();
 715 
 716   // so that the call below can read a sensible value
 717   _heap_start = g1h->reserved_region().start();
 718   set_non_marking_state();
 719   _completed_initialization = true;
 720 }
 721 
 722 void ConcurrentMark::reset() {
 723   // Starting values for these two. This should be called in a STW
 724   // phase.
 725   MemRegion reserved = _g1h->g1_reserved();
 726   _heap_start = reserved.start();
 727   _heap_end   = reserved.end();
 728 
 729   // Separated the asserts so that we know which one fires.
 730   assert(_heap_start != NULL, "heap bounds should look ok");
 731   assert(_heap_end != NULL, "heap bounds should look ok");
 732   assert(_heap_start < _heap_end, "heap bounds should look ok");
 733 
 734   // Reset all the marking data structures and any necessary flags
 735   reset_marking_state();
 736 
 737   if (verbose_low()) {
 738     gclog_or_tty->print_cr("[global] resetting");
 739   }
 740 
 741   // We do reset all of them, since different phases will use
 742   // different number of active threads. So, it's easiest to have all
 743   // of them ready.
 744   for (uint i = 0; i < _max_worker_id; ++i) {
 745     _tasks[i]->reset(_nextMarkBitMap);
 746   }
 747 
 748   // we need this to make sure that the flag is on during the evac
 749   // pause with initial mark piggy-backed
 750   set_concurrent_marking_in_progress();
 751 }
 752 
 753 
 754 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 755   _markStack.set_should_expand();
 756   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 757   if (clear_overflow) {
 758     clear_has_overflown();
 759   } else {
 760     assert(has_overflown(), "pre-condition");
 761   }
 762   _finger = _heap_start;
 763 
 764   for (uint i = 0; i < _max_worker_id; ++i) {
 765     CMTaskQueue* queue = _task_queues->queue(i);
 766     queue->set_empty();
 767   }
 768 }
 769 
 770 void ConcurrentMark::set_concurrency(uint active_tasks) {
 771   assert(active_tasks <= _max_worker_id, "we should not have more");
 772 
 773   _active_tasks = active_tasks;
 774   // Need to update the three data structures below according to the
 775   // number of active threads for this phase.
 776   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 777   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 778   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 779 }
 780 
 781 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 782   set_concurrency(active_tasks);
 783 
 784   _concurrent = concurrent;
 785   // We propagate this to all tasks, not just the active ones.
 786   for (uint i = 0; i < _max_worker_id; ++i)
 787     _tasks[i]->set_concurrent(concurrent);
 788 
 789   if (concurrent) {
 790     set_concurrent_marking_in_progress();
 791   } else {
 792     // We currently assume that the concurrent flag has been set to
 793     // false before we start remark. At this point we should also be
 794     // in a STW phase.
 795     assert(!concurrent_marking_in_progress(), "invariant");
 796     assert(out_of_regions(),
 797            err_msg("only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 798                    p2i(_finger), p2i(_heap_end)));
 799   }
 800 }
 801 
 802 void ConcurrentMark::set_non_marking_state() {
 803   // We set the global marking state to some default values when we're
 804   // not doing marking.
 805   reset_marking_state();
 806   _active_tasks = 0;
 807   clear_concurrent_marking_in_progress();
 808 }
 809 
 810 ConcurrentMark::~ConcurrentMark() {
 811   // The ConcurrentMark instance is never freed.
 812   ShouldNotReachHere();
 813 }
 814 
 815 void ConcurrentMark::clearNextBitmap() {
 816   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 817 
 818   // Make sure that the concurrent mark thread looks to still be in
 819   // the current cycle.
 820   guarantee(cmThread()->during_cycle(), "invariant");
 821 
 822   // We are finishing up the current cycle by clearing the next
 823   // marking bitmap and getting it ready for the next cycle. During
 824   // this time no other cycle can start. So, let's make sure that this
 825   // is the case.
 826   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 827 
 828   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 829   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 830   _parallel_workers->run_task(&task);
 831 
 832   // Clear the liveness counting data. If the marking has been aborted, the abort()
 833   // call already did that.
 834   if (cl.complete()) {
 835     clear_all_count_data();
 836   }
 837 
 838   // Repeat the asserts from above.
 839   guarantee(cmThread()->during_cycle(), "invariant");
 840   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 841 }
 842 
 843 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 844   CMBitMap* _bitmap;
 845   bool _error;
 846  public:
 847   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 848   }
 849 
 850   virtual bool doHeapRegion(HeapRegion* r) {
 851     // This closure can be called concurrently to the mutator, so we must make sure
 852     // that the result of the getNextMarkedWordAddress() call is compared to the
 853     // value passed to it as limit to detect any found bits.
 854     // We can use the region's orig_end() for the limit and the comparison value
 855     // as it always contains the "real" end of the region that never changes and
 856     // has no side effects.
 857     // Due to the latter, there can also be no problem with the compiler generating
 858     // reloads of the orig_end() call.
 859     HeapWord* end = r->orig_end();
 860     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 861   }
 862 };
 863 
 864 bool ConcurrentMark::nextMarkBitmapIsClear() {
 865   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 866   _g1h->heap_region_iterate(&cl);
 867   return cl.complete();
 868 }
 869 
 870 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 871 public:
 872   bool doHeapRegion(HeapRegion* r) {
 873     if (!r->is_continues_humongous()) {
 874       r->note_start_of_marking();
 875     }
 876     return false;
 877   }
 878 };
 879 
 880 void ConcurrentMark::checkpointRootsInitialPre() {
 881   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 882   G1CollectorPolicy* g1p = g1h->g1_policy();
 883 
 884   _has_aborted = false;
 885 
 886   // Initialize marking structures. This has to be done in a STW phase.
 887   reset();
 888 
 889   // For each region note start of marking.
 890   NoteStartOfMarkHRClosure startcl;
 891   g1h->heap_region_iterate(&startcl);
 892 }
 893 
 894 
 895 void ConcurrentMark::checkpointRootsInitialPost() {
 896   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 897 
 898   // If we force an overflow during remark, the remark operation will
 899   // actually abort and we'll restart concurrent marking. If we always
 900   // force an overflow during remark we'll never actually complete the
 901   // marking phase. So, we initialize this here, at the start of the
 902   // cycle, so that at the remaining overflow number will decrease at
 903   // every remark and we'll eventually not need to cause one.
 904   force_overflow_stw()->init();
 905 
 906   // Start Concurrent Marking weak-reference discovery.
 907   ReferenceProcessor* rp = g1h->ref_processor_cm();
 908   // enable ("weak") refs discovery
 909   rp->enable_discovery();
 910   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 911 
 912   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 913   // This is the start of  the marking cycle, we're expected all
 914   // threads to have SATB queues with active set to false.
 915   satb_mq_set.set_active_all_threads(true, /* new active value */
 916                                      false /* expected_active */);
 917 
 918   _root_regions.prepare_for_scan();
 919 
 920   // update_g1_committed() will be called at the end of an evac pause
 921   // when marking is on. So, it's also called at the end of the
 922   // initial-mark pause to update the heap end, if the heap expands
 923   // during it. No need to call it here.
 924 }
 925 
 926 /*
 927  * Notice that in the next two methods, we actually leave the STS
 928  * during the barrier sync and join it immediately afterwards. If we
 929  * do not do this, the following deadlock can occur: one thread could
 930  * be in the barrier sync code, waiting for the other thread to also
 931  * sync up, whereas another one could be trying to yield, while also
 932  * waiting for the other threads to sync up too.
 933  *
 934  * Note, however, that this code is also used during remark and in
 935  * this case we should not attempt to leave / enter the STS, otherwise
 936  * we'll either hit an assert (debug / fastdebug) or deadlock
 937  * (product). So we should only leave / enter the STS if we are
 938  * operating concurrently.
 939  *
 940  * Because the thread that does the sync barrier has left the STS, it
 941  * is possible to be suspended for a Full GC or an evacuation pause
 942  * could occur. This is actually safe, since the entering the sync
 943  * barrier is one of the last things do_marking_step() does, and it
 944  * doesn't manipulate any data structures afterwards.
 945  */
 946 
 947 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 948   bool barrier_aborted;
 949 
 950   if (verbose_low()) {
 951     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 952   }
 953 
 954   {
 955     SuspendibleThreadSetLeaver sts_leave(concurrent());
 956     barrier_aborted = !_first_overflow_barrier_sync.enter();
 957   }
 958 
 959   // at this point everyone should have synced up and not be doing any
 960   // more work
 961 
 962   if (verbose_low()) {
 963     if (barrier_aborted) {
 964       gclog_or_tty->print_cr("[%u] aborted first barrier", worker_id);
 965     } else {
 966       gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
 967     }
 968   }
 969 
 970   if (barrier_aborted) {
 971     // If the barrier aborted we ignore the overflow condition and
 972     // just abort the whole marking phase as quickly as possible.
 973     return;
 974   }
 975 
 976   // If we're executing the concurrent phase of marking, reset the marking
 977   // state; otherwise the marking state is reset after reference processing,
 978   // during the remark pause.
 979   // If we reset here as a result of an overflow during the remark we will
 980   // see assertion failures from any subsequent set_concurrency_and_phase()
 981   // calls.
 982   if (concurrent()) {
 983     // let the task associated with with worker 0 do this
 984     if (worker_id == 0) {
 985       // task 0 is responsible for clearing the global data structures
 986       // We should be here because of an overflow. During STW we should
 987       // not clear the overflow flag since we rely on it being true when
 988       // we exit this method to abort the pause and restart concurrent
 989       // marking.
 990       reset_marking_state(true /* clear_overflow */);
 991       force_overflow()->update();
 992 
 993       if (G1Log::fine()) {
 994         gclog_or_tty->gclog_stamp(concurrent_gc_id());
 995         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
 996       }
 997     }
 998   }
 999 
1000   // after this, each task should reset its own data structures then
1001   // then go into the second barrier
1002 }
1003 
1004 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1005   bool barrier_aborted;
1006 
1007   if (verbose_low()) {
1008     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1009   }
1010 
1011   {
1012     SuspendibleThreadSetLeaver sts_leave(concurrent());
1013     barrier_aborted = !_second_overflow_barrier_sync.enter();
1014   }
1015 
1016   // at this point everything should be re-initialized and ready to go
1017 
1018   if (verbose_low()) {
1019     if (barrier_aborted) {
1020       gclog_or_tty->print_cr("[%u] aborted second barrier", worker_id);
1021     } else {
1022       gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1023     }
1024   }
1025 }
1026 
1027 #ifndef PRODUCT
1028 void ForceOverflowSettings::init() {
1029   _num_remaining = G1ConcMarkForceOverflow;
1030   _force = false;
1031   update();
1032 }
1033 
1034 void ForceOverflowSettings::update() {
1035   if (_num_remaining > 0) {
1036     _num_remaining -= 1;
1037     _force = true;
1038   } else {
1039     _force = false;
1040   }
1041 }
1042 
1043 bool ForceOverflowSettings::should_force() {
1044   if (_force) {
1045     _force = false;
1046     return true;
1047   } else {
1048     return false;
1049   }
1050 }
1051 #endif // !PRODUCT
1052 
1053 class CMConcurrentMarkingTask: public AbstractGangTask {
1054 private:
1055   ConcurrentMark*       _cm;
1056   ConcurrentMarkThread* _cmt;
1057 
1058 public:
1059   void work(uint worker_id) {
1060     assert(Thread::current()->is_ConcurrentGC_thread(),
1061            "this should only be done by a conc GC thread");
1062     ResourceMark rm;
1063 
1064     double start_vtime = os::elapsedVTime();
1065 
1066     {
1067       SuspendibleThreadSetJoiner sts_join;
1068 
1069       assert(worker_id < _cm->active_tasks(), "invariant");
1070       CMTask* the_task = _cm->task(worker_id);
1071       the_task->record_start_time();
1072       if (!_cm->has_aborted()) {
1073         do {
1074           double start_vtime_sec = os::elapsedVTime();
1075           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1076 
1077           the_task->do_marking_step(mark_step_duration_ms,
1078                                     true  /* do_termination */,
1079                                     false /* is_serial*/);
1080 
1081           double end_vtime_sec = os::elapsedVTime();
1082           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1083           _cm->clear_has_overflown();
1084 
1085           _cm->do_yield_check(worker_id);
1086 
1087           jlong sleep_time_ms;
1088           if (!_cm->has_aborted() && the_task->has_aborted()) {
1089             sleep_time_ms =
1090               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1091             {
1092               SuspendibleThreadSetLeaver sts_leave;
1093               os::sleep(Thread::current(), sleep_time_ms, false);
1094             }
1095           }
1096         } while (!_cm->has_aborted() && the_task->has_aborted());
1097       }
1098       the_task->record_end_time();
1099       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1100     }
1101 
1102     double end_vtime = os::elapsedVTime();
1103     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1104   }
1105 
1106   CMConcurrentMarkingTask(ConcurrentMark* cm,
1107                           ConcurrentMarkThread* cmt) :
1108       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1109 
1110   ~CMConcurrentMarkingTask() { }
1111 };
1112 
1113 // Calculates the number of active workers for a concurrent
1114 // phase.
1115 uint ConcurrentMark::calc_parallel_marking_threads() {
1116   uint n_conc_workers = 0;
1117   if (!UseDynamicNumberOfGCThreads ||
1118       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1119        !ForceDynamicNumberOfGCThreads)) {
1120     n_conc_workers = max_parallel_marking_threads();
1121   } else {
1122     n_conc_workers =
1123       AdaptiveSizePolicy::calc_default_active_workers(
1124                                    max_parallel_marking_threads(),
1125                                    1, /* Minimum workers */
1126                                    parallel_marking_threads(),
1127                                    Threads::number_of_non_daemon_threads());
1128     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1129     // that scaling has already gone into "_max_parallel_marking_threads".
1130   }
1131   assert(n_conc_workers > 0, "Always need at least 1");
1132   return n_conc_workers;
1133 }
1134 
1135 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1136   // Currently, only survivors can be root regions.
1137   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1138   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1139 
1140   const uintx interval = PrefetchScanIntervalInBytes;
1141   HeapWord* curr = hr->bottom();
1142   const HeapWord* end = hr->top();
1143   while (curr < end) {
1144     Prefetch::read(curr, interval);
1145     oop obj = oop(curr);
1146     int size = obj->oop_iterate_size(&cl);
1147     assert(size == obj->size(), "sanity");
1148     curr += size;
1149   }
1150 }
1151 
1152 class CMRootRegionScanTask : public AbstractGangTask {
1153 private:
1154   ConcurrentMark* _cm;
1155 
1156 public:
1157   CMRootRegionScanTask(ConcurrentMark* cm) :
1158     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1159 
1160   void work(uint worker_id) {
1161     assert(Thread::current()->is_ConcurrentGC_thread(),
1162            "this should only be done by a conc GC thread");
1163 
1164     CMRootRegions* root_regions = _cm->root_regions();
1165     HeapRegion* hr = root_regions->claim_next();
1166     while (hr != NULL) {
1167       _cm->scanRootRegion(hr, worker_id);
1168       hr = root_regions->claim_next();
1169     }
1170   }
1171 };
1172 
1173 void ConcurrentMark::scanRootRegions() {
1174   double scan_start = os::elapsedTime();
1175 
1176   // Start of concurrent marking.
1177   ClassLoaderDataGraph::clear_claimed_marks();
1178 
1179   // scan_in_progress() will have been set to true only if there was
1180   // at least one root region to scan. So, if it's false, we
1181   // should not attempt to do any further work.
1182   if (root_regions()->scan_in_progress()) {
1183     if (G1Log::fine()) {
1184       gclog_or_tty->gclog_stamp(concurrent_gc_id());
1185       gclog_or_tty->print_cr("[GC concurrent-root-region-scan-start]");
1186     }
1187 
1188     _parallel_marking_threads = calc_parallel_marking_threads();
1189     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1190            "Maximum number of marking threads exceeded");
1191     uint active_workers = MAX2(1U, parallel_marking_threads());
1192 
1193     CMRootRegionScanTask task(this);
1194     _parallel_workers->set_active_workers(active_workers);
1195     _parallel_workers->run_task(&task);
1196 
1197     if (G1Log::fine()) {
1198       gclog_or_tty->gclog_stamp(concurrent_gc_id());
1199       gclog_or_tty->print_cr("[GC concurrent-root-region-scan-end, %1.7lf secs]", os::elapsedTime() - scan_start);
1200     }
1201 
1202     // It's possible that has_aborted() is true here without actually
1203     // aborting the survivor scan earlier. This is OK as it's
1204     // mainly used for sanity checking.
1205     root_regions()->scan_finished();
1206   }
1207 }
1208 
1209 void ConcurrentMark::markFromRoots() {
1210   // we might be tempted to assert that:
1211   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1212   //        "inconsistent argument?");
1213   // However that wouldn't be right, because it's possible that
1214   // a safepoint is indeed in progress as a younger generation
1215   // stop-the-world GC happens even as we mark in this generation.
1216 
1217   _restart_for_overflow = false;
1218   force_overflow_conc()->init();
1219 
1220   // _g1h has _n_par_threads
1221   _parallel_marking_threads = calc_parallel_marking_threads();
1222   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1223     "Maximum number of marking threads exceeded");
1224 
1225   uint active_workers = MAX2(1U, parallel_marking_threads());
1226   assert(active_workers > 0, "Should have been set");
1227 
1228   // Parallel task terminator is set in "set_concurrency_and_phase()"
1229   set_concurrency_and_phase(active_workers, true /* concurrent */);
1230 
1231   CMConcurrentMarkingTask markingTask(this, cmThread());
1232   _parallel_workers->set_active_workers(active_workers);
1233   _parallel_workers->run_task(&markingTask);
1234   print_stats();
1235 }
1236 
1237 // Helper class to get rid of some boilerplate code.
1238 class G1CMTraceTime : public GCTraceTime {
1239   static bool doit_and_prepend(bool doit) {
1240     if (doit) {
1241       gclog_or_tty->put(' ');
1242     }
1243     return doit;
1244   }
1245 
1246  public:
1247   G1CMTraceTime(const char* title, bool doit)
1248     : GCTraceTime(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm(),
1249         G1CollectedHeap::heap()->concurrent_mark()->concurrent_gc_id()) {
1250   }
1251 };
1252 
1253 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1254   // world is stopped at this checkpoint
1255   assert(SafepointSynchronize::is_at_safepoint(),
1256          "world should be stopped");
1257 
1258   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1259 
1260   // If a full collection has happened, we shouldn't do this.
1261   if (has_aborted()) {
1262     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1263     return;
1264   }
1265 
1266   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1267 
1268   if (VerifyDuringGC) {
1269     HandleMark hm;  // handle scope
1270     g1h->prepare_for_verify();
1271     Universe::verify(VerifyOption_G1UsePrevMarking,
1272                      " VerifyDuringGC:(before)");
1273   }
1274   g1h->check_bitmaps("Remark Start");
1275 
1276   G1CollectorPolicy* g1p = g1h->g1_policy();
1277   g1p->record_concurrent_mark_remark_start();
1278 
1279   double start = os::elapsedTime();
1280 
1281   checkpointRootsFinalWork();
1282 
1283   double mark_work_end = os::elapsedTime();
1284 
1285   weakRefsWork(clear_all_soft_refs);
1286 
1287   if (has_overflown()) {
1288     // Oops.  We overflowed.  Restart concurrent marking.
1289     _restart_for_overflow = true;
1290     if (G1TraceMarkStackOverflow) {
1291       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1292     }
1293 
1294     // Verify the heap w.r.t. the previous marking bitmap.
1295     if (VerifyDuringGC) {
1296       HandleMark hm;  // handle scope
1297       g1h->prepare_for_verify();
1298       Universe::verify(VerifyOption_G1UsePrevMarking,
1299                        " VerifyDuringGC:(overflow)");
1300     }
1301 
1302     // Clear the marking state because we will be restarting
1303     // marking due to overflowing the global mark stack.
1304     reset_marking_state();
1305   } else {
1306     {
1307       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1308 
1309       // Aggregate the per-task counting data that we have accumulated
1310       // while marking.
1311       aggregate_count_data();
1312     }
1313 
1314     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1315     // We're done with marking.
1316     // This is the end of  the marking cycle, we're expected all
1317     // threads to have SATB queues with active set to true.
1318     satb_mq_set.set_active_all_threads(false, /* new active value */
1319                                        true /* expected_active */);
1320 
1321     if (VerifyDuringGC) {
1322       HandleMark hm;  // handle scope
1323       g1h->prepare_for_verify();
1324       Universe::verify(VerifyOption_G1UseNextMarking,
1325                        " VerifyDuringGC:(after)");
1326     }
1327     g1h->check_bitmaps("Remark End");
1328     assert(!restart_for_overflow(), "sanity");
1329     // Completely reset the marking state since marking completed
1330     set_non_marking_state();
1331   }
1332 
1333   // Expand the marking stack, if we have to and if we can.
1334   if (_markStack.should_expand()) {
1335     _markStack.expand();
1336   }
1337 
1338   // Statistics
1339   double now = os::elapsedTime();
1340   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1341   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1342   _remark_times.add((now - start) * 1000.0);
1343 
1344   g1p->record_concurrent_mark_remark_end();
1345 
1346   G1CMIsAliveClosure is_alive(g1h);
1347   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1348 }
1349 
1350 // Base class of the closures that finalize and verify the
1351 // liveness counting data.
1352 class CMCountDataClosureBase: public HeapRegionClosure {
1353 protected:
1354   G1CollectedHeap* _g1h;
1355   ConcurrentMark* _cm;
1356   CardTableModRefBS* _ct_bs;
1357 
1358   BitMap* _region_bm;
1359   BitMap* _card_bm;
1360 
1361   // Takes a region that's not empty (i.e., it has at least one
1362   // live object in it and sets its corresponding bit on the region
1363   // bitmap to 1. If the region is "starts humongous" it will also set
1364   // to 1 the bits on the region bitmap that correspond to its
1365   // associated "continues humongous" regions.
1366   void set_bit_for_region(HeapRegion* hr) {
1367     assert(!hr->is_continues_humongous(), "should have filtered those out");
1368 
1369     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1370     if (!hr->is_starts_humongous()) {
1371       // Normal (non-humongous) case: just set the bit.
1372       _region_bm->par_at_put(index, true);
1373     } else {
1374       // Starts humongous case: calculate how many regions are part of
1375       // this humongous region and then set the bit range.
1376       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1377       _region_bm->par_at_put_range(index, end_index, true);
1378     }
1379   }
1380 
1381 public:
1382   CMCountDataClosureBase(G1CollectedHeap* g1h,
1383                          BitMap* region_bm, BitMap* card_bm):
1384     _g1h(g1h), _cm(g1h->concurrent_mark()),
1385     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1386     _region_bm(region_bm), _card_bm(card_bm) { }
1387 };
1388 
1389 // Closure that calculates the # live objects per region. Used
1390 // for verification purposes during the cleanup pause.
1391 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1392   CMBitMapRO* _bm;
1393   size_t _region_marked_bytes;
1394 
1395 public:
1396   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1397                          BitMap* region_bm, BitMap* card_bm) :
1398     CMCountDataClosureBase(g1h, region_bm, card_bm),
1399     _bm(bm), _region_marked_bytes(0) { }
1400 
1401   bool doHeapRegion(HeapRegion* hr) {
1402 
1403     if (hr->is_continues_humongous()) {
1404       // We will ignore these here and process them when their
1405       // associated "starts humongous" region is processed (see
1406       // set_bit_for_heap_region()). Note that we cannot rely on their
1407       // associated "starts humongous" region to have their bit set to
1408       // 1 since, due to the region chunking in the parallel region
1409       // iteration, a "continues humongous" region might be visited
1410       // before its associated "starts humongous".
1411       return false;
1412     }
1413 
1414     HeapWord* ntams = hr->next_top_at_mark_start();
1415     HeapWord* start = hr->bottom();
1416 
1417     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1418            err_msg("Preconditions not met - "
1419                    "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1420                    p2i(start), p2i(ntams), p2i(hr->end())));
1421 
1422     // Find the first marked object at or after "start".
1423     start = _bm->getNextMarkedWordAddress(start, ntams);
1424 
1425     size_t marked_bytes = 0;
1426 
1427     while (start < ntams) {
1428       oop obj = oop(start);
1429       int obj_sz = obj->size();
1430       HeapWord* obj_end = start + obj_sz;
1431 
1432       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1433       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1434 
1435       // Note: if we're looking at the last region in heap - obj_end
1436       // could be actually just beyond the end of the heap; end_idx
1437       // will then correspond to a (non-existent) card that is also
1438       // just beyond the heap.
1439       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1440         // end of object is not card aligned - increment to cover
1441         // all the cards spanned by the object
1442         end_idx += 1;
1443       }
1444 
1445       // Set the bits in the card BM for the cards spanned by this object.
1446       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1447 
1448       // Add the size of this object to the number of marked bytes.
1449       marked_bytes += (size_t)obj_sz * HeapWordSize;
1450 
1451       // Find the next marked object after this one.
1452       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1453     }
1454 
1455     // Mark the allocated-since-marking portion...
1456     HeapWord* top = hr->top();
1457     if (ntams < top) {
1458       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1459       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1460 
1461       // Note: if we're looking at the last region in heap - top
1462       // could be actually just beyond the end of the heap; end_idx
1463       // will then correspond to a (non-existent) card that is also
1464       // just beyond the heap.
1465       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1466         // end of object is not card aligned - increment to cover
1467         // all the cards spanned by the object
1468         end_idx += 1;
1469       }
1470       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1471 
1472       // This definitely means the region has live objects.
1473       set_bit_for_region(hr);
1474     }
1475 
1476     // Update the live region bitmap.
1477     if (marked_bytes > 0) {
1478       set_bit_for_region(hr);
1479     }
1480 
1481     // Set the marked bytes for the current region so that
1482     // it can be queried by a calling verification routine
1483     _region_marked_bytes = marked_bytes;
1484 
1485     return false;
1486   }
1487 
1488   size_t region_marked_bytes() const { return _region_marked_bytes; }
1489 };
1490 
1491 // Heap region closure used for verifying the counting data
1492 // that was accumulated concurrently and aggregated during
1493 // the remark pause. This closure is applied to the heap
1494 // regions during the STW cleanup pause.
1495 
1496 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1497   G1CollectedHeap* _g1h;
1498   ConcurrentMark* _cm;
1499   CalcLiveObjectsClosure _calc_cl;
1500   BitMap* _region_bm;   // Region BM to be verified
1501   BitMap* _card_bm;     // Card BM to be verified
1502   bool _verbose;        // verbose output?
1503 
1504   BitMap* _exp_region_bm; // Expected Region BM values
1505   BitMap* _exp_card_bm;   // Expected card BM values
1506 
1507   int _failures;
1508 
1509 public:
1510   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1511                                 BitMap* region_bm,
1512                                 BitMap* card_bm,
1513                                 BitMap* exp_region_bm,
1514                                 BitMap* exp_card_bm,
1515                                 bool verbose) :
1516     _g1h(g1h), _cm(g1h->concurrent_mark()),
1517     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1518     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1519     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1520     _failures(0) { }
1521 
1522   int failures() const { return _failures; }
1523 
1524   bool doHeapRegion(HeapRegion* hr) {
1525     if (hr->is_continues_humongous()) {
1526       // We will ignore these here and process them when their
1527       // associated "starts humongous" region is processed (see
1528       // set_bit_for_heap_region()). Note that we cannot rely on their
1529       // associated "starts humongous" region to have their bit set to
1530       // 1 since, due to the region chunking in the parallel region
1531       // iteration, a "continues humongous" region might be visited
1532       // before its associated "starts humongous".
1533       return false;
1534     }
1535 
1536     int failures = 0;
1537 
1538     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1539     // this region and set the corresponding bits in the expected region
1540     // and card bitmaps.
1541     bool res = _calc_cl.doHeapRegion(hr);
1542     assert(res == false, "should be continuing");
1543 
1544     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1545                     Mutex::_no_safepoint_check_flag);
1546 
1547     // Verify the marked bytes for this region.
1548     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1549     size_t act_marked_bytes = hr->next_marked_bytes();
1550 
1551     // We're not OK if expected marked bytes > actual marked bytes. It means
1552     // we have missed accounting some objects during the actual marking.
1553     if (exp_marked_bytes > act_marked_bytes) {
1554       if (_verbose) {
1555         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1556                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1557                                hr->hrm_index(), exp_marked_bytes, act_marked_bytes);
1558       }
1559       failures += 1;
1560     }
1561 
1562     // Verify the bit, for this region, in the actual and expected
1563     // (which was just calculated) region bit maps.
1564     // We're not OK if the bit in the calculated expected region
1565     // bitmap is set and the bit in the actual region bitmap is not.
1566     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1567 
1568     bool expected = _exp_region_bm->at(index);
1569     bool actual = _region_bm->at(index);
1570     if (expected && !actual) {
1571       if (_verbose) {
1572         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1573                                "expected: %s, actual: %s",
1574                                hr->hrm_index(),
1575                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1576       }
1577       failures += 1;
1578     }
1579 
1580     // Verify that the card bit maps for the cards spanned by the current
1581     // region match. We have an error if we have a set bit in the expected
1582     // bit map and the corresponding bit in the actual bitmap is not set.
1583 
1584     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1585     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1586 
1587     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1588       expected = _exp_card_bm->at(i);
1589       actual = _card_bm->at(i);
1590 
1591       if (expected && !actual) {
1592         if (_verbose) {
1593           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1594                                  "expected: %s, actual: %s",
1595                                  hr->hrm_index(), i,
1596                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1597         }
1598         failures += 1;
1599       }
1600     }
1601 
1602     if (failures > 0 && _verbose)  {
1603       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1604                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1605                              HR_FORMAT_PARAMS(hr), p2i(hr->next_top_at_mark_start()),
1606                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1607     }
1608 
1609     _failures += failures;
1610 
1611     // We could stop iteration over the heap when we
1612     // find the first violating region by returning true.
1613     return false;
1614   }
1615 };
1616 
1617 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1618 protected:
1619   G1CollectedHeap* _g1h;
1620   ConcurrentMark* _cm;
1621   BitMap* _actual_region_bm;
1622   BitMap* _actual_card_bm;
1623 
1624   uint    _n_workers;
1625 
1626   BitMap* _expected_region_bm;
1627   BitMap* _expected_card_bm;
1628 
1629   int  _failures;
1630   bool _verbose;
1631 
1632   HeapRegionClaimer _hrclaimer;
1633 
1634 public:
1635   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1636                             BitMap* region_bm, BitMap* card_bm,
1637                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1638     : AbstractGangTask("G1 verify final counting"),
1639       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1640       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1641       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1642       _failures(0), _verbose(false),
1643       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1644     assert(VerifyDuringGC, "don't call this otherwise");
1645     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1646     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1647 
1648     _verbose = _cm->verbose_medium();
1649   }
1650 
1651   void work(uint worker_id) {
1652     assert(worker_id < _n_workers, "invariant");
1653 
1654     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1655                                             _actual_region_bm, _actual_card_bm,
1656                                             _expected_region_bm,
1657                                             _expected_card_bm,
1658                                             _verbose);
1659 
1660     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1661 
1662     Atomic::add(verify_cl.failures(), &_failures);
1663   }
1664 
1665   int failures() const { return _failures; }
1666 };
1667 
1668 // Closure that finalizes the liveness counting data.
1669 // Used during the cleanup pause.
1670 // Sets the bits corresponding to the interval [NTAMS, top]
1671 // (which contains the implicitly live objects) in the
1672 // card liveness bitmap. Also sets the bit for each region,
1673 // containing live data, in the region liveness bitmap.
1674 
1675 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1676  public:
1677   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1678                               BitMap* region_bm,
1679                               BitMap* card_bm) :
1680     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1681 
1682   bool doHeapRegion(HeapRegion* hr) {
1683 
1684     if (hr->is_continues_humongous()) {
1685       // We will ignore these here and process them when their
1686       // associated "starts humongous" region is processed (see
1687       // set_bit_for_heap_region()). Note that we cannot rely on their
1688       // associated "starts humongous" region to have their bit set to
1689       // 1 since, due to the region chunking in the parallel region
1690       // iteration, a "continues humongous" region might be visited
1691       // before its associated "starts humongous".
1692       return false;
1693     }
1694 
1695     HeapWord* ntams = hr->next_top_at_mark_start();
1696     HeapWord* top   = hr->top();
1697 
1698     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1699 
1700     // Mark the allocated-since-marking portion...
1701     if (ntams < top) {
1702       // This definitely means the region has live objects.
1703       set_bit_for_region(hr);
1704 
1705       // Now set the bits in the card bitmap for [ntams, top)
1706       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1707       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1708 
1709       // Note: if we're looking at the last region in heap - top
1710       // could be actually just beyond the end of the heap; end_idx
1711       // will then correspond to a (non-existent) card that is also
1712       // just beyond the heap.
1713       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1714         // end of object is not card aligned - increment to cover
1715         // all the cards spanned by the object
1716         end_idx += 1;
1717       }
1718 
1719       assert(end_idx <= _card_bm->size(),
1720              err_msg("oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1721                      end_idx, _card_bm->size()));
1722       assert(start_idx < _card_bm->size(),
1723              err_msg("oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1724                      start_idx, _card_bm->size()));
1725 
1726       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1727     }
1728 
1729     // Set the bit for the region if it contains live data
1730     if (hr->next_marked_bytes() > 0) {
1731       set_bit_for_region(hr);
1732     }
1733 
1734     return false;
1735   }
1736 };
1737 
1738 class G1ParFinalCountTask: public AbstractGangTask {
1739 protected:
1740   G1CollectedHeap* _g1h;
1741   ConcurrentMark* _cm;
1742   BitMap* _actual_region_bm;
1743   BitMap* _actual_card_bm;
1744 
1745   uint    _n_workers;
1746   HeapRegionClaimer _hrclaimer;
1747 
1748 public:
1749   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1750     : AbstractGangTask("G1 final counting"),
1751       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1752       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1753       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1754   }
1755 
1756   void work(uint worker_id) {
1757     assert(worker_id < _n_workers, "invariant");
1758 
1759     FinalCountDataUpdateClosure final_update_cl(_g1h,
1760                                                 _actual_region_bm,
1761                                                 _actual_card_bm);
1762 
1763     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1764   }
1765 };
1766 
1767 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1768   G1CollectedHeap* _g1;
1769   size_t _freed_bytes;
1770   FreeRegionList* _local_cleanup_list;
1771   HeapRegionSetCount _old_regions_removed;
1772   HeapRegionSetCount _humongous_regions_removed;
1773   HRRSCleanupTask* _hrrs_cleanup_task;
1774 
1775 public:
1776   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1777                              FreeRegionList* local_cleanup_list,
1778                              HRRSCleanupTask* hrrs_cleanup_task) :
1779     _g1(g1),
1780     _freed_bytes(0),
1781     _local_cleanup_list(local_cleanup_list),
1782     _old_regions_removed(),
1783     _humongous_regions_removed(),
1784     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1785 
1786   size_t freed_bytes() { return _freed_bytes; }
1787   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1788   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1789 
1790   bool doHeapRegion(HeapRegion *hr) {
1791     if (hr->is_continues_humongous() || hr->is_archive()) {
1792       return false;
1793     }
1794     // We use a claim value of zero here because all regions
1795     // were claimed with value 1 in the FinalCount task.
1796     _g1->reset_gc_time_stamps(hr);
1797     hr->note_end_of_marking();
1798 
1799     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1800       _freed_bytes += hr->used();
1801       hr->set_containing_set(NULL);
1802       if (hr->is_humongous()) {
1803         assert(hr->is_starts_humongous(), "we should only see starts humongous");
1804         _humongous_regions_removed.increment(1u, hr->capacity());
1805         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1806       } else {
1807         _old_regions_removed.increment(1u, hr->capacity());
1808         _g1->free_region(hr, _local_cleanup_list, true);
1809       }
1810     } else {
1811       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1812     }
1813 
1814     return false;
1815   }
1816 };
1817 
1818 class G1ParNoteEndTask: public AbstractGangTask {
1819   friend class G1NoteEndOfConcMarkClosure;
1820 
1821 protected:
1822   G1CollectedHeap* _g1h;
1823   FreeRegionList* _cleanup_list;
1824   HeapRegionClaimer _hrclaimer;
1825 
1826 public:
1827   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1828       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1829   }
1830 
1831   void work(uint worker_id) {
1832     FreeRegionList local_cleanup_list("Local Cleanup List");
1833     HRRSCleanupTask hrrs_cleanup_task;
1834     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1835                                            &hrrs_cleanup_task);
1836     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1837     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1838 
1839     // Now update the lists
1840     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1841     {
1842       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1843       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1844 
1845       // If we iterate over the global cleanup list at the end of
1846       // cleanup to do this printing we will not guarantee to only
1847       // generate output for the newly-reclaimed regions (the list
1848       // might not be empty at the beginning of cleanup; we might
1849       // still be working on its previous contents). So we do the
1850       // printing here, before we append the new regions to the global
1851       // cleanup list.
1852 
1853       G1HRPrinter* hr_printer = _g1h->hr_printer();
1854       if (hr_printer->is_active()) {
1855         FreeRegionListIterator iter(&local_cleanup_list);
1856         while (iter.more_available()) {
1857           HeapRegion* hr = iter.get_next();
1858           hr_printer->cleanup(hr);
1859         }
1860       }
1861 
1862       _cleanup_list->add_ordered(&local_cleanup_list);
1863       assert(local_cleanup_list.is_empty(), "post-condition");
1864 
1865       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1866     }
1867   }
1868 };
1869 
1870 class G1ParScrubRemSetTask: public AbstractGangTask {
1871 protected:
1872   G1RemSet* _g1rs;
1873   BitMap* _region_bm;
1874   BitMap* _card_bm;
1875   HeapRegionClaimer _hrclaimer;
1876 
1877 public:
1878   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1879       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1880   }
1881 
1882   void work(uint worker_id) {
1883     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1884   }
1885 
1886 };
1887 
1888 void ConcurrentMark::cleanup() {
1889   // world is stopped at this checkpoint
1890   assert(SafepointSynchronize::is_at_safepoint(),
1891          "world should be stopped");
1892   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1893 
1894   // If a full collection has happened, we shouldn't do this.
1895   if (has_aborted()) {
1896     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1897     return;
1898   }
1899 
1900   g1h->verify_region_sets_optional();
1901 
1902   if (VerifyDuringGC) {
1903     HandleMark hm;  // handle scope
1904     g1h->prepare_for_verify();
1905     Universe::verify(VerifyOption_G1UsePrevMarking,
1906                      " VerifyDuringGC:(before)");
1907   }
1908   g1h->check_bitmaps("Cleanup Start");
1909 
1910   G1CollectorPolicy* g1p = g1h->g1_policy();
1911   g1p->record_concurrent_mark_cleanup_start();
1912 
1913   double start = os::elapsedTime();
1914 
1915   HeapRegionRemSet::reset_for_cleanup_tasks();
1916 
1917   // Do counting once more with the world stopped for good measure.
1918   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1919 
1920   g1h->workers()->run_task(&g1_par_count_task);
1921 
1922   if (VerifyDuringGC) {
1923     // Verify that the counting data accumulated during marking matches
1924     // that calculated by walking the marking bitmap.
1925 
1926     // Bitmaps to hold expected values
1927     BitMap expected_region_bm(_region_bm.size(), true);
1928     BitMap expected_card_bm(_card_bm.size(), true);
1929 
1930     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1931                                                  &_region_bm,
1932                                                  &_card_bm,
1933                                                  &expected_region_bm,
1934                                                  &expected_card_bm);
1935 
1936     g1h->workers()->run_task(&g1_par_verify_task);
1937 
1938     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1939   }
1940 
1941   size_t start_used_bytes = g1h->used();
1942   g1h->collector_state()->set_mark_in_progress(false);
1943 
1944   double count_end = os::elapsedTime();
1945   double this_final_counting_time = (count_end - start);
1946   _total_counting_time += this_final_counting_time;
1947 
1948   if (G1PrintRegionLivenessInfo) {
1949     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
1950     _g1h->heap_region_iterate(&cl);
1951   }
1952 
1953   // Install newly created mark bitMap as "prev".
1954   swapMarkBitMaps();
1955 
1956   g1h->reset_gc_time_stamp();
1957 
1958   uint n_workers = _g1h->workers()->active_workers();
1959 
1960   // Note end of marking in all heap regions.
1961   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1962   g1h->workers()->run_task(&g1_par_note_end_task);
1963   g1h->check_gc_time_stamps();
1964 
1965   if (!cleanup_list_is_empty()) {
1966     // The cleanup list is not empty, so we'll have to process it
1967     // concurrently. Notify anyone else that might be wanting free
1968     // regions that there will be more free regions coming soon.
1969     g1h->set_free_regions_coming();
1970   }
1971 
1972   // call below, since it affects the metric by which we sort the heap
1973   // regions.
1974   if (G1ScrubRemSets) {
1975     double rs_scrub_start = os::elapsedTime();
1976     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
1977     g1h->workers()->run_task(&g1_par_scrub_rs_task);
1978 
1979     double rs_scrub_end = os::elapsedTime();
1980     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1981     _total_rs_scrub_time += this_rs_scrub_time;
1982   }
1983 
1984   // this will also free any regions totally full of garbage objects,
1985   // and sort the regions.
1986   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1987 
1988   // Statistics.
1989   double end = os::elapsedTime();
1990   _cleanup_times.add((end - start) * 1000.0);
1991 
1992   if (G1Log::fine()) {
1993     g1h->g1_policy()->print_heap_transition(start_used_bytes);
1994   }
1995 
1996   // Clean up will have freed any regions completely full of garbage.
1997   // Update the soft reference policy with the new heap occupancy.
1998   Universe::update_heap_info_at_gc();
1999 
2000   if (VerifyDuringGC) {
2001     HandleMark hm;  // handle scope
2002     g1h->prepare_for_verify();
2003     Universe::verify(VerifyOption_G1UsePrevMarking,
2004                      " VerifyDuringGC:(after)");
2005   }
2006 
2007   g1h->check_bitmaps("Cleanup End");
2008 
2009   g1h->verify_region_sets_optional();
2010 
2011   // We need to make this be a "collection" so any collection pause that
2012   // races with it goes around and waits for completeCleanup to finish.
2013   g1h->increment_total_collections();
2014 
2015   // Clean out dead classes and update Metaspace sizes.
2016   if (ClassUnloadingWithConcurrentMark) {
2017     ClassLoaderDataGraph::purge();
2018   }
2019   MetaspaceGC::compute_new_size();
2020 
2021   // We reclaimed old regions so we should calculate the sizes to make
2022   // sure we update the old gen/space data.
2023   g1h->g1mm()->update_sizes();
2024   g1h->allocation_context_stats().update_after_mark();
2025 
2026   g1h->trace_heap_after_concurrent_cycle();
2027 }
2028 
2029 void ConcurrentMark::completeCleanup() {
2030   if (has_aborted()) return;
2031 
2032   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2033 
2034   _cleanup_list.verify_optional();
2035   FreeRegionList tmp_free_list("Tmp Free List");
2036 
2037   if (G1ConcRegionFreeingVerbose) {
2038     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2039                            "cleanup list has %u entries",
2040                            _cleanup_list.length());
2041   }
2042 
2043   // No one else should be accessing the _cleanup_list at this point,
2044   // so it is not necessary to take any locks
2045   while (!_cleanup_list.is_empty()) {
2046     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
2047     assert(hr != NULL, "Got NULL from a non-empty list");
2048     hr->par_clear();
2049     tmp_free_list.add_ordered(hr);
2050 
2051     // Instead of adding one region at a time to the secondary_free_list,
2052     // we accumulate them in the local list and move them a few at a
2053     // time. This also cuts down on the number of notify_all() calls
2054     // we do during this process. We'll also append the local list when
2055     // _cleanup_list is empty (which means we just removed the last
2056     // region from the _cleanup_list).
2057     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2058         _cleanup_list.is_empty()) {
2059       if (G1ConcRegionFreeingVerbose) {
2060         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2061                                "appending %u entries to the secondary_free_list, "
2062                                "cleanup list still has %u entries",
2063                                tmp_free_list.length(),
2064                                _cleanup_list.length());
2065       }
2066 
2067       {
2068         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2069         g1h->secondary_free_list_add(&tmp_free_list);
2070         SecondaryFreeList_lock->notify_all();
2071       }
2072 #ifndef PRODUCT
2073       if (G1StressConcRegionFreeing) {
2074         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2075           os::sleep(Thread::current(), (jlong) 1, false);
2076         }
2077       }
2078 #endif
2079     }
2080   }
2081   assert(tmp_free_list.is_empty(), "post-condition");
2082 }
2083 
2084 // Supporting Object and Oop closures for reference discovery
2085 // and processing in during marking
2086 
2087 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2088   HeapWord* addr = (HeapWord*)obj;
2089   return addr != NULL &&
2090          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2091 }
2092 
2093 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2094 // Uses the CMTask associated with a worker thread (for serial reference
2095 // processing the CMTask for worker 0 is used) to preserve (mark) and
2096 // trace referent objects.
2097 //
2098 // Using the CMTask and embedded local queues avoids having the worker
2099 // threads operating on the global mark stack. This reduces the risk
2100 // of overflowing the stack - which we would rather avoid at this late
2101 // state. Also using the tasks' local queues removes the potential
2102 // of the workers interfering with each other that could occur if
2103 // operating on the global stack.
2104 
2105 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2106   ConcurrentMark* _cm;
2107   CMTask*         _task;
2108   int             _ref_counter_limit;
2109   int             _ref_counter;
2110   bool            _is_serial;
2111  public:
2112   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2113     _cm(cm), _task(task), _is_serial(is_serial),
2114     _ref_counter_limit(G1RefProcDrainInterval) {
2115     assert(_ref_counter_limit > 0, "sanity");
2116     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2117     _ref_counter = _ref_counter_limit;
2118   }
2119 
2120   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2121   virtual void do_oop(      oop* p) { do_oop_work(p); }
2122 
2123   template <class T> void do_oop_work(T* p) {
2124     if (!_cm->has_overflown()) {
2125       oop obj = oopDesc::load_decode_heap_oop(p);
2126       if (_cm->verbose_high()) {
2127         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2128                                "*" PTR_FORMAT " = " PTR_FORMAT,
2129                                _task->worker_id(), p2i(p), p2i((void*) obj));
2130       }
2131 
2132       _task->deal_with_reference(obj);
2133       _ref_counter--;
2134 
2135       if (_ref_counter == 0) {
2136         // We have dealt with _ref_counter_limit references, pushing them
2137         // and objects reachable from them on to the local stack (and
2138         // possibly the global stack). Call CMTask::do_marking_step() to
2139         // process these entries.
2140         //
2141         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2142         // there's nothing more to do (i.e. we're done with the entries that
2143         // were pushed as a result of the CMTask::deal_with_reference() calls
2144         // above) or we overflow.
2145         //
2146         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2147         // flag while there may still be some work to do. (See the comment at
2148         // the beginning of CMTask::do_marking_step() for those conditions -
2149         // one of which is reaching the specified time target.) It is only
2150         // when CMTask::do_marking_step() returns without setting the
2151         // has_aborted() flag that the marking step has completed.
2152         do {
2153           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2154           _task->do_marking_step(mark_step_duration_ms,
2155                                  false      /* do_termination */,
2156                                  _is_serial);
2157         } while (_task->has_aborted() && !_cm->has_overflown());
2158         _ref_counter = _ref_counter_limit;
2159       }
2160     } else {
2161       if (_cm->verbose_high()) {
2162          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2163       }
2164     }
2165   }
2166 };
2167 
2168 // 'Drain' oop closure used by both serial and parallel reference processing.
2169 // Uses the CMTask associated with a given worker thread (for serial
2170 // reference processing the CMtask for worker 0 is used). Calls the
2171 // do_marking_step routine, with an unbelievably large timeout value,
2172 // to drain the marking data structures of the remaining entries
2173 // added by the 'keep alive' oop closure above.
2174 
2175 class G1CMDrainMarkingStackClosure: public VoidClosure {
2176   ConcurrentMark* _cm;
2177   CMTask*         _task;
2178   bool            _is_serial;
2179  public:
2180   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2181     _cm(cm), _task(task), _is_serial(is_serial) {
2182     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2183   }
2184 
2185   void do_void() {
2186     do {
2187       if (_cm->verbose_high()) {
2188         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2189                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2190       }
2191 
2192       // We call CMTask::do_marking_step() to completely drain the local
2193       // and global marking stacks of entries pushed by the 'keep alive'
2194       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2195       //
2196       // CMTask::do_marking_step() is called in a loop, which we'll exit
2197       // if there's nothing more to do (i.e. we've completely drained the
2198       // entries that were pushed as a a result of applying the 'keep alive'
2199       // closure to the entries on the discovered ref lists) or we overflow
2200       // the global marking stack.
2201       //
2202       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2203       // flag while there may still be some work to do. (See the comment at
2204       // the beginning of CMTask::do_marking_step() for those conditions -
2205       // one of which is reaching the specified time target.) It is only
2206       // when CMTask::do_marking_step() returns without setting the
2207       // has_aborted() flag that the marking step has completed.
2208 
2209       _task->do_marking_step(1000000000.0 /* something very large */,
2210                              true         /* do_termination */,
2211                              _is_serial);
2212     } while (_task->has_aborted() && !_cm->has_overflown());
2213   }
2214 };
2215 
2216 // Implementation of AbstractRefProcTaskExecutor for parallel
2217 // reference processing at the end of G1 concurrent marking
2218 
2219 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2220 private:
2221   G1CollectedHeap* _g1h;
2222   ConcurrentMark*  _cm;
2223   WorkGang*        _workers;
2224   uint             _active_workers;
2225 
2226 public:
2227   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2228                           ConcurrentMark* cm,
2229                           WorkGang* workers,
2230                           uint n_workers) :
2231     _g1h(g1h), _cm(cm),
2232     _workers(workers), _active_workers(n_workers) { }
2233 
2234   // Executes the given task using concurrent marking worker threads.
2235   virtual void execute(ProcessTask& task);
2236   virtual void execute(EnqueueTask& task);
2237 };
2238 
2239 class G1CMRefProcTaskProxy: public AbstractGangTask {
2240   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2241   ProcessTask&     _proc_task;
2242   G1CollectedHeap* _g1h;
2243   ConcurrentMark*  _cm;
2244 
2245 public:
2246   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2247                      G1CollectedHeap* g1h,
2248                      ConcurrentMark* cm) :
2249     AbstractGangTask("Process reference objects in parallel"),
2250     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2251     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2252     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2253   }
2254 
2255   virtual void work(uint worker_id) {
2256     ResourceMark rm;
2257     HandleMark hm;
2258     CMTask* task = _cm->task(worker_id);
2259     G1CMIsAliveClosure g1_is_alive(_g1h);
2260     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2261     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2262 
2263     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2264   }
2265 };
2266 
2267 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2268   assert(_workers != NULL, "Need parallel worker threads.");
2269   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2270 
2271   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2272 
2273   // We need to reset the concurrency level before each
2274   // proxy task execution, so that the termination protocol
2275   // and overflow handling in CMTask::do_marking_step() knows
2276   // how many workers to wait for.
2277   _cm->set_concurrency(_active_workers);
2278   _workers->run_task(&proc_task_proxy);
2279 }
2280 
2281 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2282   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2283   EnqueueTask& _enq_task;
2284 
2285 public:
2286   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2287     AbstractGangTask("Enqueue reference objects in parallel"),
2288     _enq_task(enq_task) { }
2289 
2290   virtual void work(uint worker_id) {
2291     _enq_task.work(worker_id);
2292   }
2293 };
2294 
2295 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2296   assert(_workers != NULL, "Need parallel worker threads.");
2297   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2298 
2299   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2300 
2301   // Not strictly necessary but...
2302   //
2303   // We need to reset the concurrency level before each
2304   // proxy task execution, so that the termination protocol
2305   // and overflow handling in CMTask::do_marking_step() knows
2306   // how many workers to wait for.
2307   _cm->set_concurrency(_active_workers);
2308   _workers->run_task(&enq_task_proxy);
2309 }
2310 
2311 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2312   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2313 }
2314 
2315 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2316   if (has_overflown()) {
2317     // Skip processing the discovered references if we have
2318     // overflown the global marking stack. Reference objects
2319     // only get discovered once so it is OK to not
2320     // de-populate the discovered reference lists. We could have,
2321     // but the only benefit would be that, when marking restarts,
2322     // less reference objects are discovered.
2323     return;
2324   }
2325 
2326   ResourceMark rm;
2327   HandleMark   hm;
2328 
2329   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2330 
2331   // Is alive closure.
2332   G1CMIsAliveClosure g1_is_alive(g1h);
2333 
2334   // Inner scope to exclude the cleaning of the string and symbol
2335   // tables from the displayed time.
2336   {
2337     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2338 
2339     ReferenceProcessor* rp = g1h->ref_processor_cm();
2340 
2341     // See the comment in G1CollectedHeap::ref_processing_init()
2342     // about how reference processing currently works in G1.
2343 
2344     // Set the soft reference policy
2345     rp->setup_policy(clear_all_soft_refs);
2346     assert(_markStack.isEmpty(), "mark stack should be empty");
2347 
2348     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2349     // in serial reference processing. Note these closures are also
2350     // used for serially processing (by the the current thread) the
2351     // JNI references during parallel reference processing.
2352     //
2353     // These closures do not need to synchronize with the worker
2354     // threads involved in parallel reference processing as these
2355     // instances are executed serially by the current thread (e.g.
2356     // reference processing is not multi-threaded and is thus
2357     // performed by the current thread instead of a gang worker).
2358     //
2359     // The gang tasks involved in parallel reference processing create
2360     // their own instances of these closures, which do their own
2361     // synchronization among themselves.
2362     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2363     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2364 
2365     // We need at least one active thread. If reference processing
2366     // is not multi-threaded we use the current (VMThread) thread,
2367     // otherwise we use the work gang from the G1CollectedHeap and
2368     // we utilize all the worker threads we can.
2369     bool processing_is_mt = rp->processing_is_mt();
2370     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2371     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2372 
2373     // Parallel processing task executor.
2374     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2375                                               g1h->workers(), active_workers);
2376     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2377 
2378     // Set the concurrency level. The phase was already set prior to
2379     // executing the remark task.
2380     set_concurrency(active_workers);
2381 
2382     // Set the degree of MT processing here.  If the discovery was done MT,
2383     // the number of threads involved during discovery could differ from
2384     // the number of active workers.  This is OK as long as the discovered
2385     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2386     rp->set_active_mt_degree(active_workers);
2387 
2388     // Process the weak references.
2389     const ReferenceProcessorStats& stats =
2390         rp->process_discovered_references(&g1_is_alive,
2391                                           &g1_keep_alive,
2392                                           &g1_drain_mark_stack,
2393                                           executor,
2394                                           g1h->gc_timer_cm(),
2395                                           concurrent_gc_id());
2396     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2397 
2398     // The do_oop work routines of the keep_alive and drain_marking_stack
2399     // oop closures will set the has_overflown flag if we overflow the
2400     // global marking stack.
2401 
2402     assert(_markStack.overflow() || _markStack.isEmpty(),
2403             "mark stack should be empty (unless it overflowed)");
2404 
2405     if (_markStack.overflow()) {
2406       // This should have been done already when we tried to push an
2407       // entry on to the global mark stack. But let's do it again.
2408       set_has_overflown();
2409     }
2410 
2411     assert(rp->num_q() == active_workers, "why not");
2412 
2413     rp->enqueue_discovered_references(executor);
2414 
2415     rp->verify_no_references_recorded();
2416     assert(!rp->discovery_enabled(), "Post condition");
2417   }
2418 
2419   if (has_overflown()) {
2420     // We can not trust g1_is_alive if the marking stack overflowed
2421     return;
2422   }
2423 
2424   assert(_markStack.isEmpty(), "Marking should have completed");
2425 
2426   // Unload Klasses, String, Symbols, Code Cache, etc.
2427   {
2428     G1CMTraceTime trace("Unloading", G1Log::finer());
2429 
2430     if (ClassUnloadingWithConcurrentMark) {
2431       bool purged_classes;
2432 
2433       {
2434         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2435         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2436       }
2437 
2438       {
2439         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2440         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2441       }
2442     }
2443 
2444     if (G1StringDedup::is_enabled()) {
2445       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2446       G1StringDedup::unlink(&g1_is_alive);
2447     }
2448   }
2449 }
2450 
2451 void ConcurrentMark::swapMarkBitMaps() {
2452   CMBitMapRO* temp = _prevMarkBitMap;
2453   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2454   _nextMarkBitMap  = (CMBitMap*)  temp;
2455 }
2456 
2457 // Closure for marking entries in SATB buffers.
2458 class CMSATBBufferClosure : public SATBBufferClosure {
2459 private:
2460   CMTask* _task;
2461   G1CollectedHeap* _g1h;
2462 
2463   // This is very similar to CMTask::deal_with_reference, but with
2464   // more relaxed requirements for the argument, so this must be more
2465   // circumspect about treating the argument as an object.
2466   void do_entry(void* entry) const {
2467     _task->increment_refs_reached();
2468     HeapRegion* hr = _g1h->heap_region_containing_raw(entry);
2469     if (entry < hr->next_top_at_mark_start()) {
2470       // Until we get here, we don't know whether entry refers to a valid
2471       // object; it could instead have been a stale reference.
2472       oop obj = static_cast<oop>(entry);
2473       assert(obj->is_oop(true /* ignore mark word */),
2474              err_msg("Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj)));
2475       _task->make_reference_grey(obj, hr);
2476     }
2477   }
2478 
2479 public:
2480   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2481     : _task(task), _g1h(g1h) { }
2482 
2483   virtual void do_buffer(void** buffer, size_t size) {
2484     for (size_t i = 0; i < size; ++i) {
2485       do_entry(buffer[i]);
2486     }
2487   }
2488 };
2489 
2490 class G1RemarkThreadsClosure : public ThreadClosure {
2491   CMSATBBufferClosure _cm_satb_cl;
2492   G1CMOopClosure _cm_cl;
2493   MarkingCodeBlobClosure _code_cl;
2494   int _thread_parity;
2495 
2496  public:
2497   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2498     _cm_satb_cl(task, g1h),
2499     _cm_cl(g1h, g1h->concurrent_mark(), task),
2500     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2501     _thread_parity(Threads::thread_claim_parity()) {}
2502 
2503   void do_thread(Thread* thread) {
2504     if (thread->is_Java_thread()) {
2505       if (thread->claim_oops_do(true, _thread_parity)) {
2506         JavaThread* jt = (JavaThread*)thread;
2507 
2508         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2509         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2510         // * Alive if on the stack of an executing method
2511         // * Weakly reachable otherwise
2512         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2513         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2514         jt->nmethods_do(&_code_cl);
2515 
2516         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2517       }
2518     } else if (thread->is_VM_thread()) {
2519       if (thread->claim_oops_do(true, _thread_parity)) {
2520         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2521       }
2522     }
2523   }
2524 };
2525 
2526 class CMRemarkTask: public AbstractGangTask {
2527 private:
2528   ConcurrentMark* _cm;
2529 public:
2530   void work(uint worker_id) {
2531     // Since all available tasks are actually started, we should
2532     // only proceed if we're supposed to be active.
2533     if (worker_id < _cm->active_tasks()) {
2534       CMTask* task = _cm->task(worker_id);
2535       task->record_start_time();
2536       {
2537         ResourceMark rm;
2538         HandleMark hm;
2539 
2540         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2541         Threads::threads_do(&threads_f);
2542       }
2543 
2544       do {
2545         task->do_marking_step(1000000000.0 /* something very large */,
2546                               true         /* do_termination       */,
2547                               false        /* is_serial            */);
2548       } while (task->has_aborted() && !_cm->has_overflown());
2549       // If we overflow, then we do not want to restart. We instead
2550       // want to abort remark and do concurrent marking again.
2551       task->record_end_time();
2552     }
2553   }
2554 
2555   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2556     AbstractGangTask("Par Remark"), _cm(cm) {
2557     _cm->terminator()->reset_for_reuse(active_workers);
2558   }
2559 };
2560 
2561 void ConcurrentMark::checkpointRootsFinalWork() {
2562   ResourceMark rm;
2563   HandleMark   hm;
2564   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2565 
2566   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2567 
2568   g1h->ensure_parsability(false);
2569 
2570   // this is remark, so we'll use up all active threads
2571   uint active_workers = g1h->workers()->active_workers();
2572   set_concurrency_and_phase(active_workers, false /* concurrent */);
2573   // Leave _parallel_marking_threads at it's
2574   // value originally calculated in the ConcurrentMark
2575   // constructor and pass values of the active workers
2576   // through the gang in the task.
2577 
2578   {
2579     StrongRootsScope srs(active_workers);
2580 
2581     CMRemarkTask remarkTask(this, active_workers);
2582     // We will start all available threads, even if we decide that the
2583     // active_workers will be fewer. The extra ones will just bail out
2584     // immediately.
2585     g1h->workers()->run_task(&remarkTask);
2586   }
2587 
2588   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2589   guarantee(has_overflown() ||
2590             satb_mq_set.completed_buffers_num() == 0,
2591             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2592                     BOOL_TO_STR(has_overflown()),
2593                     satb_mq_set.completed_buffers_num()));
2594 
2595   print_stats();
2596 }
2597 
2598 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2599   // Note we are overriding the read-only view of the prev map here, via
2600   // the cast.
2601   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2602 }
2603 
2604 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2605   _nextMarkBitMap->clearRange(mr);
2606 }
2607 
2608 HeapRegion*
2609 ConcurrentMark::claim_region(uint worker_id) {
2610   // "checkpoint" the finger
2611   HeapWord* finger = _finger;
2612 
2613   // _heap_end will not change underneath our feet; it only changes at
2614   // yield points.
2615   while (finger < _heap_end) {
2616     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2617 
2618     // Note on how this code handles humongous regions. In the
2619     // normal case the finger will reach the start of a "starts
2620     // humongous" (SH) region. Its end will either be the end of the
2621     // last "continues humongous" (CH) region in the sequence, or the
2622     // standard end of the SH region (if the SH is the only region in
2623     // the sequence). That way claim_region() will skip over the CH
2624     // regions. However, there is a subtle race between a CM thread
2625     // executing this method and a mutator thread doing a humongous
2626     // object allocation. The two are not mutually exclusive as the CM
2627     // thread does not need to hold the Heap_lock when it gets
2628     // here. So there is a chance that claim_region() will come across
2629     // a free region that's in the progress of becoming a SH or a CH
2630     // region. In the former case, it will either
2631     //   a) Miss the update to the region's end, in which case it will
2632     //      visit every subsequent CH region, will find their bitmaps
2633     //      empty, and do nothing, or
2634     //   b) Will observe the update of the region's end (in which case
2635     //      it will skip the subsequent CH regions).
2636     // If it comes across a region that suddenly becomes CH, the
2637     // scenario will be similar to b). So, the race between
2638     // claim_region() and a humongous object allocation might force us
2639     // to do a bit of unnecessary work (due to some unnecessary bitmap
2640     // iterations) but it should not introduce and correctness issues.
2641     HeapRegion* curr_region = _g1h->heap_region_containing_raw(finger);
2642 
2643     // Above heap_region_containing_raw may return NULL as we always scan claim
2644     // until the end of the heap. In this case, just jump to the next region.
2645     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2646 
2647     // Is the gap between reading the finger and doing the CAS too long?
2648     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2649     if (res == finger && curr_region != NULL) {
2650       // we succeeded
2651       HeapWord*   bottom        = curr_region->bottom();
2652       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2653 
2654       if (verbose_low()) {
2655         gclog_or_tty->print_cr("[%u] curr_region = " PTR_FORMAT " "
2656                                "[" PTR_FORMAT ", " PTR_FORMAT "), "
2657                                "limit = " PTR_FORMAT,
2658                                worker_id, p2i(curr_region), p2i(bottom), p2i(end), p2i(limit));
2659       }
2660 
2661       // notice that _finger == end cannot be guaranteed here since,
2662       // someone else might have moved the finger even further
2663       assert(_finger >= end, "the finger should have moved forward");
2664 
2665       if (verbose_low()) {
2666         gclog_or_tty->print_cr("[%u] we were successful with region = "
2667                                PTR_FORMAT, worker_id, p2i(curr_region));
2668       }
2669 
2670       if (limit > bottom) {
2671         if (verbose_low()) {
2672           gclog_or_tty->print_cr("[%u] region " PTR_FORMAT " is not empty, "
2673                                  "returning it ", worker_id, p2i(curr_region));
2674         }
2675         return curr_region;
2676       } else {
2677         assert(limit == bottom,
2678                "the region limit should be at bottom");
2679         if (verbose_low()) {
2680           gclog_or_tty->print_cr("[%u] region " PTR_FORMAT " is empty, "
2681                                  "returning NULL", worker_id, p2i(curr_region));
2682         }
2683         // we return NULL and the caller should try calling
2684         // claim_region() again.
2685         return NULL;
2686       }
2687     } else {
2688       assert(_finger > finger, "the finger should have moved forward");
2689       if (verbose_low()) {
2690         if (curr_region == NULL) {
2691           gclog_or_tty->print_cr("[%u] found uncommitted region, moving finger, "
2692                                  "global finger = " PTR_FORMAT ", "
2693                                  "our finger = " PTR_FORMAT,
2694                                  worker_id, p2i(_finger), p2i(finger));
2695         } else {
2696           gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2697                                  "global finger = " PTR_FORMAT ", "
2698                                  "our finger = " PTR_FORMAT,
2699                                  worker_id, p2i(_finger), p2i(finger));
2700         }
2701       }
2702 
2703       // read it again
2704       finger = _finger;
2705     }
2706   }
2707 
2708   return NULL;
2709 }
2710 
2711 #ifndef PRODUCT
2712 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2713 private:
2714   G1CollectedHeap* _g1h;
2715   const char* _phase;
2716   int _info;
2717 
2718 public:
2719   VerifyNoCSetOops(const char* phase, int info = -1) :
2720     _g1h(G1CollectedHeap::heap()),
2721     _phase(phase),
2722     _info(info)
2723   { }
2724 
2725   void operator()(oop obj) const {
2726     guarantee(obj->is_oop(),
2727               err_msg("Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2728                       p2i(obj), _phase, _info));
2729     guarantee(!_g1h->obj_in_cs(obj),
2730               err_msg("obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2731                       p2i(obj), _phase, _info));
2732   }
2733 };
2734 
2735 void ConcurrentMark::verify_no_cset_oops() {
2736   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2737   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2738     return;
2739   }
2740 
2741   // Verify entries on the global mark stack
2742   _markStack.iterate(VerifyNoCSetOops("Stack"));
2743 
2744   // Verify entries on the task queues
2745   for (uint i = 0; i < _max_worker_id; ++i) {
2746     CMTaskQueue* queue = _task_queues->queue(i);
2747     queue->iterate(VerifyNoCSetOops("Queue", i));
2748   }
2749 
2750   // Verify the global finger
2751   HeapWord* global_finger = finger();
2752   if (global_finger != NULL && global_finger < _heap_end) {
2753     // The global finger always points to a heap region boundary. We
2754     // use heap_region_containing_raw() to get the containing region
2755     // given that the global finger could be pointing to a free region
2756     // which subsequently becomes continues humongous. If that
2757     // happens, heap_region_containing() will return the bottom of the
2758     // corresponding starts humongous region and the check below will
2759     // not hold any more.
2760     // Since we always iterate over all regions, we might get a NULL HeapRegion
2761     // here.
2762     HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2763     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2764               err_msg("global finger: " PTR_FORMAT " region: " HR_FORMAT,
2765                       p2i(global_finger), HR_FORMAT_PARAMS(global_hr)));
2766   }
2767 
2768   // Verify the task fingers
2769   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2770   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2771     CMTask* task = _tasks[i];
2772     HeapWord* task_finger = task->finger();
2773     if (task_finger != NULL && task_finger < _heap_end) {
2774       // See above note on the global finger verification.
2775       HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
2776       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2777                 !task_hr->in_collection_set(),
2778                 err_msg("task finger: " PTR_FORMAT " region: " HR_FORMAT,
2779                         p2i(task_finger), HR_FORMAT_PARAMS(task_hr)));
2780     }
2781   }
2782 }
2783 #endif // PRODUCT
2784 
2785 // Aggregate the counting data that was constructed concurrently
2786 // with marking.
2787 class AggregateCountDataHRClosure: public HeapRegionClosure {
2788   G1CollectedHeap* _g1h;
2789   ConcurrentMark* _cm;
2790   CardTableModRefBS* _ct_bs;
2791   BitMap* _cm_card_bm;
2792   uint _max_worker_id;
2793 
2794  public:
2795   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2796                               BitMap* cm_card_bm,
2797                               uint max_worker_id) :
2798     _g1h(g1h), _cm(g1h->concurrent_mark()),
2799     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2800     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2801 
2802   bool doHeapRegion(HeapRegion* hr) {
2803     if (hr->is_continues_humongous()) {
2804       // We will ignore these here and process them when their
2805       // associated "starts humongous" region is processed.
2806       // Note that we cannot rely on their associated
2807       // "starts humongous" region to have their bit set to 1
2808       // since, due to the region chunking in the parallel region
2809       // iteration, a "continues humongous" region might be visited
2810       // before its associated "starts humongous".
2811       return false;
2812     }
2813 
2814     HeapWord* start = hr->bottom();
2815     HeapWord* limit = hr->next_top_at_mark_start();
2816     HeapWord* end = hr->end();
2817 
2818     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2819            err_msg("Preconditions not met - "
2820                    "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2821                    "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2822                    p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end())));
2823 
2824     assert(hr->next_marked_bytes() == 0, "Precondition");
2825 
2826     if (start == limit) {
2827       // NTAMS of this region has not been set so nothing to do.
2828       return false;
2829     }
2830 
2831     // 'start' should be in the heap.
2832     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2833     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2834     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2835 
2836     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2837     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2838     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2839 
2840     // If ntams is not card aligned then we bump card bitmap index
2841     // for limit so that we get the all the cards spanned by
2842     // the object ending at ntams.
2843     // Note: if this is the last region in the heap then ntams
2844     // could be actually just beyond the end of the the heap;
2845     // limit_idx will then  correspond to a (non-existent) card
2846     // that is also outside the heap.
2847     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2848       limit_idx += 1;
2849     }
2850 
2851     assert(limit_idx <= end_idx, "or else use atomics");
2852 
2853     // Aggregate the "stripe" in the count data associated with hr.
2854     uint hrm_index = hr->hrm_index();
2855     size_t marked_bytes = 0;
2856 
2857     for (uint i = 0; i < _max_worker_id; i += 1) {
2858       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2859       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2860 
2861       // Fetch the marked_bytes in this region for task i and
2862       // add it to the running total for this region.
2863       marked_bytes += marked_bytes_array[hrm_index];
2864 
2865       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2866       // into the global card bitmap.
2867       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2868 
2869       while (scan_idx < limit_idx) {
2870         assert(task_card_bm->at(scan_idx) == true, "should be");
2871         _cm_card_bm->set_bit(scan_idx);
2872         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2873 
2874         // BitMap::get_next_one_offset() can handle the case when
2875         // its left_offset parameter is greater than its right_offset
2876         // parameter. It does, however, have an early exit if
2877         // left_offset == right_offset. So let's limit the value
2878         // passed in for left offset here.
2879         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2880         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2881       }
2882     }
2883 
2884     // Update the marked bytes for this region.
2885     hr->add_to_marked_bytes(marked_bytes);
2886 
2887     // Next heap region
2888     return false;
2889   }
2890 };
2891 
2892 class G1AggregateCountDataTask: public AbstractGangTask {
2893 protected:
2894   G1CollectedHeap* _g1h;
2895   ConcurrentMark* _cm;
2896   BitMap* _cm_card_bm;
2897   uint _max_worker_id;
2898   uint _active_workers;
2899   HeapRegionClaimer _hrclaimer;
2900 
2901 public:
2902   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2903                            ConcurrentMark* cm,
2904                            BitMap* cm_card_bm,
2905                            uint max_worker_id,
2906                            uint n_workers) :
2907       AbstractGangTask("Count Aggregation"),
2908       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2909       _max_worker_id(max_worker_id),
2910       _active_workers(n_workers),
2911       _hrclaimer(_active_workers) {
2912   }
2913 
2914   void work(uint worker_id) {
2915     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2916 
2917     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2918   }
2919 };
2920 
2921 
2922 void ConcurrentMark::aggregate_count_data() {
2923   uint n_workers = _g1h->workers()->active_workers();
2924 
2925   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2926                                            _max_worker_id, n_workers);
2927 
2928   _g1h->workers()->run_task(&g1_par_agg_task);
2929 }
2930 
2931 // Clear the per-worker arrays used to store the per-region counting data
2932 void ConcurrentMark::clear_all_count_data() {
2933   // Clear the global card bitmap - it will be filled during
2934   // liveness count aggregation (during remark) and the
2935   // final counting task.
2936   _card_bm.clear();
2937 
2938   // Clear the global region bitmap - it will be filled as part
2939   // of the final counting task.
2940   _region_bm.clear();
2941 
2942   uint max_regions = _g1h->max_regions();
2943   assert(_max_worker_id > 0, "uninitialized");
2944 
2945   for (uint i = 0; i < _max_worker_id; i += 1) {
2946     BitMap* task_card_bm = count_card_bitmap_for(i);
2947     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2948 
2949     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2950     assert(marked_bytes_array != NULL, "uninitialized");
2951 
2952     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2953     task_card_bm->clear();
2954   }
2955 }
2956 
2957 void ConcurrentMark::print_stats() {
2958   if (verbose_stats()) {
2959     gclog_or_tty->print_cr("---------------------------------------------------------------------");
2960     for (size_t i = 0; i < _active_tasks; ++i) {
2961       _tasks[i]->print_stats();
2962       gclog_or_tty->print_cr("---------------------------------------------------------------------");
2963     }
2964   }
2965 }
2966 
2967 // abandon current marking iteration due to a Full GC
2968 void ConcurrentMark::abort() {
2969   if (!cmThread()->during_cycle() || _has_aborted) {
2970     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2971     return;
2972   }
2973 
2974   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2975   // concurrent bitmap clearing.
2976   _nextMarkBitMap->clearAll();
2977 
2978   // Note we cannot clear the previous marking bitmap here
2979   // since VerifyDuringGC verifies the objects marked during
2980   // a full GC against the previous bitmap.
2981 
2982   // Clear the liveness counting data
2983   clear_all_count_data();
2984   // Empty mark stack
2985   reset_marking_state();
2986   for (uint i = 0; i < _max_worker_id; ++i) {
2987     _tasks[i]->clear_region_fields();
2988   }
2989   _first_overflow_barrier_sync.abort();
2990   _second_overflow_barrier_sync.abort();
2991   _aborted_gc_id = _g1h->gc_tracer_cm()->gc_id();
2992   assert(!_aborted_gc_id.is_undefined(), "ConcurrentMark::abort() executed more than once?");
2993   _has_aborted = true;
2994 
2995   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2996   satb_mq_set.abandon_partial_marking();
2997   // This can be called either during or outside marking, we'll read
2998   // the expected_active value from the SATB queue set.
2999   satb_mq_set.set_active_all_threads(
3000                                  false, /* new active value */
3001                                  satb_mq_set.is_active() /* expected_active */);
3002 
3003   _g1h->trace_heap_after_concurrent_cycle();
3004   _g1h->register_concurrent_cycle_end();
3005 }
3006 
3007 const GCId& ConcurrentMark::concurrent_gc_id() {
3008   if (has_aborted()) {
3009     return _aborted_gc_id;
3010   }
3011   return _g1h->gc_tracer_cm()->gc_id();
3012 }
3013 
3014 static void print_ms_time_info(const char* prefix, const char* name,
3015                                NumberSeq& ns) {
3016   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3017                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3018   if (ns.num() > 0) {
3019     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3020                            prefix, ns.sd(), ns.maximum());
3021   }
3022 }
3023 
3024 void ConcurrentMark::print_summary_info() {
3025   gclog_or_tty->print_cr(" Concurrent marking:");
3026   print_ms_time_info("  ", "init marks", _init_times);
3027   print_ms_time_info("  ", "remarks", _remark_times);
3028   {
3029     print_ms_time_info("     ", "final marks", _remark_mark_times);
3030     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3031 
3032   }
3033   print_ms_time_info("  ", "cleanups", _cleanup_times);
3034   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3035                          _total_counting_time,
3036                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3037                           (double)_cleanup_times.num()
3038                          : 0.0));
3039   if (G1ScrubRemSets) {
3040     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3041                            _total_rs_scrub_time,
3042                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3043                             (double)_cleanup_times.num()
3044                            : 0.0));
3045   }
3046   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3047                          (_init_times.sum() + _remark_times.sum() +
3048                           _cleanup_times.sum())/1000.0);
3049   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3050                 "(%8.2f s marking).",
3051                 cmThread()->vtime_accum(),
3052                 cmThread()->vtime_mark_accum());
3053 }
3054 
3055 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3056   _parallel_workers->print_worker_threads_on(st);
3057 }
3058 
3059 void ConcurrentMark::print_on_error(outputStream* st) const {
3060   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3061       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
3062   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3063   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3064 }
3065 
3066 // We take a break if someone is trying to stop the world.
3067 bool ConcurrentMark::do_yield_check(uint worker_id) {
3068   if (SuspendibleThreadSet::should_yield()) {
3069     if (worker_id == 0) {
3070       _g1h->g1_policy()->record_concurrent_pause();
3071     }
3072     SuspendibleThreadSet::yield();
3073     return true;
3074   } else {
3075     return false;
3076   }
3077 }
3078 
3079 #ifndef PRODUCT
3080 // for debugging purposes
3081 void ConcurrentMark::print_finger() {
3082   gclog_or_tty->print_cr("heap [" PTR_FORMAT ", " PTR_FORMAT "), global finger = " PTR_FORMAT,
3083                          p2i(_heap_start), p2i(_heap_end), p2i(_finger));
3084   for (uint i = 0; i < _max_worker_id; ++i) {
3085     gclog_or_tty->print("   %u: " PTR_FORMAT, i, p2i(_tasks[i]->finger()));
3086   }
3087   gclog_or_tty->cr();
3088 }
3089 #endif
3090 
3091 // Closure for iteration over bitmaps
3092 class CMBitMapClosure : public BitMapClosure {
3093 private:
3094   // the bitmap that is being iterated over
3095   CMBitMap*                   _nextMarkBitMap;
3096   ConcurrentMark*             _cm;
3097   CMTask*                     _task;
3098 
3099 public:
3100   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3101     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3102 
3103   bool do_bit(size_t offset) {
3104     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3105     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3106     assert( addr < _cm->finger(), "invariant");
3107 
3108     statsOnly( _task->increase_objs_found_on_bitmap() );
3109     assert(addr >= _task->finger(), "invariant");
3110 
3111     // We move that task's local finger along.
3112     _task->move_finger_to(addr);
3113 
3114     _task->scan_object(oop(addr));
3115     // we only partially drain the local queue and global stack
3116     _task->drain_local_queue(true);
3117     _task->drain_global_stack(true);
3118 
3119     // if the has_aborted flag has been raised, we need to bail out of
3120     // the iteration
3121     return !_task->has_aborted();
3122   }
3123 };
3124 
3125 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3126                                ConcurrentMark* cm,
3127                                CMTask* task)
3128   : _g1h(g1h), _cm(cm), _task(task) {
3129   assert(_ref_processor == NULL, "should be initialized to NULL");
3130 
3131   if (G1UseConcMarkReferenceProcessing) {
3132     _ref_processor = g1h->ref_processor_cm();
3133     assert(_ref_processor != NULL, "should not be NULL");
3134   }
3135 }
3136 
3137 void CMTask::setup_for_region(HeapRegion* hr) {
3138   assert(hr != NULL,
3139         "claim_region() should have filtered out NULL regions");
3140   assert(!hr->is_continues_humongous(),
3141         "claim_region() should have filtered out continues humongous regions");
3142 
3143   if (_cm->verbose_low()) {
3144     gclog_or_tty->print_cr("[%u] setting up for region " PTR_FORMAT,
3145                            _worker_id, p2i(hr));
3146   }
3147 
3148   _curr_region  = hr;
3149   _finger       = hr->bottom();
3150   update_region_limit();
3151 }
3152 
3153 void CMTask::update_region_limit() {
3154   HeapRegion* hr            = _curr_region;
3155   HeapWord* bottom          = hr->bottom();
3156   HeapWord* limit           = hr->next_top_at_mark_start();
3157 
3158   if (limit == bottom) {
3159     if (_cm->verbose_low()) {
3160       gclog_or_tty->print_cr("[%u] found an empty region "
3161                              "[" PTR_FORMAT ", " PTR_FORMAT ")",
3162                              _worker_id, p2i(bottom), p2i(limit));
3163     }
3164     // The region was collected underneath our feet.
3165     // We set the finger to bottom to ensure that the bitmap
3166     // iteration that will follow this will not do anything.
3167     // (this is not a condition that holds when we set the region up,
3168     // as the region is not supposed to be empty in the first place)
3169     _finger = bottom;
3170   } else if (limit >= _region_limit) {
3171     assert(limit >= _finger, "peace of mind");
3172   } else {
3173     assert(limit < _region_limit, "only way to get here");
3174     // This can happen under some pretty unusual circumstances.  An
3175     // evacuation pause empties the region underneath our feet (NTAMS
3176     // at bottom). We then do some allocation in the region (NTAMS
3177     // stays at bottom), followed by the region being used as a GC
3178     // alloc region (NTAMS will move to top() and the objects
3179     // originally below it will be grayed). All objects now marked in
3180     // the region are explicitly grayed, if below the global finger,
3181     // and we do not need in fact to scan anything else. So, we simply
3182     // set _finger to be limit to ensure that the bitmap iteration
3183     // doesn't do anything.
3184     _finger = limit;
3185   }
3186 
3187   _region_limit = limit;
3188 }
3189 
3190 void CMTask::giveup_current_region() {
3191   assert(_curr_region != NULL, "invariant");
3192   if (_cm->verbose_low()) {
3193     gclog_or_tty->print_cr("[%u] giving up region " PTR_FORMAT,
3194                            _worker_id, p2i(_curr_region));
3195   }
3196   clear_region_fields();
3197 }
3198 
3199 void CMTask::clear_region_fields() {
3200   // Values for these three fields that indicate that we're not
3201   // holding on to a region.
3202   _curr_region   = NULL;
3203   _finger        = NULL;
3204   _region_limit  = NULL;
3205 }
3206 
3207 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3208   if (cm_oop_closure == NULL) {
3209     assert(_cm_oop_closure != NULL, "invariant");
3210   } else {
3211     assert(_cm_oop_closure == NULL, "invariant");
3212   }
3213   _cm_oop_closure = cm_oop_closure;
3214 }
3215 
3216 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3217   guarantee(nextMarkBitMap != NULL, "invariant");
3218 
3219   if (_cm->verbose_low()) {
3220     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3221   }
3222 
3223   _nextMarkBitMap                = nextMarkBitMap;
3224   clear_region_fields();
3225 
3226   _calls                         = 0;
3227   _elapsed_time_ms               = 0.0;
3228   _termination_time_ms           = 0.0;
3229   _termination_start_time_ms     = 0.0;
3230 
3231 #if _MARKING_STATS_
3232   _aborted                       = 0;
3233   _aborted_overflow              = 0;
3234   _aborted_cm_aborted            = 0;
3235   _aborted_yield                 = 0;
3236   _aborted_timed_out             = 0;
3237   _aborted_satb                  = 0;
3238   _aborted_termination           = 0;
3239   _steal_attempts                = 0;
3240   _steals                        = 0;
3241   _local_pushes                  = 0;
3242   _local_pops                    = 0;
3243   _local_max_size                = 0;
3244   _objs_scanned                  = 0;
3245   _global_pushes                 = 0;
3246   _global_pops                   = 0;
3247   _global_max_size               = 0;
3248   _global_transfers_to           = 0;
3249   _global_transfers_from         = 0;
3250   _regions_claimed               = 0;
3251   _objs_found_on_bitmap          = 0;
3252   _satb_buffers_processed        = 0;
3253 #endif // _MARKING_STATS_
3254 }
3255 
3256 bool CMTask::should_exit_termination() {
3257   regular_clock_call();
3258   // This is called when we are in the termination protocol. We should
3259   // quit if, for some reason, this task wants to abort or the global
3260   // stack is not empty (this means that we can get work from it).
3261   return !_cm->mark_stack_empty() || has_aborted();
3262 }
3263 
3264 void CMTask::reached_limit() {
3265   assert(_words_scanned >= _words_scanned_limit ||
3266          _refs_reached >= _refs_reached_limit ,
3267          "shouldn't have been called otherwise");
3268   regular_clock_call();
3269 }
3270 
3271 void CMTask::regular_clock_call() {
3272   if (has_aborted()) return;
3273 
3274   // First, we need to recalculate the words scanned and refs reached
3275   // limits for the next clock call.
3276   recalculate_limits();
3277 
3278   // During the regular clock call we do the following
3279 
3280   // (1) If an overflow has been flagged, then we abort.
3281   if (_cm->has_overflown()) {
3282     set_has_aborted();
3283     return;
3284   }
3285 
3286   // If we are not concurrent (i.e. we're doing remark) we don't need
3287   // to check anything else. The other steps are only needed during
3288   // the concurrent marking phase.
3289   if (!concurrent()) return;
3290 
3291   // (2) If marking has been aborted for Full GC, then we also abort.
3292   if (_cm->has_aborted()) {
3293     set_has_aborted();
3294     statsOnly( ++_aborted_cm_aborted );
3295     return;
3296   }
3297 
3298   double curr_time_ms = os::elapsedVTime() * 1000.0;
3299 
3300   // (3) If marking stats are enabled, then we update the step history.
3301 #if _MARKING_STATS_
3302   if (_words_scanned >= _words_scanned_limit) {
3303     ++_clock_due_to_scanning;
3304   }
3305   if (_refs_reached >= _refs_reached_limit) {
3306     ++_clock_due_to_marking;
3307   }
3308 
3309   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3310   _interval_start_time_ms = curr_time_ms;
3311   _all_clock_intervals_ms.add(last_interval_ms);
3312 
3313   if (_cm->verbose_medium()) {
3314       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3315                         "scanned = " SIZE_FORMAT "%s, refs reached = " SIZE_FORMAT "%s",
3316                         _worker_id, last_interval_ms,
3317                         _words_scanned,
3318                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3319                         _refs_reached,
3320                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3321   }
3322 #endif // _MARKING_STATS_
3323 
3324   // (4) We check whether we should yield. If we have to, then we abort.
3325   if (SuspendibleThreadSet::should_yield()) {
3326     // We should yield. To do this we abort the task. The caller is
3327     // responsible for yielding.
3328     set_has_aborted();
3329     statsOnly( ++_aborted_yield );
3330     return;
3331   }
3332 
3333   // (5) We check whether we've reached our time quota. If we have,
3334   // then we abort.
3335   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3336   if (elapsed_time_ms > _time_target_ms) {
3337     set_has_aborted();
3338     _has_timed_out = true;
3339     statsOnly( ++_aborted_timed_out );
3340     return;
3341   }
3342 
3343   // (6) Finally, we check whether there are enough completed STAB
3344   // buffers available for processing. If there are, we abort.
3345   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3346   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3347     if (_cm->verbose_low()) {
3348       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3349                              _worker_id);
3350     }
3351     // we do need to process SATB buffers, we'll abort and restart
3352     // the marking task to do so
3353     set_has_aborted();
3354     statsOnly( ++_aborted_satb );
3355     return;
3356   }
3357 }
3358 
3359 void CMTask::recalculate_limits() {
3360   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3361   _words_scanned_limit      = _real_words_scanned_limit;
3362 
3363   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3364   _refs_reached_limit       = _real_refs_reached_limit;
3365 }
3366 
3367 void CMTask::decrease_limits() {
3368   // This is called when we believe that we're going to do an infrequent
3369   // operation which will increase the per byte scanned cost (i.e. move
3370   // entries to/from the global stack). It basically tries to decrease the
3371   // scanning limit so that the clock is called earlier.
3372 
3373   if (_cm->verbose_medium()) {
3374     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3375   }
3376 
3377   _words_scanned_limit = _real_words_scanned_limit -
3378     3 * words_scanned_period / 4;
3379   _refs_reached_limit  = _real_refs_reached_limit -
3380     3 * refs_reached_period / 4;
3381 }
3382 
3383 void CMTask::move_entries_to_global_stack() {
3384   // local array where we'll store the entries that will be popped
3385   // from the local queue
3386   oop buffer[global_stack_transfer_size];
3387 
3388   int n = 0;
3389   oop obj;
3390   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3391     buffer[n] = obj;
3392     ++n;
3393   }
3394 
3395   if (n > 0) {
3396     // we popped at least one entry from the local queue
3397 
3398     statsOnly( ++_global_transfers_to; _local_pops += n );
3399 
3400     if (!_cm->mark_stack_push(buffer, n)) {
3401       if (_cm->verbose_low()) {
3402         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3403                                _worker_id);
3404       }
3405       set_has_aborted();
3406     } else {
3407       // the transfer was successful
3408 
3409       if (_cm->verbose_medium()) {
3410         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3411                                _worker_id, n);
3412       }
3413       statsOnly( size_t tmp_size = _cm->mark_stack_size();
3414                  if (tmp_size > _global_max_size) {
3415                    _global_max_size = tmp_size;
3416                  }
3417                  _global_pushes += n );
3418     }
3419   }
3420 
3421   // this operation was quite expensive, so decrease the limits
3422   decrease_limits();
3423 }
3424 
3425 void CMTask::get_entries_from_global_stack() {
3426   // local array where we'll store the entries that will be popped
3427   // from the global stack.
3428   oop buffer[global_stack_transfer_size];
3429   int n;
3430   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3431   assert(n <= global_stack_transfer_size,
3432          "we should not pop more than the given limit");
3433   if (n > 0) {
3434     // yes, we did actually pop at least one entry
3435 
3436     statsOnly( ++_global_transfers_from; _global_pops += n );
3437     if (_cm->verbose_medium()) {
3438       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3439                              _worker_id, n);
3440     }
3441     for (int i = 0; i < n; ++i) {
3442       bool success = _task_queue->push(buffer[i]);
3443       // We only call this when the local queue is empty or under a
3444       // given target limit. So, we do not expect this push to fail.
3445       assert(success, "invariant");
3446     }
3447 
3448     statsOnly( size_t tmp_size = (size_t)_task_queue->size();
3449                if (tmp_size > _local_max_size) {
3450                  _local_max_size = tmp_size;
3451                }
3452                _local_pushes += n );
3453   }
3454 
3455   // this operation was quite expensive, so decrease the limits
3456   decrease_limits();
3457 }
3458 
3459 void CMTask::drain_local_queue(bool partially) {
3460   if (has_aborted()) return;
3461 
3462   // Decide what the target size is, depending whether we're going to
3463   // drain it partially (so that other tasks can steal if they run out
3464   // of things to do) or totally (at the very end).
3465   size_t target_size;
3466   if (partially) {
3467     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3468   } else {
3469     target_size = 0;
3470   }
3471 
3472   if (_task_queue->size() > target_size) {
3473     if (_cm->verbose_high()) {
3474       gclog_or_tty->print_cr("[%u] draining local queue, target size = " SIZE_FORMAT,
3475                              _worker_id, target_size);
3476     }
3477 
3478     oop obj;
3479     bool ret = _task_queue->pop_local(obj);
3480     while (ret) {
3481       statsOnly( ++_local_pops );
3482 
3483       if (_cm->verbose_high()) {
3484         gclog_or_tty->print_cr("[%u] popped " PTR_FORMAT, _worker_id,
3485                                p2i((void*) obj));
3486       }
3487 
3488       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3489       assert(!_g1h->is_on_master_free_list(
3490                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3491 
3492       scan_object(obj);
3493 
3494       if (_task_queue->size() <= target_size || has_aborted()) {
3495         ret = false;
3496       } else {
3497         ret = _task_queue->pop_local(obj);
3498       }
3499     }
3500 
3501     if (_cm->verbose_high()) {
3502       gclog_or_tty->print_cr("[%u] drained local queue, size = %u",
3503                              _worker_id, _task_queue->size());
3504     }
3505   }
3506 }
3507 
3508 void CMTask::drain_global_stack(bool partially) {
3509   if (has_aborted()) return;
3510 
3511   // We have a policy to drain the local queue before we attempt to
3512   // drain the global stack.
3513   assert(partially || _task_queue->size() == 0, "invariant");
3514 
3515   // Decide what the target size is, depending whether we're going to
3516   // drain it partially (so that other tasks can steal if they run out
3517   // of things to do) or totally (at the very end).  Notice that,
3518   // because we move entries from the global stack in chunks or
3519   // because another task might be doing the same, we might in fact
3520   // drop below the target. But, this is not a problem.
3521   size_t target_size;
3522   if (partially) {
3523     target_size = _cm->partial_mark_stack_size_target();
3524   } else {
3525     target_size = 0;
3526   }
3527 
3528   if (_cm->mark_stack_size() > target_size) {
3529     if (_cm->verbose_low()) {
3530       gclog_or_tty->print_cr("[%u] draining global_stack, target size " SIZE_FORMAT,
3531                              _worker_id, target_size);
3532     }
3533 
3534     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3535       get_entries_from_global_stack();
3536       drain_local_queue(partially);
3537     }
3538 
3539     if (_cm->verbose_low()) {
3540       gclog_or_tty->print_cr("[%u] drained global stack, size = " SIZE_FORMAT,
3541                              _worker_id, _cm->mark_stack_size());
3542     }
3543   }
3544 }
3545 
3546 // SATB Queue has several assumptions on whether to call the par or
3547 // non-par versions of the methods. this is why some of the code is
3548 // replicated. We should really get rid of the single-threaded version
3549 // of the code to simplify things.
3550 void CMTask::drain_satb_buffers() {
3551   if (has_aborted()) return;
3552 
3553   // We set this so that the regular clock knows that we're in the
3554   // middle of draining buffers and doesn't set the abort flag when it
3555   // notices that SATB buffers are available for draining. It'd be
3556   // very counter productive if it did that. :-)
3557   _draining_satb_buffers = true;
3558 
3559   CMSATBBufferClosure satb_cl(this, _g1h);
3560   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3561 
3562   // This keeps claiming and applying the closure to completed buffers
3563   // until we run out of buffers or we need to abort.
3564   while (!has_aborted() &&
3565          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3566     if (_cm->verbose_medium()) {
3567       gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3568     }
3569     statsOnly( ++_satb_buffers_processed );
3570     regular_clock_call();
3571   }
3572 
3573   _draining_satb_buffers = false;
3574 
3575   assert(has_aborted() ||
3576          concurrent() ||
3577          satb_mq_set.completed_buffers_num() == 0, "invariant");
3578 
3579   // again, this was a potentially expensive operation, decrease the
3580   // limits to get the regular clock call early
3581   decrease_limits();
3582 }
3583 
3584 void CMTask::print_stats() {
3585   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3586                          _worker_id, _calls);
3587   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3588                          _elapsed_time_ms, _termination_time_ms);
3589   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3590                          _step_times_ms.num(), _step_times_ms.avg(),
3591                          _step_times_ms.sd());
3592   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3593                          _step_times_ms.maximum(), _step_times_ms.sum());
3594 
3595 #if _MARKING_STATS_
3596   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3597                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3598                          _all_clock_intervals_ms.sd());
3599   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3600                          _all_clock_intervals_ms.maximum(),
3601                          _all_clock_intervals_ms.sum());
3602   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = " SIZE_FORMAT ", marking = " SIZE_FORMAT,
3603                          _clock_due_to_scanning, _clock_due_to_marking);
3604   gclog_or_tty->print_cr("  Objects: scanned = " SIZE_FORMAT ", found on the bitmap = " SIZE_FORMAT,
3605                          _objs_scanned, _objs_found_on_bitmap);
3606   gclog_or_tty->print_cr("  Local Queue:  pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3607                          _local_pushes, _local_pops, _local_max_size);
3608   gclog_or_tty->print_cr("  Global Stack: pushes = " SIZE_FORMAT ", pops = " SIZE_FORMAT ", max size = " SIZE_FORMAT,
3609                          _global_pushes, _global_pops, _global_max_size);
3610   gclog_or_tty->print_cr("                transfers to = " SIZE_FORMAT ", transfers from = " SIZE_FORMAT,
3611                          _global_transfers_to,_global_transfers_from);
3612   gclog_or_tty->print_cr("  Regions: claimed = " SIZE_FORMAT, _regions_claimed);
3613   gclog_or_tty->print_cr("  SATB buffers: processed = " SIZE_FORMAT, _satb_buffers_processed);
3614   gclog_or_tty->print_cr("  Steals: attempts = " SIZE_FORMAT ", successes = " SIZE_FORMAT,
3615                          _steal_attempts, _steals);
3616   gclog_or_tty->print_cr("  Aborted: " SIZE_FORMAT ", due to", _aborted);
3617   gclog_or_tty->print_cr("    overflow: " SIZE_FORMAT ", global abort: " SIZE_FORMAT ", yield: " SIZE_FORMAT,
3618                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3619   gclog_or_tty->print_cr("    time out: " SIZE_FORMAT ", SATB: " SIZE_FORMAT ", termination: " SIZE_FORMAT,
3620                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3621 #endif // _MARKING_STATS_
3622 }
3623 
3624 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3625   return _task_queues->steal(worker_id, hash_seed, obj);
3626 }
3627 
3628 /*****************************************************************************
3629 
3630     The do_marking_step(time_target_ms, ...) method is the building
3631     block of the parallel marking framework. It can be called in parallel
3632     with other invocations of do_marking_step() on different tasks
3633     (but only one per task, obviously) and concurrently with the
3634     mutator threads, or during remark, hence it eliminates the need
3635     for two versions of the code. When called during remark, it will
3636     pick up from where the task left off during the concurrent marking
3637     phase. Interestingly, tasks are also claimable during evacuation
3638     pauses too, since do_marking_step() ensures that it aborts before
3639     it needs to yield.
3640 
3641     The data structures that it uses to do marking work are the
3642     following:
3643 
3644       (1) Marking Bitmap. If there are gray objects that appear only
3645       on the bitmap (this happens either when dealing with an overflow
3646       or when the initial marking phase has simply marked the roots
3647       and didn't push them on the stack), then tasks claim heap
3648       regions whose bitmap they then scan to find gray objects. A
3649       global finger indicates where the end of the last claimed region
3650       is. A local finger indicates how far into the region a task has
3651       scanned. The two fingers are used to determine how to gray an
3652       object (i.e. whether simply marking it is OK, as it will be
3653       visited by a task in the future, or whether it needs to be also
3654       pushed on a stack).
3655 
3656       (2) Local Queue. The local queue of the task which is accessed
3657       reasonably efficiently by the task. Other tasks can steal from
3658       it when they run out of work. Throughout the marking phase, a
3659       task attempts to keep its local queue short but not totally
3660       empty, so that entries are available for stealing by other
3661       tasks. Only when there is no more work, a task will totally
3662       drain its local queue.
3663 
3664       (3) Global Mark Stack. This handles local queue overflow. During
3665       marking only sets of entries are moved between it and the local
3666       queues, as access to it requires a mutex and more fine-grain
3667       interaction with it which might cause contention. If it
3668       overflows, then the marking phase should restart and iterate
3669       over the bitmap to identify gray objects. Throughout the marking
3670       phase, tasks attempt to keep the global mark stack at a small
3671       length but not totally empty, so that entries are available for
3672       popping by other tasks. Only when there is no more work, tasks
3673       will totally drain the global mark stack.
3674 
3675       (4) SATB Buffer Queue. This is where completed SATB buffers are
3676       made available. Buffers are regularly removed from this queue
3677       and scanned for roots, so that the queue doesn't get too
3678       long. During remark, all completed buffers are processed, as
3679       well as the filled in parts of any uncompleted buffers.
3680 
3681     The do_marking_step() method tries to abort when the time target
3682     has been reached. There are a few other cases when the
3683     do_marking_step() method also aborts:
3684 
3685       (1) When the marking phase has been aborted (after a Full GC).
3686 
3687       (2) When a global overflow (on the global stack) has been
3688       triggered. Before the task aborts, it will actually sync up with
3689       the other tasks to ensure that all the marking data structures
3690       (local queues, stacks, fingers etc.)  are re-initialized so that
3691       when do_marking_step() completes, the marking phase can
3692       immediately restart.
3693 
3694       (3) When enough completed SATB buffers are available. The
3695       do_marking_step() method only tries to drain SATB buffers right
3696       at the beginning. So, if enough buffers are available, the
3697       marking step aborts and the SATB buffers are processed at
3698       the beginning of the next invocation.
3699 
3700       (4) To yield. when we have to yield then we abort and yield
3701       right at the end of do_marking_step(). This saves us from a lot
3702       of hassle as, by yielding we might allow a Full GC. If this
3703       happens then objects will be compacted underneath our feet, the
3704       heap might shrink, etc. We save checking for this by just
3705       aborting and doing the yield right at the end.
3706 
3707     From the above it follows that the do_marking_step() method should
3708     be called in a loop (or, otherwise, regularly) until it completes.
3709 
3710     If a marking step completes without its has_aborted() flag being
3711     true, it means it has completed the current marking phase (and
3712     also all other marking tasks have done so and have all synced up).
3713 
3714     A method called regular_clock_call() is invoked "regularly" (in
3715     sub ms intervals) throughout marking. It is this clock method that
3716     checks all the abort conditions which were mentioned above and
3717     decides when the task should abort. A work-based scheme is used to
3718     trigger this clock method: when the number of object words the
3719     marking phase has scanned or the number of references the marking
3720     phase has visited reach a given limit. Additional invocations to
3721     the method clock have been planted in a few other strategic places
3722     too. The initial reason for the clock method was to avoid calling
3723     vtime too regularly, as it is quite expensive. So, once it was in
3724     place, it was natural to piggy-back all the other conditions on it
3725     too and not constantly check them throughout the code.
3726 
3727     If do_termination is true then do_marking_step will enter its
3728     termination protocol.
3729 
3730     The value of is_serial must be true when do_marking_step is being
3731     called serially (i.e. by the VMThread) and do_marking_step should
3732     skip any synchronization in the termination and overflow code.
3733     Examples include the serial remark code and the serial reference
3734     processing closures.
3735 
3736     The value of is_serial must be false when do_marking_step is
3737     being called by any of the worker threads in a work gang.
3738     Examples include the concurrent marking code (CMMarkingTask),
3739     the MT remark code, and the MT reference processing closures.
3740 
3741  *****************************************************************************/
3742 
3743 void CMTask::do_marking_step(double time_target_ms,
3744                              bool do_termination,
3745                              bool is_serial) {
3746   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3747   assert(concurrent() == _cm->concurrent(), "they should be the same");
3748 
3749   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3750   assert(_task_queues != NULL, "invariant");
3751   assert(_task_queue != NULL, "invariant");
3752   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3753 
3754   assert(!_claimed,
3755          "only one thread should claim this task at any one time");
3756 
3757   // OK, this doesn't safeguard again all possible scenarios, as it is
3758   // possible for two threads to set the _claimed flag at the same
3759   // time. But it is only for debugging purposes anyway and it will
3760   // catch most problems.
3761   _claimed = true;
3762 
3763   _start_time_ms = os::elapsedVTime() * 1000.0;
3764   statsOnly( _interval_start_time_ms = _start_time_ms );
3765 
3766   // If do_stealing is true then do_marking_step will attempt to
3767   // steal work from the other CMTasks. It only makes sense to
3768   // enable stealing when the termination protocol is enabled
3769   // and do_marking_step() is not being called serially.
3770   bool do_stealing = do_termination && !is_serial;
3771 
3772   double diff_prediction_ms =
3773     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
3774   _time_target_ms = time_target_ms - diff_prediction_ms;
3775 
3776   // set up the variables that are used in the work-based scheme to
3777   // call the regular clock method
3778   _words_scanned = 0;
3779   _refs_reached  = 0;
3780   recalculate_limits();
3781 
3782   // clear all flags
3783   clear_has_aborted();
3784   _has_timed_out = false;
3785   _draining_satb_buffers = false;
3786 
3787   ++_calls;
3788 
3789   if (_cm->verbose_low()) {
3790     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
3791                            "target = %1.2lfms >>>>>>>>>>",
3792                            _worker_id, _calls, _time_target_ms);
3793   }
3794 
3795   // Set up the bitmap and oop closures. Anything that uses them is
3796   // eventually called from this method, so it is OK to allocate these
3797   // statically.
3798   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3799   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3800   set_cm_oop_closure(&cm_oop_closure);
3801 
3802   if (_cm->has_overflown()) {
3803     // This can happen if the mark stack overflows during a GC pause
3804     // and this task, after a yield point, restarts. We have to abort
3805     // as we need to get into the overflow protocol which happens
3806     // right at the end of this task.
3807     set_has_aborted();
3808   }
3809 
3810   // First drain any available SATB buffers. After this, we will not
3811   // look at SATB buffers before the next invocation of this method.
3812   // If enough completed SATB buffers are queued up, the regular clock
3813   // will abort this task so that it restarts.
3814   drain_satb_buffers();
3815   // ...then partially drain the local queue and the global stack
3816   drain_local_queue(true);
3817   drain_global_stack(true);
3818 
3819   do {
3820     if (!has_aborted() && _curr_region != NULL) {
3821       // This means that we're already holding on to a region.
3822       assert(_finger != NULL, "if region is not NULL, then the finger "
3823              "should not be NULL either");
3824 
3825       // We might have restarted this task after an evacuation pause
3826       // which might have evacuated the region we're holding on to
3827       // underneath our feet. Let's read its limit again to make sure
3828       // that we do not iterate over a region of the heap that
3829       // contains garbage (update_region_limit() will also move
3830       // _finger to the start of the region if it is found empty).
3831       update_region_limit();
3832       // We will start from _finger not from the start of the region,
3833       // as we might be restarting this task after aborting half-way
3834       // through scanning this region. In this case, _finger points to
3835       // the address where we last found a marked object. If this is a
3836       // fresh region, _finger points to start().
3837       MemRegion mr = MemRegion(_finger, _region_limit);
3838 
3839       if (_cm->verbose_low()) {
3840         gclog_or_tty->print_cr("[%u] we're scanning part "
3841                                "[" PTR_FORMAT ", " PTR_FORMAT ") "
3842                                "of region " HR_FORMAT,
3843                                _worker_id, p2i(_finger), p2i(_region_limit),
3844                                HR_FORMAT_PARAMS(_curr_region));
3845       }
3846 
3847       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3848              "humongous regions should go around loop once only");
3849 
3850       // Some special cases:
3851       // If the memory region is empty, we can just give up the region.
3852       // If the current region is humongous then we only need to check
3853       // the bitmap for the bit associated with the start of the object,
3854       // scan the object if it's live, and give up the region.
3855       // Otherwise, let's iterate over the bitmap of the part of the region
3856       // that is left.
3857       // If the iteration is successful, give up the region.
3858       if (mr.is_empty()) {
3859         giveup_current_region();
3860         regular_clock_call();
3861       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3862         if (_nextMarkBitMap->isMarked(mr.start())) {
3863           // The object is marked - apply the closure
3864           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3865           bitmap_closure.do_bit(offset);
3866         }
3867         // Even if this task aborted while scanning the humongous object
3868         // we can (and should) give up the current region.
3869         giveup_current_region();
3870         regular_clock_call();
3871       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3872         giveup_current_region();
3873         regular_clock_call();
3874       } else {
3875         assert(has_aborted(), "currently the only way to do so");
3876         // The only way to abort the bitmap iteration is to return
3877         // false from the do_bit() method. However, inside the
3878         // do_bit() method we move the _finger to point to the
3879         // object currently being looked at. So, if we bail out, we
3880         // have definitely set _finger to something non-null.
3881         assert(_finger != NULL, "invariant");
3882 
3883         // Region iteration was actually aborted. So now _finger
3884         // points to the address of the object we last scanned. If we
3885         // leave it there, when we restart this task, we will rescan
3886         // the object. It is easy to avoid this. We move the finger by
3887         // enough to point to the next possible object header (the
3888         // bitmap knows by how much we need to move it as it knows its
3889         // granularity).
3890         assert(_finger < _region_limit, "invariant");
3891         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3892         // Check if bitmap iteration was aborted while scanning the last object
3893         if (new_finger >= _region_limit) {
3894           giveup_current_region();
3895         } else {
3896           move_finger_to(new_finger);
3897         }
3898       }
3899     }
3900     // At this point we have either completed iterating over the
3901     // region we were holding on to, or we have aborted.
3902 
3903     // We then partially drain the local queue and the global stack.
3904     // (Do we really need this?)
3905     drain_local_queue(true);
3906     drain_global_stack(true);
3907 
3908     // Read the note on the claim_region() method on why it might
3909     // return NULL with potentially more regions available for
3910     // claiming and why we have to check out_of_regions() to determine
3911     // whether we're done or not.
3912     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3913       // We are going to try to claim a new region. We should have
3914       // given up on the previous one.
3915       // Separated the asserts so that we know which one fires.
3916       assert(_curr_region  == NULL, "invariant");
3917       assert(_finger       == NULL, "invariant");
3918       assert(_region_limit == NULL, "invariant");
3919       if (_cm->verbose_low()) {
3920         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
3921       }
3922       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3923       if (claimed_region != NULL) {
3924         // Yes, we managed to claim one
3925         statsOnly( ++_regions_claimed );
3926 
3927         if (_cm->verbose_low()) {
3928           gclog_or_tty->print_cr("[%u] we successfully claimed "
3929                                  "region " PTR_FORMAT,
3930                                  _worker_id, p2i(claimed_region));
3931         }
3932 
3933         setup_for_region(claimed_region);
3934         assert(_curr_region == claimed_region, "invariant");
3935       }
3936       // It is important to call the regular clock here. It might take
3937       // a while to claim a region if, for example, we hit a large
3938       // block of empty regions. So we need to call the regular clock
3939       // method once round the loop to make sure it's called
3940       // frequently enough.
3941       regular_clock_call();
3942     }
3943 
3944     if (!has_aborted() && _curr_region == NULL) {
3945       assert(_cm->out_of_regions(),
3946              "at this point we should be out of regions");
3947     }
3948   } while ( _curr_region != NULL && !has_aborted());
3949 
3950   if (!has_aborted()) {
3951     // We cannot check whether the global stack is empty, since other
3952     // tasks might be pushing objects to it concurrently.
3953     assert(_cm->out_of_regions(),
3954            "at this point we should be out of regions");
3955 
3956     if (_cm->verbose_low()) {
3957       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
3958     }
3959 
3960     // Try to reduce the number of available SATB buffers so that
3961     // remark has less work to do.
3962     drain_satb_buffers();
3963   }
3964 
3965   // Since we've done everything else, we can now totally drain the
3966   // local queue and global stack.
3967   drain_local_queue(false);
3968   drain_global_stack(false);
3969 
3970   // Attempt at work stealing from other task's queues.
3971   if (do_stealing && !has_aborted()) {
3972     // We have not aborted. This means that we have finished all that
3973     // we could. Let's try to do some stealing...
3974 
3975     // We cannot check whether the global stack is empty, since other
3976     // tasks might be pushing objects to it concurrently.
3977     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3978            "only way to reach here");
3979 
3980     if (_cm->verbose_low()) {
3981       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
3982     }
3983 
3984     while (!has_aborted()) {
3985       oop obj;
3986       statsOnly( ++_steal_attempts );
3987 
3988       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3989         if (_cm->verbose_medium()) {
3990           gclog_or_tty->print_cr("[%u] stolen " PTR_FORMAT " successfully",
3991                                  _worker_id, p2i((void*) obj));
3992         }
3993 
3994         statsOnly( ++_steals );
3995 
3996         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3997                "any stolen object should be marked");
3998         scan_object(obj);
3999 
4000         // And since we're towards the end, let's totally drain the
4001         // local queue and global stack.
4002         drain_local_queue(false);
4003         drain_global_stack(false);
4004       } else {
4005         break;
4006       }
4007     }
4008   }
4009 
4010   // If we are about to wrap up and go into termination, check if we
4011   // should raise the overflow flag.
4012   if (do_termination && !has_aborted()) {
4013     if (_cm->force_overflow()->should_force()) {
4014       _cm->set_has_overflown();
4015       regular_clock_call();
4016     }
4017   }
4018 
4019   // We still haven't aborted. Now, let's try to get into the
4020   // termination protocol.
4021   if (do_termination && !has_aborted()) {
4022     // We cannot check whether the global stack is empty, since other
4023     // tasks might be concurrently pushing objects on it.
4024     // Separated the asserts so that we know which one fires.
4025     assert(_cm->out_of_regions(), "only way to reach here");
4026     assert(_task_queue->size() == 0, "only way to reach here");
4027 
4028     if (_cm->verbose_low()) {
4029       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4030     }
4031 
4032     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4033 
4034     // The CMTask class also extends the TerminatorTerminator class,
4035     // hence its should_exit_termination() method will also decide
4036     // whether to exit the termination protocol or not.
4037     bool finished = (is_serial ||
4038                      _cm->terminator()->offer_termination(this));
4039     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4040     _termination_time_ms +=
4041       termination_end_time_ms - _termination_start_time_ms;
4042 
4043     if (finished) {
4044       // We're all done.
4045 
4046       if (_worker_id == 0) {
4047         // let's allow task 0 to do this
4048         if (concurrent()) {
4049           assert(_cm->concurrent_marking_in_progress(), "invariant");
4050           // we need to set this to false before the next
4051           // safepoint. This way we ensure that the marking phase
4052           // doesn't observe any more heap expansions.
4053           _cm->clear_concurrent_marking_in_progress();
4054         }
4055       }
4056 
4057       // We can now guarantee that the global stack is empty, since
4058       // all other tasks have finished. We separated the guarantees so
4059       // that, if a condition is false, we can immediately find out
4060       // which one.
4061       guarantee(_cm->out_of_regions(), "only way to reach here");
4062       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4063       guarantee(_task_queue->size() == 0, "only way to reach here");
4064       guarantee(!_cm->has_overflown(), "only way to reach here");
4065       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4066 
4067       if (_cm->verbose_low()) {
4068         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4069       }
4070     } else {
4071       // Apparently there's more work to do. Let's abort this task. It
4072       // will restart it and we can hopefully find more things to do.
4073 
4074       if (_cm->verbose_low()) {
4075         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4076                                _worker_id);
4077       }
4078 
4079       set_has_aborted();
4080       statsOnly( ++_aborted_termination );
4081     }
4082   }
4083 
4084   // Mainly for debugging purposes to make sure that a pointer to the
4085   // closure which was statically allocated in this frame doesn't
4086   // escape it by accident.
4087   set_cm_oop_closure(NULL);
4088   double end_time_ms = os::elapsedVTime() * 1000.0;
4089   double elapsed_time_ms = end_time_ms - _start_time_ms;
4090   // Update the step history.
4091   _step_times_ms.add(elapsed_time_ms);
4092 
4093   if (has_aborted()) {
4094     // The task was aborted for some reason.
4095 
4096     statsOnly( ++_aborted );
4097 
4098     if (_has_timed_out) {
4099       double diff_ms = elapsed_time_ms - _time_target_ms;
4100       // Keep statistics of how well we did with respect to hitting
4101       // our target only if we actually timed out (if we aborted for
4102       // other reasons, then the results might get skewed).
4103       _marking_step_diffs_ms.add(diff_ms);
4104     }
4105 
4106     if (_cm->has_overflown()) {
4107       // This is the interesting one. We aborted because a global
4108       // overflow was raised. This means we have to restart the
4109       // marking phase and start iterating over regions. However, in
4110       // order to do this we have to make sure that all tasks stop
4111       // what they are doing and re-initialize in a safe manner. We
4112       // will achieve this with the use of two barrier sync points.
4113 
4114       if (_cm->verbose_low()) {
4115         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4116       }
4117 
4118       if (!is_serial) {
4119         // We only need to enter the sync barrier if being called
4120         // from a parallel context
4121         _cm->enter_first_sync_barrier(_worker_id);
4122 
4123         // When we exit this sync barrier we know that all tasks have
4124         // stopped doing marking work. So, it's now safe to
4125         // re-initialize our data structures. At the end of this method,
4126         // task 0 will clear the global data structures.
4127       }
4128 
4129       statsOnly( ++_aborted_overflow );
4130 
4131       // We clear the local state of this task...
4132       clear_region_fields();
4133 
4134       if (!is_serial) {
4135         // ...and enter the second barrier.
4136         _cm->enter_second_sync_barrier(_worker_id);
4137       }
4138       // At this point, if we're during the concurrent phase of
4139       // marking, everything has been re-initialized and we're
4140       // ready to restart.
4141     }
4142 
4143     if (_cm->verbose_low()) {
4144       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4145                              "elapsed = %1.2lfms <<<<<<<<<<",
4146                              _worker_id, _time_target_ms, elapsed_time_ms);
4147       if (_cm->has_aborted()) {
4148         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4149                                _worker_id);
4150       }
4151     }
4152   } else {
4153     if (_cm->verbose_low()) {
4154       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4155                              "elapsed = %1.2lfms <<<<<<<<<<",
4156                              _worker_id, _time_target_ms, elapsed_time_ms);
4157     }
4158   }
4159 
4160   _claimed = false;
4161 }
4162 
4163 CMTask::CMTask(uint worker_id,
4164                ConcurrentMark* cm,
4165                size_t* marked_bytes,
4166                BitMap* card_bm,
4167                CMTaskQueue* task_queue,
4168                CMTaskQueueSet* task_queues)
4169   : _g1h(G1CollectedHeap::heap()),
4170     _worker_id(worker_id), _cm(cm),
4171     _claimed(false),
4172     _nextMarkBitMap(NULL), _hash_seed(17),
4173     _task_queue(task_queue),
4174     _task_queues(task_queues),
4175     _cm_oop_closure(NULL),
4176     _marked_bytes_array(marked_bytes),
4177     _card_bm(card_bm) {
4178   guarantee(task_queue != NULL, "invariant");
4179   guarantee(task_queues != NULL, "invariant");
4180 
4181   statsOnly( _clock_due_to_scanning = 0;
4182              _clock_due_to_marking  = 0 );
4183 
4184   _marking_step_diffs_ms.add(0.5);
4185 }
4186 
4187 // These are formatting macros that are used below to ensure
4188 // consistent formatting. The *_H_* versions are used to format the
4189 // header for a particular value and they should be kept consistent
4190 // with the corresponding macro. Also note that most of the macros add
4191 // the necessary white space (as a prefix) which makes them a bit
4192 // easier to compose.
4193 
4194 // All the output lines are prefixed with this string to be able to
4195 // identify them easily in a large log file.
4196 #define G1PPRL_LINE_PREFIX            "###"
4197 
4198 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
4199 #ifdef _LP64
4200 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4201 #else // _LP64
4202 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4203 #endif // _LP64
4204 
4205 // For per-region info
4206 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4207 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4208 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
4209 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4210 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4211 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4212 
4213 // For summary info
4214 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
4215 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
4216 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
4217 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
4218 
4219 G1PrintRegionLivenessInfoClosure::
4220 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4221   : _out(out),
4222     _total_used_bytes(0), _total_capacity_bytes(0),
4223     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4224     _hum_used_bytes(0), _hum_capacity_bytes(0),
4225     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4226     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4227   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4228   MemRegion g1_reserved = g1h->g1_reserved();
4229   double now = os::elapsedTime();
4230 
4231   // Print the header of the output.
4232   _out->cr();
4233   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4234   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4235                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4236                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4237                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
4238                  HeapRegion::GrainBytes);
4239   _out->print_cr(G1PPRL_LINE_PREFIX);
4240   _out->print_cr(G1PPRL_LINE_PREFIX
4241                 G1PPRL_TYPE_H_FORMAT
4242                 G1PPRL_ADDR_BASE_H_FORMAT
4243                 G1PPRL_BYTE_H_FORMAT
4244                 G1PPRL_BYTE_H_FORMAT
4245                 G1PPRL_BYTE_H_FORMAT
4246                 G1PPRL_DOUBLE_H_FORMAT
4247                 G1PPRL_BYTE_H_FORMAT
4248                 G1PPRL_BYTE_H_FORMAT,
4249                 "type", "address-range",
4250                 "used", "prev-live", "next-live", "gc-eff",
4251                 "remset", "code-roots");
4252   _out->print_cr(G1PPRL_LINE_PREFIX
4253                 G1PPRL_TYPE_H_FORMAT
4254                 G1PPRL_ADDR_BASE_H_FORMAT
4255                 G1PPRL_BYTE_H_FORMAT
4256                 G1PPRL_BYTE_H_FORMAT
4257                 G1PPRL_BYTE_H_FORMAT
4258                 G1PPRL_DOUBLE_H_FORMAT
4259                 G1PPRL_BYTE_H_FORMAT
4260                 G1PPRL_BYTE_H_FORMAT,
4261                 "", "",
4262                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4263                 "(bytes)", "(bytes)");
4264 }
4265 
4266 // It takes as a parameter a reference to one of the _hum_* fields, it
4267 // deduces the corresponding value for a region in a humongous region
4268 // series (either the region size, or what's left if the _hum_* field
4269 // is < the region size), and updates the _hum_* field accordingly.
4270 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4271   size_t bytes = 0;
4272   // The > 0 check is to deal with the prev and next live bytes which
4273   // could be 0.
4274   if (*hum_bytes > 0) {
4275     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4276     *hum_bytes -= bytes;
4277   }
4278   return bytes;
4279 }
4280 
4281 // It deduces the values for a region in a humongous region series
4282 // from the _hum_* fields and updates those accordingly. It assumes
4283 // that that _hum_* fields have already been set up from the "starts
4284 // humongous" region and we visit the regions in address order.
4285 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4286                                                      size_t* capacity_bytes,
4287                                                      size_t* prev_live_bytes,
4288                                                      size_t* next_live_bytes) {
4289   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4290   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4291   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4292   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4293   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4294 }
4295 
4296 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4297   const char* type       = r->get_type_str();
4298   HeapWord* bottom       = r->bottom();
4299   HeapWord* end          = r->end();
4300   size_t capacity_bytes  = r->capacity();
4301   size_t used_bytes      = r->used();
4302   size_t prev_live_bytes = r->live_bytes();
4303   size_t next_live_bytes = r->next_live_bytes();
4304   double gc_eff          = r->gc_efficiency();
4305   size_t remset_bytes    = r->rem_set()->mem_size();
4306   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4307 
4308   if (r->is_starts_humongous()) {
4309     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4310            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4311            "they should have been zeroed after the last time we used them");
4312     // Set up the _hum_* fields.
4313     _hum_capacity_bytes  = capacity_bytes;
4314     _hum_used_bytes      = used_bytes;
4315     _hum_prev_live_bytes = prev_live_bytes;
4316     _hum_next_live_bytes = next_live_bytes;
4317     get_hum_bytes(&used_bytes, &capacity_bytes,
4318                   &prev_live_bytes, &next_live_bytes);
4319     end = bottom + HeapRegion::GrainWords;
4320   } else if (r->is_continues_humongous()) {
4321     get_hum_bytes(&used_bytes, &capacity_bytes,
4322                   &prev_live_bytes, &next_live_bytes);
4323     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4324   }
4325 
4326   _total_used_bytes      += used_bytes;
4327   _total_capacity_bytes  += capacity_bytes;
4328   _total_prev_live_bytes += prev_live_bytes;
4329   _total_next_live_bytes += next_live_bytes;
4330   _total_remset_bytes    += remset_bytes;
4331   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4332 
4333   // Print a line for this particular region.
4334   _out->print_cr(G1PPRL_LINE_PREFIX
4335                  G1PPRL_TYPE_FORMAT
4336                  G1PPRL_ADDR_BASE_FORMAT
4337                  G1PPRL_BYTE_FORMAT
4338                  G1PPRL_BYTE_FORMAT
4339                  G1PPRL_BYTE_FORMAT
4340                  G1PPRL_DOUBLE_FORMAT
4341                  G1PPRL_BYTE_FORMAT
4342                  G1PPRL_BYTE_FORMAT,
4343                  type, p2i(bottom), p2i(end),
4344                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4345                  remset_bytes, strong_code_roots_bytes);
4346 
4347   return false;
4348 }
4349 
4350 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4351   // add static memory usages to remembered set sizes
4352   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4353   // Print the footer of the output.
4354   _out->print_cr(G1PPRL_LINE_PREFIX);
4355   _out->print_cr(G1PPRL_LINE_PREFIX
4356                  " SUMMARY"
4357                  G1PPRL_SUM_MB_FORMAT("capacity")
4358                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4359                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4360                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4361                  G1PPRL_SUM_MB_FORMAT("remset")
4362                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4363                  bytes_to_mb(_total_capacity_bytes),
4364                  bytes_to_mb(_total_used_bytes),
4365                  perc(_total_used_bytes, _total_capacity_bytes),
4366                  bytes_to_mb(_total_prev_live_bytes),
4367                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4368                  bytes_to_mb(_total_next_live_bytes),
4369                  perc(_total_next_live_bytes, _total_capacity_bytes),
4370                  bytes_to_mb(_total_remset_bytes),
4371                  bytes_to_mb(_total_strong_code_roots_bytes));
4372   _out->cr();
4373 }