< prev index next >

src/share/vm/gc/g1/g1BlockOffsetTable.cpp

Print this page




  52 
  53   if (TraceBlockOffsetTable) {
  54     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
  55     gclog_or_tty->print_cr("  "
  56                   "  rs.base(): " PTR_FORMAT
  57                   "  rs.size(): " SIZE_FORMAT
  58                   "  rs end(): " PTR_FORMAT,
  59                   p2i(bot_reserved.start()), bot_reserved.byte_size(), p2i(bot_reserved.end()));
  60   }
  61 }
  62 
  63 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
  64   assert(p >= _reserved.start(), "just checking");
  65   size_t delta = pointer_delta(p, _reserved.start());
  66   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
  67 }
  68 
  69 #ifdef ASSERT
  70 void G1BlockOffsetSharedArray::check_index(size_t index, const char* msg) const {
  71   assert((index) < (_reserved.word_size() >> LogN_words),
  72          err_msg("%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT,
  73                  msg, (index), (_reserved.word_size() >> LogN_words)));
  74   assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)),
  75          err_msg("Index " SIZE_FORMAT " corresponding to " PTR_FORMAT
  76                  " (%u) is not in committed area.",
  77                  (index),
  78                  p2i(address_for_index_raw(index)),
  79                  G1CollectedHeap::heap()->addr_to_region(address_for_index_raw(index))));
  80 }
  81 #endif // ASSERT
  82 
  83 //////////////////////////////////////////////////////////////////////
  84 // G1BlockOffsetArray
  85 //////////////////////////////////////////////////////////////////////
  86 
  87 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
  88                                        MemRegion mr) :
  89   G1BlockOffsetTable(mr.start(), mr.end()),
  90   _unallocated_block(_bottom),
  91   _array(array), _gsp(NULL) {
  92   assert(_bottom <= _end, "arguments out of order");
  93 }
  94 
  95 void G1BlockOffsetArray::set_space(G1OffsetTableContigSpace* sp) {
  96   _gsp = sp;
  97 }
  98 
  99 // The arguments follow the normal convention of denoting


 175     _array->set_offset_array(start_card_for_region, reach, offset);
 176     start_card_for_region = reach + 1;
 177   }
 178   assert(start_card_for_region > end_card, "Sanity check");
 179   DEBUG_ONLY(check_all_cards(start_card, end_card);)
 180 }
 181 
 182 // The card-interval [start_card, end_card] is a closed interval; this
 183 // is an expensive check -- use with care and only under protection of
 184 // suitable flag.
 185 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
 186 
 187   if (end_card < start_card) {
 188     return;
 189   }
 190   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
 191   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
 192     u_char entry = _array->offset_array(c);
 193     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
 194       guarantee(entry > N_words,
 195                 err_msg("Should be in logarithmic region - "
 196                         "entry: %u, "
 197                         "_array->offset_array(c): %u, "
 198                         "N_words: %u",
 199                         (uint)entry, (uint)_array->offset_array(c), (uint)N_words));
 200     }
 201     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
 202     size_t landing_card = c - backskip;
 203     guarantee(landing_card >= (start_card - 1), "Inv");
 204     if (landing_card >= start_card) {
 205       guarantee(_array->offset_array(landing_card) <= entry,
 206                 err_msg("Monotonicity - landing_card offset: %u, "
 207                         "entry: %u",
 208                         (uint)_array->offset_array(landing_card), (uint)entry));
 209     } else {
 210       guarantee(landing_card == start_card - 1, "Tautology");
 211       // Note that N_words is the maximum offset value
 212       guarantee(_array->offset_array(landing_card) <= N_words,
 213                 err_msg("landing card offset: %u, "
 214                         "N_words: %u",
 215                         (uint)_array->offset_array(landing_card), (uint)N_words));
 216     }
 217   }
 218 }
 219 
 220 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
 221   assert(_bottom <= addr && addr < _end,
 222          "addr must be covered by this Array");
 223   // Must read this exactly once because it can be modified by parallel
 224   // allocation.
 225   HeapWord* ub = _unallocated_block;
 226   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 227     assert(ub < _end, "tautology (see above)");
 228     return ub;
 229   }
 230   // Otherwise, find the block start using the table.
 231   HeapWord* q = block_at_or_preceding(addr, false, 0);
 232   return forward_to_block_containing_addr(q, addr);
 233 }
 234 
 235 // This duplicates a little code from the above: unavoidable.


 254 HeapWord*
 255 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
 256                                                           HeapWord* n,
 257                                                           const void* addr) {
 258   // We're not in the normal case.  We need to handle an important subcase
 259   // here: LAB allocation.  An allocation previously recorded in the
 260   // offset table was actually a lab allocation, and was divided into
 261   // several objects subsequently.  Fix this situation as we answer the
 262   // query, by updating entries as we cross them.
 263 
 264   // If the fist object's end q is at the card boundary. Start refining
 265   // with the corresponding card (the value of the entry will be basically
 266   // set to 0). If the object crosses the boundary -- start from the next card.
 267   size_t n_index = _array->index_for(n);
 268   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
 269   // Calculate a consistent next boundary.  If "n" is not at the boundary
 270   // already, step to the boundary.
 271   HeapWord* next_boundary = _array->address_for_index(n_index) +
 272                             (n_index == next_index ? 0 : N_words);
 273   assert(next_boundary <= _array->_end,
 274          err_msg("next_boundary is beyond the end of the covered region "
 275                  " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
 276                  p2i(next_boundary), p2i(_array->_end)));
 277   if (addr >= gsp()->top()) return gsp()->top();
 278   while (next_boundary < addr) {
 279     while (n <= next_boundary) {
 280       q = n;
 281       oop obj = oop(q);
 282       if (obj->klass_or_null() == NULL) return q;
 283       n += block_size(q);
 284     }
 285     assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
 286     // [q, n) is the block that crosses the boundary.
 287     alloc_block_work2(&next_boundary, &next_index, q, n);
 288   }
 289   return forward_to_block_containing_addr_const(q, n, addr);
 290 }
 291 
 292 // Note that the committed size of the covered space may have changed,
 293 // so the table size might also wish to change.
 294 void G1BlockOffsetArray::resize(size_t new_word_size) {
 295   HeapWord* new_end = _bottom + new_word_size;
 296   _end = new_end;  // update _end


 348 
 349   index = end_index + 1;
 350   // Calculate threshold_ this way because end_index
 351   // may be the last valid index in the covered region.
 352   threshold = _array->address_for_index(end_index) + N_words;
 353   assert(threshold >= blk_end, "Incorrect offset threshold");
 354 
 355   // index_ and threshold_ updated here.
 356   *threshold_ = threshold;
 357   *index_ = index;
 358 
 359 #ifdef ASSERT
 360   // The offset can be 0 if the block starts on a boundary.  That
 361   // is checked by an assertion above.
 362   size_t start_index = _array->index_for(blk_start);
 363   HeapWord* boundary = _array->address_for_index(start_index);
 364   assert((_array->offset_array(orig_index) == 0 &&
 365           blk_start == boundary) ||
 366           (_array->offset_array(orig_index) > 0 &&
 367          _array->offset_array(orig_index) <= N_words),
 368          err_msg("offset array should have been set - "
 369                   "orig_index offset: %u, "
 370                   "blk_start: " PTR_FORMAT ", "
 371                   "boundary: " PTR_FORMAT,
 372                   (uint)_array->offset_array(orig_index),
 373                   p2i(blk_start), p2i(boundary)));
 374   for (size_t j = orig_index + 1; j <= end_index; j++) {
 375     assert(_array->offset_array(j) > 0 &&
 376            _array->offset_array(j) <=
 377              (u_char) (N_words+BlockOffsetArray::N_powers-1),
 378            err_msg("offset array should have been set - "
 379                    "%u not > 0 OR %u not <= %u",
 380                    (uint) _array->offset_array(j),
 381                    (uint) _array->offset_array(j),
 382                    (uint) (N_words+BlockOffsetArray::N_powers-1)));
 383   }
 384 #endif
 385 }
 386 
 387 void G1BlockOffsetArray::verify() const {
 388   assert(gsp()->bottom() < gsp()->top(), "Only non-empty regions should be verified.");
 389   size_t start_card = _array->index_for(gsp()->bottom());
 390   size_t end_card = _array->index_for(gsp()->top() - 1);
 391 
 392   for (size_t current_card = start_card; current_card < end_card; current_card++) {
 393     u_char entry = _array->offset_array(current_card);
 394     if (entry < N_words) {
 395       // The entry should point to an object before the current card. Verify that
 396       // it is possible to walk from that object in to the current card by just
 397       // iterating over the objects following it.
 398       HeapWord* card_address = _array->address_for_index(current_card);
 399       HeapWord* obj_end = card_address - entry;
 400       while (obj_end < card_address) {
 401         HeapWord* obj = obj_end;
 402         size_t obj_size = block_size(obj);
 403         obj_end = obj + obj_size;
 404         guarantee(obj_end > obj && obj_end <= gsp()->top(),
 405             err_msg("Invalid object end. obj: " PTR_FORMAT " obj_size: " SIZE_FORMAT " obj_end: " PTR_FORMAT " top: " PTR_FORMAT,
 406                 p2i(obj), obj_size, p2i(obj_end), p2i(gsp()->top())));
 407       }
 408     } else {
 409       // Because we refine the BOT based on which cards are dirty there is not much we can verify here.
 410       // We need to make sure that we are going backwards and that we don't pass the start of the
 411       // corresponding heap region. But that is about all we can verify.
 412       size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
 413       guarantee(backskip >= 1, "Must be going back at least one card.");
 414 
 415       size_t max_backskip = current_card - start_card;
 416       guarantee(backskip <= max_backskip,
 417           err_msg("Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT,
 418               start_card, current_card, backskip));
 419 
 420       HeapWord* backskip_address = _array->address_for_index(current_card - backskip);
 421       guarantee(backskip_address >= gsp()->bottom(),
 422           err_msg("Going backwards beyond bottom of the region: bottom: " PTR_FORMAT ", backskip_address: " PTR_FORMAT,
 423               p2i(gsp()->bottom()), p2i(backskip_address)));
 424     }
 425   }
 426 }
 427 
 428 #ifndef PRODUCT
 429 void
 430 G1BlockOffsetArray::print_on(outputStream* out) {
 431   size_t from_index = _array->index_for(_bottom);
 432   size_t to_index = _array->index_for(_end);
 433   out->print_cr(">> BOT for area [" PTR_FORMAT "," PTR_FORMAT ") "
 434                 "cards [" SIZE_FORMAT "," SIZE_FORMAT ")",
 435                 p2i(_bottom), p2i(_end), from_index, to_index);
 436   for (size_t i = from_index; i < to_index; ++i) {
 437     out->print_cr("  entry " SIZE_FORMAT_W(8) " | " PTR_FORMAT " : %3u",
 438                   i, p2i(_array->address_for_index(i)),
 439                   (uint) _array->offset_array(i));
 440   }
 441 }
 442 #endif // !PRODUCT
 443 




  52 
  53   if (TraceBlockOffsetTable) {
  54     gclog_or_tty->print_cr("G1BlockOffsetSharedArray::G1BlockOffsetSharedArray: ");
  55     gclog_or_tty->print_cr("  "
  56                   "  rs.base(): " PTR_FORMAT
  57                   "  rs.size(): " SIZE_FORMAT
  58                   "  rs end(): " PTR_FORMAT,
  59                   p2i(bot_reserved.start()), bot_reserved.byte_size(), p2i(bot_reserved.end()));
  60   }
  61 }
  62 
  63 bool G1BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const {
  64   assert(p >= _reserved.start(), "just checking");
  65   size_t delta = pointer_delta(p, _reserved.start());
  66   return (delta & right_n_bits(LogN_words)) == (size_t)NoBits;
  67 }
  68 
  69 #ifdef ASSERT
  70 void G1BlockOffsetSharedArray::check_index(size_t index, const char* msg) const {
  71   assert((index) < (_reserved.word_size() >> LogN_words),
  72          "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT,
  73          msg, (index), (_reserved.word_size() >> LogN_words));
  74   assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)),
  75          "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT
  76          " (%u) is not in committed area.",
  77          (index),
  78          p2i(address_for_index_raw(index)),
  79          G1CollectedHeap::heap()->addr_to_region(address_for_index_raw(index)));
  80 }
  81 #endif // ASSERT
  82 
  83 //////////////////////////////////////////////////////////////////////
  84 // G1BlockOffsetArray
  85 //////////////////////////////////////////////////////////////////////
  86 
  87 G1BlockOffsetArray::G1BlockOffsetArray(G1BlockOffsetSharedArray* array,
  88                                        MemRegion mr) :
  89   G1BlockOffsetTable(mr.start(), mr.end()),
  90   _unallocated_block(_bottom),
  91   _array(array), _gsp(NULL) {
  92   assert(_bottom <= _end, "arguments out of order");
  93 }
  94 
  95 void G1BlockOffsetArray::set_space(G1OffsetTableContigSpace* sp) {
  96   _gsp = sp;
  97 }
  98 
  99 // The arguments follow the normal convention of denoting


 175     _array->set_offset_array(start_card_for_region, reach, offset);
 176     start_card_for_region = reach + 1;
 177   }
 178   assert(start_card_for_region > end_card, "Sanity check");
 179   DEBUG_ONLY(check_all_cards(start_card, end_card);)
 180 }
 181 
 182 // The card-interval [start_card, end_card] is a closed interval; this
 183 // is an expensive check -- use with care and only under protection of
 184 // suitable flag.
 185 void G1BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const {
 186 
 187   if (end_card < start_card) {
 188     return;
 189   }
 190   guarantee(_array->offset_array(start_card) == N_words, "Wrong value in second card");
 191   for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) {
 192     u_char entry = _array->offset_array(c);
 193     if (c - start_card > BlockOffsetArray::power_to_cards_back(1)) {
 194       guarantee(entry > N_words,
 195                 "Should be in logarithmic region - "
 196                 "entry: %u, "
 197                 "_array->offset_array(c): %u, "
 198                 "N_words: %u",
 199                 (uint)entry, (uint)_array->offset_array(c), (uint)N_words);
 200     }
 201     size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
 202     size_t landing_card = c - backskip;
 203     guarantee(landing_card >= (start_card - 1), "Inv");
 204     if (landing_card >= start_card) {
 205       guarantee(_array->offset_array(landing_card) <= entry,
 206                 "Monotonicity - landing_card offset: %u, "
 207                 "entry: %u",
 208                 (uint)_array->offset_array(landing_card), (uint)entry);
 209     } else {
 210       guarantee(landing_card == start_card - 1, "Tautology");
 211       // Note that N_words is the maximum offset value
 212       guarantee(_array->offset_array(landing_card) <= N_words,
 213                 "landing card offset: %u, "
 214                 "N_words: %u",
 215                 (uint)_array->offset_array(landing_card), (uint)N_words);
 216     }
 217   }
 218 }
 219 
 220 HeapWord* G1BlockOffsetArray::block_start_unsafe(const void* addr) {
 221   assert(_bottom <= addr && addr < _end,
 222          "addr must be covered by this Array");
 223   // Must read this exactly once because it can be modified by parallel
 224   // allocation.
 225   HeapWord* ub = _unallocated_block;
 226   if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) {
 227     assert(ub < _end, "tautology (see above)");
 228     return ub;
 229   }
 230   // Otherwise, find the block start using the table.
 231   HeapWord* q = block_at_or_preceding(addr, false, 0);
 232   return forward_to_block_containing_addr(q, addr);
 233 }
 234 
 235 // This duplicates a little code from the above: unavoidable.


 254 HeapWord*
 255 G1BlockOffsetArray::forward_to_block_containing_addr_slow(HeapWord* q,
 256                                                           HeapWord* n,
 257                                                           const void* addr) {
 258   // We're not in the normal case.  We need to handle an important subcase
 259   // here: LAB allocation.  An allocation previously recorded in the
 260   // offset table was actually a lab allocation, and was divided into
 261   // several objects subsequently.  Fix this situation as we answer the
 262   // query, by updating entries as we cross them.
 263 
 264   // If the fist object's end q is at the card boundary. Start refining
 265   // with the corresponding card (the value of the entry will be basically
 266   // set to 0). If the object crosses the boundary -- start from the next card.
 267   size_t n_index = _array->index_for(n);
 268   size_t next_index = _array->index_for(n) + !_array->is_card_boundary(n);
 269   // Calculate a consistent next boundary.  If "n" is not at the boundary
 270   // already, step to the boundary.
 271   HeapWord* next_boundary = _array->address_for_index(n_index) +
 272                             (n_index == next_index ? 0 : N_words);
 273   assert(next_boundary <= _array->_end,
 274          "next_boundary is beyond the end of the covered region "
 275          " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT,
 276          p2i(next_boundary), p2i(_array->_end));
 277   if (addr >= gsp()->top()) return gsp()->top();
 278   while (next_boundary < addr) {
 279     while (n <= next_boundary) {
 280       q = n;
 281       oop obj = oop(q);
 282       if (obj->klass_or_null() == NULL) return q;
 283       n += block_size(q);
 284     }
 285     assert(q <= next_boundary && n > next_boundary, "Consequence of loop");
 286     // [q, n) is the block that crosses the boundary.
 287     alloc_block_work2(&next_boundary, &next_index, q, n);
 288   }
 289   return forward_to_block_containing_addr_const(q, n, addr);
 290 }
 291 
 292 // Note that the committed size of the covered space may have changed,
 293 // so the table size might also wish to change.
 294 void G1BlockOffsetArray::resize(size_t new_word_size) {
 295   HeapWord* new_end = _bottom + new_word_size;
 296   _end = new_end;  // update _end


 348 
 349   index = end_index + 1;
 350   // Calculate threshold_ this way because end_index
 351   // may be the last valid index in the covered region.
 352   threshold = _array->address_for_index(end_index) + N_words;
 353   assert(threshold >= blk_end, "Incorrect offset threshold");
 354 
 355   // index_ and threshold_ updated here.
 356   *threshold_ = threshold;
 357   *index_ = index;
 358 
 359 #ifdef ASSERT
 360   // The offset can be 0 if the block starts on a boundary.  That
 361   // is checked by an assertion above.
 362   size_t start_index = _array->index_for(blk_start);
 363   HeapWord* boundary = _array->address_for_index(start_index);
 364   assert((_array->offset_array(orig_index) == 0 &&
 365          blk_start == boundary) ||
 366          (_array->offset_array(orig_index) > 0 &&
 367          _array->offset_array(orig_index) <= N_words),
 368          "offset array should have been set - "
 369          "orig_index offset: %u, "
 370          "blk_start: " PTR_FORMAT ", "
 371          "boundary: " PTR_FORMAT,
 372          (uint)_array->offset_array(orig_index),
 373          p2i(blk_start), p2i(boundary));
 374   for (size_t j = orig_index + 1; j <= end_index; j++) {
 375     assert(_array->offset_array(j) > 0 &&
 376            _array->offset_array(j) <=
 377              (u_char) (N_words+BlockOffsetArray::N_powers-1),
 378            "offset array should have been set - "
 379            "%u not > 0 OR %u not <= %u",
 380            (uint) _array->offset_array(j),
 381            (uint) _array->offset_array(j),
 382            (uint) (N_words+BlockOffsetArray::N_powers-1));
 383   }
 384 #endif
 385 }
 386 
 387 void G1BlockOffsetArray::verify() const {
 388   assert(gsp()->bottom() < gsp()->top(), "Only non-empty regions should be verified.");
 389   size_t start_card = _array->index_for(gsp()->bottom());
 390   size_t end_card = _array->index_for(gsp()->top() - 1);
 391 
 392   for (size_t current_card = start_card; current_card < end_card; current_card++) {
 393     u_char entry = _array->offset_array(current_card);
 394     if (entry < N_words) {
 395       // The entry should point to an object before the current card. Verify that
 396       // it is possible to walk from that object in to the current card by just
 397       // iterating over the objects following it.
 398       HeapWord* card_address = _array->address_for_index(current_card);
 399       HeapWord* obj_end = card_address - entry;
 400       while (obj_end < card_address) {
 401         HeapWord* obj = obj_end;
 402         size_t obj_size = block_size(obj);
 403         obj_end = obj + obj_size;
 404         guarantee(obj_end > obj && obj_end <= gsp()->top(),
 405                   "Invalid object end. obj: " PTR_FORMAT " obj_size: " SIZE_FORMAT " obj_end: " PTR_FORMAT " top: " PTR_FORMAT,
 406                   p2i(obj), obj_size, p2i(obj_end), p2i(gsp()->top()));
 407       }
 408     } else {
 409       // Because we refine the BOT based on which cards are dirty there is not much we can verify here.
 410       // We need to make sure that we are going backwards and that we don't pass the start of the
 411       // corresponding heap region. But that is about all we can verify.
 412       size_t backskip = BlockOffsetArray::entry_to_cards_back(entry);
 413       guarantee(backskip >= 1, "Must be going back at least one card.");
 414 
 415       size_t max_backskip = current_card - start_card;
 416       guarantee(backskip <= max_backskip,
 417                 "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT,
 418                 start_card, current_card, backskip);
 419 
 420       HeapWord* backskip_address = _array->address_for_index(current_card - backskip);
 421       guarantee(backskip_address >= gsp()->bottom(),
 422                 "Going backwards beyond bottom of the region: bottom: " PTR_FORMAT ", backskip_address: " PTR_FORMAT,
 423                 p2i(gsp()->bottom()), p2i(backskip_address));
 424     }
 425   }
 426 }
 427 
 428 #ifndef PRODUCT
 429 void
 430 G1BlockOffsetArray::print_on(outputStream* out) {
 431   size_t from_index = _array->index_for(_bottom);
 432   size_t to_index = _array->index_for(_end);
 433   out->print_cr(">> BOT for area [" PTR_FORMAT "," PTR_FORMAT ") "
 434                 "cards [" SIZE_FORMAT "," SIZE_FORMAT ")",
 435                 p2i(_bottom), p2i(_end), from_index, to_index);
 436   for (size_t i = from_index; i < to_index; ++i) {
 437     out->print_cr("  entry " SIZE_FORMAT_W(8) " | " PTR_FORMAT " : %3u",
 438                   i, p2i(_array->address_for_index(i)),
 439                   (uint) _array->offset_array(i));
 440   }
 441 }
 442 #endif // !PRODUCT
 443 


< prev index next >