1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/workgroup.hpp"
  27 #include "memory/allocation.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "runtime/atomic.inline.hpp"
  30 #include "runtime/os.hpp"
  31 #include "runtime/semaphore.hpp"
  32 #include "runtime/thread.inline.hpp"
  33 
  34 // Definitions of WorkGang methods.
  35 
  36 // The current implementation will exit if the allocation
  37 // of any worker fails.  Still, return a boolean so that
  38 // a future implementation can possibly do a partial
  39 // initialization of the workers and report such to the
  40 // caller.
  41 bool AbstractWorkGang::initialize_workers() {
  42 
  43   if (TraceWorkGang) {
  44     tty->print_cr("Constructing work gang %s with %d threads",
  45                   name(),
  46                   total_workers());
  47   }
  48   _workers = NEW_C_HEAP_ARRAY(AbstractGangWorker*, total_workers(), mtInternal);
  49   if (_workers == NULL) {
  50     vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
  51     return false;
  52   }
  53   os::ThreadType worker_type;
  54   if (are_ConcurrentGC_threads()) {
  55     worker_type = os::cgc_thread;
  56   } else {
  57     worker_type = os::pgc_thread;
  58   }
  59   for (uint worker = 0; worker < total_workers(); worker += 1) {
  60     AbstractGangWorker* new_worker = allocate_worker(worker);
  61     assert(new_worker != NULL, "Failed to allocate GangWorker");
  62     _workers[worker] = new_worker;
  63     if (new_worker == NULL || !os::create_thread(new_worker, worker_type)) {
  64       vm_exit_out_of_memory(0, OOM_MALLOC_ERROR,
  65               "Cannot create worker GC thread. Out of system resources.");
  66       return false;
  67     }
  68     if (!DisableStartThread) {
  69       os::start_thread(new_worker);
  70     }
  71   }
  72   return true;
  73 }
  74 
  75 AbstractGangWorker* AbstractWorkGang::worker(uint i) const {
  76   // Array index bounds checking.
  77   AbstractGangWorker* result = NULL;
  78   assert(_workers != NULL, "No workers for indexing");
  79   assert(i < total_workers(), "Worker index out of bounds");
  80   result = _workers[i];
  81   assert(result != NULL, "Indexing to null worker");
  82   return result;
  83 }
  84 
  85 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
  86   uint workers = total_workers();
  87   for (uint i = 0; i < workers; i++) {
  88     worker(i)->print_on(st);
  89     st->cr();
  90   }
  91 }
  92 
  93 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
  94   assert(tc != NULL, "Null ThreadClosure");
  95   uint workers = total_workers();
  96   for (uint i = 0; i < workers; i++) {
  97     tc->do_thread(worker(i));
  98   }
  99 }
 100 
 101 // WorkGang dispatcher implemented with semaphores.
 102 //
 103 // Semaphores don't require the worker threads to re-claim the lock when they wake up.
 104 // This helps lowering the latency when starting and stopping the worker threads.
 105 class SemaphoreGangTaskDispatcher : public GangTaskDispatcher {
 106   // The task currently being dispatched to the GangWorkers.
 107   AbstractGangTask* _task;
 108 
 109   volatile uint _started;
 110   volatile uint _not_finished;
 111 
 112   // Semaphore used to start the GangWorkers.
 113   Semaphore* _start_semaphore;
 114   // Semaphore used to notify the coordinator that all workers are done.
 115   Semaphore* _end_semaphore;
 116 
 117 public:
 118   SemaphoreGangTaskDispatcher() :
 119       _task(NULL),
 120       _started(0),
 121       _not_finished(0),
 122       _start_semaphore(new Semaphore()),
 123       _end_semaphore(new Semaphore())
 124 { }
 125 
 126   ~SemaphoreGangTaskDispatcher() {
 127     delete _start_semaphore;
 128     delete _end_semaphore;
 129   }
 130 
 131   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
 132     // No workers are allowed to read the state variables until they have been signaled.
 133     _task         = task;
 134     _not_finished = num_workers;
 135 
 136     // Dispatch 'num_workers' number of tasks.
 137     _start_semaphore->signal(num_workers);
 138 
 139     // Wait for the last worker to signal the coordinator.
 140     _end_semaphore->wait();
 141 
 142     // No workers are allowed to read the state variables after the coordinator has been signaled.
 143     assert(_not_finished == 0, "%d not finished workers?", _not_finished);
 144     _task    = NULL;
 145     _started = 0;
 146 
 147   }
 148 
 149   WorkData worker_wait_for_task() {
 150     // Wait for the coordinator to dispatch a task.
 151     _start_semaphore->wait();
 152 
 153     uint num_started = (uint) Atomic::add(1, (volatile jint*)&_started);
 154 
 155     // Subtract one to get a zero-indexed worker id.
 156     uint worker_id = num_started - 1;
 157 
 158     return WorkData(_task, worker_id);
 159   }
 160 
 161   void worker_done_with_task() {
 162     // Mark that the worker is done with the task.
 163     // The worker is not allowed to read the state variables after this line.
 164     uint not_finished = (uint) Atomic::add(-1, (volatile jint*)&_not_finished);
 165 
 166     // The last worker signals to the coordinator that all work is completed.
 167     if (not_finished == 0) {
 168       _end_semaphore->signal();
 169     }
 170   }
 171 };
 172 
 173 class MutexGangTaskDispatcher : public GangTaskDispatcher {
 174   AbstractGangTask* _task;
 175 
 176   volatile uint _started;
 177   volatile uint _finished;
 178   volatile uint _num_workers;
 179 
 180   Monitor* _monitor;
 181 
 182  public:
 183   MutexGangTaskDispatcher()
 184       : _task(NULL),
 185         _monitor(new Monitor(Monitor::leaf, "WorkGang dispatcher lock", false, Monitor::_safepoint_check_never)),
 186         _started(0),
 187         _finished(0),
 188         _num_workers(0) {}
 189 
 190   ~MutexGangTaskDispatcher() {
 191     delete _monitor;
 192   }
 193 
 194   void coordinator_execute_on_workers(AbstractGangTask* task, uint num_workers) {
 195     MutexLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 196 
 197     _task        = task;
 198     _num_workers = num_workers;
 199 
 200     // Tell the workers to get to work.
 201     _monitor->notify_all();
 202 
 203     // Wait for them to finish.
 204     while (_finished < _num_workers) {
 205       _monitor->wait(/* no_safepoint_check */ true);
 206     }
 207 
 208     _task        = NULL;
 209     _num_workers = 0;
 210     _started     = 0;
 211     _finished    = 0;
 212   }
 213 
 214   WorkData worker_wait_for_task() {
 215     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 216 
 217     while (_num_workers == 0 || _started == _num_workers) {
 218       _monitor->wait(/* no_safepoint_check */ true);
 219     }
 220 
 221     _started++;
 222 
 223     // Subtract one to get a zero-indexed worker id.
 224     uint worker_id = _started - 1;
 225 
 226     return WorkData(_task, worker_id);
 227   }
 228 
 229   void worker_done_with_task() {
 230     MonitorLockerEx ml(_monitor, Mutex::_no_safepoint_check_flag);
 231 
 232     _finished++;
 233 
 234     if (_finished == _num_workers) {
 235       // This will wake up all workers and not only the coordinator.
 236       _monitor->notify_all();
 237     }
 238   }
 239 };
 240 
 241 static GangTaskDispatcher* create_dispatcher() {
 242   if (UseSemaphoreGCThreadsSynchronization) {
 243     return new SemaphoreGangTaskDispatcher();
 244   }
 245 
 246   return new MutexGangTaskDispatcher();
 247 }
 248 
 249 WorkGang::WorkGang(const char* name,
 250                    uint  workers,
 251                    bool  are_GC_task_threads,
 252                    bool  are_ConcurrentGC_threads) :
 253     AbstractWorkGang(name, workers, are_GC_task_threads, are_ConcurrentGC_threads),
 254     _dispatcher(create_dispatcher())
 255 { }
 256 
 257 AbstractGangWorker* WorkGang::allocate_worker(uint worker_id) {
 258   return new GangWorker(this, worker_id);
 259 }
 260 
 261 void WorkGang::run_task(AbstractGangTask* task) {
 262   _dispatcher->coordinator_execute_on_workers(task, active_workers());
 263 }
 264 
 265 AbstractGangWorker::AbstractGangWorker(AbstractWorkGang* gang, uint id) {
 266   _gang = gang;
 267   set_id(id);
 268   set_name("%s#%d", gang->name(), id);
 269 }
 270 
 271 void AbstractGangWorker::run() {
 272   initialize();
 273   loop();
 274 }
 275 
 276 void AbstractGangWorker::initialize() {
 277   this->initialize_thread_local_storage();
 278   this->record_stack_base_and_size();
 279   this->initialize_named_thread();
 280   assert(_gang != NULL, "No gang to run in");
 281   os::set_priority(this, NearMaxPriority);
 282   if (TraceWorkGang) {
 283     tty->print_cr("Running gang worker for gang %s id %u",
 284                   gang()->name(), id());
 285   }
 286   // The VM thread should not execute here because MutexLocker's are used
 287   // as (opposed to MutexLockerEx's).
 288   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
 289          " of a work gang");
 290 }
 291 
 292 bool AbstractGangWorker::is_GC_task_thread() const {
 293   return gang()->are_GC_task_threads();
 294 }
 295 
 296 bool AbstractGangWorker::is_ConcurrentGC_thread() const {
 297   return gang()->are_ConcurrentGC_threads();
 298 }
 299 
 300 void AbstractGangWorker::print_on(outputStream* st) const {
 301   st->print("\"%s\" ", name());
 302   Thread::print_on(st);
 303   st->cr();
 304 }
 305 
 306 WorkData GangWorker::wait_for_task() {
 307   return gang()->dispatcher()->worker_wait_for_task();
 308 }
 309 
 310 void GangWorker::signal_task_done() {
 311   gang()->dispatcher()->worker_done_with_task();
 312 }
 313 
 314 void GangWorker::print_task_started(WorkData data) {
 315   if (TraceWorkGang) {
 316     tty->print_cr("Running work gang %s task %s worker %u", name(), data._task->name(), data._worker_id);
 317   }
 318 }
 319 
 320 void GangWorker::print_task_done(WorkData data) {
 321   if (TraceWorkGang) {
 322     tty->print_cr("\nFinished work gang %s task %s worker %u", name(), data._task->name(), data._worker_id);
 323     Thread* me = Thread::current();
 324     tty->print_cr("  T: " PTR_FORMAT "  VM_thread: %d", p2i(me), me->is_VM_thread());
 325   }
 326 }
 327 
 328 void GangWorker::run_task(WorkData data) {
 329   print_task_started(data);
 330 
 331   data._task->work(data._worker_id);
 332 
 333   print_task_done(data);
 334 }
 335 
 336 void GangWorker::loop() {
 337   while (true) {
 338     WorkData data = wait_for_task();
 339 
 340     run_task(data);
 341 
 342     signal_task_done();
 343   }
 344 }
 345 
 346 // *** WorkGangBarrierSync
 347 
 348 WorkGangBarrierSync::WorkGangBarrierSync()
 349   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
 350              Monitor::_safepoint_check_never),
 351     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
 352 }
 353 
 354 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
 355   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
 356     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
 357 }
 358 
 359 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
 360   _n_workers    = n_workers;
 361   _n_completed  = 0;
 362   _should_reset = false;
 363   _aborted      = false;
 364 }
 365 
 366 bool WorkGangBarrierSync::enter() {
 367   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 368   if (should_reset()) {
 369     // The should_reset() was set and we are the first worker to enter
 370     // the sync barrier. We will zero the n_completed() count which
 371     // effectively resets the barrier.
 372     zero_completed();
 373     set_should_reset(false);
 374   }
 375   inc_completed();
 376   if (n_completed() == n_workers()) {
 377     // At this point we would like to reset the barrier to be ready in
 378     // case it is used again. However, we cannot set n_completed() to
 379     // 0, even after the notify_all(), given that some other workers
 380     // might still be waiting for n_completed() to become ==
 381     // n_workers(). So, if we set n_completed() to 0, those workers
 382     // will get stuck (as they will wake up, see that n_completed() !=
 383     // n_workers() and go back to sleep). Instead, we raise the
 384     // should_reset() flag and the barrier will be reset the first
 385     // time a worker enters it again.
 386     set_should_reset(true);
 387     monitor()->notify_all();
 388   } else {
 389     while (n_completed() != n_workers() && !aborted()) {
 390       monitor()->wait(/* no_safepoint_check */ true);
 391     }
 392   }
 393   return !aborted();
 394 }
 395 
 396 void WorkGangBarrierSync::abort() {
 397   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 398   set_aborted();
 399   monitor()->notify_all();
 400 }
 401 
 402 // SubTasksDone functions.
 403 
 404 SubTasksDone::SubTasksDone(uint n) :
 405   _n_tasks(n), _tasks(NULL) {
 406   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
 407   guarantee(_tasks != NULL, "alloc failure");
 408   clear();
 409 }
 410 
 411 bool SubTasksDone::valid() {
 412   return _tasks != NULL;
 413 }
 414 
 415 void SubTasksDone::clear() {
 416   for (uint i = 0; i < _n_tasks; i++) {
 417     _tasks[i] = 0;
 418   }
 419   _threads_completed = 0;
 420 #ifdef ASSERT
 421   _claimed = 0;
 422 #endif
 423 }
 424 
 425 bool SubTasksDone::is_task_claimed(uint t) {
 426   assert(t < _n_tasks, "bad task id.");
 427   uint old = _tasks[t];
 428   if (old == 0) {
 429     old = Atomic::cmpxchg(1, &_tasks[t], 0);
 430   }
 431   assert(_tasks[t] == 1, "What else?");
 432   bool res = old != 0;
 433 #ifdef ASSERT
 434   if (!res) {
 435     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
 436     Atomic::inc((volatile jint*) &_claimed);
 437   }
 438 #endif
 439   return res;
 440 }
 441 
 442 void SubTasksDone::all_tasks_completed(uint n_threads) {
 443   jint observed = _threads_completed;
 444   jint old;
 445   do {
 446     old = observed;
 447     observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
 448   } while (observed != old);
 449   // If this was the last thread checking in, clear the tasks.
 450   uint adjusted_thread_count = (n_threads == 0 ? 1 : n_threads);
 451   if (observed + 1 == (jint)adjusted_thread_count) {
 452     clear();
 453   }
 454 }
 455 
 456 
 457 SubTasksDone::~SubTasksDone() {
 458   if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks);
 459 }
 460 
 461 // *** SequentialSubTasksDone
 462 
 463 void SequentialSubTasksDone::clear() {
 464   _n_tasks   = _n_claimed   = 0;
 465   _n_threads = _n_completed = 0;
 466 }
 467 
 468 bool SequentialSubTasksDone::valid() {
 469   return _n_threads > 0;
 470 }
 471 
 472 bool SequentialSubTasksDone::is_task_claimed(uint& t) {
 473   uint* n_claimed_ptr = &_n_claimed;
 474   t = *n_claimed_ptr;
 475   while (t < _n_tasks) {
 476     jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t);
 477     if (res == (jint)t) {
 478       return false;
 479     }
 480     t = *n_claimed_ptr;
 481   }
 482   return true;
 483 }
 484 
 485 bool SequentialSubTasksDone::all_tasks_completed() {
 486   uint* n_completed_ptr = &_n_completed;
 487   uint  complete        = *n_completed_ptr;
 488   while (true) {
 489     uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete);
 490     if (res == complete) {
 491       break;
 492     }
 493     complete = res;
 494   }
 495   if (complete+1 == _n_threads) {
 496     clear();
 497     return true;
 498   }
 499   return false;
 500 }
 501 
 502 bool FreeIdSet::_stat_init = false;
 503 FreeIdSet* FreeIdSet::_sets[NSets];
 504 bool FreeIdSet::_safepoint;
 505 
 506 FreeIdSet::FreeIdSet(int sz, Monitor* mon) :
 507   _sz(sz), _mon(mon), _hd(0), _waiters(0), _index(-1), _claimed(0)
 508 {
 509   _ids = NEW_C_HEAP_ARRAY(int, sz, mtInternal);
 510   for (int i = 0; i < sz; i++) _ids[i] = i+1;
 511   _ids[sz-1] = end_of_list; // end of list.
 512   if (_stat_init) {
 513     for (int j = 0; j < NSets; j++) _sets[j] = NULL;
 514     _stat_init = true;
 515   }
 516   // Add to sets.  (This should happen while the system is still single-threaded.)
 517   for (int j = 0; j < NSets; j++) {
 518     if (_sets[j] == NULL) {
 519       _sets[j] = this;
 520       _index = j;
 521       break;
 522     }
 523   }
 524   guarantee(_index != -1, "Too many FreeIdSets in use!");
 525 }
 526 
 527 FreeIdSet::~FreeIdSet() {
 528   _sets[_index] = NULL;
 529   FREE_C_HEAP_ARRAY(int, _ids);
 530 }
 531 
 532 void FreeIdSet::set_safepoint(bool b) {
 533   _safepoint = b;
 534   if (b) {
 535     for (int j = 0; j < NSets; j++) {
 536       if (_sets[j] != NULL && _sets[j]->_waiters > 0) {
 537         Monitor* mon = _sets[j]->_mon;
 538         mon->lock_without_safepoint_check();
 539         mon->notify_all();
 540         mon->unlock();
 541       }
 542     }
 543   }
 544 }
 545 
 546 #define FID_STATS 0
 547 
 548 int FreeIdSet::claim_par_id() {
 549 #if FID_STATS
 550   thread_t tslf = thr_self();
 551   tty->print("claim_par_id[%d]: sz = %d, claimed = %d\n", tslf, _sz, _claimed);
 552 #endif
 553   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 554   while (!_safepoint && _hd == end_of_list) {
 555     _waiters++;
 556 #if FID_STATS
 557     if (_waiters > 5) {
 558       tty->print("claim_par_id waiting[%d]: %d waiters, %d claimed.\n",
 559                  tslf, _waiters, _claimed);
 560     }
 561 #endif
 562     _mon->wait(Mutex::_no_safepoint_check_flag);
 563     _waiters--;
 564   }
 565   if (_hd == end_of_list) {
 566 #if FID_STATS
 567     tty->print("claim_par_id[%d]: returning EOL.\n", tslf);
 568 #endif
 569     return -1;
 570   } else {
 571     int res = _hd;
 572     _hd = _ids[res];
 573     _ids[res] = claimed;  // For debugging.
 574     _claimed++;
 575 #if FID_STATS
 576     tty->print("claim_par_id[%d]: returning %d, claimed = %d.\n",
 577                tslf, res, _claimed);
 578 #endif
 579     return res;
 580   }
 581 }
 582 
 583 bool FreeIdSet::claim_perm_id(int i) {
 584   assert(0 <= i && i < _sz, "Out of range.");
 585   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 586   int prev = end_of_list;
 587   int cur = _hd;
 588   while (cur != end_of_list) {
 589     if (cur == i) {
 590       if (prev == end_of_list) {
 591         _hd = _ids[cur];
 592       } else {
 593         _ids[prev] = _ids[cur];
 594       }
 595       _ids[cur] = claimed;
 596       _claimed++;
 597       return true;
 598     } else {
 599       prev = cur;
 600       cur = _ids[cur];
 601     }
 602   }
 603   return false;
 604 
 605 }
 606 
 607 void FreeIdSet::release_par_id(int id) {
 608   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 609   assert(_ids[id] == claimed, "Precondition.");
 610   _ids[id] = _hd;
 611   _hd = id;
 612   _claimed--;
 613 #if FID_STATS
 614   tty->print("[%d] release_par_id(%d), waiters =%d,  claimed = %d.\n",
 615              thr_self(), id, _waiters, _claimed);
 616 #endif
 617   if (_waiters > 0)
 618     // Notify all would be safer, but this is OK, right?
 619     _mon->notify_all();
 620 }