1 /*
   2  * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/methodCounters.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/objArrayOop.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/atomic.inline.hpp"
  42 #include "runtime/biasedLocking.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/orderAccess.inline.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "runtime/threadCritical.hpp"
  49 #include "utilities/exceptions.hpp"
  50 
  51 // no precompiled headers
  52 #ifdef CC_INTERP
  53 
  54 /*
  55  * USELABELS - If using GCC, then use labels for the opcode dispatching
  56  * rather -then a switch statement. This improves performance because it
  57  * gives us the opportunity to have the instructions that calculate the
  58  * next opcode to jump to be intermixed with the rest of the instructions
  59  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  60  */
  61 #undef USELABELS
  62 #ifdef __GNUC__
  63 /*
  64    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  65    don't use the computed goto approach.
  66 */
  67 #ifndef ASSERT
  68 #define USELABELS
  69 #endif
  70 #endif
  71 
  72 #undef CASE
  73 #ifdef USELABELS
  74 #define CASE(opcode) opc ## opcode
  75 #define DEFAULT opc_default
  76 #else
  77 #define CASE(opcode) case Bytecodes:: opcode
  78 #define DEFAULT default
  79 #endif
  80 
  81 /*
  82  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  83  * opcode before going back to the top of the while loop, rather then having
  84  * the top of the while loop handle it. This provides a better opportunity
  85  * for instruction scheduling. Some compilers just do this prefetch
  86  * automatically. Some actually end up with worse performance if you
  87  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  88  */
  89 #undef PREFETCH_OPCCODE
  90 #define PREFETCH_OPCCODE
  91 
  92 /*
  93   Interpreter safepoint: it is expected that the interpreter will have no live
  94   handles of its own creation live at an interpreter safepoint. Therefore we
  95   run a HandleMarkCleaner and trash all handles allocated in the call chain
  96   since the JavaCalls::call_helper invocation that initiated the chain.
  97   There really shouldn't be any handles remaining to trash but this is cheap
  98   in relation to a safepoint.
  99 */
 100 #define SAFEPOINT                                                                 \
 101     if ( SafepointSynchronize::is_synchronizing()) {                              \
 102         {                                                                         \
 103           /* zap freed handles rather than GC'ing them */                         \
 104           HandleMarkCleaner __hmc(THREAD);                                        \
 105         }                                                                         \
 106         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 107     }
 108 
 109 /*
 110  * VM_JAVA_ERROR - Macro for throwing a java exception from
 111  * the interpreter loop. Should really be a CALL_VM but there
 112  * is no entry point to do the transition to vm so we just
 113  * do it by hand here.
 114  */
 115 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 116     DECACHE_STATE();                                                              \
 117     SET_LAST_JAVA_FRAME();                                                        \
 118     {                                                                             \
 119        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 120        ThreadInVMfromJava trans(THREAD);                                          \
 121        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 122     }                                                                             \
 123     RESET_LAST_JAVA_FRAME();                                                      \
 124     CACHE_STATE();
 125 
 126 // Normal throw of a java error.
 127 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 128     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 129     goto handle_exception;
 130 
 131 #ifdef PRODUCT
 132 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 133 #else
 134 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 135 {                                                                                                    \
 136     BytecodeCounter::_counter_value++;                                                               \
 137     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 138     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 139     if (TraceBytecodes) {                                                                            \
 140       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 141                                    topOfStack[Interpreter::expr_index_at(1)],   \
 142                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 143                                    handle_exception);                      \
 144     }                                                                      \
 145 }
 146 #endif
 147 
 148 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 149 #ifdef VM_JVMTI
 150 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 151    incremented. JvmtiExport::at_single_stepping_point() may cause a
 152    breakpoint opcode to get inserted at the current PC to allow the
 153    debugger to coalesce single-step events.
 154 
 155    As a result if we call at_single_stepping_point() we refetch opcode
 156    to get the current opcode. This will override any other prefetching
 157    that might have occurred.
 158 */
 159 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 160 {                                                                                \
 161       if (_jvmti_interp_events) {                                                \
 162         if (JvmtiExport::should_post_single_step()) {                            \
 163           DECACHE_STATE();                                                       \
 164           SET_LAST_JAVA_FRAME();                                                 \
 165           ThreadInVMfromJava trans(THREAD);                                      \
 166           JvmtiExport::at_single_stepping_point(THREAD,                          \
 167                                           istate->method(),                      \
 168                                           pc);                                   \
 169           RESET_LAST_JAVA_FRAME();                                               \
 170           CACHE_STATE();                                                         \
 171           if (THREAD->pop_frame_pending() &&                                     \
 172               !THREAD->pop_frame_in_process()) {                                 \
 173             goto handle_Pop_Frame;                                               \
 174           }                                                                      \
 175           if (THREAD->jvmti_thread_state() &&                                    \
 176               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 177             goto handle_Early_Return;                                            \
 178           }                                                                      \
 179           opcode = *pc;                                                          \
 180         }                                                                        \
 181       }                                                                          \
 182 }
 183 #else
 184 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 185 #endif
 186 
 187 /*
 188  * CONTINUE - Macro for executing the next opcode.
 189  */
 190 #undef CONTINUE
 191 #ifdef USELABELS
 192 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 193 // initialization (which is is the initialization of the table pointer...)
 194 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 195 #define CONTINUE {                              \
 196         opcode = *pc;                           \
 197         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 198         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 199         DISPATCH(opcode);                       \
 200     }
 201 #else
 202 #ifdef PREFETCH_OPCCODE
 203 #define CONTINUE {                              \
 204         opcode = *pc;                           \
 205         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 206         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 207         continue;                               \
 208     }
 209 #else
 210 #define CONTINUE {                              \
 211         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 212         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 213         continue;                               \
 214     }
 215 #endif
 216 #endif
 217 
 218 
 219 #define UPDATE_PC(opsize) {pc += opsize; }
 220 /*
 221  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 222  */
 223 #undef UPDATE_PC_AND_TOS
 224 #define UPDATE_PC_AND_TOS(opsize, stack) \
 225     {pc += opsize; MORE_STACK(stack); }
 226 
 227 /*
 228  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 229  * and executing the next opcode. It's somewhat similar to the combination
 230  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 231  */
 232 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 233 #ifdef USELABELS
 234 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 235         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 236         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 237         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 238         DISPATCH(opcode);                                       \
 239     }
 240 
 241 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 242         pc += opsize; opcode = *pc;                             \
 243         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 244         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 245         DISPATCH(opcode);                                       \
 246     }
 247 #else
 248 #ifdef PREFETCH_OPCCODE
 249 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 250         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 251         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 252         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 253         goto do_continue;                                       \
 254     }
 255 
 256 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 257         pc += opsize; opcode = *pc;                             \
 258         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 259         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 260         goto do_continue;                                       \
 261     }
 262 #else
 263 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 264         pc += opsize; MORE_STACK(stack);                \
 265         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 266         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 267         goto do_continue;                               \
 268     }
 269 
 270 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 271         pc += opsize;                                   \
 272         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 273         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 274         goto do_continue;                               \
 275     }
 276 #endif /* PREFETCH_OPCCODE */
 277 #endif /* USELABELS */
 278 
 279 // About to call a new method, update the save the adjusted pc and return to frame manager
 280 #define UPDATE_PC_AND_RETURN(opsize)  \
 281    DECACHE_TOS();                     \
 282    istate->set_bcp(pc+opsize);        \
 283    return;
 284 
 285 
 286 #define METHOD istate->method()
 287 #define GET_METHOD_COUNTERS(res)    \
 288   res = METHOD->method_counters();  \
 289   if (res == NULL) {                \
 290     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 291   }
 292 
 293 #define OSR_REQUEST(res, branch_pc) \
 294             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 295 /*
 296  * For those opcodes that need to have a GC point on a backwards branch
 297  */
 298 
 299 // Backedge counting is kind of strange. The asm interpreter will increment
 300 // the backedge counter as a separate counter but it does it's comparisons
 301 // to the sum (scaled) of invocation counter and backedge count to make
 302 // a decision. Seems kind of odd to sum them together like that
 303 
 304 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 305 
 306 
 307 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 308     if ((skip) <= 0) {                                                                              \
 309       MethodCounters* mcs;                                                                          \
 310       GET_METHOD_COUNTERS(mcs);                                                                     \
 311       if (UseLoopCounter) {                                                                         \
 312         bool do_OSR = UseOnStackReplacement;                                                        \
 313         mcs->backedge_counter()->increment();                                                       \
 314         if (ProfileInterpreter) {                                                                   \
 315           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 316           /* Check for overflow against MDO count. */                                               \
 317           do_OSR = do_OSR                                                                           \
 318             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 319             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 320             /* from the methodDataOop, which value does not get reset on   */                       \
 321             /* the call to frequency_counter_overflow(). To avoid          */                       \
 322             /* excessive calls to the overflow routine while the method is */                       \
 323             /* being compiled, add a second test to make sure the overflow */                       \
 324             /* function is called only once every overflow_frequency.      */                       \
 325             && (!(mdo_last_branch_taken_count & 1023));                                             \
 326         } else {                                                                                    \
 327           /* check for overflow of backedge counter */                                              \
 328           do_OSR = do_OSR                                                                           \
 329             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 330         }                                                                                           \
 331         if (do_OSR) {                                                                               \
 332           nmethod* osr_nmethod;                                                                     \
 333           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 334           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 335             intptr_t* buf;                                                                          \
 336             /* Call OSR migration with last java frame only, no checks. */                          \
 337             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 338             istate->set_msg(do_osr);                                                                \
 339             istate->set_osr_buf((address)buf);                                                      \
 340             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 341             return;                                                                                 \
 342           }                                                                                         \
 343         }                                                                                           \
 344       }  /* UseCompiler ... */                                                                      \
 345       SAFEPOINT;                                                                                    \
 346     }
 347 
 348 /*
 349  * For those opcodes that need to have a GC point on a backwards branch
 350  */
 351 
 352 /*
 353  * Macros for caching and flushing the interpreter state. Some local
 354  * variables need to be flushed out to the frame before we do certain
 355  * things (like pushing frames or becomming gc safe) and some need to
 356  * be recached later (like after popping a frame). We could use one
 357  * macro to cache or decache everything, but this would be less then
 358  * optimal because we don't always need to cache or decache everything
 359  * because some things we know are already cached or decached.
 360  */
 361 #undef DECACHE_TOS
 362 #undef CACHE_TOS
 363 #undef CACHE_PREV_TOS
 364 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 365 
 366 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 367 
 368 #undef DECACHE_PC
 369 #undef CACHE_PC
 370 #define DECACHE_PC()    istate->set_bcp(pc);
 371 #define CACHE_PC()      pc = istate->bcp();
 372 #define CACHE_CP()      cp = istate->constants();
 373 #define CACHE_LOCALS()  locals = istate->locals();
 374 #undef CACHE_FRAME
 375 #define CACHE_FRAME()
 376 
 377 // BCI() returns the current bytecode-index.
 378 #undef  BCI
 379 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 380 
 381 /*
 382  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 383  * passed is a null ref.
 384  * On some architectures/platforms it should be possible to do this implicitly
 385  */
 386 #undef CHECK_NULL
 387 #define CHECK_NULL(obj_)                                                                         \
 388         if ((obj_) == NULL) {                                                                    \
 389           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 390         }                                                                                        \
 391         VERIFY_OOP(obj_)
 392 
 393 #define VMdoubleConstZero() 0.0
 394 #define VMdoubleConstOne() 1.0
 395 #define VMlongConstZero() (max_jlong-max_jlong)
 396 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 397 
 398 /*
 399  * Alignment
 400  */
 401 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 402 
 403 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 404 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 405 
 406 // Reload interpreter state after calling the VM or a possible GC
 407 #define CACHE_STATE()   \
 408         CACHE_TOS();    \
 409         CACHE_PC();     \
 410         CACHE_CP();     \
 411         CACHE_LOCALS();
 412 
 413 // Call the VM with last java frame only.
 414 #define CALL_VM_NAKED_LJF(func)                                    \
 415         DECACHE_STATE();                                           \
 416         SET_LAST_JAVA_FRAME();                                     \
 417         func;                                                      \
 418         RESET_LAST_JAVA_FRAME();                                   \
 419         CACHE_STATE();
 420 
 421 // Call the VM. Don't check for pending exceptions.
 422 #define CALL_VM_NOCHECK(func)                                      \
 423         CALL_VM_NAKED_LJF(func)                                    \
 424         if (THREAD->pop_frame_pending() &&                         \
 425             !THREAD->pop_frame_in_process()) {                     \
 426           goto handle_Pop_Frame;                                   \
 427         }                                                          \
 428         if (THREAD->jvmti_thread_state() &&                        \
 429             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 430           goto handle_Early_Return;                                \
 431         }
 432 
 433 // Call the VM and check for pending exceptions
 434 #define CALL_VM(func, label) {                                     \
 435           CALL_VM_NOCHECK(func);                                   \
 436           if (THREAD->has_pending_exception()) goto label;         \
 437         }
 438 
 439 /*
 440  * BytecodeInterpreter::run(interpreterState istate)
 441  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 442  *
 443  * The real deal. This is where byte codes actually get interpreted.
 444  * Basically it's a big while loop that iterates until we return from
 445  * the method passed in.
 446  *
 447  * The runWithChecks is used if JVMTI is enabled.
 448  *
 449  */
 450 #if defined(VM_JVMTI)
 451 void
 452 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 453 #else
 454 void
 455 BytecodeInterpreter::run(interpreterState istate) {
 456 #endif
 457 
 458   // In order to simplify some tests based on switches set at runtime
 459   // we invoke the interpreter a single time after switches are enabled
 460   // and set simpler to to test variables rather than method calls or complex
 461   // boolean expressions.
 462 
 463   static int initialized = 0;
 464   static int checkit = 0;
 465   static intptr_t* c_addr = NULL;
 466   static intptr_t  c_value;
 467 
 468   if (checkit && *c_addr != c_value) {
 469     os::breakpoint();
 470   }
 471 #ifdef VM_JVMTI
 472   static bool _jvmti_interp_events = 0;
 473 #endif
 474 
 475   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 476 
 477 #ifdef ASSERT
 478   if (istate->_msg != initialize) {
 479     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 480 #ifndef SHARK
 481     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 482 #endif // !SHARK
 483   }
 484   // Verify linkages.
 485   interpreterState l = istate;
 486   do {
 487     assert(l == l->_self_link, "bad link");
 488     l = l->_prev_link;
 489   } while (l != NULL);
 490   // Screwups with stack management usually cause us to overwrite istate
 491   // save a copy so we can verify it.
 492   interpreterState orig = istate;
 493 #endif
 494 
 495   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 496   register address          pc = istate->bcp();
 497   register jubyte opcode;
 498   register intptr_t*        locals = istate->locals();
 499   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 500 #ifdef LOTS_OF_REGS
 501   register JavaThread*      THREAD = istate->thread();
 502 #else
 503 #undef THREAD
 504 #define THREAD istate->thread()
 505 #endif
 506 
 507 #ifdef USELABELS
 508   const static void* const opclabels_data[256] = {
 509 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 510 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 511 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 512 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 513 
 514 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 515 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 516 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 517 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 518 
 519 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 520 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 521 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 522 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 523 
 524 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 525 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 526 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 527 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 528 
 529 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 530 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 531 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 532 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 533 
 534 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 535 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 536 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 537 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 538 
 539 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 540 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 541 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 542 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 543 
 544 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 545 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 546 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 547 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 548 
 549 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 550 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 551 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 552 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 553 
 554 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 555 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 556 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 557 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 558 
 559 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 560 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 561 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 562 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 563 
 564 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 565 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 566 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 567 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 568 
 569 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 570 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 571 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 572 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 573 
 574 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 575 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 
 579 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 580 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,     &&opc_return_register_finalizer,
 581 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,         &&opc_default,
 582 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 583 
 584 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 585 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 586 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 588   };
 589   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 590 #endif /* USELABELS */
 591 
 592 #ifdef ASSERT
 593   // this will trigger a VERIFY_OOP on entry
 594   if (istate->msg() != initialize && ! METHOD->is_static()) {
 595     oop rcvr = LOCALS_OBJECT(0);
 596     VERIFY_OOP(rcvr);
 597   }
 598 #endif
 599 // #define HACK
 600 #ifdef HACK
 601   bool interesting = false;
 602 #endif // HACK
 603 
 604   /* QQQ this should be a stack method so we don't know actual direction */
 605   guarantee(istate->msg() == initialize ||
 606          topOfStack >= istate->stack_limit() &&
 607          topOfStack < istate->stack_base(),
 608          "Stack top out of range");
 609 
 610 #ifdef CC_INTERP_PROFILE
 611   // MethodData's last branch taken count.
 612   uint mdo_last_branch_taken_count = 0;
 613 #else
 614   const uint mdo_last_branch_taken_count = 0;
 615 #endif
 616 
 617   switch (istate->msg()) {
 618     case initialize: {
 619       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 620       _compiling = (UseCompiler || CountCompiledCalls);
 621 #ifdef VM_JVMTI
 622       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 623 #endif
 624       return;
 625     }
 626     break;
 627     case method_entry: {
 628       THREAD->set_do_not_unlock();
 629       // count invocations
 630       assert(initialized, "Interpreter not initialized");
 631       if (_compiling) {
 632         MethodCounters* mcs;
 633         GET_METHOD_COUNTERS(mcs);
 634         if (ProfileInterpreter) {
 635           METHOD->increment_interpreter_invocation_count(THREAD);
 636         }
 637         mcs->invocation_counter()->increment();
 638         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 639           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 640           // We no longer retry on a counter overflow.
 641         }
 642         // Get or create profile data. Check for pending (async) exceptions.
 643         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 644         SAFEPOINT;
 645       }
 646 
 647       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 648         // initialize
 649         os::breakpoint();
 650       }
 651 
 652 #ifdef HACK
 653       {
 654         ResourceMark rm;
 655         char *method_name = istate->method()->name_and_sig_as_C_string();
 656         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 657           tty->print_cr("entering: depth %d bci: %d",
 658                          (istate->_stack_base - istate->_stack),
 659                          istate->_bcp - istate->_method->code_base());
 660           interesting = true;
 661         }
 662       }
 663 #endif // HACK
 664 
 665       // Lock method if synchronized.
 666       if (METHOD->is_synchronized()) {
 667         // oop rcvr = locals[0].j.r;
 668         oop rcvr;
 669         if (METHOD->is_static()) {
 670           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 671         } else {
 672           rcvr = LOCALS_OBJECT(0);
 673           VERIFY_OOP(rcvr);
 674         }
 675         // The initial monitor is ours for the taking.
 676         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 677         BasicObjectLock* mon = &istate->monitor_base()[-1];
 678         mon->set_obj(rcvr);
 679         bool success = false;
 680         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 681         markOop mark = rcvr->mark();
 682         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 683         // Implies UseBiasedLocking.
 684         if (mark->has_bias_pattern()) {
 685           uintptr_t thread_ident;
 686           uintptr_t anticipated_bias_locking_value;
 687           thread_ident = (uintptr_t)istate->thread();
 688           anticipated_bias_locking_value =
 689             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 690             ~((uintptr_t) markOopDesc::age_mask_in_place);
 691 
 692           if (anticipated_bias_locking_value == 0) {
 693             // Already biased towards this thread, nothing to do.
 694             if (PrintBiasedLockingStatistics) {
 695               (* BiasedLocking::biased_lock_entry_count_addr())++;
 696             }
 697             success = true;
 698           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 699             // Try to revoke bias.
 700             markOop header = rcvr->klass()->prototype_header();
 701             if (hash != markOopDesc::no_hash) {
 702               header = header->copy_set_hash(hash);
 703             }
 704             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 705               if (PrintBiasedLockingStatistics)
 706                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 707             }
 708           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 709             // Try to rebias.
 710             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 711             if (hash != markOopDesc::no_hash) {
 712               new_header = new_header->copy_set_hash(hash);
 713             }
 714             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 715               if (PrintBiasedLockingStatistics) {
 716                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 717               }
 718             } else {
 719               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 720             }
 721             success = true;
 722           } else {
 723             // Try to bias towards thread in case object is anonymously biased.
 724             markOop header = (markOop) ((uintptr_t) mark &
 725                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 726                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 727             if (hash != markOopDesc::no_hash) {
 728               header = header->copy_set_hash(hash);
 729             }
 730             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 731             // Debugging hint.
 732             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 733             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 734               if (PrintBiasedLockingStatistics) {
 735                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 736               }
 737             } else {
 738               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 739             }
 740             success = true;
 741           }
 742         }
 743 
 744         // Traditional lightweight locking.
 745         if (!success) {
 746           markOop displaced = rcvr->mark()->set_unlocked();
 747           mon->lock()->set_displaced_header(displaced);
 748           bool call_vm = UseHeavyMonitors;
 749           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 750             // Is it simple recursive case?
 751             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 752               mon->lock()->set_displaced_header(NULL);
 753             } else {
 754               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 755             }
 756           }
 757         }
 758       }
 759       THREAD->clr_do_not_unlock();
 760 
 761       // Notify jvmti
 762 #ifdef VM_JVMTI
 763       if (_jvmti_interp_events) {
 764         // Whenever JVMTI puts a thread in interp_only_mode, method
 765         // entry/exit events are sent for that thread to track stack depth.
 766         if (THREAD->is_interp_only_mode()) {
 767           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 768                   handle_exception);
 769         }
 770       }
 771 #endif /* VM_JVMTI */
 772 
 773       goto run;
 774     }
 775 
 776     case popping_frame: {
 777       // returned from a java call to pop the frame, restart the call
 778       // clear the message so we don't confuse ourselves later
 779       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 780       istate->set_msg(no_request);
 781       if (_compiling) {
 782         // Set MDX back to the ProfileData of the invoke bytecode that will be
 783         // restarted.
 784         SET_MDX(NULL);
 785         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 786       }
 787       THREAD->clr_pop_frame_in_process();
 788       goto run;
 789     }
 790 
 791     case method_resume: {
 792       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 793         // resume
 794         os::breakpoint();
 795       }
 796 #ifdef HACK
 797       {
 798         ResourceMark rm;
 799         char *method_name = istate->method()->name_and_sig_as_C_string();
 800         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 801           tty->print_cr("resume: depth %d bci: %d",
 802                          (istate->_stack_base - istate->_stack) ,
 803                          istate->_bcp - istate->_method->code_base());
 804           interesting = true;
 805         }
 806       }
 807 #endif // HACK
 808       // returned from a java call, continue executing.
 809       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 810         goto handle_Pop_Frame;
 811       }
 812       if (THREAD->jvmti_thread_state() &&
 813           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 814         goto handle_Early_Return;
 815       }
 816 
 817       if (THREAD->has_pending_exception()) goto handle_exception;
 818       // Update the pc by the saved amount of the invoke bytecode size
 819       UPDATE_PC(istate->bcp_advance());
 820 
 821       if (_compiling) {
 822         // Get or create profile data. Check for pending (async) exceptions.
 823         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 824       }
 825       goto run;
 826     }
 827 
 828     case deopt_resume2: {
 829       // Returned from an opcode that will reexecute. Deopt was
 830       // a result of a PopFrame request.
 831       //
 832 
 833       if (_compiling) {
 834         // Get or create profile data. Check for pending (async) exceptions.
 835         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 836       }
 837       goto run;
 838     }
 839 
 840     case deopt_resume: {
 841       // Returned from an opcode that has completed. The stack has
 842       // the result all we need to do is skip across the bytecode
 843       // and continue (assuming there is no exception pending)
 844       //
 845       // compute continuation length
 846       //
 847       // Note: it is possible to deopt at a return_register_finalizer opcode
 848       // because this requires entering the vm to do the registering. While the
 849       // opcode is complete we can't advance because there are no more opcodes
 850       // much like trying to deopt at a poll return. In that has we simply
 851       // get out of here
 852       //
 853       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 854         // this will do the right thing even if an exception is pending.
 855         goto handle_return;
 856       }
 857       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 858       if (THREAD->has_pending_exception()) goto handle_exception;
 859 
 860       if (_compiling) {
 861         // Get or create profile data. Check for pending (async) exceptions.
 862         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 863       }
 864       goto run;
 865     }
 866     case got_monitors: {
 867       // continue locking now that we have a monitor to use
 868       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 869       oop lockee = STACK_OBJECT(-1);
 870       VERIFY_OOP(lockee);
 871       // derefing's lockee ought to provoke implicit null check
 872       // find a free monitor
 873       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 874       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 875       entry->set_obj(lockee);
 876       bool success = false;
 877       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 878 
 879       markOop mark = lockee->mark();
 880       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 881       // implies UseBiasedLocking
 882       if (mark->has_bias_pattern()) {
 883         uintptr_t thread_ident;
 884         uintptr_t anticipated_bias_locking_value;
 885         thread_ident = (uintptr_t)istate->thread();
 886         anticipated_bias_locking_value =
 887           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 888           ~((uintptr_t) markOopDesc::age_mask_in_place);
 889 
 890         if  (anticipated_bias_locking_value == 0) {
 891           // already biased towards this thread, nothing to do
 892           if (PrintBiasedLockingStatistics) {
 893             (* BiasedLocking::biased_lock_entry_count_addr())++;
 894           }
 895           success = true;
 896         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 897           // try revoke bias
 898           markOop header = lockee->klass()->prototype_header();
 899           if (hash != markOopDesc::no_hash) {
 900             header = header->copy_set_hash(hash);
 901           }
 902           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 903             if (PrintBiasedLockingStatistics) {
 904               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 905             }
 906           }
 907         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 908           // try rebias
 909           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 910           if (hash != markOopDesc::no_hash) {
 911                 new_header = new_header->copy_set_hash(hash);
 912           }
 913           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 914             if (PrintBiasedLockingStatistics) {
 915               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 916             }
 917           } else {
 918             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 919           }
 920           success = true;
 921         } else {
 922           // try to bias towards thread in case object is anonymously biased
 923           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 924                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 925           if (hash != markOopDesc::no_hash) {
 926             header = header->copy_set_hash(hash);
 927           }
 928           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 929           // debugging hint
 930           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 931           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 932             if (PrintBiasedLockingStatistics) {
 933               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 934             }
 935           } else {
 936             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 937           }
 938           success = true;
 939         }
 940       }
 941 
 942       // traditional lightweight locking
 943       if (!success) {
 944         markOop displaced = lockee->mark()->set_unlocked();
 945         entry->lock()->set_displaced_header(displaced);
 946         bool call_vm = UseHeavyMonitors;
 947         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 948           // Is it simple recursive case?
 949           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 950             entry->lock()->set_displaced_header(NULL);
 951           } else {
 952             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 953           }
 954         }
 955       }
 956       UPDATE_PC_AND_TOS(1, -1);
 957       goto run;
 958     }
 959     default: {
 960       fatal("Unexpected message from frame manager");
 961     }
 962   }
 963 
 964 run:
 965 
 966   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 967   DEBUGGER_SINGLE_STEP_NOTIFY();
 968 #ifdef PREFETCH_OPCCODE
 969   opcode = *pc;  /* prefetch first opcode */
 970 #endif
 971 
 972 #ifndef USELABELS
 973   while (1)
 974 #endif
 975   {
 976 #ifndef PREFETCH_OPCCODE
 977       opcode = *pc;
 978 #endif
 979       // Seems like this happens twice per opcode. At worst this is only
 980       // need at entry to the loop.
 981       // DEBUGGER_SINGLE_STEP_NOTIFY();
 982       /* Using this labels avoids double breakpoints when quickening and
 983        * when returing from transition frames.
 984        */
 985   opcode_switch:
 986       assert(istate == orig, "Corrupted istate");
 987       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 988       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 989       assert(topOfStack < istate->stack_base(), "Stack underrun");
 990 
 991 #ifdef USELABELS
 992       DISPATCH(opcode);
 993 #else
 994       switch (opcode)
 995 #endif
 996       {
 997       CASE(_nop):
 998           UPDATE_PC_AND_CONTINUE(1);
 999 
1000           /* Push miscellaneous constants onto the stack. */
1001 
1002       CASE(_aconst_null):
1003           SET_STACK_OBJECT(NULL, 0);
1004           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1005 
1006 #undef  OPC_CONST_n
1007 #define OPC_CONST_n(opcode, const_type, value)                          \
1008       CASE(opcode):                                                     \
1009           SET_STACK_ ## const_type(value, 0);                           \
1010           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1011 
1012           OPC_CONST_n(_iconst_m1,   INT,       -1);
1013           OPC_CONST_n(_iconst_0,    INT,        0);
1014           OPC_CONST_n(_iconst_1,    INT,        1);
1015           OPC_CONST_n(_iconst_2,    INT,        2);
1016           OPC_CONST_n(_iconst_3,    INT,        3);
1017           OPC_CONST_n(_iconst_4,    INT,        4);
1018           OPC_CONST_n(_iconst_5,    INT,        5);
1019           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1020           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1021           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1022 
1023 #undef  OPC_CONST2_n
1024 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1025       CASE(_##opcname):                                                 \
1026       {                                                                 \
1027           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1028           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1029       }
1030          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1031          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1032          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1033          OPC_CONST2_n(lconst_1, One,  long, LONG);
1034 
1035          /* Load constant from constant pool: */
1036 
1037           /* Push a 1-byte signed integer value onto the stack. */
1038       CASE(_bipush):
1039           SET_STACK_INT((jbyte)(pc[1]), 0);
1040           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1041 
1042           /* Push a 2-byte signed integer constant onto the stack. */
1043       CASE(_sipush):
1044           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1045           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1046 
1047           /* load from local variable */
1048 
1049       CASE(_aload):
1050           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1051           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1052           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1053 
1054       CASE(_iload):
1055       CASE(_fload):
1056           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1057           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1058 
1059       CASE(_lload):
1060           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1061           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1062 
1063       CASE(_dload):
1064           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1065           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1066 
1067 #undef  OPC_LOAD_n
1068 #define OPC_LOAD_n(num)                                                 \
1069       CASE(_aload_##num):                                               \
1070           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1071           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1072           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1073                                                                         \
1074       CASE(_iload_##num):                                               \
1075       CASE(_fload_##num):                                               \
1076           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1077           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1078                                                                         \
1079       CASE(_lload_##num):                                               \
1080           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1081           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1082       CASE(_dload_##num):                                               \
1083           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1085 
1086           OPC_LOAD_n(0);
1087           OPC_LOAD_n(1);
1088           OPC_LOAD_n(2);
1089           OPC_LOAD_n(3);
1090 
1091           /* store to a local variable */
1092 
1093       CASE(_astore):
1094           astore(topOfStack, -1, locals, pc[1]);
1095           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1096 
1097       CASE(_istore):
1098       CASE(_fstore):
1099           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1100           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1101 
1102       CASE(_lstore):
1103           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1104           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1105 
1106       CASE(_dstore):
1107           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1108           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1109 
1110       CASE(_wide): {
1111           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1112 
1113           opcode = pc[1];
1114 
1115           // Wide and it's sub-bytecode are counted as separate instructions. If we
1116           // don't account for this here, the bytecode trace skips the next bytecode.
1117           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1118 
1119           switch(opcode) {
1120               case Bytecodes::_aload:
1121                   VERIFY_OOP(LOCALS_OBJECT(reg));
1122                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1123                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1124 
1125               case Bytecodes::_iload:
1126               case Bytecodes::_fload:
1127                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1128                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1129 
1130               case Bytecodes::_lload:
1131                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1132                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1133 
1134               case Bytecodes::_dload:
1135                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1136                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1137 
1138               case Bytecodes::_astore:
1139                   astore(topOfStack, -1, locals, reg);
1140                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1141 
1142               case Bytecodes::_istore:
1143               case Bytecodes::_fstore:
1144                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1145                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1146 
1147               case Bytecodes::_lstore:
1148                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1149                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1150 
1151               case Bytecodes::_dstore:
1152                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1153                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1154 
1155               case Bytecodes::_iinc: {
1156                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1157                   // Be nice to see what this generates.... QQQ
1158                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1159                   UPDATE_PC_AND_CONTINUE(6);
1160               }
1161               case Bytecodes::_ret:
1162                   // Profile ret.
1163                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1164                   // Now, update the pc.
1165                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1166                   UPDATE_PC_AND_CONTINUE(0);
1167               default:
1168                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1169           }
1170       }
1171 
1172 
1173 #undef  OPC_STORE_n
1174 #define OPC_STORE_n(num)                                                \
1175       CASE(_astore_##num):                                              \
1176           astore(topOfStack, -1, locals, num);                          \
1177           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1178       CASE(_istore_##num):                                              \
1179       CASE(_fstore_##num):                                              \
1180           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1181           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1182 
1183           OPC_STORE_n(0);
1184           OPC_STORE_n(1);
1185           OPC_STORE_n(2);
1186           OPC_STORE_n(3);
1187 
1188 #undef  OPC_DSTORE_n
1189 #define OPC_DSTORE_n(num)                                               \
1190       CASE(_dstore_##num):                                              \
1191           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1192           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1193       CASE(_lstore_##num):                                              \
1194           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1196 
1197           OPC_DSTORE_n(0);
1198           OPC_DSTORE_n(1);
1199           OPC_DSTORE_n(2);
1200           OPC_DSTORE_n(3);
1201 
1202           /* stack pop, dup, and insert opcodes */
1203 
1204 
1205       CASE(_pop):                /* Discard the top item on the stack */
1206           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1207 
1208 
1209       CASE(_pop2):               /* Discard the top 2 items on the stack */
1210           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1211 
1212 
1213       CASE(_dup):               /* Duplicate the top item on the stack */
1214           dup(topOfStack);
1215           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1216 
1217       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1218           dup2(topOfStack);
1219           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1220 
1221       CASE(_dup_x1):    /* insert top word two down */
1222           dup_x1(topOfStack);
1223           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1224 
1225       CASE(_dup_x2):    /* insert top word three down  */
1226           dup_x2(topOfStack);
1227           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1228 
1229       CASE(_dup2_x1):   /* insert top 2 slots three down */
1230           dup2_x1(topOfStack);
1231           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1232 
1233       CASE(_dup2_x2):   /* insert top 2 slots four down */
1234           dup2_x2(topOfStack);
1235           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1236 
1237       CASE(_swap): {        /* swap top two elements on the stack */
1238           swap(topOfStack);
1239           UPDATE_PC_AND_CONTINUE(1);
1240       }
1241 
1242           /* Perform various binary integer operations */
1243 
1244 #undef  OPC_INT_BINARY
1245 #define OPC_INT_BINARY(opcname, opname, test)                           \
1246       CASE(_i##opcname):                                                \
1247           if (test && (STACK_INT(-1) == 0)) {                           \
1248               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1249                             "/ by zero", note_div0Check_trap);          \
1250           }                                                             \
1251           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1252                                       STACK_INT(-1)),                   \
1253                                       -2);                              \
1254           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1255       CASE(_l##opcname):                                                \
1256       {                                                                 \
1257           if (test) {                                                   \
1258             jlong l1 = STACK_LONG(-1);                                  \
1259             if (VMlongEqz(l1)) {                                        \
1260               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1261                             "/ by long zero", note_div0Check_trap);     \
1262             }                                                           \
1263           }                                                             \
1264           /* First long at (-1,-2) next long at (-3,-4) */              \
1265           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1266                                         STACK_LONG(-1)),                \
1267                                         -3);                            \
1268           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1269       }
1270 
1271       OPC_INT_BINARY(add, Add, 0);
1272       OPC_INT_BINARY(sub, Sub, 0);
1273       OPC_INT_BINARY(mul, Mul, 0);
1274       OPC_INT_BINARY(and, And, 0);
1275       OPC_INT_BINARY(or,  Or,  0);
1276       OPC_INT_BINARY(xor, Xor, 0);
1277       OPC_INT_BINARY(div, Div, 1);
1278       OPC_INT_BINARY(rem, Rem, 1);
1279 
1280 
1281       /* Perform various binary floating number operations */
1282       /* On some machine/platforms/compilers div zero check can be implicit */
1283 
1284 #undef  OPC_FLOAT_BINARY
1285 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1286       CASE(_d##opcname): {                                                 \
1287           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1288                                             STACK_DOUBLE(-1)),             \
1289                                             -3);                           \
1290           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1291       }                                                                    \
1292       CASE(_f##opcname):                                                   \
1293           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1294                                           STACK_FLOAT(-1)),                \
1295                                           -2);                             \
1296           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1297 
1298 
1299      OPC_FLOAT_BINARY(add, Add);
1300      OPC_FLOAT_BINARY(sub, Sub);
1301      OPC_FLOAT_BINARY(mul, Mul);
1302      OPC_FLOAT_BINARY(div, Div);
1303      OPC_FLOAT_BINARY(rem, Rem);
1304 
1305       /* Shift operations
1306        * Shift left int and long: ishl, lshl
1307        * Logical shift right int and long w/zero extension: iushr, lushr
1308        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1309        */
1310 
1311 #undef  OPC_SHIFT_BINARY
1312 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1313       CASE(_i##opcname):                                                \
1314          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1315                                      STACK_INT(-1)),                    \
1316                                      -2);                               \
1317          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1318       CASE(_l##opcname):                                                \
1319       {                                                                 \
1320          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1321                                        STACK_INT(-1)),                  \
1322                                        -2);                             \
1323          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1324       }
1325 
1326       OPC_SHIFT_BINARY(shl, Shl);
1327       OPC_SHIFT_BINARY(shr, Shr);
1328       OPC_SHIFT_BINARY(ushr, Ushr);
1329 
1330      /* Increment local variable by constant */
1331       CASE(_iinc):
1332       {
1333           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1334           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1335           UPDATE_PC_AND_CONTINUE(3);
1336       }
1337 
1338      /* negate the value on the top of the stack */
1339 
1340       CASE(_ineg):
1341          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1342          UPDATE_PC_AND_CONTINUE(1);
1343 
1344       CASE(_fneg):
1345          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1346          UPDATE_PC_AND_CONTINUE(1);
1347 
1348       CASE(_lneg):
1349       {
1350          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1351          UPDATE_PC_AND_CONTINUE(1);
1352       }
1353 
1354       CASE(_dneg):
1355       {
1356          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1357          UPDATE_PC_AND_CONTINUE(1);
1358       }
1359 
1360       /* Conversion operations */
1361 
1362       CASE(_i2f):       /* convert top of stack int to float */
1363          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1364          UPDATE_PC_AND_CONTINUE(1);
1365 
1366       CASE(_i2l):       /* convert top of stack int to long */
1367       {
1368           // this is ugly QQQ
1369           jlong r = VMint2Long(STACK_INT(-1));
1370           MORE_STACK(-1); // Pop
1371           SET_STACK_LONG(r, 1);
1372 
1373           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1374       }
1375 
1376       CASE(_i2d):       /* convert top of stack int to double */
1377       {
1378           // this is ugly QQQ (why cast to jlong?? )
1379           jdouble r = (jlong)STACK_INT(-1);
1380           MORE_STACK(-1); // Pop
1381           SET_STACK_DOUBLE(r, 1);
1382 
1383           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1384       }
1385 
1386       CASE(_l2i):       /* convert top of stack long to int */
1387       {
1388           jint r = VMlong2Int(STACK_LONG(-1));
1389           MORE_STACK(-2); // Pop
1390           SET_STACK_INT(r, 0);
1391           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1392       }
1393 
1394       CASE(_l2f):   /* convert top of stack long to float */
1395       {
1396           jlong r = STACK_LONG(-1);
1397           MORE_STACK(-2); // Pop
1398           SET_STACK_FLOAT(VMlong2Float(r), 0);
1399           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1400       }
1401 
1402       CASE(_l2d):       /* convert top of stack long to double */
1403       {
1404           jlong r = STACK_LONG(-1);
1405           MORE_STACK(-2); // Pop
1406           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1407           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1408       }
1409 
1410       CASE(_f2i):  /* Convert top of stack float to int */
1411           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1412           UPDATE_PC_AND_CONTINUE(1);
1413 
1414       CASE(_f2l):  /* convert top of stack float to long */
1415       {
1416           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1417           MORE_STACK(-1); // POP
1418           SET_STACK_LONG(r, 1);
1419           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1420       }
1421 
1422       CASE(_f2d):  /* convert top of stack float to double */
1423       {
1424           jfloat f;
1425           jdouble r;
1426           f = STACK_FLOAT(-1);
1427           r = (jdouble) f;
1428           MORE_STACK(-1); // POP
1429           SET_STACK_DOUBLE(r, 1);
1430           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1431       }
1432 
1433       CASE(_d2i): /* convert top of stack double to int */
1434       {
1435           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1436           MORE_STACK(-2);
1437           SET_STACK_INT(r1, 0);
1438           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1439       }
1440 
1441       CASE(_d2f): /* convert top of stack double to float */
1442       {
1443           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1444           MORE_STACK(-2);
1445           SET_STACK_FLOAT(r1, 0);
1446           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1447       }
1448 
1449       CASE(_d2l): /* convert top of stack double to long */
1450       {
1451           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1452           MORE_STACK(-2);
1453           SET_STACK_LONG(r1, 1);
1454           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1455       }
1456 
1457       CASE(_i2b):
1458           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1459           UPDATE_PC_AND_CONTINUE(1);
1460 
1461       CASE(_i2c):
1462           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1463           UPDATE_PC_AND_CONTINUE(1);
1464 
1465       CASE(_i2s):
1466           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1467           UPDATE_PC_AND_CONTINUE(1);
1468 
1469       /* comparison operators */
1470 
1471 
1472 #define COMPARISON_OP(name, comparison)                                      \
1473       CASE(_if_icmp##name): {                                                \
1474           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1475           int skip = cmp                                                     \
1476                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1477           address branch_pc = pc;                                            \
1478           /* Profile branch. */                                              \
1479           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1480           UPDATE_PC_AND_TOS(skip, -2);                                       \
1481           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1482           CONTINUE;                                                          \
1483       }                                                                      \
1484       CASE(_if##name): {                                                     \
1485           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1486           int skip = cmp                                                     \
1487                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1488           address branch_pc = pc;                                            \
1489           /* Profile branch. */                                              \
1490           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1491           UPDATE_PC_AND_TOS(skip, -1);                                       \
1492           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1493           CONTINUE;                                                          \
1494       }
1495 
1496 #define COMPARISON_OP2(name, comparison)                                     \
1497       COMPARISON_OP(name, comparison)                                        \
1498       CASE(_if_acmp##name): {                                                \
1499           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1500           int skip = cmp                                                     \
1501                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1502           address branch_pc = pc;                                            \
1503           /* Profile branch. */                                              \
1504           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1505           UPDATE_PC_AND_TOS(skip, -2);                                       \
1506           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1507           CONTINUE;                                                          \
1508       }
1509 
1510 #define NULL_COMPARISON_NOT_OP(name)                                         \
1511       CASE(_if##name): {                                                     \
1512           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1513           int skip = cmp                                                     \
1514                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1515           address branch_pc = pc;                                            \
1516           /* Profile branch. */                                              \
1517           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1518           UPDATE_PC_AND_TOS(skip, -1);                                       \
1519           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1520           CONTINUE;                                                          \
1521       }
1522 
1523 #define NULL_COMPARISON_OP(name)                                             \
1524       CASE(_if##name): {                                                     \
1525           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1526           int skip = cmp                                                     \
1527                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1528           address branch_pc = pc;                                            \
1529           /* Profile branch. */                                              \
1530           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1531           UPDATE_PC_AND_TOS(skip, -1);                                       \
1532           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1533           CONTINUE;                                                          \
1534       }
1535       COMPARISON_OP(lt, <);
1536       COMPARISON_OP(gt, >);
1537       COMPARISON_OP(le, <=);
1538       COMPARISON_OP(ge, >=);
1539       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1540       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1541       NULL_COMPARISON_OP(null);
1542       NULL_COMPARISON_NOT_OP(nonnull);
1543 
1544       /* Goto pc at specified offset in switch table. */
1545 
1546       CASE(_tableswitch): {
1547           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1548           int32_t  key  = STACK_INT(-1);
1549           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1550           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1551           int32_t  skip;
1552           key -= low;
1553           if (((uint32_t) key > (uint32_t)(high - low))) {
1554             key = -1;
1555             skip = Bytes::get_Java_u4((address)&lpc[0]);
1556           } else {
1557             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1558           }
1559           // Profile switch.
1560           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1561           // Does this really need a full backedge check (osr)?
1562           address branch_pc = pc;
1563           UPDATE_PC_AND_TOS(skip, -1);
1564           DO_BACKEDGE_CHECKS(skip, branch_pc);
1565           CONTINUE;
1566       }
1567 
1568       /* Goto pc whose table entry matches specified key. */
1569 
1570       CASE(_lookupswitch): {
1571           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1572           int32_t  key  = STACK_INT(-1);
1573           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1574           // Remember index.
1575           int      index = -1;
1576           int      newindex = 0;
1577           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1578           while (--npairs >= 0) {
1579             lpc += 2;
1580             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1581               skip = Bytes::get_Java_u4((address)&lpc[1]);
1582               index = newindex;
1583               break;
1584             }
1585             newindex += 1;
1586           }
1587           // Profile switch.
1588           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1589           address branch_pc = pc;
1590           UPDATE_PC_AND_TOS(skip, -1);
1591           DO_BACKEDGE_CHECKS(skip, branch_pc);
1592           CONTINUE;
1593       }
1594 
1595       CASE(_fcmpl):
1596       CASE(_fcmpg):
1597       {
1598           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1599                                         STACK_FLOAT(-1),
1600                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1601                         -2);
1602           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1603       }
1604 
1605       CASE(_dcmpl):
1606       CASE(_dcmpg):
1607       {
1608           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1609                                   STACK_DOUBLE(-1),
1610                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1611           MORE_STACK(-4); // Pop
1612           SET_STACK_INT(r, 0);
1613           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1614       }
1615 
1616       CASE(_lcmp):
1617       {
1618           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1619           MORE_STACK(-4);
1620           SET_STACK_INT(r, 0);
1621           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1622       }
1623 
1624 
1625       /* Return from a method */
1626 
1627       CASE(_areturn):
1628       CASE(_ireturn):
1629       CASE(_freturn):
1630       {
1631           // Allow a safepoint before returning to frame manager.
1632           SAFEPOINT;
1633 
1634           goto handle_return;
1635       }
1636 
1637       CASE(_lreturn):
1638       CASE(_dreturn):
1639       {
1640           // Allow a safepoint before returning to frame manager.
1641           SAFEPOINT;
1642           goto handle_return;
1643       }
1644 
1645       CASE(_return_register_finalizer): {
1646 
1647           oop rcvr = LOCALS_OBJECT(0);
1648           VERIFY_OOP(rcvr);
1649           if (rcvr->klass()->has_finalizer()) {
1650             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1651           }
1652           goto handle_return;
1653       }
1654       CASE(_return): {
1655 
1656           // Allow a safepoint before returning to frame manager.
1657           SAFEPOINT;
1658           goto handle_return;
1659       }
1660 
1661       /* Array access byte-codes */
1662 
1663       /* Every array access byte-code starts out like this */
1664 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1665 #define ARRAY_INTRO(arrayOff)                                                  \
1666       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1667       jint     index  = STACK_INT(arrayOff + 1);                               \
1668       char message[jintAsStringSize];                                          \
1669       CHECK_NULL(arrObj);                                                      \
1670       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1671           sprintf(message, "%d", index);                                       \
1672           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1673                         message, note_rangeCheck_trap);                        \
1674       }
1675 
1676       /* 32-bit loads. These handle conversion from < 32-bit types */
1677 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1678       {                                                                               \
1679           ARRAY_INTRO(-2);                                                            \
1680           (void)extra;                                                                \
1681           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1682                            -2);                                                       \
1683           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1684       }
1685 
1686       /* 64-bit loads */
1687 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1688       {                                                                                    \
1689           ARRAY_INTRO(-2);                                                                 \
1690           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1691           (void)extra;                                                                     \
1692           UPDATE_PC_AND_CONTINUE(1);                                                       \
1693       }
1694 
1695       CASE(_iaload):
1696           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1697       CASE(_faload):
1698           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1699       CASE(_aaload): {
1700           ARRAY_INTRO(-2);
1701           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1702           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1703       }
1704       CASE(_baload):
1705           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1706       CASE(_caload):
1707           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1708       CASE(_saload):
1709           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1710       CASE(_laload):
1711           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1712       CASE(_daload):
1713           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1714 
1715       /* 32-bit stores. These handle conversion to < 32-bit types */
1716 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1717       {                                                                              \
1718           ARRAY_INTRO(-3);                                                           \
1719           (void)extra;                                                               \
1720           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1721           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1722       }
1723 
1724       /* 64-bit stores */
1725 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1726       {                                                                              \
1727           ARRAY_INTRO(-4);                                                           \
1728           (void)extra;                                                               \
1729           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1730           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1731       }
1732 
1733       CASE(_iastore):
1734           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1735       CASE(_fastore):
1736           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1737       /*
1738        * This one looks different because of the assignability check
1739        */
1740       CASE(_aastore): {
1741           oop rhsObject = STACK_OBJECT(-1);
1742           VERIFY_OOP(rhsObject);
1743           ARRAY_INTRO( -3);
1744           // arrObj, index are set
1745           if (rhsObject != NULL) {
1746             /* Check assignability of rhsObject into arrObj */
1747             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1748             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1749             //
1750             // Check for compatibilty. This check must not GC!!
1751             // Seems way more expensive now that we must dispatch
1752             //
1753             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1754               // Decrement counter if subtype check failed.
1755               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1756               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1757             }
1758             // Profile checkcast with null_seen and receiver.
1759             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1760           } else {
1761             // Profile checkcast with null_seen and receiver.
1762             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1763           }
1764           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1765           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1766       }
1767       CASE(_bastore):
1768           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1769       CASE(_castore):
1770           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1771       CASE(_sastore):
1772           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1773       CASE(_lastore):
1774           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1775       CASE(_dastore):
1776           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1777 
1778       CASE(_arraylength):
1779       {
1780           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1781           CHECK_NULL(ary);
1782           SET_STACK_INT(ary->length(), -1);
1783           UPDATE_PC_AND_CONTINUE(1);
1784       }
1785 
1786       /* monitorenter and monitorexit for locking/unlocking an object */
1787 
1788       CASE(_monitorenter): {
1789         oop lockee = STACK_OBJECT(-1);
1790         // derefing's lockee ought to provoke implicit null check
1791         CHECK_NULL(lockee);
1792         // find a free monitor or one already allocated for this object
1793         // if we find a matching object then we need a new monitor
1794         // since this is recursive enter
1795         BasicObjectLock* limit = istate->monitor_base();
1796         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1797         BasicObjectLock* entry = NULL;
1798         while (most_recent != limit ) {
1799           if (most_recent->obj() == NULL) entry = most_recent;
1800           else if (most_recent->obj() == lockee) break;
1801           most_recent++;
1802         }
1803         if (entry != NULL) {
1804           entry->set_obj(lockee);
1805           int success = false;
1806           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1807 
1808           markOop mark = lockee->mark();
1809           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1810           // implies UseBiasedLocking
1811           if (mark->has_bias_pattern()) {
1812             uintptr_t thread_ident;
1813             uintptr_t anticipated_bias_locking_value;
1814             thread_ident = (uintptr_t)istate->thread();
1815             anticipated_bias_locking_value =
1816               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1817               ~((uintptr_t) markOopDesc::age_mask_in_place);
1818 
1819             if  (anticipated_bias_locking_value == 0) {
1820               // already biased towards this thread, nothing to do
1821               if (PrintBiasedLockingStatistics) {
1822                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1823               }
1824               success = true;
1825             }
1826             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1827               // try revoke bias
1828               markOop header = lockee->klass()->prototype_header();
1829               if (hash != markOopDesc::no_hash) {
1830                 header = header->copy_set_hash(hash);
1831               }
1832               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1833                 if (PrintBiasedLockingStatistics)
1834                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1835               }
1836             }
1837             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1838               // try rebias
1839               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1840               if (hash != markOopDesc::no_hash) {
1841                 new_header = new_header->copy_set_hash(hash);
1842               }
1843               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1844                 if (PrintBiasedLockingStatistics)
1845                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1846               }
1847               else {
1848                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1849               }
1850               success = true;
1851             }
1852             else {
1853               // try to bias towards thread in case object is anonymously biased
1854               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1855                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1856                                                               epoch_mask_in_place));
1857               if (hash != markOopDesc::no_hash) {
1858                 header = header->copy_set_hash(hash);
1859               }
1860               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1861               // debugging hint
1862               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1863               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1864                 if (PrintBiasedLockingStatistics)
1865                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1866               }
1867               else {
1868                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1869               }
1870               success = true;
1871             }
1872           }
1873 
1874           // traditional lightweight locking
1875           if (!success) {
1876             markOop displaced = lockee->mark()->set_unlocked();
1877             entry->lock()->set_displaced_header(displaced);
1878             bool call_vm = UseHeavyMonitors;
1879             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1880               // Is it simple recursive case?
1881               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1882                 entry->lock()->set_displaced_header(NULL);
1883               } else {
1884                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1885               }
1886             }
1887           }
1888           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1889         } else {
1890           istate->set_msg(more_monitors);
1891           UPDATE_PC_AND_RETURN(0); // Re-execute
1892         }
1893       }
1894 
1895       CASE(_monitorexit): {
1896         oop lockee = STACK_OBJECT(-1);
1897         CHECK_NULL(lockee);
1898         // derefing's lockee ought to provoke implicit null check
1899         // find our monitor slot
1900         BasicObjectLock* limit = istate->monitor_base();
1901         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1902         while (most_recent != limit ) {
1903           if ((most_recent)->obj() == lockee) {
1904             BasicLock* lock = most_recent->lock();
1905             markOop header = lock->displaced_header();
1906             most_recent->set_obj(NULL);
1907             if (!lockee->mark()->has_bias_pattern()) {
1908               bool call_vm = UseHeavyMonitors;
1909               // If it isn't recursive we either must swap old header or call the runtime
1910               if (header != NULL || call_vm) {
1911                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1912                   // restore object for the slow case
1913                   most_recent->set_obj(lockee);
1914                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1915                 }
1916               }
1917             }
1918             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1919           }
1920           most_recent++;
1921         }
1922         // Need to throw illegal monitor state exception
1923         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1924         ShouldNotReachHere();
1925       }
1926 
1927       /* All of the non-quick opcodes. */
1928 
1929       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1930        *  constant pool index in the instruction.
1931        */
1932       CASE(_getfield):
1933       CASE(_getstatic):
1934         {
1935           u2 index;
1936           ConstantPoolCacheEntry* cache;
1937           index = Bytes::get_native_u2(pc+1);
1938 
1939           // QQQ Need to make this as inlined as possible. Probably need to
1940           // split all the bytecode cases out so c++ compiler has a chance
1941           // for constant prop to fold everything possible away.
1942 
1943           cache = cp->entry_at(index);
1944           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1945             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1946                     handle_exception);
1947             cache = cp->entry_at(index);
1948           }
1949 
1950 #ifdef VM_JVMTI
1951           if (_jvmti_interp_events) {
1952             int *count_addr;
1953             oop obj;
1954             // Check to see if a field modification watch has been set
1955             // before we take the time to call into the VM.
1956             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1957             if ( *count_addr > 0 ) {
1958               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1959                 obj = (oop)NULL;
1960               } else {
1961                 obj = (oop) STACK_OBJECT(-1);
1962                 VERIFY_OOP(obj);
1963               }
1964               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1965                                           obj,
1966                                           cache),
1967                                           handle_exception);
1968             }
1969           }
1970 #endif /* VM_JVMTI */
1971 
1972           oop obj;
1973           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1974             Klass* k = cache->f1_as_klass();
1975             obj = k->java_mirror();
1976             MORE_STACK(1);  // Assume single slot push
1977           } else {
1978             obj = (oop) STACK_OBJECT(-1);
1979             CHECK_NULL(obj);
1980           }
1981 
1982           //
1983           // Now store the result on the stack
1984           //
1985           TosState tos_type = cache->flag_state();
1986           int field_offset = cache->f2_as_index();
1987           if (cache->is_volatile()) {
1988             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1989               OrderAccess::fence();
1990             }
1991             if (tos_type == atos) {
1992               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1993               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1994             } else if (tos_type == itos) {
1995               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1996             } else if (tos_type == ltos) {
1997               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1998               MORE_STACK(1);
1999             } else if (tos_type == btos) {
2000               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2001             } else if (tos_type == ctos) {
2002               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2003             } else if (tos_type == stos) {
2004               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2005             } else if (tos_type == ftos) {
2006               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2007             } else {
2008               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2009               MORE_STACK(1);
2010             }
2011           } else {
2012             if (tos_type == atos) {
2013               VERIFY_OOP(obj->obj_field(field_offset));
2014               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2015             } else if (tos_type == itos) {
2016               SET_STACK_INT(obj->int_field(field_offset), -1);
2017             } else if (tos_type == ltos) {
2018               SET_STACK_LONG(obj->long_field(field_offset), 0);
2019               MORE_STACK(1);
2020             } else if (tos_type == btos) {
2021               SET_STACK_INT(obj->byte_field(field_offset), -1);
2022             } else if (tos_type == ctos) {
2023               SET_STACK_INT(obj->char_field(field_offset), -1);
2024             } else if (tos_type == stos) {
2025               SET_STACK_INT(obj->short_field(field_offset), -1);
2026             } else if (tos_type == ftos) {
2027               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2028             } else {
2029               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2030               MORE_STACK(1);
2031             }
2032           }
2033 
2034           UPDATE_PC_AND_CONTINUE(3);
2035          }
2036 
2037       CASE(_putfield):
2038       CASE(_putstatic):
2039         {
2040           u2 index = Bytes::get_native_u2(pc+1);
2041           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2042           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2043             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2044                     handle_exception);
2045             cache = cp->entry_at(index);
2046           }
2047 
2048 #ifdef VM_JVMTI
2049           if (_jvmti_interp_events) {
2050             int *count_addr;
2051             oop obj;
2052             // Check to see if a field modification watch has been set
2053             // before we take the time to call into the VM.
2054             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2055             if ( *count_addr > 0 ) {
2056               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2057                 obj = (oop)NULL;
2058               }
2059               else {
2060                 if (cache->is_long() || cache->is_double()) {
2061                   obj = (oop) STACK_OBJECT(-3);
2062                 } else {
2063                   obj = (oop) STACK_OBJECT(-2);
2064                 }
2065                 VERIFY_OOP(obj);
2066               }
2067 
2068               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2069                                           obj,
2070                                           cache,
2071                                           (jvalue *)STACK_SLOT(-1)),
2072                                           handle_exception);
2073             }
2074           }
2075 #endif /* VM_JVMTI */
2076 
2077           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2078           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2079 
2080           oop obj;
2081           int count;
2082           TosState tos_type = cache->flag_state();
2083 
2084           count = -1;
2085           if (tos_type == ltos || tos_type == dtos) {
2086             --count;
2087           }
2088           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2089             Klass* k = cache->f1_as_klass();
2090             obj = k->java_mirror();
2091           } else {
2092             --count;
2093             obj = (oop) STACK_OBJECT(count);
2094             CHECK_NULL(obj);
2095           }
2096 
2097           //
2098           // Now store the result
2099           //
2100           int field_offset = cache->f2_as_index();
2101           if (cache->is_volatile()) {
2102             if (tos_type == itos) {
2103               obj->release_int_field_put(field_offset, STACK_INT(-1));
2104             } else if (tos_type == atos) {
2105               VERIFY_OOP(STACK_OBJECT(-1));
2106               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2107             } else if (tos_type == btos) {
2108               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2109             } else if (tos_type == ltos) {
2110               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2111             } else if (tos_type == ctos) {
2112               obj->release_char_field_put(field_offset, STACK_INT(-1));
2113             } else if (tos_type == stos) {
2114               obj->release_short_field_put(field_offset, STACK_INT(-1));
2115             } else if (tos_type == ftos) {
2116               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2117             } else {
2118               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2119             }
2120             OrderAccess::storeload();
2121           } else {
2122             if (tos_type == itos) {
2123               obj->int_field_put(field_offset, STACK_INT(-1));
2124             } else if (tos_type == atos) {
2125               VERIFY_OOP(STACK_OBJECT(-1));
2126               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2127             } else if (tos_type == btos) {
2128               obj->byte_field_put(field_offset, STACK_INT(-1));
2129             } else if (tos_type == ltos) {
2130               obj->long_field_put(field_offset, STACK_LONG(-1));
2131             } else if (tos_type == ctos) {
2132               obj->char_field_put(field_offset, STACK_INT(-1));
2133             } else if (tos_type == stos) {
2134               obj->short_field_put(field_offset, STACK_INT(-1));
2135             } else if (tos_type == ftos) {
2136               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2137             } else {
2138               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2139             }
2140           }
2141 
2142           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2143         }
2144 
2145       CASE(_new): {
2146         u2 index = Bytes::get_Java_u2(pc+1);
2147         ConstantPool* constants = istate->method()->constants();
2148         if (!constants->tag_at(index).is_unresolved_klass()) {
2149           // Make sure klass is initialized and doesn't have a finalizer
2150           Klass* entry = constants->slot_at(index).get_klass();
2151           assert(entry->is_klass(), "Should be resolved klass");
2152           Klass* k_entry = (Klass*) entry;
2153           assert(k_entry->oop_is_instance(), "Should be InstanceKlass");
2154           InstanceKlass* ik = (InstanceKlass*) k_entry;
2155           if ( ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2156             size_t obj_size = ik->size_helper();
2157             oop result = NULL;
2158             // If the TLAB isn't pre-zeroed then we'll have to do it
2159             bool need_zero = !ZeroTLAB;
2160             if (UseTLAB) {
2161               result = (oop) THREAD->tlab().allocate(obj_size);
2162             }
2163             // Disable non-TLAB-based fast-path, because profiling requires that all
2164             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2165             // returns NULL.
2166 #ifndef CC_INTERP_PROFILE
2167             if (result == NULL) {
2168               need_zero = true;
2169               // Try allocate in shared eden
2170             retry:
2171               HeapWord* compare_to = *Universe::heap()->top_addr();
2172               HeapWord* new_top = compare_to + obj_size;
2173               if (new_top <= *Universe::heap()->end_addr()) {
2174                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2175                   goto retry;
2176                 }
2177                 result = (oop) compare_to;
2178               }
2179             }
2180 #endif
2181             if (result != NULL) {
2182               // Initialize object (if nonzero size and need) and then the header
2183               if (need_zero ) {
2184                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2185                 obj_size -= sizeof(oopDesc) / oopSize;
2186                 if (obj_size > 0 ) {
2187                   memset(to_zero, 0, obj_size * HeapWordSize);
2188                 }
2189               }
2190               if (UseBiasedLocking) {
2191                 result->set_mark(ik->prototype_header());
2192               } else {
2193                 result->set_mark(markOopDesc::prototype());
2194               }
2195               result->set_klass_gap(0);
2196               result->set_klass(k_entry);
2197               // Must prevent reordering of stores for object initialization
2198               // with stores that publish the new object.
2199               OrderAccess::storestore();
2200               SET_STACK_OBJECT(result, 0);
2201               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2202             }
2203           }
2204         }
2205         // Slow case allocation
2206         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2207                 handle_exception);
2208         // Must prevent reordering of stores for object initialization
2209         // with stores that publish the new object.
2210         OrderAccess::storestore();
2211         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2212         THREAD->set_vm_result(NULL);
2213         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2214       }
2215       CASE(_anewarray): {
2216         u2 index = Bytes::get_Java_u2(pc+1);
2217         jint size = STACK_INT(-1);
2218         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2219                 handle_exception);
2220         // Must prevent reordering of stores for object initialization
2221         // with stores that publish the new object.
2222         OrderAccess::storestore();
2223         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2224         THREAD->set_vm_result(NULL);
2225         UPDATE_PC_AND_CONTINUE(3);
2226       }
2227       CASE(_multianewarray): {
2228         jint dims = *(pc+3);
2229         jint size = STACK_INT(-1);
2230         // stack grows down, dimensions are up!
2231         jint *dimarray =
2232                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2233                                       Interpreter::stackElementWords-1];
2234         //adjust pointer to start of stack element
2235         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2236                 handle_exception);
2237         // Must prevent reordering of stores for object initialization
2238         // with stores that publish the new object.
2239         OrderAccess::storestore();
2240         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2241         THREAD->set_vm_result(NULL);
2242         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2243       }
2244       CASE(_checkcast):
2245           if (STACK_OBJECT(-1) != NULL) {
2246             VERIFY_OOP(STACK_OBJECT(-1));
2247             u2 index = Bytes::get_Java_u2(pc+1);
2248             // Constant pool may have actual klass or unresolved klass. If it is
2249             // unresolved we must resolve it.
2250             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2251               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2252             }
2253             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2254             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2255             //
2256             // Check for compatibilty. This check must not GC!!
2257             // Seems way more expensive now that we must dispatch.
2258             //
2259             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2260               // Decrement counter at checkcast.
2261               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2262               ResourceMark rm(THREAD);
2263               const char* objName = objKlass->external_name();
2264               const char* klassName = klassOf->external_name();
2265               char* message = SharedRuntime::generate_class_cast_message(
2266                 objName, klassName);
2267               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2268             }
2269             // Profile checkcast with null_seen and receiver.
2270             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2271           } else {
2272             // Profile checkcast with null_seen and receiver.
2273             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2274           }
2275           UPDATE_PC_AND_CONTINUE(3);
2276 
2277       CASE(_instanceof):
2278           if (STACK_OBJECT(-1) == NULL) {
2279             SET_STACK_INT(0, -1);
2280             // Profile instanceof with null_seen and receiver.
2281             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2282           } else {
2283             VERIFY_OOP(STACK_OBJECT(-1));
2284             u2 index = Bytes::get_Java_u2(pc+1);
2285             // Constant pool may have actual klass or unresolved klass. If it is
2286             // unresolved we must resolve it.
2287             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2288               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2289             }
2290             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2291             Klass* objKlass = STACK_OBJECT(-1)->klass();
2292             //
2293             // Check for compatibilty. This check must not GC!!
2294             // Seems way more expensive now that we must dispatch.
2295             //
2296             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2297               SET_STACK_INT(1, -1);
2298             } else {
2299               SET_STACK_INT(0, -1);
2300               // Decrement counter at checkcast.
2301               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2302             }
2303             // Profile instanceof with null_seen and receiver.
2304             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2305           }
2306           UPDATE_PC_AND_CONTINUE(3);
2307 
2308       CASE(_ldc_w):
2309       CASE(_ldc):
2310         {
2311           u2 index;
2312           bool wide = false;
2313           int incr = 2; // frequent case
2314           if (opcode == Bytecodes::_ldc) {
2315             index = pc[1];
2316           } else {
2317             index = Bytes::get_Java_u2(pc+1);
2318             incr = 3;
2319             wide = true;
2320           }
2321 
2322           ConstantPool* constants = METHOD->constants();
2323           switch (constants->tag_at(index).value()) {
2324           case JVM_CONSTANT_Integer:
2325             SET_STACK_INT(constants->int_at(index), 0);
2326             break;
2327 
2328           case JVM_CONSTANT_Float:
2329             SET_STACK_FLOAT(constants->float_at(index), 0);
2330             break;
2331 
2332           case JVM_CONSTANT_String:
2333             {
2334               oop result = constants->resolved_references()->obj_at(index);
2335               if (result == NULL) {
2336                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2337                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2338                 THREAD->set_vm_result(NULL);
2339               } else {
2340                 VERIFY_OOP(result);
2341                 SET_STACK_OBJECT(result, 0);
2342               }
2343             break;
2344             }
2345 
2346           case JVM_CONSTANT_Class:
2347             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2348             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2349             break;
2350 
2351           case JVM_CONSTANT_UnresolvedClass:
2352           case JVM_CONSTANT_UnresolvedClassInError:
2353             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2354             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2355             THREAD->set_vm_result(NULL);
2356             break;
2357 
2358           default:  ShouldNotReachHere();
2359           }
2360           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2361         }
2362 
2363       CASE(_ldc2_w):
2364         {
2365           u2 index = Bytes::get_Java_u2(pc+1);
2366 
2367           ConstantPool* constants = METHOD->constants();
2368           switch (constants->tag_at(index).value()) {
2369 
2370           case JVM_CONSTANT_Long:
2371              SET_STACK_LONG(constants->long_at(index), 1);
2372             break;
2373 
2374           case JVM_CONSTANT_Double:
2375              SET_STACK_DOUBLE(constants->double_at(index), 1);
2376             break;
2377           default:  ShouldNotReachHere();
2378           }
2379           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2380         }
2381 
2382       CASE(_fast_aldc_w):
2383       CASE(_fast_aldc): {
2384         u2 index;
2385         int incr;
2386         if (opcode == Bytecodes::_fast_aldc) {
2387           index = pc[1];
2388           incr = 2;
2389         } else {
2390           index = Bytes::get_native_u2(pc+1);
2391           incr = 3;
2392         }
2393 
2394         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2395         // This kind of CP cache entry does not need to match the flags byte, because
2396         // there is a 1-1 relation between bytecode type and CP entry type.
2397         ConstantPool* constants = METHOD->constants();
2398         oop result = constants->resolved_references()->obj_at(index);
2399         if (result == NULL) {
2400           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2401                   handle_exception);
2402           result = THREAD->vm_result();
2403         }
2404 
2405         VERIFY_OOP(result);
2406         SET_STACK_OBJECT(result, 0);
2407         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2408       }
2409 
2410       CASE(_invokedynamic): {
2411 
2412         u4 index = Bytes::get_native_u4(pc+1);
2413         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2414 
2415         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2416         // This kind of CP cache entry does not need to match the flags byte, because
2417         // there is a 1-1 relation between bytecode type and CP entry type.
2418         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2419           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2420                   handle_exception);
2421           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2422         }
2423 
2424         Method* method = cache->f1_as_method();
2425         if (VerifyOops) method->verify();
2426 
2427         if (cache->has_appendix()) {
2428           ConstantPool* constants = METHOD->constants();
2429           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2430           MORE_STACK(1);
2431         }
2432 
2433         istate->set_msg(call_method);
2434         istate->set_callee(method);
2435         istate->set_callee_entry_point(method->from_interpreted_entry());
2436         istate->set_bcp_advance(5);
2437 
2438         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2439         BI_PROFILE_UPDATE_CALL();
2440 
2441         UPDATE_PC_AND_RETURN(0); // I'll be back...
2442       }
2443 
2444       CASE(_invokehandle): {
2445 
2446         u2 index = Bytes::get_native_u2(pc+1);
2447         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2448 
2449         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2450           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2451                   handle_exception);
2452           cache = cp->entry_at(index);
2453         }
2454 
2455         Method* method = cache->f1_as_method();
2456         if (VerifyOops) method->verify();
2457 
2458         if (cache->has_appendix()) {
2459           ConstantPool* constants = METHOD->constants();
2460           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2461           MORE_STACK(1);
2462         }
2463 
2464         istate->set_msg(call_method);
2465         istate->set_callee(method);
2466         istate->set_callee_entry_point(method->from_interpreted_entry());
2467         istate->set_bcp_advance(3);
2468 
2469         // Invokehandle has got a call counter, just like a final call -> increment!
2470         BI_PROFILE_UPDATE_FINALCALL();
2471 
2472         UPDATE_PC_AND_RETURN(0); // I'll be back...
2473       }
2474 
2475       CASE(_invokeinterface): {
2476         u2 index = Bytes::get_native_u2(pc+1);
2477 
2478         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2479         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2480 
2481         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2482         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2483           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2484                   handle_exception);
2485           cache = cp->entry_at(index);
2486         }
2487 
2488         istate->set_msg(call_method);
2489 
2490         // Special case of invokeinterface called for virtual method of
2491         // java.lang.Object.  See cpCacheOop.cpp for details.
2492         // This code isn't produced by javac, but could be produced by
2493         // another compliant java compiler.
2494         if (cache->is_forced_virtual()) {
2495           Method* callee;
2496           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2497           if (cache->is_vfinal()) {
2498             callee = cache->f2_as_vfinal_method();
2499             // Profile 'special case of invokeinterface' final call.
2500             BI_PROFILE_UPDATE_FINALCALL();
2501           } else {
2502             // Get receiver.
2503             int parms = cache->parameter_size();
2504             // Same comments as invokevirtual apply here.
2505             oop rcvr = STACK_OBJECT(-parms);
2506             VERIFY_OOP(rcvr);
2507             InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2508             callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2509             // Profile 'special case of invokeinterface' virtual call.
2510             BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2511           }
2512           istate->set_callee(callee);
2513           istate->set_callee_entry_point(callee->from_interpreted_entry());
2514 #ifdef VM_JVMTI
2515           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2516             istate->set_callee_entry_point(callee->interpreter_entry());
2517           }
2518 #endif /* VM_JVMTI */
2519           istate->set_bcp_advance(5);
2520           UPDATE_PC_AND_RETURN(0); // I'll be back...
2521         }
2522 
2523         // this could definitely be cleaned up QQQ
2524         Method* callee;
2525         Klass* iclass = cache->f1_as_klass();
2526         // InstanceKlass* interface = (InstanceKlass*) iclass;
2527         // get receiver
2528         int parms = cache->parameter_size();
2529         oop rcvr = STACK_OBJECT(-parms);
2530         CHECK_NULL(rcvr);
2531         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2532         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2533         int i;
2534         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2535           if (ki->interface_klass() == iclass) break;
2536         }
2537         // If the interface isn't found, this class doesn't implement this
2538         // interface.  The link resolver checks this but only for the first
2539         // time this interface is called.
2540         if (i == int2->itable_length()) {
2541           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2542         }
2543         int mindex = cache->f2_as_index();
2544         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2545         callee = im[mindex].method();
2546         if (callee == NULL) {
2547           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2548         }
2549 
2550         // Profile virtual call.
2551         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2552 
2553         istate->set_callee(callee);
2554         istate->set_callee_entry_point(callee->from_interpreted_entry());
2555 #ifdef VM_JVMTI
2556         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2557           istate->set_callee_entry_point(callee->interpreter_entry());
2558         }
2559 #endif /* VM_JVMTI */
2560         istate->set_bcp_advance(5);
2561         UPDATE_PC_AND_RETURN(0); // I'll be back...
2562       }
2563 
2564       CASE(_invokevirtual):
2565       CASE(_invokespecial):
2566       CASE(_invokestatic): {
2567         u2 index = Bytes::get_native_u2(pc+1);
2568 
2569         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2570         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2571         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2572 
2573         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2574           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2575                   handle_exception);
2576           cache = cp->entry_at(index);
2577         }
2578 
2579         istate->set_msg(call_method);
2580         {
2581           Method* callee;
2582           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2583             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2584             if (cache->is_vfinal()) {
2585               callee = cache->f2_as_vfinal_method();
2586               // Profile final call.
2587               BI_PROFILE_UPDATE_FINALCALL();
2588             } else {
2589               // get receiver
2590               int parms = cache->parameter_size();
2591               // this works but needs a resourcemark and seems to create a vtable on every call:
2592               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2593               //
2594               // this fails with an assert
2595               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2596               // but this works
2597               oop rcvr = STACK_OBJECT(-parms);
2598               VERIFY_OOP(rcvr);
2599               InstanceKlass* rcvrKlass = (InstanceKlass*)rcvr->klass();
2600               /*
2601                 Executing this code in java.lang.String:
2602                     public String(char value[]) {
2603                           this.count = value.length;
2604                           this.value = (char[])value.clone();
2605                      }
2606 
2607                  a find on rcvr->klass() reports:
2608                  {type array char}{type array class}
2609                   - klass: {other class}
2610 
2611                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2612                   because rcvr->klass()->oop_is_instance() == 0
2613                   However it seems to have a vtable in the right location. Huh?
2614 
2615               */
2616               callee = (Method*) rcvrKlass->start_of_vtable()[ cache->f2_as_index()];
2617               // Profile virtual call.
2618               BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2619             }
2620           } else {
2621             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2622               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2623             }
2624             callee = cache->f1_as_method();
2625 
2626             // Profile call.
2627             BI_PROFILE_UPDATE_CALL();
2628           }
2629 
2630           istate->set_callee(callee);
2631           istate->set_callee_entry_point(callee->from_interpreted_entry());
2632 #ifdef VM_JVMTI
2633           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2634             istate->set_callee_entry_point(callee->interpreter_entry());
2635           }
2636 #endif /* VM_JVMTI */
2637           istate->set_bcp_advance(3);
2638           UPDATE_PC_AND_RETURN(0); // I'll be back...
2639         }
2640       }
2641 
2642       /* Allocate memory for a new java object. */
2643 
2644       CASE(_newarray): {
2645         BasicType atype = (BasicType) *(pc+1);
2646         jint size = STACK_INT(-1);
2647         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2648                 handle_exception);
2649         // Must prevent reordering of stores for object initialization
2650         // with stores that publish the new object.
2651         OrderAccess::storestore();
2652         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2653         THREAD->set_vm_result(NULL);
2654 
2655         UPDATE_PC_AND_CONTINUE(2);
2656       }
2657 
2658       /* Throw an exception. */
2659 
2660       CASE(_athrow): {
2661           oop except_oop = STACK_OBJECT(-1);
2662           CHECK_NULL(except_oop);
2663           // set pending_exception so we use common code
2664           THREAD->set_pending_exception(except_oop, NULL, 0);
2665           goto handle_exception;
2666       }
2667 
2668       /* goto and jsr. They are exactly the same except jsr pushes
2669        * the address of the next instruction first.
2670        */
2671 
2672       CASE(_jsr): {
2673           /* push bytecode index on stack */
2674           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2675           MORE_STACK(1);
2676           /* FALL THROUGH */
2677       }
2678 
2679       CASE(_goto):
2680       {
2681           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2682           // Profile jump.
2683           BI_PROFILE_UPDATE_JUMP();
2684           address branch_pc = pc;
2685           UPDATE_PC(offset);
2686           DO_BACKEDGE_CHECKS(offset, branch_pc);
2687           CONTINUE;
2688       }
2689 
2690       CASE(_jsr_w): {
2691           /* push return address on the stack */
2692           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2693           MORE_STACK(1);
2694           /* FALL THROUGH */
2695       }
2696 
2697       CASE(_goto_w):
2698       {
2699           int32_t offset = Bytes::get_Java_u4(pc + 1);
2700           // Profile jump.
2701           BI_PROFILE_UPDATE_JUMP();
2702           address branch_pc = pc;
2703           UPDATE_PC(offset);
2704           DO_BACKEDGE_CHECKS(offset, branch_pc);
2705           CONTINUE;
2706       }
2707 
2708       /* return from a jsr or jsr_w */
2709 
2710       CASE(_ret): {
2711           // Profile ret.
2712           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2713           // Now, update the pc.
2714           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2715           UPDATE_PC_AND_CONTINUE(0);
2716       }
2717 
2718       /* debugger breakpoint */
2719 
2720       CASE(_breakpoint): {
2721           Bytecodes::Code original_bytecode;
2722           DECACHE_STATE();
2723           SET_LAST_JAVA_FRAME();
2724           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2725                               METHOD, pc);
2726           RESET_LAST_JAVA_FRAME();
2727           CACHE_STATE();
2728           if (THREAD->has_pending_exception()) goto handle_exception;
2729             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2730                                                     handle_exception);
2731 
2732           opcode = (jubyte)original_bytecode;
2733           goto opcode_switch;
2734       }
2735 
2736       DEFAULT:
2737           fatal("Unimplemented opcode %d = %s", opcode,
2738                 Bytecodes::name((Bytecodes::Code)opcode));
2739           goto finish;
2740 
2741       } /* switch(opc) */
2742 
2743 
2744 #ifdef USELABELS
2745     check_for_exception:
2746 #endif
2747     {
2748       if (!THREAD->has_pending_exception()) {
2749         CONTINUE;
2750       }
2751       /* We will be gcsafe soon, so flush our state. */
2752       DECACHE_PC();
2753       goto handle_exception;
2754     }
2755   do_continue: ;
2756 
2757   } /* while (1) interpreter loop */
2758 
2759 
2760   // An exception exists in the thread state see whether this activation can handle it
2761   handle_exception: {
2762 
2763     HandleMarkCleaner __hmc(THREAD);
2764     Handle except_oop(THREAD, THREAD->pending_exception());
2765     // Prevent any subsequent HandleMarkCleaner in the VM
2766     // from freeing the except_oop handle.
2767     HandleMark __hm(THREAD);
2768 
2769     THREAD->clear_pending_exception();
2770     assert(except_oop(), "No exception to process");
2771     intptr_t continuation_bci;
2772     // expression stack is emptied
2773     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2774     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2775             handle_exception);
2776 
2777     except_oop = THREAD->vm_result();
2778     THREAD->set_vm_result(NULL);
2779     if (continuation_bci >= 0) {
2780       // Place exception on top of stack
2781       SET_STACK_OBJECT(except_oop(), 0);
2782       MORE_STACK(1);
2783       pc = METHOD->code_base() + continuation_bci;
2784       if (TraceExceptions) {
2785         ttyLocker ttyl;
2786         ResourceMark rm;
2787         tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), p2i(except_oop()));
2788         tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2789         tty->print_cr(" at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2790                       (int)(istate->bcp() - METHOD->code_base()),
2791                       (int)continuation_bci, p2i(THREAD));
2792       }
2793       // for AbortVMOnException flag
2794       NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2795 
2796       // Update profiling data.
2797       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2798       goto run;
2799     }
2800     if (TraceExceptions) {
2801       ttyLocker ttyl;
2802       ResourceMark rm;
2803       tty->print_cr("Exception <%s> (" INTPTR_FORMAT ")", except_oop->print_value_string(), p2i(except_oop()));
2804       tty->print_cr(" thrown in interpreter method <%s>", METHOD->print_value_string());
2805       tty->print_cr(" at bci %d, unwinding for thread " INTPTR_FORMAT,
2806                     (int)(istate->bcp() - METHOD->code_base()),
2807                     p2i(THREAD));
2808     }
2809     // for AbortVMOnException flag
2810     NOT_PRODUCT(Exceptions::debug_check_abort(except_oop));
2811     // No handler in this activation, unwind and try again
2812     THREAD->set_pending_exception(except_oop(), NULL, 0);
2813     goto handle_return;
2814   }  // handle_exception:
2815 
2816   // Return from an interpreter invocation with the result of the interpretation
2817   // on the top of the Java Stack (or a pending exception)
2818 
2819   handle_Pop_Frame: {
2820 
2821     // We don't really do anything special here except we must be aware
2822     // that we can get here without ever locking the method (if sync).
2823     // Also we skip the notification of the exit.
2824 
2825     istate->set_msg(popping_frame);
2826     // Clear pending so while the pop is in process
2827     // we don't start another one if a call_vm is done.
2828     THREAD->clr_pop_frame_pending();
2829     // Let interpreter (only) see the we're in the process of popping a frame
2830     THREAD->set_pop_frame_in_process();
2831 
2832     goto handle_return;
2833 
2834   } // handle_Pop_Frame
2835 
2836   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2837   // given by the invoker of the early return.
2838   handle_Early_Return: {
2839 
2840     istate->set_msg(early_return);
2841 
2842     // Clear expression stack.
2843     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2844 
2845     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2846 
2847     // Push the value to be returned.
2848     switch (istate->method()->result_type()) {
2849       case T_BOOLEAN:
2850       case T_SHORT:
2851       case T_BYTE:
2852       case T_CHAR:
2853       case T_INT:
2854         SET_STACK_INT(ts->earlyret_value().i, 0);
2855         MORE_STACK(1);
2856         break;
2857       case T_LONG:
2858         SET_STACK_LONG(ts->earlyret_value().j, 1);
2859         MORE_STACK(2);
2860         break;
2861       case T_FLOAT:
2862         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2863         MORE_STACK(1);
2864         break;
2865       case T_DOUBLE:
2866         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2867         MORE_STACK(2);
2868         break;
2869       case T_ARRAY:
2870       case T_OBJECT:
2871         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2872         MORE_STACK(1);
2873         break;
2874     }
2875 
2876     ts->clr_earlyret_value();
2877     ts->set_earlyret_oop(NULL);
2878     ts->clr_earlyret_pending();
2879 
2880     // Fall through to handle_return.
2881 
2882   } // handle_Early_Return
2883 
2884   handle_return: {
2885     // A storestore barrier is required to order initialization of
2886     // final fields with publishing the reference to the object that
2887     // holds the field. Without the barrier the value of final fields
2888     // can be observed to change.
2889     OrderAccess::storestore();
2890 
2891     DECACHE_STATE();
2892 
2893     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2894     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2895     Handle original_exception(THREAD, THREAD->pending_exception());
2896     Handle illegal_state_oop(THREAD, NULL);
2897 
2898     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2899     // in any following VM entries from freeing our live handles, but illegal_state_oop
2900     // isn't really allocated yet and so doesn't become live until later and
2901     // in unpredicatable places. Instead we must protect the places where we enter the
2902     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2903     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2904     // unfortunately isn't possible.
2905 
2906     THREAD->clear_pending_exception();
2907 
2908     //
2909     // As far as we are concerned we have returned. If we have a pending exception
2910     // that will be returned as this invocation's result. However if we get any
2911     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2912     // will be our final result (i.e. monitor exception trumps a pending exception).
2913     //
2914 
2915     // If we never locked the method (or really passed the point where we would have),
2916     // there is no need to unlock it (or look for other monitors), since that
2917     // could not have happened.
2918 
2919     if (THREAD->do_not_unlock()) {
2920 
2921       // Never locked, reset the flag now because obviously any caller must
2922       // have passed their point of locking for us to have gotten here.
2923 
2924       THREAD->clr_do_not_unlock();
2925     } else {
2926       // At this point we consider that we have returned. We now check that the
2927       // locks were properly block structured. If we find that they were not
2928       // used properly we will return with an illegal monitor exception.
2929       // The exception is checked by the caller not the callee since this
2930       // checking is considered to be part of the invocation and therefore
2931       // in the callers scope (JVM spec 8.13).
2932       //
2933       // Another weird thing to watch for is if the method was locked
2934       // recursively and then not exited properly. This means we must
2935       // examine all the entries in reverse time(and stack) order and
2936       // unlock as we find them. If we find the method monitor before
2937       // we are at the initial entry then we should throw an exception.
2938       // It is not clear the template based interpreter does this
2939       // correctly
2940 
2941       BasicObjectLock* base = istate->monitor_base();
2942       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2943       bool method_unlock_needed = METHOD->is_synchronized();
2944       // We know the initial monitor was used for the method don't check that
2945       // slot in the loop
2946       if (method_unlock_needed) base--;
2947 
2948       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2949       while (end < base) {
2950         oop lockee = end->obj();
2951         if (lockee != NULL) {
2952           BasicLock* lock = end->lock();
2953           markOop header = lock->displaced_header();
2954           end->set_obj(NULL);
2955 
2956           if (!lockee->mark()->has_bias_pattern()) {
2957             // If it isn't recursive we either must swap old header or call the runtime
2958             if (header != NULL) {
2959               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2960                 // restore object for the slow case
2961                 end->set_obj(lockee);
2962                 {
2963                   // Prevent any HandleMarkCleaner from freeing our live handles
2964                   HandleMark __hm(THREAD);
2965                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2966                 }
2967               }
2968             }
2969           }
2970           // One error is plenty
2971           if (illegal_state_oop() == NULL && !suppress_error) {
2972             {
2973               // Prevent any HandleMarkCleaner from freeing our live handles
2974               HandleMark __hm(THREAD);
2975               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2976             }
2977             assert(THREAD->has_pending_exception(), "Lost our exception!");
2978             illegal_state_oop = THREAD->pending_exception();
2979             THREAD->clear_pending_exception();
2980           }
2981         }
2982         end++;
2983       }
2984       // Unlock the method if needed
2985       if (method_unlock_needed) {
2986         if (base->obj() == NULL) {
2987           // The method is already unlocked this is not good.
2988           if (illegal_state_oop() == NULL && !suppress_error) {
2989             {
2990               // Prevent any HandleMarkCleaner from freeing our live handles
2991               HandleMark __hm(THREAD);
2992               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2993             }
2994             assert(THREAD->has_pending_exception(), "Lost our exception!");
2995             illegal_state_oop = THREAD->pending_exception();
2996             THREAD->clear_pending_exception();
2997           }
2998         } else {
2999           //
3000           // The initial monitor is always used for the method
3001           // However if that slot is no longer the oop for the method it was unlocked
3002           // and reused by something that wasn't unlocked!
3003           //
3004           // deopt can come in with rcvr dead because c2 knows
3005           // its value is preserved in the monitor. So we can't use locals[0] at all
3006           // and must use first monitor slot.
3007           //
3008           oop rcvr = base->obj();
3009           if (rcvr == NULL) {
3010             if (!suppress_error) {
3011               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3012               illegal_state_oop = THREAD->pending_exception();
3013               THREAD->clear_pending_exception();
3014             }
3015           } else if (UseHeavyMonitors) {
3016             {
3017               // Prevent any HandleMarkCleaner from freeing our live handles.
3018               HandleMark __hm(THREAD);
3019               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3020             }
3021             if (THREAD->has_pending_exception()) {
3022               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3023               THREAD->clear_pending_exception();
3024             }
3025           } else {
3026             BasicLock* lock = base->lock();
3027             markOop header = lock->displaced_header();
3028             base->set_obj(NULL);
3029 
3030             if (!rcvr->mark()->has_bias_pattern()) {
3031               base->set_obj(NULL);
3032               // If it isn't recursive we either must swap old header or call the runtime
3033               if (header != NULL) {
3034                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3035                   // restore object for the slow case
3036                   base->set_obj(rcvr);
3037                   {
3038                     // Prevent any HandleMarkCleaner from freeing our live handles
3039                     HandleMark __hm(THREAD);
3040                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3041                   }
3042                   if (THREAD->has_pending_exception()) {
3043                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3044                     THREAD->clear_pending_exception();
3045                   }
3046                 }
3047               }
3048             }
3049           }
3050         }
3051       }
3052     }
3053     // Clear the do_not_unlock flag now.
3054     THREAD->clr_do_not_unlock();
3055 
3056     //
3057     // Notify jvmti/jvmdi
3058     //
3059     // NOTE: we do not notify a method_exit if we have a pending exception,
3060     // including an exception we generate for unlocking checks.  In the former
3061     // case, JVMDI has already been notified by our call for the exception handler
3062     // and in both cases as far as JVMDI is concerned we have already returned.
3063     // If we notify it again JVMDI will be all confused about how many frames
3064     // are still on the stack (4340444).
3065     //
3066     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3067     // method_exit events whenever we leave an activation unless it was done
3068     // for popframe. This is nothing like jvmdi. However we are passing the
3069     // tests at the moment (apparently because they are jvmdi based) so rather
3070     // than change this code and possibly fail tests we will leave it alone
3071     // (with this note) in anticipation of changing the vm and the tests
3072     // simultaneously.
3073 
3074 
3075     //
3076     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3077 
3078 
3079 
3080 #ifdef VM_JVMTI
3081       if (_jvmti_interp_events) {
3082         // Whenever JVMTI puts a thread in interp_only_mode, method
3083         // entry/exit events are sent for that thread to track stack depth.
3084         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3085           {
3086             // Prevent any HandleMarkCleaner from freeing our live handles
3087             HandleMark __hm(THREAD);
3088             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3089           }
3090         }
3091       }
3092 #endif /* VM_JVMTI */
3093 
3094     //
3095     // See if we are returning any exception
3096     // A pending exception that was pending prior to a possible popping frame
3097     // overrides the popping frame.
3098     //
3099     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3100     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3101       // Inform the frame manager we have no result.
3102       istate->set_msg(throwing_exception);
3103       if (illegal_state_oop() != NULL)
3104         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3105       else
3106         THREAD->set_pending_exception(original_exception(), NULL, 0);
3107       UPDATE_PC_AND_RETURN(0);
3108     }
3109 
3110     if (istate->msg() == popping_frame) {
3111       // Make it simpler on the assembly code and set the message for the frame pop.
3112       // returns
3113       if (istate->prev() == NULL) {
3114         // We must be returning to a deoptimized frame (because popframe only happens between
3115         // two interpreted frames). We need to save the current arguments in C heap so that
3116         // the deoptimized frame when it restarts can copy the arguments to its expression
3117         // stack and re-execute the call. We also have to notify deoptimization that this
3118         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3119         // java expression stack. Yuck.
3120         //
3121         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3122                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3123         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3124       }
3125     } else {
3126       istate->set_msg(return_from_method);
3127     }
3128 
3129     // Normal return
3130     // Advance the pc and return to frame manager
3131     UPDATE_PC_AND_RETURN(1);
3132   } /* handle_return: */
3133 
3134 // This is really a fatal error return
3135 
3136 finish:
3137   DECACHE_TOS();
3138   DECACHE_PC();
3139 
3140   return;
3141 }
3142 
3143 /*
3144  * All the code following this point is only produced once and is not present
3145  * in the JVMTI version of the interpreter
3146 */
3147 
3148 #ifndef VM_JVMTI
3149 
3150 // This constructor should only be used to contruct the object to signal
3151 // interpreter initialization. All other instances should be created by
3152 // the frame manager.
3153 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3154   if (msg != initialize) ShouldNotReachHere();
3155   _msg = msg;
3156   _self_link = this;
3157   _prev_link = NULL;
3158 }
3159 
3160 // Inline static functions for Java Stack and Local manipulation
3161 
3162 // The implementations are platform dependent. We have to worry about alignment
3163 // issues on some machines which can change on the same platform depending on
3164 // whether it is an LP64 machine also.
3165 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3166   return (address) tos[Interpreter::expr_index_at(-offset)];
3167 }
3168 
3169 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3170   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3171 }
3172 
3173 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3174   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3175 }
3176 
3177 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3178   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3179 }
3180 
3181 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3182   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3183 }
3184 
3185 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3186   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3187 }
3188 
3189 // only used for value types
3190 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3191                                                         int offset) {
3192   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3193 }
3194 
3195 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3196                                                        int offset) {
3197   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3198 }
3199 
3200 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3201                                                          int offset) {
3202   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3203 }
3204 
3205 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3206                                                           int offset) {
3207   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3208 }
3209 
3210 // needs to be platform dep for the 32 bit platforms.
3211 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3212                                                           int offset) {
3213   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3214 }
3215 
3216 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3217                                               address addr, int offset) {
3218   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3219                         ((VMJavaVal64*)addr)->d);
3220 }
3221 
3222 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3223                                                         int offset) {
3224   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3225   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3226 }
3227 
3228 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3229                                             address addr, int offset) {
3230   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3231   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3232                         ((VMJavaVal64*)addr)->l;
3233 }
3234 
3235 // Locals
3236 
3237 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3238   return (address)locals[Interpreter::local_index_at(-offset)];
3239 }
3240 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3241   return (jint)locals[Interpreter::local_index_at(-offset)];
3242 }
3243 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3244   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3245 }
3246 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3247   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3248 }
3249 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3250   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3251 }
3252 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3253   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3254 }
3255 
3256 // Returns the address of locals value.
3257 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3258   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3259 }
3260 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3261   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3262 }
3263 
3264 // Used for local value or returnAddress
3265 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3266                                    address value, int offset) {
3267   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3268 }
3269 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3270                                    jint value, int offset) {
3271   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3272 }
3273 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3274                                    jfloat value, int offset) {
3275   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3276 }
3277 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3278                                    oop value, int offset) {
3279   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3280 }
3281 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3282                                    jdouble value, int offset) {
3283   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3284 }
3285 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3286                                    jlong value, int offset) {
3287   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3288 }
3289 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3290                                    address addr, int offset) {
3291   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3292 }
3293 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3294                                    address addr, int offset) {
3295   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3296 }
3297 
3298 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3299                           intptr_t* locals, int locals_offset) {
3300   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3301   locals[Interpreter::local_index_at(-locals_offset)] = value;
3302 }
3303 
3304 
3305 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3306                                    int to_offset) {
3307   tos[Interpreter::expr_index_at(-to_offset)] =
3308                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3309 }
3310 
3311 void BytecodeInterpreter::dup(intptr_t *tos) {
3312   copy_stack_slot(tos, -1, 0);
3313 }
3314 void BytecodeInterpreter::dup2(intptr_t *tos) {
3315   copy_stack_slot(tos, -2, 0);
3316   copy_stack_slot(tos, -1, 1);
3317 }
3318 
3319 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3320   /* insert top word two down */
3321   copy_stack_slot(tos, -1, 0);
3322   copy_stack_slot(tos, -2, -1);
3323   copy_stack_slot(tos, 0, -2);
3324 }
3325 
3326 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3327   /* insert top word three down  */
3328   copy_stack_slot(tos, -1, 0);
3329   copy_stack_slot(tos, -2, -1);
3330   copy_stack_slot(tos, -3, -2);
3331   copy_stack_slot(tos, 0, -3);
3332 }
3333 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3334   /* insert top 2 slots three down */
3335   copy_stack_slot(tos, -1, 1);
3336   copy_stack_slot(tos, -2, 0);
3337   copy_stack_slot(tos, -3, -1);
3338   copy_stack_slot(tos, 1, -2);
3339   copy_stack_slot(tos, 0, -3);
3340 }
3341 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3342   /* insert top 2 slots four down */
3343   copy_stack_slot(tos, -1, 1);
3344   copy_stack_slot(tos, -2, 0);
3345   copy_stack_slot(tos, -3, -1);
3346   copy_stack_slot(tos, -4, -2);
3347   copy_stack_slot(tos, 1, -3);
3348   copy_stack_slot(tos, 0, -4);
3349 }
3350 
3351 
3352 void BytecodeInterpreter::swap(intptr_t *tos) {
3353   // swap top two elements
3354   intptr_t val = tos[Interpreter::expr_index_at(1)];
3355   // Copy -2 entry to -1
3356   copy_stack_slot(tos, -2, -1);
3357   // Store saved -1 entry into -2
3358   tos[Interpreter::expr_index_at(2)] = val;
3359 }
3360 // --------------------------------------------------------------------------------
3361 // Non-product code
3362 #ifndef PRODUCT
3363 
3364 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3365   switch (msg) {
3366      case BytecodeInterpreter::no_request:  return("no_request");
3367      case BytecodeInterpreter::initialize:  return("initialize");
3368      // status message to C++ interpreter
3369      case BytecodeInterpreter::method_entry:  return("method_entry");
3370      case BytecodeInterpreter::method_resume:  return("method_resume");
3371      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3372      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3373      // requests to frame manager from C++ interpreter
3374      case BytecodeInterpreter::call_method:  return("call_method");
3375      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3376      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3377      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3378      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3379      case BytecodeInterpreter::do_osr:  return("do_osr");
3380      // deopt
3381      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3382      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3383      default: return("BAD MSG");
3384   }
3385 }
3386 void
3387 BytecodeInterpreter::print() {
3388   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3389   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3390   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3391   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3392   {
3393     ResourceMark rm;
3394     char *method_name = _method->name_and_sig_as_C_string();
3395     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3396   }
3397   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3398   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3399   tty->print_cr("msg: %s", C_msg(this->_msg));
3400   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3401   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3402   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3403   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3404   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3405   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3406   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3407   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3408   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3409   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3410 #ifdef SPARC
3411   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3412   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3413   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3414   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3415 #endif
3416 #if !defined(ZERO) && defined(PPC)
3417   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3418 #endif // !ZERO
3419   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3420 }
3421 
3422 extern "C" {
3423   void PI(uintptr_t arg) {
3424     ((BytecodeInterpreter*)arg)->print();
3425   }
3426 }
3427 #endif // PRODUCT
3428 
3429 #endif // JVMTI
3430 #endif // CC_INTERP