1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/countbitsnode.hpp"
  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/mathexactnode.hpp"
  43 #include "opto/movenode.hpp"
  44 #include "opto/mulnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/runtime.hpp"
  49 #include "opto/subnode.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "trace/traceMacros.hpp"
  53 
  54 class LibraryIntrinsic : public InlineCallGenerator {
  55   // Extend the set of intrinsics known to the runtime:
  56  public:
  57  private:
  58   bool             _is_virtual;
  59   bool             _does_virtual_dispatch;
  60   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  61   int8_t           _last_predicate; // Last generated predicate
  62   vmIntrinsics::ID _intrinsic_id;
  63 
  64  public:
  65   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  66     : InlineCallGenerator(m),
  67       _is_virtual(is_virtual),
  68       _does_virtual_dispatch(does_virtual_dispatch),
  69       _predicates_count((int8_t)predicates_count),
  70       _last_predicate((int8_t)-1),
  71       _intrinsic_id(id)
  72   {
  73   }
  74   virtual bool is_intrinsic() const { return true; }
  75   virtual bool is_virtual()   const { return _is_virtual; }
  76   virtual bool is_predicated() const { return _predicates_count > 0; }
  77   virtual int  predicates_count() const { return _predicates_count; }
  78   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  79   virtual JVMState* generate(JVMState* jvms);
  80   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  81   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  82 };
  83 
  84 
  85 // Local helper class for LibraryIntrinsic:
  86 class LibraryCallKit : public GraphKit {
  87  private:
  88   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  89   Node*             _result;        // the result node, if any
  90   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  91 
  92   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  93 
  94  public:
  95   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  96     : GraphKit(jvms),
  97       _intrinsic(intrinsic),
  98       _result(NULL)
  99   {
 100     // Check if this is a root compile.  In that case we don't have a caller.
 101     if (!jvms->has_method()) {
 102       _reexecute_sp = sp();
 103     } else {
 104       // Find out how many arguments the interpreter needs when deoptimizing
 105       // and save the stack pointer value so it can used by uncommon_trap.
 106       // We find the argument count by looking at the declared signature.
 107       bool ignored_will_link;
 108       ciSignature* declared_signature = NULL;
 109       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 110       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 111       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 112     }
 113   }
 114 
 115   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 116 
 117   ciMethod*         caller()    const    { return jvms()->method(); }
 118   int               bci()       const    { return jvms()->bci(); }
 119   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 120   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 121   ciMethod*         callee()    const    { return _intrinsic->method(); }
 122 
 123   bool  try_to_inline(int predicate);
 124   Node* try_to_predicate(int predicate);
 125 
 126   void push_result() {
 127     // Push the result onto the stack.
 128     if (!stopped() && result() != NULL) {
 129       BasicType bt = result()->bottom_type()->basic_type();
 130       push_node(bt, result());
 131     }
 132   }
 133 
 134  private:
 135   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 136     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 137   }
 138 
 139   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 140   void  set_result(RegionNode* region, PhiNode* value);
 141   Node*     result() { return _result; }
 142 
 143   virtual int reexecute_sp() { return _reexecute_sp; }
 144 
 145   // Helper functions to inline natives
 146   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 147   Node* generate_slow_guard(Node* test, RegionNode* region);
 148   Node* generate_fair_guard(Node* test, RegionNode* region);
 149   Node* generate_negative_guard(Node* index, RegionNode* region,
 150                                 // resulting CastII of index:
 151                                 Node* *pos_index = NULL);
 152   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 153                              Node* array_length,
 154                              RegionNode* region);
 155   Node* generate_current_thread(Node* &tls_output);
 156   Node* load_mirror_from_klass(Node* klass);
 157   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 158                                       RegionNode* region, int null_path,
 159                                       int offset);
 160   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 161                                RegionNode* region, int null_path) {
 162     int offset = java_lang_Class::klass_offset_in_bytes();
 163     return load_klass_from_mirror_common(mirror, never_see_null,
 164                                          region, null_path,
 165                                          offset);
 166   }
 167   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 168                                      RegionNode* region, int null_path) {
 169     int offset = java_lang_Class::array_klass_offset_in_bytes();
 170     return load_klass_from_mirror_common(mirror, never_see_null,
 171                                          region, null_path,
 172                                          offset);
 173   }
 174   Node* generate_access_flags_guard(Node* kls,
 175                                     int modifier_mask, int modifier_bits,
 176                                     RegionNode* region);
 177   Node* generate_interface_guard(Node* kls, RegionNode* region);
 178   Node* generate_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, false);
 180   }
 181   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, false, true);
 183   }
 184   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, false);
 186   }
 187   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 188     return generate_array_guard_common(kls, region, true, true);
 189   }
 190   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 191                                     bool obj_array, bool not_array);
 192   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 193   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 194                                      bool is_virtual = false, bool is_static = false);
 195   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, false, true);
 197   }
 198   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 199     return generate_method_call(method_id, true, false);
 200   }
 201   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 202 
 203   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 204   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 205   bool inline_string_compareTo();
 206   bool inline_string_indexOf();
 207   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 208   bool inline_string_equals();
 209   Node* round_double_node(Node* n);
 210   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 211   bool inline_math_native(vmIntrinsics::ID id);
 212   bool inline_trig(vmIntrinsics::ID id);
 213   bool inline_math(vmIntrinsics::ID id);
 214   template <typename OverflowOp>
 215   bool inline_math_overflow(Node* arg1, Node* arg2);
 216   void inline_math_mathExact(Node* math, Node* test);
 217   bool inline_math_addExactI(bool is_increment);
 218   bool inline_math_addExactL(bool is_increment);
 219   bool inline_math_multiplyExactI();
 220   bool inline_math_multiplyExactL();
 221   bool inline_math_negateExactI();
 222   bool inline_math_negateExactL();
 223   bool inline_math_subtractExactI(bool is_decrement);
 224   bool inline_math_subtractExactL(bool is_decrement);
 225   bool inline_exp();
 226   bool inline_pow();
 227   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 228   bool inline_min_max(vmIntrinsics::ID id);
 229   bool inline_notify(vmIntrinsics::ID id);
 230   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 231   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 232   int classify_unsafe_addr(Node* &base, Node* &offset);
 233   Node* make_unsafe_address(Node* base, Node* offset);
 234   // Helper for inline_unsafe_access.
 235   // Generates the guards that check whether the result of
 236   // Unsafe.getObject should be recorded in an SATB log buffer.
 237   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 238   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 239   static bool klass_needs_init_guard(Node* kls);
 240   bool inline_unsafe_allocate();
 241   bool inline_unsafe_copyMemory();
 242   bool inline_native_currentThread();
 243 #ifdef TRACE_HAVE_INTRINSICS
 244   bool inline_native_classID();
 245   bool inline_native_threadID();
 246 #endif
 247   bool inline_native_time_funcs(address method, const char* funcName);
 248   bool inline_native_isInterrupted();
 249   bool inline_native_Class_query(vmIntrinsics::ID id);
 250   bool inline_native_subtype_check();
 251 
 252   bool inline_native_newArray();
 253   bool inline_native_getLength();
 254   bool inline_array_copyOf(bool is_copyOfRange);
 255   bool inline_array_equals();
 256   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 257   bool inline_native_clone(bool is_virtual);
 258   bool inline_native_Reflection_getCallerClass();
 259   // Helper function for inlining native object hash method
 260   bool inline_native_hashcode(bool is_virtual, bool is_static);
 261   bool inline_native_getClass();
 262 
 263   // Helper functions for inlining arraycopy
 264   bool inline_arraycopy();
 265   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 266                                                 RegionNode* slow_region);
 267   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 268   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp);
 269 
 270   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 271   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 272   bool inline_unsafe_ordered_store(BasicType type);
 273   bool inline_unsafe_fence(vmIntrinsics::ID id);
 274   bool inline_fp_conversions(vmIntrinsics::ID id);
 275   bool inline_number_methods(vmIntrinsics::ID id);
 276   bool inline_reference_get();
 277   bool inline_Class_cast();
 278   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 279   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 280   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 281   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 282   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 283   bool inline_ghash_processBlocks();
 284   bool inline_sha_implCompress(vmIntrinsics::ID id);
 285   bool inline_digestBase_implCompressMB(int predicate);
 286   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 287                                  bool long_state, address stubAddr, const char *stubName,
 288                                  Node* src_start, Node* ofs, Node* limit);
 289   Node* get_state_from_sha_object(Node *sha_object);
 290   Node* get_state_from_sha5_object(Node *sha_object);
 291   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 292   bool inline_encodeISOArray();
 293   bool inline_updateCRC32();
 294   bool inline_updateBytesCRC32();
 295   bool inline_updateByteBufferCRC32();
 296   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 297   bool inline_updateBytesCRC32C();
 298   bool inline_updateDirectByteBufferCRC32C();
 299   bool inline_updateBytesAdler32();
 300   bool inline_updateByteBufferAdler32();
 301   bool inline_multiplyToLen();
 302   bool inline_squareToLen();
 303   bool inline_mulAdd();
 304   bool inline_montgomeryMultiply();
 305   bool inline_montgomerySquare();
 306 
 307   bool inline_profileBoolean();
 308   bool inline_isCompileConstant();
 309 };
 310 
 311 //---------------------------make_vm_intrinsic----------------------------
 312 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 313   vmIntrinsics::ID id = m->intrinsic_id();
 314   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 315 
 316   if (!m->is_loaded()) {
 317     // Do not attempt to inline unloaded methods.
 318     return NULL;
 319   }
 320 
 321   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 322   bool is_available = false;
 323 
 324   {
 325     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 326     // the compiler must transition to '_thread_in_vm' state because both
 327     // methods access VM-internal data.
 328     VM_ENTRY_MARK;
 329     methodHandle mh(THREAD, m->get_Method());
 330     methodHandle ct(THREAD, method()->get_Method());
 331     is_available = compiler->is_intrinsic_supported(mh, is_virtual) &&
 332                    !vmIntrinsics::is_disabled_by_flags(mh, ct);
 333   }
 334 
 335   if (is_available) {
 336     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 337     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 338     return new LibraryIntrinsic(m, is_virtual,
 339                                 vmIntrinsics::predicates_needed(id),
 340                                 vmIntrinsics::does_virtual_dispatch(id),
 341                                 (vmIntrinsics::ID) id);
 342   } else {
 343     return NULL;
 344   }
 345 }
 346 
 347 //----------------------register_library_intrinsics-----------------------
 348 // Initialize this file's data structures, for each Compile instance.
 349 void Compile::register_library_intrinsics() {
 350   // Nothing to do here.
 351 }
 352 
 353 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 354   LibraryCallKit kit(jvms, this);
 355   Compile* C = kit.C;
 356   int nodes = C->unique();
 357 #ifndef PRODUCT
 358   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 359     char buf[1000];
 360     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 361     tty->print_cr("Intrinsic %s", str);
 362   }
 363 #endif
 364   ciMethod* callee = kit.callee();
 365   const int bci    = kit.bci();
 366 
 367   // Try to inline the intrinsic.
 368   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 369       kit.try_to_inline(_last_predicate)) {
 370     if (C->print_intrinsics() || C->print_inlining()) {
 371       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 372     }
 373     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 374     if (C->log()) {
 375       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 376                      vmIntrinsics::name_at(intrinsic_id()),
 377                      (is_virtual() ? " virtual='1'" : ""),
 378                      C->unique() - nodes);
 379     }
 380     // Push the result from the inlined method onto the stack.
 381     kit.push_result();
 382     C->print_inlining_update(this);
 383     return kit.transfer_exceptions_into_jvms();
 384   }
 385 
 386   // The intrinsic bailed out
 387   if (C->print_intrinsics() || C->print_inlining()) {
 388     if (jvms->has_method()) {
 389       // Not a root compile.
 390       const char* msg;
 391       if (callee->intrinsic_candidate()) {
 392         msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 393       } else {
 394         msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 395                            : "failed to inline (intrinsic), method not annotated";
 396       }
 397       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 398     } else {
 399       // Root compile
 400       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 401                vmIntrinsics::name_at(intrinsic_id()),
 402                (is_virtual() ? " (virtual)" : ""), bci);
 403     }
 404   }
 405   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 406   C->print_inlining_update(this);
 407   return NULL;
 408 }
 409 
 410 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 411   LibraryCallKit kit(jvms, this);
 412   Compile* C = kit.C;
 413   int nodes = C->unique();
 414   _last_predicate = predicate;
 415 #ifndef PRODUCT
 416   assert(is_predicated() && predicate < predicates_count(), "sanity");
 417   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 418     char buf[1000];
 419     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 420     tty->print_cr("Predicate for intrinsic %s", str);
 421   }
 422 #endif
 423   ciMethod* callee = kit.callee();
 424   const int bci    = kit.bci();
 425 
 426   Node* slow_ctl = kit.try_to_predicate(predicate);
 427   if (!kit.failing()) {
 428     if (C->print_intrinsics() || C->print_inlining()) {
 429       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 430     }
 431     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 432     if (C->log()) {
 433       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 434                      vmIntrinsics::name_at(intrinsic_id()),
 435                      (is_virtual() ? " virtual='1'" : ""),
 436                      C->unique() - nodes);
 437     }
 438     return slow_ctl; // Could be NULL if the check folds.
 439   }
 440 
 441   // The intrinsic bailed out
 442   if (C->print_intrinsics() || C->print_inlining()) {
 443     if (jvms->has_method()) {
 444       // Not a root compile.
 445       const char* msg = "failed to generate predicate for intrinsic";
 446       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 447     } else {
 448       // Root compile
 449       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 450                                         vmIntrinsics::name_at(intrinsic_id()),
 451                                         (is_virtual() ? " (virtual)" : ""), bci);
 452     }
 453   }
 454   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 455   return NULL;
 456 }
 457 
 458 bool LibraryCallKit::try_to_inline(int predicate) {
 459   // Handle symbolic names for otherwise undistinguished boolean switches:
 460   const bool is_store       = true;
 461   const bool is_native_ptr  = true;
 462   const bool is_static      = true;
 463   const bool is_volatile    = true;
 464 
 465   if (!jvms()->has_method()) {
 466     // Root JVMState has a null method.
 467     assert(map()->memory()->Opcode() == Op_Parm, "");
 468     // Insert the memory aliasing node
 469     set_all_memory(reset_memory());
 470   }
 471   assert(merged_memory(), "");
 472 
 473 
 474   switch (intrinsic_id()) {
 475   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 476   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 477   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 478 
 479   case vmIntrinsics::_dsin:
 480   case vmIntrinsics::_dcos:
 481   case vmIntrinsics::_dtan:
 482   case vmIntrinsics::_dabs:
 483   case vmIntrinsics::_datan2:
 484   case vmIntrinsics::_dsqrt:
 485   case vmIntrinsics::_dexp:
 486   case vmIntrinsics::_dlog:
 487   case vmIntrinsics::_dlog10:
 488   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 489 
 490   case vmIntrinsics::_min:
 491   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 492 
 493   case vmIntrinsics::_notify:
 494   case vmIntrinsics::_notifyAll:
 495     if (InlineNotify) {
 496       return inline_notify(intrinsic_id());
 497     }
 498     return false;
 499 
 500   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 501   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 502   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 503   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 504   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 505   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 506   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 507   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 508   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 509   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 510   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 511   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 512 
 513   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 514 
 515   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 516   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 517   case vmIntrinsics::_equals:                   return inline_string_equals();
 518 
 519   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 520   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 521   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 522   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 523   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 524   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 525   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 526   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 527   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 528   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 529   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 530   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 531   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 532   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 533   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 534   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 535   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 536   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 537 
 538   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 539   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 540   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 541   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 542   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 543   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 544   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 545   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 546 
 547   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 548   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 549   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 550   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 551   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 552   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 553   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 554   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 555 
 556   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 557   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 558   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 559   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 560   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 561   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 562   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 563   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 564   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 565 
 566   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 567   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 568   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 569   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 570   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 571   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 572   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 573   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 574   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 575 
 576   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 577   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 578   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 579   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 580 
 581   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 582   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 583   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 584   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 585 
 586   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 587   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 588   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 589 
 590   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 591   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 592   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 593 
 594   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 595   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 596   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 597   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 598   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 599 
 600   case vmIntrinsics::_loadFence:
 601   case vmIntrinsics::_storeFence:
 602   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 603 
 604   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 605   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 606 
 607 #ifdef TRACE_HAVE_INTRINSICS
 608   case vmIntrinsics::_classID:                  return inline_native_classID();
 609   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 610   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 611 #endif
 612   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 613   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 614   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 615   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 616   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 617   case vmIntrinsics::_getLength:                return inline_native_getLength();
 618   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 619   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 620   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 621   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 622 
 623   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 624 
 625   case vmIntrinsics::_isInstance:
 626   case vmIntrinsics::_getModifiers:
 627   case vmIntrinsics::_isInterface:
 628   case vmIntrinsics::_isArray:
 629   case vmIntrinsics::_isPrimitive:
 630   case vmIntrinsics::_getSuperclass:
 631   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 632 
 633   case vmIntrinsics::_floatToRawIntBits:
 634   case vmIntrinsics::_floatToIntBits:
 635   case vmIntrinsics::_intBitsToFloat:
 636   case vmIntrinsics::_doubleToRawLongBits:
 637   case vmIntrinsics::_doubleToLongBits:
 638   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 639 
 640   case vmIntrinsics::_numberOfLeadingZeros_i:
 641   case vmIntrinsics::_numberOfLeadingZeros_l:
 642   case vmIntrinsics::_numberOfTrailingZeros_i:
 643   case vmIntrinsics::_numberOfTrailingZeros_l:
 644   case vmIntrinsics::_bitCount_i:
 645   case vmIntrinsics::_bitCount_l:
 646   case vmIntrinsics::_reverseBytes_i:
 647   case vmIntrinsics::_reverseBytes_l:
 648   case vmIntrinsics::_reverseBytes_s:
 649   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 650 
 651   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 652 
 653   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 654 
 655   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 656 
 657   case vmIntrinsics::_aescrypt_encryptBlock:
 658   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 659 
 660   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 661   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 662     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 663 
 664   case vmIntrinsics::_sha_implCompress:
 665   case vmIntrinsics::_sha2_implCompress:
 666   case vmIntrinsics::_sha5_implCompress:
 667     return inline_sha_implCompress(intrinsic_id());
 668 
 669   case vmIntrinsics::_digestBase_implCompressMB:
 670     return inline_digestBase_implCompressMB(predicate);
 671 
 672   case vmIntrinsics::_multiplyToLen:
 673     return inline_multiplyToLen();
 674 
 675   case vmIntrinsics::_squareToLen:
 676     return inline_squareToLen();
 677 
 678   case vmIntrinsics::_mulAdd:
 679     return inline_mulAdd();
 680 
 681   case vmIntrinsics::_montgomeryMultiply:
 682     return inline_montgomeryMultiply();
 683   case vmIntrinsics::_montgomerySquare:
 684     return inline_montgomerySquare();
 685 
 686   case vmIntrinsics::_ghash_processBlocks:
 687     return inline_ghash_processBlocks();
 688 
 689   case vmIntrinsics::_encodeISOArray:
 690     return inline_encodeISOArray();
 691 
 692   case vmIntrinsics::_updateCRC32:
 693     return inline_updateCRC32();
 694   case vmIntrinsics::_updateBytesCRC32:
 695     return inline_updateBytesCRC32();
 696   case vmIntrinsics::_updateByteBufferCRC32:
 697     return inline_updateByteBufferCRC32();
 698 
 699   case vmIntrinsics::_updateBytesCRC32C:
 700     return inline_updateBytesCRC32C();
 701   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 702     return inline_updateDirectByteBufferCRC32C();
 703 
 704   case vmIntrinsics::_updateBytesAdler32:
 705     return inline_updateBytesAdler32();
 706   case vmIntrinsics::_updateByteBufferAdler32:
 707     return inline_updateByteBufferAdler32();
 708 
 709   case vmIntrinsics::_profileBoolean:
 710     return inline_profileBoolean();
 711   case vmIntrinsics::_isCompileConstant:
 712     return inline_isCompileConstant();
 713 
 714   default:
 715     // If you get here, it may be that someone has added a new intrinsic
 716     // to the list in vmSymbols.hpp without implementing it here.
 717 #ifndef PRODUCT
 718     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 719       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 720                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 721     }
 722 #endif
 723     return false;
 724   }
 725 }
 726 
 727 Node* LibraryCallKit::try_to_predicate(int predicate) {
 728   if (!jvms()->has_method()) {
 729     // Root JVMState has a null method.
 730     assert(map()->memory()->Opcode() == Op_Parm, "");
 731     // Insert the memory aliasing node
 732     set_all_memory(reset_memory());
 733   }
 734   assert(merged_memory(), "");
 735 
 736   switch (intrinsic_id()) {
 737   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 738     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 739   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 740     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 741   case vmIntrinsics::_digestBase_implCompressMB:
 742     return inline_digestBase_implCompressMB_predicate(predicate);
 743 
 744   default:
 745     // If you get here, it may be that someone has added a new intrinsic
 746     // to the list in vmSymbols.hpp without implementing it here.
 747 #ifndef PRODUCT
 748     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 749       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 750                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 751     }
 752 #endif
 753     Node* slow_ctl = control();
 754     set_control(top()); // No fast path instrinsic
 755     return slow_ctl;
 756   }
 757 }
 758 
 759 //------------------------------set_result-------------------------------
 760 // Helper function for finishing intrinsics.
 761 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 762   record_for_igvn(region);
 763   set_control(_gvn.transform(region));
 764   set_result( _gvn.transform(value));
 765   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 766 }
 767 
 768 //------------------------------generate_guard---------------------------
 769 // Helper function for generating guarded fast-slow graph structures.
 770 // The given 'test', if true, guards a slow path.  If the test fails
 771 // then a fast path can be taken.  (We generally hope it fails.)
 772 // In all cases, GraphKit::control() is updated to the fast path.
 773 // The returned value represents the control for the slow path.
 774 // The return value is never 'top'; it is either a valid control
 775 // or NULL if it is obvious that the slow path can never be taken.
 776 // Also, if region and the slow control are not NULL, the slow edge
 777 // is appended to the region.
 778 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 779   if (stopped()) {
 780     // Already short circuited.
 781     return NULL;
 782   }
 783 
 784   // Build an if node and its projections.
 785   // If test is true we take the slow path, which we assume is uncommon.
 786   if (_gvn.type(test) == TypeInt::ZERO) {
 787     // The slow branch is never taken.  No need to build this guard.
 788     return NULL;
 789   }
 790 
 791   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 792 
 793   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 794   if (if_slow == top()) {
 795     // The slow branch is never taken.  No need to build this guard.
 796     return NULL;
 797   }
 798 
 799   if (region != NULL)
 800     region->add_req(if_slow);
 801 
 802   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 803   set_control(if_fast);
 804 
 805   return if_slow;
 806 }
 807 
 808 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 809   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 810 }
 811 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 812   return generate_guard(test, region, PROB_FAIR);
 813 }
 814 
 815 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 816                                                      Node* *pos_index) {
 817   if (stopped())
 818     return NULL;                // already stopped
 819   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 820     return NULL;                // index is already adequately typed
 821   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 822   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 823   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 824   if (is_neg != NULL && pos_index != NULL) {
 825     // Emulate effect of Parse::adjust_map_after_if.
 826     Node* ccast = new CastIINode(index, TypeInt::POS);
 827     ccast->set_req(0, control());
 828     (*pos_index) = _gvn.transform(ccast);
 829   }
 830   return is_neg;
 831 }
 832 
 833 // Make sure that 'position' is a valid limit index, in [0..length].
 834 // There are two equivalent plans for checking this:
 835 //   A. (offset + copyLength)  unsigned<=  arrayLength
 836 //   B. offset  <=  (arrayLength - copyLength)
 837 // We require that all of the values above, except for the sum and
 838 // difference, are already known to be non-negative.
 839 // Plan A is robust in the face of overflow, if offset and copyLength
 840 // are both hugely positive.
 841 //
 842 // Plan B is less direct and intuitive, but it does not overflow at
 843 // all, since the difference of two non-negatives is always
 844 // representable.  Whenever Java methods must perform the equivalent
 845 // check they generally use Plan B instead of Plan A.
 846 // For the moment we use Plan A.
 847 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 848                                                   Node* subseq_length,
 849                                                   Node* array_length,
 850                                                   RegionNode* region) {
 851   if (stopped())
 852     return NULL;                // already stopped
 853   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 854   if (zero_offset && subseq_length->eqv_uncast(array_length))
 855     return NULL;                // common case of whole-array copy
 856   Node* last = subseq_length;
 857   if (!zero_offset)             // last += offset
 858     last = _gvn.transform(new AddINode(last, offset));
 859   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 860   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 861   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 862   return is_over;
 863 }
 864 
 865 
 866 //--------------------------generate_current_thread--------------------
 867 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 868   ciKlass*    thread_klass = env()->Thread_klass();
 869   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 870   Node* thread = _gvn.transform(new ThreadLocalNode());
 871   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 872   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
 873   tls_output = thread;
 874   return threadObj;
 875 }
 876 
 877 
 878 //------------------------------make_string_method_node------------------------
 879 // Helper method for String intrinsic functions. This version is called
 880 // with str1 and str2 pointing to String object nodes.
 881 //
 882 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 883   Node* no_ctrl = NULL;
 884 
 885   // Get start addr of string
 886   Node* str1_value   = load_String_value(no_ctrl, str1);
 887   Node* str1_offset  = load_String_offset(no_ctrl, str1);
 888   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 889 
 890   // Get length of string 1
 891   Node* str1_len  = load_String_length(no_ctrl, str1);
 892 
 893   Node* str2_value   = load_String_value(no_ctrl, str2);
 894   Node* str2_offset  = load_String_offset(no_ctrl, str2);
 895   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 896 
 897   Node* str2_len = NULL;
 898   Node* result = NULL;
 899 
 900   switch (opcode) {
 901   case Op_StrIndexOf:
 902     // Get length of string 2
 903     str2_len = load_String_length(no_ctrl, str2);
 904 
 905     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 906                                 str1_start, str1_len, str2_start, str2_len);
 907     break;
 908   case Op_StrComp:
 909     // Get length of string 2
 910     str2_len = load_String_length(no_ctrl, str2);
 911 
 912     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
 913                              str1_start, str1_len, str2_start, str2_len);
 914     break;
 915   case Op_StrEquals:
 916     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 917                                str1_start, str2_start, str1_len);
 918     break;
 919   default:
 920     ShouldNotReachHere();
 921     return NULL;
 922   }
 923 
 924   // All these intrinsics have checks.
 925   C->set_has_split_ifs(true); // Has chance for split-if optimization
 926 
 927   return _gvn.transform(result);
 928 }
 929 
 930 // Helper method for String intrinsic functions. This version is called
 931 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
 932 // to Int nodes containing the lenghts of str1 and str2.
 933 //
 934 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
 935   Node* result = NULL;
 936   switch (opcode) {
 937   case Op_StrIndexOf:
 938     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
 939                                 str1_start, cnt1, str2_start, cnt2);
 940     break;
 941   case Op_StrComp:
 942     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
 943                              str1_start, cnt1, str2_start, cnt2);
 944     break;
 945   case Op_StrEquals:
 946     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
 947                                str1_start, str2_start, cnt1);
 948     break;
 949   default:
 950     ShouldNotReachHere();
 951     return NULL;
 952   }
 953 
 954   // All these intrinsics have checks.
 955   C->set_has_split_ifs(true); // Has chance for split-if optimization
 956 
 957   return _gvn.transform(result);
 958 }
 959 
 960 //------------------------------inline_string_compareTo------------------------
 961 // public int java.lang.String.compareTo(String anotherString);
 962 bool LibraryCallKit::inline_string_compareTo() {
 963   Node* receiver = null_check(argument(0));
 964   Node* arg      = null_check(argument(1));
 965   if (stopped()) {
 966     return true;
 967   }
 968   set_result(make_string_method_node(Op_StrComp, receiver, arg));
 969   return true;
 970 }
 971 
 972 //------------------------------inline_string_equals------------------------
 973 bool LibraryCallKit::inline_string_equals() {
 974   Node* receiver = null_check_receiver();
 975   // NOTE: Do not null check argument for String.equals() because spec
 976   // allows to specify NULL as argument.
 977   Node* argument = this->argument(1);
 978   if (stopped()) {
 979     return true;
 980   }
 981 
 982   // paths (plus control) merge
 983   RegionNode* region = new RegionNode(5);
 984   Node* phi = new PhiNode(region, TypeInt::BOOL);
 985 
 986   // does source == target string?
 987   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
 988   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
 989 
 990   Node* if_eq = generate_slow_guard(bol, NULL);
 991   if (if_eq != NULL) {
 992     // receiver == argument
 993     phi->init_req(2, intcon(1));
 994     region->init_req(2, if_eq);
 995   }
 996 
 997   // get String klass for instanceOf
 998   ciInstanceKlass* klass = env()->String_klass();
 999 
1000   if (!stopped()) {
1001     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1002     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1003     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1004 
1005     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1006     //instanceOf == true, fallthrough
1007 
1008     if (inst_false != NULL) {
1009       phi->init_req(3, intcon(0));
1010       region->init_req(3, inst_false);
1011     }
1012   }
1013 
1014   if (!stopped()) {
1015     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1016 
1017     // Properly cast the argument to String
1018     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1019     // This path is taken only when argument's type is String:NotNull.
1020     argument = cast_not_null(argument, false);
1021 
1022     Node* no_ctrl = NULL;
1023 
1024     // Get start addr of receiver
1025     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1026     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1027     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1028 
1029     // Get length of receiver
1030     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1031 
1032     // Get start addr of argument
1033     Node* argument_val    = load_String_value(no_ctrl, argument);
1034     Node* argument_offset = load_String_offset(no_ctrl, argument);
1035     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1036 
1037     // Get length of argument
1038     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1039 
1040     // Check for receiver count != argument count
1041     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1042     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1043     Node* if_ne = generate_slow_guard(bol, NULL);
1044     if (if_ne != NULL) {
1045       phi->init_req(4, intcon(0));
1046       region->init_req(4, if_ne);
1047     }
1048 
1049     // Check for count == 0 is done by assembler code for StrEquals.
1050 
1051     if (!stopped()) {
1052       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1053       phi->init_req(1, equals);
1054       region->init_req(1, control());
1055     }
1056   }
1057 
1058   // post merge
1059   set_control(_gvn.transform(region));
1060   record_for_igvn(region);
1061 
1062   set_result(_gvn.transform(phi));
1063   return true;
1064 }
1065 
1066 //------------------------------inline_array_equals----------------------------
1067 bool LibraryCallKit::inline_array_equals() {
1068   Node* arg1 = argument(0);
1069   Node* arg2 = argument(1);
1070   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1071   return true;
1072 }
1073 
1074 // Java version of String.indexOf(constant string)
1075 // class StringDecl {
1076 //   StringDecl(char[] ca) {
1077 //     offset = 0;
1078 //     count = ca.length;
1079 //     value = ca;
1080 //   }
1081 //   int offset;
1082 //   int count;
1083 //   char[] value;
1084 // }
1085 //
1086 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1087 //                             int targetOffset, int cache_i, int md2) {
1088 //   int cache = cache_i;
1089 //   int sourceOffset = string_object.offset;
1090 //   int sourceCount = string_object.count;
1091 //   int targetCount = target_object.length;
1092 //
1093 //   int targetCountLess1 = targetCount - 1;
1094 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1095 //
1096 //   char[] source = string_object.value;
1097 //   char[] target = target_object;
1098 //   int lastChar = target[targetCountLess1];
1099 //
1100 //  outer_loop:
1101 //   for (int i = sourceOffset; i < sourceEnd; ) {
1102 //     int src = source[i + targetCountLess1];
1103 //     if (src == lastChar) {
1104 //       // With random strings and a 4-character alphabet,
1105 //       // reverse matching at this point sets up 0.8% fewer
1106 //       // frames, but (paradoxically) makes 0.3% more probes.
1107 //       // Since those probes are nearer the lastChar probe,
1108 //       // there is may be a net D$ win with reverse matching.
1109 //       // But, reversing loop inhibits unroll of inner loop
1110 //       // for unknown reason.  So, does running outer loop from
1111 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1112 //       for (int j = 0; j < targetCountLess1; j++) {
1113 //         if (target[targetOffset + j] != source[i+j]) {
1114 //           if ((cache & (1 << source[i+j])) == 0) {
1115 //             if (md2 < j+1) {
1116 //               i += j+1;
1117 //               continue outer_loop;
1118 //             }
1119 //           }
1120 //           i += md2;
1121 //           continue outer_loop;
1122 //         }
1123 //       }
1124 //       return i - sourceOffset;
1125 //     }
1126 //     if ((cache & (1 << src)) == 0) {
1127 //       i += targetCountLess1;
1128 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1129 //     i++;
1130 //   }
1131 //   return -1;
1132 // }
1133 
1134 //------------------------------string_indexOf------------------------
1135 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1136                                      jint cache_i, jint md2_i) {
1137 
1138   Node* no_ctrl  = NULL;
1139   float likely   = PROB_LIKELY(0.9);
1140   float unlikely = PROB_UNLIKELY(0.9);
1141 
1142   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1143 
1144   Node* source        = load_String_value(no_ctrl, string_object);
1145   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1146   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1147 
1148   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1149   jint target_length = target_array->length();
1150   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1151   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1152 
1153   // String.value field is known to be @Stable.
1154   if (UseImplicitStableValues) {
1155     target = cast_array_to_stable(target, target_type);
1156   }
1157 
1158   IdealKit kit(this, false, true);
1159 #define __ kit.
1160   Node* zero             = __ ConI(0);
1161   Node* one              = __ ConI(1);
1162   Node* cache            = __ ConI(cache_i);
1163   Node* md2              = __ ConI(md2_i);
1164   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1165   Node* targetCountLess1 = __ ConI(target_length - 1);
1166   Node* targetOffset     = __ ConI(targetOffset_i);
1167   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1168 
1169   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1170   Node* outer_loop = __ make_label(2 /* goto */);
1171   Node* return_    = __ make_label(1);
1172 
1173   __ set(rtn,__ ConI(-1));
1174   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1175        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1176        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1177        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1178        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1179          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1180               Node* tpj = __ AddI(targetOffset, __ value(j));
1181               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1182               Node* ipj  = __ AddI(__ value(i), __ value(j));
1183               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1184               __ if_then(targ, BoolTest::ne, src2); {
1185                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1186                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1187                     __ increment(i, __ AddI(__ value(j), one));
1188                     __ goto_(outer_loop);
1189                   } __ end_if(); __ dead(j);
1190                 }__ end_if(); __ dead(j);
1191                 __ increment(i, md2);
1192                 __ goto_(outer_loop);
1193               }__ end_if();
1194               __ increment(j, one);
1195          }__ end_loop(); __ dead(j);
1196          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1197          __ goto_(return_);
1198        }__ end_if();
1199        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1200          __ increment(i, targetCountLess1);
1201        }__ end_if();
1202        __ increment(i, one);
1203        __ bind(outer_loop);
1204   }__ end_loop(); __ dead(i);
1205   __ bind(return_);
1206 
1207   // Final sync IdealKit and GraphKit.
1208   final_sync(kit);
1209   Node* result = __ value(rtn);
1210 #undef __
1211   C->set_has_loops(true);
1212   return result;
1213 }
1214 
1215 //------------------------------inline_string_indexOf------------------------
1216 bool LibraryCallKit::inline_string_indexOf() {
1217   Node* receiver = argument(0);
1218   Node* arg      = argument(1);
1219 
1220   Node* result;
1221   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1222       UseSSE42Intrinsics) {
1223     // Generate SSE4.2 version of indexOf
1224     // We currently only have match rules that use SSE4.2
1225 
1226     receiver = null_check(receiver);
1227     arg      = null_check(arg);
1228     if (stopped()) {
1229       return true;
1230     }
1231 
1232     // Make the merge point
1233     RegionNode* result_rgn = new RegionNode(4);
1234     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1235     Node* no_ctrl  = NULL;
1236 
1237     // Get start addr of source string
1238     Node* source = load_String_value(no_ctrl, receiver);
1239     Node* source_offset = load_String_offset(no_ctrl, receiver);
1240     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1241 
1242     // Get length of source string
1243     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1244 
1245     // Get start addr of substring
1246     Node* substr = load_String_value(no_ctrl, arg);
1247     Node* substr_offset = load_String_offset(no_ctrl, arg);
1248     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1249 
1250     // Get length of source string
1251     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1252 
1253     // Check for substr count > string count
1254     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1255     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1256     Node* if_gt = generate_slow_guard(bol, NULL);
1257     if (if_gt != NULL) {
1258       result_phi->init_req(2, intcon(-1));
1259       result_rgn->init_req(2, if_gt);
1260     }
1261 
1262     if (!stopped()) {
1263       // Check for substr count == 0
1264       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1265       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1266       Node* if_zero = generate_slow_guard(bol, NULL);
1267       if (if_zero != NULL) {
1268         result_phi->init_req(3, intcon(0));
1269         result_rgn->init_req(3, if_zero);
1270       }
1271     }
1272 
1273     if (!stopped()) {
1274       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1275       result_phi->init_req(1, result);
1276       result_rgn->init_req(1, control());
1277     }
1278     set_control(_gvn.transform(result_rgn));
1279     record_for_igvn(result_rgn);
1280     result = _gvn.transform(result_phi);
1281 
1282   } else { // Use LibraryCallKit::string_indexOf
1283     // don't intrinsify if argument isn't a constant string.
1284     if (!arg->is_Con()) {
1285      return false;
1286     }
1287     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1288     if (str_type == NULL) {
1289       return false;
1290     }
1291     ciInstanceKlass* klass = env()->String_klass();
1292     ciObject* str_const = str_type->const_oop();
1293     if (str_const == NULL || str_const->klass() != klass) {
1294       return false;
1295     }
1296     ciInstance* str = str_const->as_instance();
1297     assert(str != NULL, "must be instance");
1298 
1299     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1300     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1301 
1302     int o;
1303     int c;
1304     if (java_lang_String::has_offset_field()) {
1305       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1306       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1307     } else {
1308       o = 0;
1309       c = pat->length();
1310     }
1311 
1312     // constant strings have no offset and count == length which
1313     // simplifies the resulting code somewhat so lets optimize for that.
1314     if (o != 0 || c != pat->length()) {
1315      return false;
1316     }
1317 
1318     receiver = null_check(receiver, T_OBJECT);
1319     // NOTE: No null check on the argument is needed since it's a constant String oop.
1320     if (stopped()) {
1321       return true;
1322     }
1323 
1324     // The null string as a pattern always returns 0 (match at beginning of string)
1325     if (c == 0) {
1326       set_result(intcon(0));
1327       return true;
1328     }
1329 
1330     // Generate default indexOf
1331     jchar lastChar = pat->char_at(o + (c - 1));
1332     int cache = 0;
1333     int i;
1334     for (i = 0; i < c - 1; i++) {
1335       assert(i < pat->length(), "out of range");
1336       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1337     }
1338 
1339     int md2 = c;
1340     for (i = 0; i < c - 1; i++) {
1341       assert(i < pat->length(), "out of range");
1342       if (pat->char_at(o + i) == lastChar) {
1343         md2 = (c - 1) - i;
1344       }
1345     }
1346 
1347     result = string_indexOf(receiver, pat, o, cache, md2);
1348   }
1349   set_result(result);
1350   return true;
1351 }
1352 
1353 //--------------------------round_double_node--------------------------------
1354 // Round a double node if necessary.
1355 Node* LibraryCallKit::round_double_node(Node* n) {
1356   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1357     n = _gvn.transform(new RoundDoubleNode(0, n));
1358   return n;
1359 }
1360 
1361 //------------------------------inline_math-----------------------------------
1362 // public static double Math.abs(double)
1363 // public static double Math.sqrt(double)
1364 // public static double Math.log(double)
1365 // public static double Math.log10(double)
1366 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1367   Node* arg = round_double_node(argument(0));
1368   Node* n;
1369   switch (id) {
1370   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1371   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1372   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1373   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1374   default:  fatal_unexpected_iid(id);  break;
1375   }
1376   set_result(_gvn.transform(n));
1377   return true;
1378 }
1379 
1380 //------------------------------inline_trig----------------------------------
1381 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1382 // argument reduction which will turn into a fast/slow diamond.
1383 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1384   Node* arg = round_double_node(argument(0));
1385   Node* n = NULL;
1386 
1387   switch (id) {
1388   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1389   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1390   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1391   default:  fatal_unexpected_iid(id);  break;
1392   }
1393   n = _gvn.transform(n);
1394 
1395   // Rounding required?  Check for argument reduction!
1396   if (Matcher::strict_fp_requires_explicit_rounding) {
1397     static const double     pi_4 =  0.7853981633974483;
1398     static const double neg_pi_4 = -0.7853981633974483;
1399     // pi/2 in 80-bit extended precision
1400     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1401     // -pi/2 in 80-bit extended precision
1402     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1403     // Cutoff value for using this argument reduction technique
1404     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1405     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1406 
1407     // Pseudocode for sin:
1408     // if (x <= Math.PI / 4.0) {
1409     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1410     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1411     // } else {
1412     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1413     // }
1414     // return StrictMath.sin(x);
1415 
1416     // Pseudocode for cos:
1417     // if (x <= Math.PI / 4.0) {
1418     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1419     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1420     // } else {
1421     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1422     // }
1423     // return StrictMath.cos(x);
1424 
1425     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1426     // requires a special machine instruction to load it.  Instead we'll try
1427     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1428     // probably do the math inside the SIN encoding.
1429 
1430     // Make the merge point
1431     RegionNode* r = new RegionNode(3);
1432     Node* phi = new PhiNode(r, Type::DOUBLE);
1433 
1434     // Flatten arg so we need only 1 test
1435     Node *abs = _gvn.transform(new AbsDNode(arg));
1436     // Node for PI/4 constant
1437     Node *pi4 = makecon(TypeD::make(pi_4));
1438     // Check PI/4 : abs(arg)
1439     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1440     // Check: If PI/4 < abs(arg) then go slow
1441     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1442     // Branch either way
1443     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1444     set_control(opt_iff(r,iff));
1445 
1446     // Set fast path result
1447     phi->init_req(2, n);
1448 
1449     // Slow path - non-blocking leaf call
1450     Node* call = NULL;
1451     switch (id) {
1452     case vmIntrinsics::_dsin:
1453       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1454                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1455                                "Sin", NULL, arg, top());
1456       break;
1457     case vmIntrinsics::_dcos:
1458       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1459                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1460                                "Cos", NULL, arg, top());
1461       break;
1462     case vmIntrinsics::_dtan:
1463       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1464                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1465                                "Tan", NULL, arg, top());
1466       break;
1467     }
1468     assert(control()->in(0) == call, "");
1469     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1470     r->init_req(1, control());
1471     phi->init_req(1, slow_result);
1472 
1473     // Post-merge
1474     set_control(_gvn.transform(r));
1475     record_for_igvn(r);
1476     n = _gvn.transform(phi);
1477 
1478     C->set_has_split_ifs(true); // Has chance for split-if optimization
1479   }
1480   set_result(n);
1481   return true;
1482 }
1483 
1484 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1485   //-------------------
1486   //result=(result.isNaN())? funcAddr():result;
1487   // Check: If isNaN() by checking result!=result? then either trap
1488   // or go to runtime
1489   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1490   // Build the boolean node
1491   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1492 
1493   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1494     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1495       // The pow or exp intrinsic returned a NaN, which requires a call
1496       // to the runtime.  Recompile with the runtime call.
1497       uncommon_trap(Deoptimization::Reason_intrinsic,
1498                     Deoptimization::Action_make_not_entrant);
1499     }
1500     return result;
1501   } else {
1502     // If this inlining ever returned NaN in the past, we compile a call
1503     // to the runtime to properly handle corner cases
1504 
1505     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1506     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1507     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1508 
1509     if (!if_slow->is_top()) {
1510       RegionNode* result_region = new RegionNode(3);
1511       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1512 
1513       result_region->init_req(1, if_fast);
1514       result_val->init_req(1, result);
1515 
1516       set_control(if_slow);
1517 
1518       const TypePtr* no_memory_effects = NULL;
1519       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1520                                    no_memory_effects,
1521                                    x, top(), y, y ? top() : NULL);
1522       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1523 #ifdef ASSERT
1524       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1525       assert(value_top == top(), "second value must be top");
1526 #endif
1527 
1528       result_region->init_req(2, control());
1529       result_val->init_req(2, value);
1530       set_control(_gvn.transform(result_region));
1531       return _gvn.transform(result_val);
1532     } else {
1533       return result;
1534     }
1535   }
1536 }
1537 
1538 //------------------------------inline_exp-------------------------------------
1539 // Inline exp instructions, if possible.  The Intel hardware only misses
1540 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1541 bool LibraryCallKit::inline_exp() {
1542   Node* arg = round_double_node(argument(0));
1543   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1544 
1545   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1546   set_result(n);
1547 
1548   C->set_has_split_ifs(true); // Has chance for split-if optimization
1549   return true;
1550 }
1551 
1552 //------------------------------inline_pow-------------------------------------
1553 // Inline power instructions, if possible.
1554 bool LibraryCallKit::inline_pow() {
1555   // Pseudocode for pow
1556   // if (y == 2) {
1557   //   return x * x;
1558   // } else {
1559   //   if (x <= 0.0) {
1560   //     long longy = (long)y;
1561   //     if ((double)longy == y) { // if y is long
1562   //       if (y + 1 == y) longy = 0; // huge number: even
1563   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1564   //     } else {
1565   //       result = NaN;
1566   //     }
1567   //   } else {
1568   //     result = DPow(x,y);
1569   //   }
1570   //   if (result != result)?  {
1571   //     result = uncommon_trap() or runtime_call();
1572   //   }
1573   //   return result;
1574   // }
1575 
1576   Node* x = round_double_node(argument(0));
1577   Node* y = round_double_node(argument(2));
1578 
1579   Node* result = NULL;
1580 
1581   Node*   const_two_node = makecon(TypeD::make(2.0));
1582   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1583   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1584   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1585   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1586   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1587 
1588   RegionNode* region_node = new RegionNode(3);
1589   region_node->init_req(1, if_true);
1590 
1591   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1592   // special case for x^y where y == 2, we can convert it to x * x
1593   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1594 
1595   // set control to if_false since we will now process the false branch
1596   set_control(if_false);
1597 
1598   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1599     // Short form: skip the fancy tests and just check for NaN result.
1600     result = _gvn.transform(new PowDNode(C, control(), x, y));
1601   } else {
1602     // If this inlining ever returned NaN in the past, include all
1603     // checks + call to the runtime.
1604 
1605     // Set the merge point for If node with condition of (x <= 0.0)
1606     // There are four possible paths to region node and phi node
1607     RegionNode *r = new RegionNode(4);
1608     Node *phi = new PhiNode(r, Type::DOUBLE);
1609 
1610     // Build the first if node: if (x <= 0.0)
1611     // Node for 0 constant
1612     Node *zeronode = makecon(TypeD::ZERO);
1613     // Check x:0
1614     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1615     // Check: If (x<=0) then go complex path
1616     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1617     // Branch either way
1618     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1619     // Fast path taken; set region slot 3
1620     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1621     r->init_req(3,fast_taken); // Capture fast-control
1622 
1623     // Fast path not-taken, i.e. slow path
1624     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1625 
1626     // Set fast path result
1627     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1628     phi->init_req(3, fast_result);
1629 
1630     // Complex path
1631     // Build the second if node (if y is long)
1632     // Node for (long)y
1633     Node *longy = _gvn.transform(new ConvD2LNode(y));
1634     // Node for (double)((long) y)
1635     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1636     // Check (double)((long) y) : y
1637     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1638     // Check if (y isn't long) then go to slow path
1639 
1640     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1641     // Branch either way
1642     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1643     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1644 
1645     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1646 
1647     // Calculate DPow(abs(x), y)*(1 & (long)y)
1648     // Node for constant 1
1649     Node *conone = longcon(1);
1650     // 1& (long)y
1651     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1652 
1653     // A huge number is always even. Detect a huge number by checking
1654     // if y + 1 == y and set integer to be tested for parity to 0.
1655     // Required for corner case:
1656     // (long)9.223372036854776E18 = max_jlong
1657     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1658     // max_jlong is odd but 9.223372036854776E18 is even
1659     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1660     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1661     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1662     Node* correctedsign = NULL;
1663     if (ConditionalMoveLimit != 0) {
1664       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1665     } else {
1666       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1667       RegionNode *r = new RegionNode(3);
1668       Node *phi = new PhiNode(r, TypeLong::LONG);
1669       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1670       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1671       phi->init_req(1, signnode);
1672       phi->init_req(2, longcon(0));
1673       correctedsign = _gvn.transform(phi);
1674       ylong_path = _gvn.transform(r);
1675       record_for_igvn(r);
1676     }
1677 
1678     // zero node
1679     Node *conzero = longcon(0);
1680     // Check (1&(long)y)==0?
1681     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1682     // Check if (1&(long)y)!=0?, if so the result is negative
1683     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1684     // abs(x)
1685     Node *absx=_gvn.transform(new AbsDNode(x));
1686     // abs(x)^y
1687     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1688     // -abs(x)^y
1689     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1690     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1691     Node *signresult = NULL;
1692     if (ConditionalMoveLimit != 0) {
1693       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1694     } else {
1695       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1696       RegionNode *r = new RegionNode(3);
1697       Node *phi = new PhiNode(r, Type::DOUBLE);
1698       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1699       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1700       phi->init_req(1, absxpowy);
1701       phi->init_req(2, negabsxpowy);
1702       signresult = _gvn.transform(phi);
1703       ylong_path = _gvn.transform(r);
1704       record_for_igvn(r);
1705     }
1706     // Set complex path fast result
1707     r->init_req(2, ylong_path);
1708     phi->init_req(2, signresult);
1709 
1710     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1711     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1712     r->init_req(1,slow_path);
1713     phi->init_req(1,slow_result);
1714 
1715     // Post merge
1716     set_control(_gvn.transform(r));
1717     record_for_igvn(r);
1718     result = _gvn.transform(phi);
1719   }
1720 
1721   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1722 
1723   // control from finish_pow_exp is now input to the region node
1724   region_node->set_req(2, control());
1725   // the result from finish_pow_exp is now input to the phi node
1726   phi_node->init_req(2, result);
1727   set_control(_gvn.transform(region_node));
1728   record_for_igvn(region_node);
1729   set_result(_gvn.transform(phi_node));
1730 
1731   C->set_has_split_ifs(true); // Has chance for split-if optimization
1732   return true;
1733 }
1734 
1735 //------------------------------runtime_math-----------------------------
1736 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1737   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1738          "must be (DD)D or (D)D type");
1739 
1740   // Inputs
1741   Node* a = round_double_node(argument(0));
1742   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1743 
1744   const TypePtr* no_memory_effects = NULL;
1745   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1746                                  no_memory_effects,
1747                                  a, top(), b, b ? top() : NULL);
1748   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1749 #ifdef ASSERT
1750   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1751   assert(value_top == top(), "second value must be top");
1752 #endif
1753 
1754   set_result(value);
1755   return true;
1756 }
1757 
1758 //------------------------------inline_math_native-----------------------------
1759 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1760 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1761   switch (id) {
1762     // These intrinsics are not properly supported on all hardware
1763   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1764     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1765   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1766     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1767   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1768     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1769 
1770   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1771     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1772   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1773     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1774 
1775     // These intrinsics are supported on all hardware
1776   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1777   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1778 
1779   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1780     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1781   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1782     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1783 #undef FN_PTR
1784 
1785    // These intrinsics are not yet correctly implemented
1786   case vmIntrinsics::_datan2:
1787     return false;
1788 
1789   default:
1790     fatal_unexpected_iid(id);
1791     return false;
1792   }
1793 }
1794 
1795 static bool is_simple_name(Node* n) {
1796   return (n->req() == 1         // constant
1797           || (n->is_Type() && n->as_Type()->type()->singleton())
1798           || n->is_Proj()       // parameter or return value
1799           || n->is_Phi()        // local of some sort
1800           );
1801 }
1802 
1803 //----------------------------inline_notify-----------------------------------*
1804 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1805   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1806   address func;
1807   if (id == vmIntrinsics::_notify) {
1808     func = OptoRuntime::monitor_notify_Java();
1809   } else {
1810     func = OptoRuntime::monitor_notifyAll_Java();
1811   }
1812   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1813   make_slow_call_ex(call, env()->Throwable_klass(), false);
1814   return true;
1815 }
1816 
1817 
1818 //----------------------------inline_min_max-----------------------------------
1819 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1820   set_result(generate_min_max(id, argument(0), argument(1)));
1821   return true;
1822 }
1823 
1824 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1825   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1826   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1827   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1828   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1829 
1830   {
1831     PreserveJVMState pjvms(this);
1832     PreserveReexecuteState preexecs(this);
1833     jvms()->set_should_reexecute(true);
1834 
1835     set_control(slow_path);
1836     set_i_o(i_o());
1837 
1838     uncommon_trap(Deoptimization::Reason_intrinsic,
1839                   Deoptimization::Action_none);
1840   }
1841 
1842   set_control(fast_path);
1843   set_result(math);
1844 }
1845 
1846 template <typename OverflowOp>
1847 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1848   typedef typename OverflowOp::MathOp MathOp;
1849 
1850   MathOp* mathOp = new MathOp(arg1, arg2);
1851   Node* operation = _gvn.transform( mathOp );
1852   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1853   inline_math_mathExact(operation, ofcheck);
1854   return true;
1855 }
1856 
1857 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1858   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1859 }
1860 
1861 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1862   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1863 }
1864 
1865 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1866   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1867 }
1868 
1869 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1870   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1871 }
1872 
1873 bool LibraryCallKit::inline_math_negateExactI() {
1874   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1875 }
1876 
1877 bool LibraryCallKit::inline_math_negateExactL() {
1878   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1879 }
1880 
1881 bool LibraryCallKit::inline_math_multiplyExactI() {
1882   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1883 }
1884 
1885 bool LibraryCallKit::inline_math_multiplyExactL() {
1886   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1887 }
1888 
1889 Node*
1890 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1891   // These are the candidate return value:
1892   Node* xvalue = x0;
1893   Node* yvalue = y0;
1894 
1895   if (xvalue == yvalue) {
1896     return xvalue;
1897   }
1898 
1899   bool want_max = (id == vmIntrinsics::_max);
1900 
1901   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1902   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1903   if (txvalue == NULL || tyvalue == NULL)  return top();
1904   // This is not really necessary, but it is consistent with a
1905   // hypothetical MaxINode::Value method:
1906   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1907 
1908   // %%% This folding logic should (ideally) be in a different place.
1909   // Some should be inside IfNode, and there to be a more reliable
1910   // transformation of ?: style patterns into cmoves.  We also want
1911   // more powerful optimizations around cmove and min/max.
1912 
1913   // Try to find a dominating comparison of these guys.
1914   // It can simplify the index computation for Arrays.copyOf
1915   // and similar uses of System.arraycopy.
1916   // First, compute the normalized version of CmpI(x, y).
1917   int   cmp_op = Op_CmpI;
1918   Node* xkey = xvalue;
1919   Node* ykey = yvalue;
1920   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1921   if (ideal_cmpxy->is_Cmp()) {
1922     // E.g., if we have CmpI(length - offset, count),
1923     // it might idealize to CmpI(length, count + offset)
1924     cmp_op = ideal_cmpxy->Opcode();
1925     xkey = ideal_cmpxy->in(1);
1926     ykey = ideal_cmpxy->in(2);
1927   }
1928 
1929   // Start by locating any relevant comparisons.
1930   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1931   Node* cmpxy = NULL;
1932   Node* cmpyx = NULL;
1933   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1934     Node* cmp = start_from->fast_out(k);
1935     if (cmp->outcnt() > 0 &&            // must have prior uses
1936         cmp->in(0) == NULL &&           // must be context-independent
1937         cmp->Opcode() == cmp_op) {      // right kind of compare
1938       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1939       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1940     }
1941   }
1942 
1943   const int NCMPS = 2;
1944   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1945   int cmpn;
1946   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1947     if (cmps[cmpn] != NULL)  break;     // find a result
1948   }
1949   if (cmpn < NCMPS) {
1950     // Look for a dominating test that tells us the min and max.
1951     int depth = 0;                // Limit search depth for speed
1952     Node* dom = control();
1953     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1954       if (++depth >= 100)  break;
1955       Node* ifproj = dom;
1956       if (!ifproj->is_Proj())  continue;
1957       Node* iff = ifproj->in(0);
1958       if (!iff->is_If())  continue;
1959       Node* bol = iff->in(1);
1960       if (!bol->is_Bool())  continue;
1961       Node* cmp = bol->in(1);
1962       if (cmp == NULL)  continue;
1963       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1964         if (cmps[cmpn] == cmp)  break;
1965       if (cmpn == NCMPS)  continue;
1966       BoolTest::mask btest = bol->as_Bool()->_test._test;
1967       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1968       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1969       // At this point, we know that 'x btest y' is true.
1970       switch (btest) {
1971       case BoolTest::eq:
1972         // They are proven equal, so we can collapse the min/max.
1973         // Either value is the answer.  Choose the simpler.
1974         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1975           return yvalue;
1976         return xvalue;
1977       case BoolTest::lt:          // x < y
1978       case BoolTest::le:          // x <= y
1979         return (want_max ? yvalue : xvalue);
1980       case BoolTest::gt:          // x > y
1981       case BoolTest::ge:          // x >= y
1982         return (want_max ? xvalue : yvalue);
1983       }
1984     }
1985   }
1986 
1987   // We failed to find a dominating test.
1988   // Let's pick a test that might GVN with prior tests.
1989   Node*          best_bol   = NULL;
1990   BoolTest::mask best_btest = BoolTest::illegal;
1991   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1992     Node* cmp = cmps[cmpn];
1993     if (cmp == NULL)  continue;
1994     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1995       Node* bol = cmp->fast_out(j);
1996       if (!bol->is_Bool())  continue;
1997       BoolTest::mask btest = bol->as_Bool()->_test._test;
1998       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1999       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2000       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2001         best_bol   = bol->as_Bool();
2002         best_btest = btest;
2003       }
2004     }
2005   }
2006 
2007   Node* answer_if_true  = NULL;
2008   Node* answer_if_false = NULL;
2009   switch (best_btest) {
2010   default:
2011     if (cmpxy == NULL)
2012       cmpxy = ideal_cmpxy;
2013     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2014     // and fall through:
2015   case BoolTest::lt:          // x < y
2016   case BoolTest::le:          // x <= y
2017     answer_if_true  = (want_max ? yvalue : xvalue);
2018     answer_if_false = (want_max ? xvalue : yvalue);
2019     break;
2020   case BoolTest::gt:          // x > y
2021   case BoolTest::ge:          // x >= y
2022     answer_if_true  = (want_max ? xvalue : yvalue);
2023     answer_if_false = (want_max ? yvalue : xvalue);
2024     break;
2025   }
2026 
2027   jint hi, lo;
2028   if (want_max) {
2029     // We can sharpen the minimum.
2030     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2031     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2032   } else {
2033     // We can sharpen the maximum.
2034     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2035     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2036   }
2037 
2038   // Use a flow-free graph structure, to avoid creating excess control edges
2039   // which could hinder other optimizations.
2040   // Since Math.min/max is often used with arraycopy, we want
2041   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2042   Node* cmov = CMoveNode::make(NULL, best_bol,
2043                                answer_if_false, answer_if_true,
2044                                TypeInt::make(lo, hi, widen));
2045 
2046   return _gvn.transform(cmov);
2047 
2048   /*
2049   // This is not as desirable as it may seem, since Min and Max
2050   // nodes do not have a full set of optimizations.
2051   // And they would interfere, anyway, with 'if' optimizations
2052   // and with CMoveI canonical forms.
2053   switch (id) {
2054   case vmIntrinsics::_min:
2055     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2056   case vmIntrinsics::_max:
2057     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2058   default:
2059     ShouldNotReachHere();
2060   }
2061   */
2062 }
2063 
2064 inline int
2065 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2066   const TypePtr* base_type = TypePtr::NULL_PTR;
2067   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2068   if (base_type == NULL) {
2069     // Unknown type.
2070     return Type::AnyPtr;
2071   } else if (base_type == TypePtr::NULL_PTR) {
2072     // Since this is a NULL+long form, we have to switch to a rawptr.
2073     base   = _gvn.transform(new CastX2PNode(offset));
2074     offset = MakeConX(0);
2075     return Type::RawPtr;
2076   } else if (base_type->base() == Type::RawPtr) {
2077     return Type::RawPtr;
2078   } else if (base_type->isa_oopptr()) {
2079     // Base is never null => always a heap address.
2080     if (base_type->ptr() == TypePtr::NotNull) {
2081       return Type::OopPtr;
2082     }
2083     // Offset is small => always a heap address.
2084     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2085     if (offset_type != NULL &&
2086         base_type->offset() == 0 &&     // (should always be?)
2087         offset_type->_lo >= 0 &&
2088         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2089       return Type::OopPtr;
2090     }
2091     // Otherwise, it might either be oop+off or NULL+addr.
2092     return Type::AnyPtr;
2093   } else {
2094     // No information:
2095     return Type::AnyPtr;
2096   }
2097 }
2098 
2099 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2100   int kind = classify_unsafe_addr(base, offset);
2101   if (kind == Type::RawPtr) {
2102     return basic_plus_adr(top(), base, offset);
2103   } else {
2104     return basic_plus_adr(base, offset);
2105   }
2106 }
2107 
2108 //--------------------------inline_number_methods-----------------------------
2109 // inline int     Integer.numberOfLeadingZeros(int)
2110 // inline int        Long.numberOfLeadingZeros(long)
2111 //
2112 // inline int     Integer.numberOfTrailingZeros(int)
2113 // inline int        Long.numberOfTrailingZeros(long)
2114 //
2115 // inline int     Integer.bitCount(int)
2116 // inline int        Long.bitCount(long)
2117 //
2118 // inline char  Character.reverseBytes(char)
2119 // inline short     Short.reverseBytes(short)
2120 // inline int     Integer.reverseBytes(int)
2121 // inline long       Long.reverseBytes(long)
2122 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2123   Node* arg = argument(0);
2124   Node* n;
2125   switch (id) {
2126   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2127   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2128   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2129   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2130   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2131   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2132   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2133   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2134   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2135   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2136   default:  fatal_unexpected_iid(id);  break;
2137   }
2138   set_result(_gvn.transform(n));
2139   return true;
2140 }
2141 
2142 //----------------------------inline_unsafe_access----------------------------
2143 
2144 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2145 
2146 // Helper that guards and inserts a pre-barrier.
2147 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2148                                         Node* pre_val, bool need_mem_bar) {
2149   // We could be accessing the referent field of a reference object. If so, when G1
2150   // is enabled, we need to log the value in the referent field in an SATB buffer.
2151   // This routine performs some compile time filters and generates suitable
2152   // runtime filters that guard the pre-barrier code.
2153   // Also add memory barrier for non volatile load from the referent field
2154   // to prevent commoning of loads across safepoint.
2155   if (!UseG1GC && !need_mem_bar)
2156     return;
2157 
2158   // Some compile time checks.
2159 
2160   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2161   const TypeX* otype = offset->find_intptr_t_type();
2162   if (otype != NULL && otype->is_con() &&
2163       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2164     // Constant offset but not the reference_offset so just return
2165     return;
2166   }
2167 
2168   // We only need to generate the runtime guards for instances.
2169   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2170   if (btype != NULL) {
2171     if (btype->isa_aryptr()) {
2172       // Array type so nothing to do
2173       return;
2174     }
2175 
2176     const TypeInstPtr* itype = btype->isa_instptr();
2177     if (itype != NULL) {
2178       // Can the klass of base_oop be statically determined to be
2179       // _not_ a sub-class of Reference and _not_ Object?
2180       ciKlass* klass = itype->klass();
2181       if ( klass->is_loaded() &&
2182           !klass->is_subtype_of(env()->Reference_klass()) &&
2183           !env()->Object_klass()->is_subtype_of(klass)) {
2184         return;
2185       }
2186     }
2187   }
2188 
2189   // The compile time filters did not reject base_oop/offset so
2190   // we need to generate the following runtime filters
2191   //
2192   // if (offset == java_lang_ref_Reference::_reference_offset) {
2193   //   if (instance_of(base, java.lang.ref.Reference)) {
2194   //     pre_barrier(_, pre_val, ...);
2195   //   }
2196   // }
2197 
2198   float likely   = PROB_LIKELY(  0.999);
2199   float unlikely = PROB_UNLIKELY(0.999);
2200 
2201   IdealKit ideal(this);
2202 #define __ ideal.
2203 
2204   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2205 
2206   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2207       // Update graphKit memory and control from IdealKit.
2208       sync_kit(ideal);
2209 
2210       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2211       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2212 
2213       // Update IdealKit memory and control from graphKit.
2214       __ sync_kit(this);
2215 
2216       Node* one = __ ConI(1);
2217       // is_instof == 0 if base_oop == NULL
2218       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2219 
2220         // Update graphKit from IdeakKit.
2221         sync_kit(ideal);
2222 
2223         // Use the pre-barrier to record the value in the referent field
2224         pre_barrier(false /* do_load */,
2225                     __ ctrl(),
2226                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2227                     pre_val /* pre_val */,
2228                     T_OBJECT);
2229         if (need_mem_bar) {
2230           // Add memory barrier to prevent commoning reads from this field
2231           // across safepoint since GC can change its value.
2232           insert_mem_bar(Op_MemBarCPUOrder);
2233         }
2234         // Update IdealKit from graphKit.
2235         __ sync_kit(this);
2236 
2237       } __ end_if(); // _ref_type != ref_none
2238   } __ end_if(); // offset == referent_offset
2239 
2240   // Final sync IdealKit and GraphKit.
2241   final_sync(ideal);
2242 #undef __
2243 }
2244 
2245 
2246 // Interpret Unsafe.fieldOffset cookies correctly:
2247 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2248 
2249 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2250   // Attempt to infer a sharper value type from the offset and base type.
2251   ciKlass* sharpened_klass = NULL;
2252 
2253   // See if it is an instance field, with an object type.
2254   if (alias_type->field() != NULL) {
2255     assert(!is_native_ptr, "native pointer op cannot use a java address");
2256     if (alias_type->field()->type()->is_klass()) {
2257       sharpened_klass = alias_type->field()->type()->as_klass();
2258     }
2259   }
2260 
2261   // See if it is a narrow oop array.
2262   if (adr_type->isa_aryptr()) {
2263     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2264       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2265       if (elem_type != NULL) {
2266         sharpened_klass = elem_type->klass();
2267       }
2268     }
2269   }
2270 
2271   // The sharpened class might be unloaded if there is no class loader
2272   // contraint in place.
2273   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2274     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2275 
2276 #ifndef PRODUCT
2277     if (C->print_intrinsics() || C->print_inlining()) {
2278       tty->print("  from base type: ");  adr_type->dump();
2279       tty->print("  sharpened value: ");  tjp->dump();
2280     }
2281 #endif
2282     // Sharpen the value type.
2283     return tjp;
2284   }
2285   return NULL;
2286 }
2287 
2288 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2289   if (callee()->is_static())  return false;  // caller must have the capability!
2290 
2291 #ifndef PRODUCT
2292   {
2293     ResourceMark rm;
2294     // Check the signatures.
2295     ciSignature* sig = callee()->signature();
2296 #ifdef ASSERT
2297     if (!is_store) {
2298       // Object getObject(Object base, int/long offset), etc.
2299       BasicType rtype = sig->return_type()->basic_type();
2300       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2301           rtype = T_ADDRESS;  // it is really a C void*
2302       assert(rtype == type, "getter must return the expected value");
2303       if (!is_native_ptr) {
2304         assert(sig->count() == 2, "oop getter has 2 arguments");
2305         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2306         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2307       } else {
2308         assert(sig->count() == 1, "native getter has 1 argument");
2309         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2310       }
2311     } else {
2312       // void putObject(Object base, int/long offset, Object x), etc.
2313       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2314       if (!is_native_ptr) {
2315         assert(sig->count() == 3, "oop putter has 3 arguments");
2316         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2317         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2318       } else {
2319         assert(sig->count() == 2, "native putter has 2 arguments");
2320         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2321       }
2322       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2323       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2324         vtype = T_ADDRESS;  // it is really a C void*
2325       assert(vtype == type, "putter must accept the expected value");
2326     }
2327 #endif // ASSERT
2328  }
2329 #endif //PRODUCT
2330 
2331   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2332 
2333   Node* receiver = argument(0);  // type: oop
2334 
2335   // Build address expression.
2336   Node* adr;
2337   Node* heap_base_oop = top();
2338   Node* offset = top();
2339   Node* val;
2340 
2341   if (!is_native_ptr) {
2342     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2343     Node* base = argument(1);  // type: oop
2344     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2345     offset = argument(2);  // type: long
2346     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2347     // to be plain byte offsets, which are also the same as those accepted
2348     // by oopDesc::field_base.
2349     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2350            "fieldOffset must be byte-scaled");
2351     // 32-bit machines ignore the high half!
2352     offset = ConvL2X(offset);
2353     adr = make_unsafe_address(base, offset);
2354     heap_base_oop = base;
2355     val = is_store ? argument(4) : NULL;
2356   } else {
2357     Node* ptr = argument(1);  // type: long
2358     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2359     adr = make_unsafe_address(NULL, ptr);
2360     val = is_store ? argument(3) : NULL;
2361   }
2362 
2363   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2364 
2365   // First guess at the value type.
2366   const Type *value_type = Type::get_const_basic_type(type);
2367 
2368   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2369   // there was not enough information to nail it down.
2370   Compile::AliasType* alias_type = C->alias_type(adr_type);
2371   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2372 
2373   // We will need memory barriers unless we can determine a unique
2374   // alias category for this reference.  (Note:  If for some reason
2375   // the barriers get omitted and the unsafe reference begins to "pollute"
2376   // the alias analysis of the rest of the graph, either Compile::can_alias
2377   // or Compile::must_alias will throw a diagnostic assert.)
2378   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2379 
2380   // If we are reading the value of the referent field of a Reference
2381   // object (either by using Unsafe directly or through reflection)
2382   // then, if G1 is enabled, we need to record the referent in an
2383   // SATB log buffer using the pre-barrier mechanism.
2384   // Also we need to add memory barrier to prevent commoning reads
2385   // from this field across safepoint since GC can change its value.
2386   bool need_read_barrier = !is_native_ptr && !is_store &&
2387                            offset != top() && heap_base_oop != top();
2388 
2389   if (!is_store && type == T_OBJECT) {
2390     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2391     if (tjp != NULL) {
2392       value_type = tjp;
2393     }
2394   }
2395 
2396   receiver = null_check(receiver);
2397   if (stopped()) {
2398     return true;
2399   }
2400   // Heap pointers get a null-check from the interpreter,
2401   // as a courtesy.  However, this is not guaranteed by Unsafe,
2402   // and it is not possible to fully distinguish unintended nulls
2403   // from intended ones in this API.
2404 
2405   if (is_volatile) {
2406     // We need to emit leading and trailing CPU membars (see below) in
2407     // addition to memory membars when is_volatile. This is a little
2408     // too strong, but avoids the need to insert per-alias-type
2409     // volatile membars (for stores; compare Parse::do_put_xxx), which
2410     // we cannot do effectively here because we probably only have a
2411     // rough approximation of type.
2412     need_mem_bar = true;
2413     // For Stores, place a memory ordering barrier now.
2414     if (is_store) {
2415       insert_mem_bar(Op_MemBarRelease);
2416     } else {
2417       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2418         insert_mem_bar(Op_MemBarVolatile);
2419       }
2420     }
2421   }
2422 
2423   // Memory barrier to prevent normal and 'unsafe' accesses from
2424   // bypassing each other.  Happens after null checks, so the
2425   // exception paths do not take memory state from the memory barrier,
2426   // so there's no problems making a strong assert about mixing users
2427   // of safe & unsafe memory.
2428   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2429 
2430    if (!is_store) {
2431     Node* p = NULL;
2432     // Try to constant fold a load from a constant field
2433     ciField* field = alias_type->field();
2434     if (heap_base_oop != top() &&
2435         field != NULL && field->is_constant() && field->layout_type() == type) {
2436       // final or stable field
2437       const Type* con_type = Type::make_constant(alias_type->field(), heap_base_oop);
2438       if (con_type != NULL) {
2439         p = makecon(con_type);
2440       }
2441     }
2442     if (p == NULL) {
2443       MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2444       // To be valid, unsafe loads may depend on other conditions than
2445       // the one that guards them: pin the Load node
2446       p = make_load(control(), adr, value_type, type, adr_type, mo, LoadNode::Pinned, is_volatile);
2447       // load value
2448       switch (type) {
2449       case T_BOOLEAN:
2450       case T_CHAR:
2451       case T_BYTE:
2452       case T_SHORT:
2453       case T_INT:
2454       case T_LONG:
2455       case T_FLOAT:
2456       case T_DOUBLE:
2457         break;
2458       case T_OBJECT:
2459         if (need_read_barrier) {
2460           insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2461         }
2462         break;
2463       case T_ADDRESS:
2464         // Cast to an int type.
2465         p = _gvn.transform(new CastP2XNode(NULL, p));
2466         p = ConvX2UL(p);
2467         break;
2468       default:
2469         fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2470         break;
2471       }
2472     }
2473     // The load node has the control of the preceding MemBarCPUOrder.  All
2474     // following nodes will have the control of the MemBarCPUOrder inserted at
2475     // the end of this method.  So, pushing the load onto the stack at a later
2476     // point is fine.
2477     set_result(p);
2478   } else {
2479     // place effect of store into memory
2480     switch (type) {
2481     case T_DOUBLE:
2482       val = dstore_rounding(val);
2483       break;
2484     case T_ADDRESS:
2485       // Repackage the long as a pointer.
2486       val = ConvL2X(val);
2487       val = _gvn.transform(new CastX2PNode(val));
2488       break;
2489     }
2490 
2491     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2492     if (type != T_OBJECT ) {
2493       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2494     } else {
2495       // Possibly an oop being stored to Java heap or native memory
2496       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2497         // oop to Java heap.
2498         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2499       } else {
2500         // We can't tell at compile time if we are storing in the Java heap or outside
2501         // of it. So we need to emit code to conditionally do the proper type of
2502         // store.
2503 
2504         IdealKit ideal(this);
2505 #define __ ideal.
2506         // QQQ who knows what probability is here??
2507         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2508           // Sync IdealKit and graphKit.
2509           sync_kit(ideal);
2510           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2511           // Update IdealKit memory.
2512           __ sync_kit(this);
2513         } __ else_(); {
2514           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2515         } __ end_if();
2516         // Final sync IdealKit and GraphKit.
2517         final_sync(ideal);
2518 #undef __
2519       }
2520     }
2521   }
2522 
2523   if (is_volatile) {
2524     if (!is_store) {
2525       insert_mem_bar(Op_MemBarAcquire);
2526     } else {
2527       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2528         insert_mem_bar(Op_MemBarVolatile);
2529       }
2530     }
2531   }
2532 
2533   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2534 
2535   return true;
2536 }
2537 
2538 //----------------------------inline_unsafe_load_store----------------------------
2539 // This method serves a couple of different customers (depending on LoadStoreKind):
2540 //
2541 // LS_cmpxchg:
2542 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2543 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2544 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2545 //
2546 // LS_xadd:
2547 //   public int  getAndAddInt( Object o, long offset, int  delta)
2548 //   public long getAndAddLong(Object o, long offset, long delta)
2549 //
2550 // LS_xchg:
2551 //   int    getAndSet(Object o, long offset, int    newValue)
2552 //   long   getAndSet(Object o, long offset, long   newValue)
2553 //   Object getAndSet(Object o, long offset, Object newValue)
2554 //
2555 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2556   // This basic scheme here is the same as inline_unsafe_access, but
2557   // differs in enough details that combining them would make the code
2558   // overly confusing.  (This is a true fact! I originally combined
2559   // them, but even I was confused by it!) As much code/comments as
2560   // possible are retained from inline_unsafe_access though to make
2561   // the correspondences clearer. - dl
2562 
2563   if (callee()->is_static())  return false;  // caller must have the capability!
2564 
2565 #ifndef PRODUCT
2566   BasicType rtype;
2567   {
2568     ResourceMark rm;
2569     // Check the signatures.
2570     ciSignature* sig = callee()->signature();
2571     rtype = sig->return_type()->basic_type();
2572     if (kind == LS_xadd || kind == LS_xchg) {
2573       // Check the signatures.
2574 #ifdef ASSERT
2575       assert(rtype == type, "get and set must return the expected type");
2576       assert(sig->count() == 3, "get and set has 3 arguments");
2577       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2578       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2579       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2580 #endif // ASSERT
2581     } else if (kind == LS_cmpxchg) {
2582       // Check the signatures.
2583 #ifdef ASSERT
2584       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2585       assert(sig->count() == 4, "CAS has 4 arguments");
2586       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2587       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2588 #endif // ASSERT
2589     } else {
2590       ShouldNotReachHere();
2591     }
2592   }
2593 #endif //PRODUCT
2594 
2595   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2596 
2597   // Get arguments:
2598   Node* receiver = NULL;
2599   Node* base     = NULL;
2600   Node* offset   = NULL;
2601   Node* oldval   = NULL;
2602   Node* newval   = NULL;
2603   if (kind == LS_cmpxchg) {
2604     const bool two_slot_type = type2size[type] == 2;
2605     receiver = argument(0);  // type: oop
2606     base     = argument(1);  // type: oop
2607     offset   = argument(2);  // type: long
2608     oldval   = argument(4);  // type: oop, int, or long
2609     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2610   } else if (kind == LS_xadd || kind == LS_xchg){
2611     receiver = argument(0);  // type: oop
2612     base     = argument(1);  // type: oop
2613     offset   = argument(2);  // type: long
2614     oldval   = NULL;
2615     newval   = argument(4);  // type: oop, int, or long
2616   }
2617 
2618   // Null check receiver.
2619   receiver = null_check(receiver);
2620   if (stopped()) {
2621     return true;
2622   }
2623 
2624   // Build field offset expression.
2625   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2626   // to be plain byte offsets, which are also the same as those accepted
2627   // by oopDesc::field_base.
2628   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2629   // 32-bit machines ignore the high half of long offsets
2630   offset = ConvL2X(offset);
2631   Node* adr = make_unsafe_address(base, offset);
2632   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2633 
2634   // For CAS, unlike inline_unsafe_access, there seems no point in
2635   // trying to refine types. Just use the coarse types here.
2636   const Type *value_type = Type::get_const_basic_type(type);
2637   Compile::AliasType* alias_type = C->alias_type(adr_type);
2638   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2639 
2640   if (kind == LS_xchg && type == T_OBJECT) {
2641     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2642     if (tjp != NULL) {
2643       value_type = tjp;
2644     }
2645   }
2646 
2647   int alias_idx = C->get_alias_index(adr_type);
2648 
2649   // Memory-model-wise, a LoadStore acts like a little synchronized
2650   // block, so needs barriers on each side.  These don't translate
2651   // into actual barriers on most machines, but we still need rest of
2652   // compiler to respect ordering.
2653 
2654   insert_mem_bar(Op_MemBarRelease);
2655   insert_mem_bar(Op_MemBarCPUOrder);
2656 
2657   // 4984716: MemBars must be inserted before this
2658   //          memory node in order to avoid a false
2659   //          dependency which will confuse the scheduler.
2660   Node *mem = memory(alias_idx);
2661 
2662   // For now, we handle only those cases that actually exist: ints,
2663   // longs, and Object. Adding others should be straightforward.
2664   Node* load_store;
2665   switch(type) {
2666   case T_INT:
2667     if (kind == LS_xadd) {
2668       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2669     } else if (kind == LS_xchg) {
2670       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2671     } else if (kind == LS_cmpxchg) {
2672       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2673     } else {
2674       ShouldNotReachHere();
2675     }
2676     break;
2677   case T_LONG:
2678     if (kind == LS_xadd) {
2679       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2680     } else if (kind == LS_xchg) {
2681       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2682     } else if (kind == LS_cmpxchg) {
2683       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2684     } else {
2685       ShouldNotReachHere();
2686     }
2687     break;
2688   case T_OBJECT:
2689     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2690     // could be delayed during Parse (for example, in adjust_map_after_if()).
2691     // Execute transformation here to avoid barrier generation in such case.
2692     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2693       newval = _gvn.makecon(TypePtr::NULL_PTR);
2694 
2695     // Reference stores need a store barrier.
2696     if (kind == LS_xchg) {
2697       // If pre-barrier must execute before the oop store, old value will require do_load here.
2698       if (!can_move_pre_barrier()) {
2699         pre_barrier(true /* do_load*/,
2700                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2701                     NULL /* pre_val*/,
2702                     T_OBJECT);
2703       } // Else move pre_barrier to use load_store value, see below.
2704     } else if (kind == LS_cmpxchg) {
2705       // Same as for newval above:
2706       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2707         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2708       }
2709       // The only known value which might get overwritten is oldval.
2710       pre_barrier(false /* do_load */,
2711                   control(), NULL, NULL, max_juint, NULL, NULL,
2712                   oldval /* pre_val */,
2713                   T_OBJECT);
2714     } else {
2715       ShouldNotReachHere();
2716     }
2717 
2718 #ifdef _LP64
2719     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2720       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2721       if (kind == LS_xchg) {
2722         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2723                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2724       } else {
2725         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2726         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2727         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2728                                                                 newval_enc, oldval_enc));
2729       }
2730     } else
2731 #endif
2732     {
2733       if (kind == LS_xchg) {
2734         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2735       } else {
2736         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2737         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2738       }
2739     }
2740     if (kind == LS_cmpxchg) {
2741       // Emit the post barrier only when the actual store happened.
2742       // This makes sense to check only for compareAndSet that can fail to set the value.
2743       // CAS success path is marked more likely since we anticipate this is a performance
2744       // critical path, while CAS failure path can use the penalty for going through unlikely
2745       // path as backoff. Which is still better than doing a store barrier there.
2746       IdealKit ideal(this);
2747       ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
2748         sync_kit(ideal);
2749         post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2750         ideal.sync_kit(this);
2751       } ideal.end_if();
2752       final_sync(ideal);
2753     } else {
2754       post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2755     }
2756     break;
2757   default:
2758     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2759     break;
2760   }
2761 
2762   // SCMemProjNodes represent the memory state of a LoadStore. Their
2763   // main role is to prevent LoadStore nodes from being optimized away
2764   // when their results aren't used.
2765   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2766   set_memory(proj, alias_idx);
2767 
2768   if (type == T_OBJECT && kind == LS_xchg) {
2769 #ifdef _LP64
2770     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2771       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2772     }
2773 #endif
2774     if (can_move_pre_barrier()) {
2775       // Don't need to load pre_val. The old value is returned by load_store.
2776       // The pre_barrier can execute after the xchg as long as no safepoint
2777       // gets inserted between them.
2778       pre_barrier(false /* do_load */,
2779                   control(), NULL, NULL, max_juint, NULL, NULL,
2780                   load_store /* pre_val */,
2781                   T_OBJECT);
2782     }
2783   }
2784 
2785   // Add the trailing membar surrounding the access
2786   insert_mem_bar(Op_MemBarCPUOrder);
2787   insert_mem_bar(Op_MemBarAcquire);
2788 
2789   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2790   set_result(load_store);
2791   return true;
2792 }
2793 
2794 //----------------------------inline_unsafe_ordered_store----------------------
2795 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2796 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2797 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2798 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2799   // This is another variant of inline_unsafe_access, differing in
2800   // that it always issues store-store ("release") barrier and ensures
2801   // store-atomicity (which only matters for "long").
2802 
2803   if (callee()->is_static())  return false;  // caller must have the capability!
2804 
2805 #ifndef PRODUCT
2806   {
2807     ResourceMark rm;
2808     // Check the signatures.
2809     ciSignature* sig = callee()->signature();
2810 #ifdef ASSERT
2811     BasicType rtype = sig->return_type()->basic_type();
2812     assert(rtype == T_VOID, "must return void");
2813     assert(sig->count() == 3, "has 3 arguments");
2814     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2815     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2816 #endif // ASSERT
2817   }
2818 #endif //PRODUCT
2819 
2820   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2821 
2822   // Get arguments:
2823   Node* receiver = argument(0);  // type: oop
2824   Node* base     = argument(1);  // type: oop
2825   Node* offset   = argument(2);  // type: long
2826   Node* val      = argument(4);  // type: oop, int, or long
2827 
2828   // Null check receiver.
2829   receiver = null_check(receiver);
2830   if (stopped()) {
2831     return true;
2832   }
2833 
2834   // Build field offset expression.
2835   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2836   // 32-bit machines ignore the high half of long offsets
2837   offset = ConvL2X(offset);
2838   Node* adr = make_unsafe_address(base, offset);
2839   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2840   const Type *value_type = Type::get_const_basic_type(type);
2841   Compile::AliasType* alias_type = C->alias_type(adr_type);
2842 
2843   insert_mem_bar(Op_MemBarRelease);
2844   insert_mem_bar(Op_MemBarCPUOrder);
2845   // Ensure that the store is atomic for longs:
2846   const bool require_atomic_access = true;
2847   Node* store;
2848   if (type == T_OBJECT) // reference stores need a store barrier.
2849     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
2850   else {
2851     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
2852   }
2853   insert_mem_bar(Op_MemBarCPUOrder);
2854   return true;
2855 }
2856 
2857 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2858   // Regardless of form, don't allow previous ld/st to move down,
2859   // then issue acquire, release, or volatile mem_bar.
2860   insert_mem_bar(Op_MemBarCPUOrder);
2861   switch(id) {
2862     case vmIntrinsics::_loadFence:
2863       insert_mem_bar(Op_LoadFence);
2864       return true;
2865     case vmIntrinsics::_storeFence:
2866       insert_mem_bar(Op_StoreFence);
2867       return true;
2868     case vmIntrinsics::_fullFence:
2869       insert_mem_bar(Op_MemBarVolatile);
2870       return true;
2871     default:
2872       fatal_unexpected_iid(id);
2873       return false;
2874   }
2875 }
2876 
2877 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2878   if (!kls->is_Con()) {
2879     return true;
2880   }
2881   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2882   if (klsptr == NULL) {
2883     return true;
2884   }
2885   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2886   // don't need a guard for a klass that is already initialized
2887   return !ik->is_initialized();
2888 }
2889 
2890 //----------------------------inline_unsafe_allocate---------------------------
2891 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
2892 bool LibraryCallKit::inline_unsafe_allocate() {
2893   if (callee()->is_static())  return false;  // caller must have the capability!
2894 
2895   null_check_receiver();  // null-check, then ignore
2896   Node* cls = null_check(argument(1));
2897   if (stopped())  return true;
2898 
2899   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2900   kls = null_check(kls);
2901   if (stopped())  return true;  // argument was like int.class
2902 
2903   Node* test = NULL;
2904   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2905     // Note:  The argument might still be an illegal value like
2906     // Serializable.class or Object[].class.   The runtime will handle it.
2907     // But we must make an explicit check for initialization.
2908     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2909     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2910     // can generate code to load it as unsigned byte.
2911     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2912     Node* bits = intcon(InstanceKlass::fully_initialized);
2913     test = _gvn.transform(new SubINode(inst, bits));
2914     // The 'test' is non-zero if we need to take a slow path.
2915   }
2916 
2917   Node* obj = new_instance(kls, test);
2918   set_result(obj);
2919   return true;
2920 }
2921 
2922 #ifdef TRACE_HAVE_INTRINSICS
2923 /*
2924  * oop -> myklass
2925  * myklass->trace_id |= USED
2926  * return myklass->trace_id & ~0x3
2927  */
2928 bool LibraryCallKit::inline_native_classID() {
2929   null_check_receiver();  // null-check, then ignore
2930   Node* cls = null_check(argument(1), T_OBJECT);
2931   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2932   kls = null_check(kls, T_OBJECT);
2933   ByteSize offset = TRACE_ID_OFFSET;
2934   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2935   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2936   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2937   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
2938   Node* clsused = longcon(0x01l); // set the class bit
2939   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2940 
2941   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2942   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2943   set_result(andl);
2944   return true;
2945 }
2946 
2947 bool LibraryCallKit::inline_native_threadID() {
2948   Node* tls_ptr = NULL;
2949   Node* cur_thr = generate_current_thread(tls_ptr);
2950   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2951   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
2952   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2953 
2954   Node* threadid = NULL;
2955   size_t thread_id_size = OSThread::thread_id_size();
2956   if (thread_id_size == (size_t) BytesPerLong) {
2957     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
2958   } else if (thread_id_size == (size_t) BytesPerInt) {
2959     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
2960   } else {
2961     ShouldNotReachHere();
2962   }
2963   set_result(threadid);
2964   return true;
2965 }
2966 #endif
2967 
2968 //------------------------inline_native_time_funcs--------------
2969 // inline code for System.currentTimeMillis() and System.nanoTime()
2970 // these have the same type and signature
2971 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2972   const TypeFunc* tf = OptoRuntime::void_long_Type();
2973   const TypePtr* no_memory_effects = NULL;
2974   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2975   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2976 #ifdef ASSERT
2977   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2978   assert(value_top == top(), "second value must be top");
2979 #endif
2980   set_result(value);
2981   return true;
2982 }
2983 
2984 //------------------------inline_native_currentThread------------------
2985 bool LibraryCallKit::inline_native_currentThread() {
2986   Node* junk = NULL;
2987   set_result(generate_current_thread(junk));
2988   return true;
2989 }
2990 
2991 //------------------------inline_native_isInterrupted------------------
2992 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2993 bool LibraryCallKit::inline_native_isInterrupted() {
2994   // Add a fast path to t.isInterrupted(clear_int):
2995   //   (t == Thread.current() &&
2996   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
2997   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2998   // So, in the common case that the interrupt bit is false,
2999   // we avoid making a call into the VM.  Even if the interrupt bit
3000   // is true, if the clear_int argument is false, we avoid the VM call.
3001   // However, if the receiver is not currentThread, we must call the VM,
3002   // because there must be some locking done around the operation.
3003 
3004   // We only go to the fast case code if we pass two guards.
3005   // Paths which do not pass are accumulated in the slow_region.
3006 
3007   enum {
3008     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3009     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3010     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3011     PATH_LIMIT
3012   };
3013 
3014   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3015   // out of the function.
3016   insert_mem_bar(Op_MemBarCPUOrder);
3017 
3018   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3019   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3020 
3021   RegionNode* slow_region = new RegionNode(1);
3022   record_for_igvn(slow_region);
3023 
3024   // (a) Receiving thread must be the current thread.
3025   Node* rec_thr = argument(0);
3026   Node* tls_ptr = NULL;
3027   Node* cur_thr = generate_current_thread(tls_ptr);
3028   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3029   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3030 
3031   generate_slow_guard(bol_thr, slow_region);
3032 
3033   // (b) Interrupt bit on TLS must be false.
3034   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3035   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3036   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3037 
3038   // Set the control input on the field _interrupted read to prevent it floating up.
3039   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3040   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3041   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3042 
3043   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3044 
3045   // First fast path:  if (!TLS._interrupted) return false;
3046   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3047   result_rgn->init_req(no_int_result_path, false_bit);
3048   result_val->init_req(no_int_result_path, intcon(0));
3049 
3050   // drop through to next case
3051   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3052 
3053 #ifndef TARGET_OS_FAMILY_windows
3054   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3055   Node* clr_arg = argument(1);
3056   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3057   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3058   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3059 
3060   // Second fast path:  ... else if (!clear_int) return true;
3061   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3062   result_rgn->init_req(no_clear_result_path, false_arg);
3063   result_val->init_req(no_clear_result_path, intcon(1));
3064 
3065   // drop through to next case
3066   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3067 #else
3068   // To return true on Windows you must read the _interrupted field
3069   // and check the the event state i.e. take the slow path.
3070 #endif // TARGET_OS_FAMILY_windows
3071 
3072   // (d) Otherwise, go to the slow path.
3073   slow_region->add_req(control());
3074   set_control( _gvn.transform(slow_region));
3075 
3076   if (stopped()) {
3077     // There is no slow path.
3078     result_rgn->init_req(slow_result_path, top());
3079     result_val->init_req(slow_result_path, top());
3080   } else {
3081     // non-virtual because it is a private non-static
3082     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3083 
3084     Node* slow_val = set_results_for_java_call(slow_call);
3085     // this->control() comes from set_results_for_java_call
3086 
3087     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3088     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3089 
3090     // These two phis are pre-filled with copies of of the fast IO and Memory
3091     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3092     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3093 
3094     result_rgn->init_req(slow_result_path, control());
3095     result_io ->init_req(slow_result_path, i_o());
3096     result_mem->init_req(slow_result_path, reset_memory());
3097     result_val->init_req(slow_result_path, slow_val);
3098 
3099     set_all_memory(_gvn.transform(result_mem));
3100     set_i_o(       _gvn.transform(result_io));
3101   }
3102 
3103   C->set_has_split_ifs(true); // Has chance for split-if optimization
3104   set_result(result_rgn, result_val);
3105   return true;
3106 }
3107 
3108 //---------------------------load_mirror_from_klass----------------------------
3109 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3110 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3111   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3112   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3113 }
3114 
3115 //-----------------------load_klass_from_mirror_common-------------------------
3116 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3117 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3118 // and branch to the given path on the region.
3119 // If never_see_null, take an uncommon trap on null, so we can optimistically
3120 // compile for the non-null case.
3121 // If the region is NULL, force never_see_null = true.
3122 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3123                                                     bool never_see_null,
3124                                                     RegionNode* region,
3125                                                     int null_path,
3126                                                     int offset) {
3127   if (region == NULL)  never_see_null = true;
3128   Node* p = basic_plus_adr(mirror, offset);
3129   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3130   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3131   Node* null_ctl = top();
3132   kls = null_check_oop(kls, &null_ctl, never_see_null);
3133   if (region != NULL) {
3134     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3135     region->init_req(null_path, null_ctl);
3136   } else {
3137     assert(null_ctl == top(), "no loose ends");
3138   }
3139   return kls;
3140 }
3141 
3142 //--------------------(inline_native_Class_query helpers)---------------------
3143 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3144 // Fall through if (mods & mask) == bits, take the guard otherwise.
3145 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3146   // Branch around if the given klass has the given modifier bit set.
3147   // Like generate_guard, adds a new path onto the region.
3148   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3149   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3150   Node* mask = intcon(modifier_mask);
3151   Node* bits = intcon(modifier_bits);
3152   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3153   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3154   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3155   return generate_fair_guard(bol, region);
3156 }
3157 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3158   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3159 }
3160 
3161 //-------------------------inline_native_Class_query-------------------
3162 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3163   const Type* return_type = TypeInt::BOOL;
3164   Node* prim_return_value = top();  // what happens if it's a primitive class?
3165   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3166   bool expect_prim = false;     // most of these guys expect to work on refs
3167 
3168   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3169 
3170   Node* mirror = argument(0);
3171   Node* obj    = top();
3172 
3173   switch (id) {
3174   case vmIntrinsics::_isInstance:
3175     // nothing is an instance of a primitive type
3176     prim_return_value = intcon(0);
3177     obj = argument(1);
3178     break;
3179   case vmIntrinsics::_getModifiers:
3180     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3181     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3182     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3183     break;
3184   case vmIntrinsics::_isInterface:
3185     prim_return_value = intcon(0);
3186     break;
3187   case vmIntrinsics::_isArray:
3188     prim_return_value = intcon(0);
3189     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3190     break;
3191   case vmIntrinsics::_isPrimitive:
3192     prim_return_value = intcon(1);
3193     expect_prim = true;  // obviously
3194     break;
3195   case vmIntrinsics::_getSuperclass:
3196     prim_return_value = null();
3197     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3198     break;
3199   case vmIntrinsics::_getClassAccessFlags:
3200     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3201     return_type = TypeInt::INT;  // not bool!  6297094
3202     break;
3203   default:
3204     fatal_unexpected_iid(id);
3205     break;
3206   }
3207 
3208   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3209   if (mirror_con == NULL)  return false;  // cannot happen?
3210 
3211 #ifndef PRODUCT
3212   if (C->print_intrinsics() || C->print_inlining()) {
3213     ciType* k = mirror_con->java_mirror_type();
3214     if (k) {
3215       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3216       k->print_name();
3217       tty->cr();
3218     }
3219   }
3220 #endif
3221 
3222   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3223   RegionNode* region = new RegionNode(PATH_LIMIT);
3224   record_for_igvn(region);
3225   PhiNode* phi = new PhiNode(region, return_type);
3226 
3227   // The mirror will never be null of Reflection.getClassAccessFlags, however
3228   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3229   // if it is. See bug 4774291.
3230 
3231   // For Reflection.getClassAccessFlags(), the null check occurs in
3232   // the wrong place; see inline_unsafe_access(), above, for a similar
3233   // situation.
3234   mirror = null_check(mirror);
3235   // If mirror or obj is dead, only null-path is taken.
3236   if (stopped())  return true;
3237 
3238   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3239 
3240   // Now load the mirror's klass metaobject, and null-check it.
3241   // Side-effects region with the control path if the klass is null.
3242   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3243   // If kls is null, we have a primitive mirror.
3244   phi->init_req(_prim_path, prim_return_value);
3245   if (stopped()) { set_result(region, phi); return true; }
3246   bool safe_for_replace = (region->in(_prim_path) == top());
3247 
3248   Node* p;  // handy temp
3249   Node* null_ctl;
3250 
3251   // Now that we have the non-null klass, we can perform the real query.
3252   // For constant classes, the query will constant-fold in LoadNode::Value.
3253   Node* query_value = top();
3254   switch (id) {
3255   case vmIntrinsics::_isInstance:
3256     // nothing is an instance of a primitive type
3257     query_value = gen_instanceof(obj, kls, safe_for_replace);
3258     break;
3259 
3260   case vmIntrinsics::_getModifiers:
3261     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3262     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3263     break;
3264 
3265   case vmIntrinsics::_isInterface:
3266     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3267     if (generate_interface_guard(kls, region) != NULL)
3268       // A guard was added.  If the guard is taken, it was an interface.
3269       phi->add_req(intcon(1));
3270     // If we fall through, it's a plain class.
3271     query_value = intcon(0);
3272     break;
3273 
3274   case vmIntrinsics::_isArray:
3275     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3276     if (generate_array_guard(kls, region) != NULL)
3277       // A guard was added.  If the guard is taken, it was an array.
3278       phi->add_req(intcon(1));
3279     // If we fall through, it's a plain class.
3280     query_value = intcon(0);
3281     break;
3282 
3283   case vmIntrinsics::_isPrimitive:
3284     query_value = intcon(0); // "normal" path produces false
3285     break;
3286 
3287   case vmIntrinsics::_getSuperclass:
3288     // The rules here are somewhat unfortunate, but we can still do better
3289     // with random logic than with a JNI call.
3290     // Interfaces store null or Object as _super, but must report null.
3291     // Arrays store an intermediate super as _super, but must report Object.
3292     // Other types can report the actual _super.
3293     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3294     if (generate_interface_guard(kls, region) != NULL)
3295       // A guard was added.  If the guard is taken, it was an interface.
3296       phi->add_req(null());
3297     if (generate_array_guard(kls, region) != NULL)
3298       // A guard was added.  If the guard is taken, it was an array.
3299       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3300     // If we fall through, it's a plain class.  Get its _super.
3301     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3302     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3303     null_ctl = top();
3304     kls = null_check_oop(kls, &null_ctl);
3305     if (null_ctl != top()) {
3306       // If the guard is taken, Object.superClass is null (both klass and mirror).
3307       region->add_req(null_ctl);
3308       phi   ->add_req(null());
3309     }
3310     if (!stopped()) {
3311       query_value = load_mirror_from_klass(kls);
3312     }
3313     break;
3314 
3315   case vmIntrinsics::_getClassAccessFlags:
3316     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3317     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3318     break;
3319 
3320   default:
3321     fatal_unexpected_iid(id);
3322     break;
3323   }
3324 
3325   // Fall-through is the normal case of a query to a real class.
3326   phi->init_req(1, query_value);
3327   region->init_req(1, control());
3328 
3329   C->set_has_split_ifs(true); // Has chance for split-if optimization
3330   set_result(region, phi);
3331   return true;
3332 }
3333 
3334 //-------------------------inline_Class_cast-------------------
3335 bool LibraryCallKit::inline_Class_cast() {
3336   Node* mirror = argument(0); // Class
3337   Node* obj    = argument(1);
3338   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3339   if (mirror_con == NULL) {
3340     return false;  // dead path (mirror->is_top()).
3341   }
3342   if (obj == NULL || obj->is_top()) {
3343     return false;  // dead path
3344   }
3345   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3346 
3347   // First, see if Class.cast() can be folded statically.
3348   // java_mirror_type() returns non-null for compile-time Class constants.
3349   ciType* tm = mirror_con->java_mirror_type();
3350   if (tm != NULL && tm->is_klass() &&
3351       tp != NULL && tp->klass() != NULL) {
3352     if (!tp->klass()->is_loaded()) {
3353       // Don't use intrinsic when class is not loaded.
3354       return false;
3355     } else {
3356       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3357       if (static_res == Compile::SSC_always_true) {
3358         // isInstance() is true - fold the code.
3359         set_result(obj);
3360         return true;
3361       } else if (static_res == Compile::SSC_always_false) {
3362         // Don't use intrinsic, have to throw ClassCastException.
3363         // If the reference is null, the non-intrinsic bytecode will
3364         // be optimized appropriately.
3365         return false;
3366       }
3367     }
3368   }
3369 
3370   // Bailout intrinsic and do normal inlining if exception path is frequent.
3371   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3372     return false;
3373   }
3374 
3375   // Generate dynamic checks.
3376   // Class.cast() is java implementation of _checkcast bytecode.
3377   // Do checkcast (Parse::do_checkcast()) optimizations here.
3378 
3379   mirror = null_check(mirror);
3380   // If mirror is dead, only null-path is taken.
3381   if (stopped()) {
3382     return true;
3383   }
3384 
3385   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3386   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3387   RegionNode* region = new RegionNode(PATH_LIMIT);
3388   record_for_igvn(region);
3389 
3390   // Now load the mirror's klass metaobject, and null-check it.
3391   // If kls is null, we have a primitive mirror and
3392   // nothing is an instance of a primitive type.
3393   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3394 
3395   Node* res = top();
3396   if (!stopped()) {
3397     Node* bad_type_ctrl = top();
3398     // Do checkcast optimizations.
3399     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3400     region->init_req(_bad_type_path, bad_type_ctrl);
3401   }
3402   if (region->in(_prim_path) != top() ||
3403       region->in(_bad_type_path) != top()) {
3404     // Let Interpreter throw ClassCastException.
3405     PreserveJVMState pjvms(this);
3406     set_control(_gvn.transform(region));
3407     uncommon_trap(Deoptimization::Reason_intrinsic,
3408                   Deoptimization::Action_maybe_recompile);
3409   }
3410   if (!stopped()) {
3411     set_result(res);
3412   }
3413   return true;
3414 }
3415 
3416 
3417 //--------------------------inline_native_subtype_check------------------------
3418 // This intrinsic takes the JNI calls out of the heart of
3419 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3420 bool LibraryCallKit::inline_native_subtype_check() {
3421   // Pull both arguments off the stack.
3422   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3423   args[0] = argument(0);
3424   args[1] = argument(1);
3425   Node* klasses[2];             // corresponding Klasses: superk, subk
3426   klasses[0] = klasses[1] = top();
3427 
3428   enum {
3429     // A full decision tree on {superc is prim, subc is prim}:
3430     _prim_0_path = 1,           // {P,N} => false
3431                                 // {P,P} & superc!=subc => false
3432     _prim_same_path,            // {P,P} & superc==subc => true
3433     _prim_1_path,               // {N,P} => false
3434     _ref_subtype_path,          // {N,N} & subtype check wins => true
3435     _both_ref_path,             // {N,N} & subtype check loses => false
3436     PATH_LIMIT
3437   };
3438 
3439   RegionNode* region = new RegionNode(PATH_LIMIT);
3440   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3441   record_for_igvn(region);
3442 
3443   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3444   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3445   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3446 
3447   // First null-check both mirrors and load each mirror's klass metaobject.
3448   int which_arg;
3449   for (which_arg = 0; which_arg <= 1; which_arg++) {
3450     Node* arg = args[which_arg];
3451     arg = null_check(arg);
3452     if (stopped())  break;
3453     args[which_arg] = arg;
3454 
3455     Node* p = basic_plus_adr(arg, class_klass_offset);
3456     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3457     klasses[which_arg] = _gvn.transform(kls);
3458   }
3459 
3460   // Having loaded both klasses, test each for null.
3461   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3462   for (which_arg = 0; which_arg <= 1; which_arg++) {
3463     Node* kls = klasses[which_arg];
3464     Node* null_ctl = top();
3465     kls = null_check_oop(kls, &null_ctl, never_see_null);
3466     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3467     region->init_req(prim_path, null_ctl);
3468     if (stopped())  break;
3469     klasses[which_arg] = kls;
3470   }
3471 
3472   if (!stopped()) {
3473     // now we have two reference types, in klasses[0..1]
3474     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3475     Node* superk = klasses[0];  // the receiver
3476     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3477     // now we have a successful reference subtype check
3478     region->set_req(_ref_subtype_path, control());
3479   }
3480 
3481   // If both operands are primitive (both klasses null), then
3482   // we must return true when they are identical primitives.
3483   // It is convenient to test this after the first null klass check.
3484   set_control(region->in(_prim_0_path)); // go back to first null check
3485   if (!stopped()) {
3486     // Since superc is primitive, make a guard for the superc==subc case.
3487     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3488     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3489     generate_guard(bol_eq, region, PROB_FAIR);
3490     if (region->req() == PATH_LIMIT+1) {
3491       // A guard was added.  If the added guard is taken, superc==subc.
3492       region->swap_edges(PATH_LIMIT, _prim_same_path);
3493       region->del_req(PATH_LIMIT);
3494     }
3495     region->set_req(_prim_0_path, control()); // Not equal after all.
3496   }
3497 
3498   // these are the only paths that produce 'true':
3499   phi->set_req(_prim_same_path,   intcon(1));
3500   phi->set_req(_ref_subtype_path, intcon(1));
3501 
3502   // pull together the cases:
3503   assert(region->req() == PATH_LIMIT, "sane region");
3504   for (uint i = 1; i < region->req(); i++) {
3505     Node* ctl = region->in(i);
3506     if (ctl == NULL || ctl == top()) {
3507       region->set_req(i, top());
3508       phi   ->set_req(i, top());
3509     } else if (phi->in(i) == NULL) {
3510       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3511     }
3512   }
3513 
3514   set_control(_gvn.transform(region));
3515   set_result(_gvn.transform(phi));
3516   return true;
3517 }
3518 
3519 //---------------------generate_array_guard_common------------------------
3520 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3521                                                   bool obj_array, bool not_array) {
3522 
3523   if (stopped()) {
3524     return NULL;
3525   }
3526 
3527   // If obj_array/non_array==false/false:
3528   // Branch around if the given klass is in fact an array (either obj or prim).
3529   // If obj_array/non_array==false/true:
3530   // Branch around if the given klass is not an array klass of any kind.
3531   // If obj_array/non_array==true/true:
3532   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3533   // If obj_array/non_array==true/false:
3534   // Branch around if the kls is an oop array (Object[] or subtype)
3535   //
3536   // Like generate_guard, adds a new path onto the region.
3537   jint  layout_con = 0;
3538   Node* layout_val = get_layout_helper(kls, layout_con);
3539   if (layout_val == NULL) {
3540     bool query = (obj_array
3541                   ? Klass::layout_helper_is_objArray(layout_con)
3542                   : Klass::layout_helper_is_array(layout_con));
3543     if (query == not_array) {
3544       return NULL;                       // never a branch
3545     } else {                             // always a branch
3546       Node* always_branch = control();
3547       if (region != NULL)
3548         region->add_req(always_branch);
3549       set_control(top());
3550       return always_branch;
3551     }
3552   }
3553   // Now test the correct condition.
3554   jint  nval = (obj_array
3555                 ? ((jint)Klass::_lh_array_tag_type_value
3556                    <<    Klass::_lh_array_tag_shift)
3557                 : Klass::_lh_neutral_value);
3558   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3559   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3560   // invert the test if we are looking for a non-array
3561   if (not_array)  btest = BoolTest(btest).negate();
3562   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3563   return generate_fair_guard(bol, region);
3564 }
3565 
3566 
3567 //-----------------------inline_native_newArray--------------------------
3568 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3569 bool LibraryCallKit::inline_native_newArray() {
3570   Node* mirror    = argument(0);
3571   Node* count_val = argument(1);
3572 
3573   mirror = null_check(mirror);
3574   // If mirror or obj is dead, only null-path is taken.
3575   if (stopped())  return true;
3576 
3577   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3578   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3579   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3580   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3581   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3582 
3583   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3584   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3585                                                   result_reg, _slow_path);
3586   Node* normal_ctl   = control();
3587   Node* no_array_ctl = result_reg->in(_slow_path);
3588 
3589   // Generate code for the slow case.  We make a call to newArray().
3590   set_control(no_array_ctl);
3591   if (!stopped()) {
3592     // Either the input type is void.class, or else the
3593     // array klass has not yet been cached.  Either the
3594     // ensuing call will throw an exception, or else it
3595     // will cache the array klass for next time.
3596     PreserveJVMState pjvms(this);
3597     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3598     Node* slow_result = set_results_for_java_call(slow_call);
3599     // this->control() comes from set_results_for_java_call
3600     result_reg->set_req(_slow_path, control());
3601     result_val->set_req(_slow_path, slow_result);
3602     result_io ->set_req(_slow_path, i_o());
3603     result_mem->set_req(_slow_path, reset_memory());
3604   }
3605 
3606   set_control(normal_ctl);
3607   if (!stopped()) {
3608     // Normal case:  The array type has been cached in the java.lang.Class.
3609     // The following call works fine even if the array type is polymorphic.
3610     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3611     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3612     result_reg->init_req(_normal_path, control());
3613     result_val->init_req(_normal_path, obj);
3614     result_io ->init_req(_normal_path, i_o());
3615     result_mem->init_req(_normal_path, reset_memory());
3616   }
3617 
3618   // Return the combined state.
3619   set_i_o(        _gvn.transform(result_io)  );
3620   set_all_memory( _gvn.transform(result_mem));
3621 
3622   C->set_has_split_ifs(true); // Has chance for split-if optimization
3623   set_result(result_reg, result_val);
3624   return true;
3625 }
3626 
3627 //----------------------inline_native_getLength--------------------------
3628 // public static native int java.lang.reflect.Array.getLength(Object array);
3629 bool LibraryCallKit::inline_native_getLength() {
3630   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3631 
3632   Node* array = null_check(argument(0));
3633   // If array is dead, only null-path is taken.
3634   if (stopped())  return true;
3635 
3636   // Deoptimize if it is a non-array.
3637   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3638 
3639   if (non_array != NULL) {
3640     PreserveJVMState pjvms(this);
3641     set_control(non_array);
3642     uncommon_trap(Deoptimization::Reason_intrinsic,
3643                   Deoptimization::Action_maybe_recompile);
3644   }
3645 
3646   // If control is dead, only non-array-path is taken.
3647   if (stopped())  return true;
3648 
3649   // The works fine even if the array type is polymorphic.
3650   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3651   Node* result = load_array_length(array);
3652 
3653   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3654   set_result(result);
3655   return true;
3656 }
3657 
3658 //------------------------inline_array_copyOf----------------------------
3659 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3660 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3661 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3662   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3663 
3664   // Get the arguments.
3665   Node* original          = argument(0);
3666   Node* start             = is_copyOfRange? argument(1): intcon(0);
3667   Node* end               = is_copyOfRange? argument(2): argument(1);
3668   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3669 
3670   Node* newcopy;
3671 
3672   // Set the original stack and the reexecute bit for the interpreter to reexecute
3673   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3674   { PreserveReexecuteState preexecs(this);
3675     jvms()->set_should_reexecute(true);
3676 
3677     array_type_mirror = null_check(array_type_mirror);
3678     original          = null_check(original);
3679 
3680     // Check if a null path was taken unconditionally.
3681     if (stopped())  return true;
3682 
3683     Node* orig_length = load_array_length(original);
3684 
3685     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3686     klass_node = null_check(klass_node);
3687 
3688     RegionNode* bailout = new RegionNode(1);
3689     record_for_igvn(bailout);
3690 
3691     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3692     // Bail out if that is so.
3693     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3694     if (not_objArray != NULL) {
3695       // Improve the klass node's type from the new optimistic assumption:
3696       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3697       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3698       Node* cast = new CastPPNode(klass_node, akls);
3699       cast->init_req(0, control());
3700       klass_node = _gvn.transform(cast);
3701     }
3702 
3703     // Bail out if either start or end is negative.
3704     generate_negative_guard(start, bailout, &start);
3705     generate_negative_guard(end,   bailout, &end);
3706 
3707     Node* length = end;
3708     if (_gvn.type(start) != TypeInt::ZERO) {
3709       length = _gvn.transform(new SubINode(end, start));
3710     }
3711 
3712     // Bail out if length is negative.
3713     // Without this the new_array would throw
3714     // NegativeArraySizeException but IllegalArgumentException is what
3715     // should be thrown
3716     generate_negative_guard(length, bailout, &length);
3717 
3718     if (bailout->req() > 1) {
3719       PreserveJVMState pjvms(this);
3720       set_control(_gvn.transform(bailout));
3721       uncommon_trap(Deoptimization::Reason_intrinsic,
3722                     Deoptimization::Action_maybe_recompile);
3723     }
3724 
3725     if (!stopped()) {
3726       // How many elements will we copy from the original?
3727       // The answer is MinI(orig_length - start, length).
3728       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3729       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3730 
3731       // Generate a direct call to the right arraycopy function(s).
3732       // We know the copy is disjoint but we might not know if the
3733       // oop stores need checking.
3734       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3735       // This will fail a store-check if x contains any non-nulls.
3736 
3737       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3738       // loads/stores but it is legal only if we're sure the
3739       // Arrays.copyOf would succeed. So we need all input arguments
3740       // to the copyOf to be validated, including that the copy to the
3741       // new array won't trigger an ArrayStoreException. That subtype
3742       // check can be optimized if we know something on the type of
3743       // the input array from type speculation.
3744       if (_gvn.type(klass_node)->singleton()) {
3745         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3746         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3747 
3748         int test = C->static_subtype_check(superk, subk);
3749         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3750           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3751           if (t_original->speculative_type() != NULL) {
3752             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3753           }
3754         }
3755       }
3756 
3757       bool validated = false;
3758       // Reason_class_check rather than Reason_intrinsic because we
3759       // want to intrinsify even if this traps.
3760       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3761         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
3762                                                    klass_node);
3763 
3764         if (not_subtype_ctrl != top()) {
3765           PreserveJVMState pjvms(this);
3766           set_control(not_subtype_ctrl);
3767           uncommon_trap(Deoptimization::Reason_class_check,
3768                         Deoptimization::Action_make_not_entrant);
3769           assert(stopped(), "Should be stopped");
3770         }
3771         validated = true;
3772       }
3773 
3774       if (!stopped()) {
3775         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3776 
3777         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true,
3778                                                 load_object_klass(original), klass_node);
3779         if (!is_copyOfRange) {
3780           ac->set_copyof(validated);
3781         } else {
3782           ac->set_copyofrange(validated);
3783         }
3784         Node* n = _gvn.transform(ac);
3785         if (n == ac) {
3786           ac->connect_outputs(this);
3787         } else {
3788           assert(validated, "shouldn't transform if all arguments not validated");
3789           set_all_memory(n);
3790         }
3791       }
3792     }
3793   } // original reexecute is set back here
3794 
3795   C->set_has_split_ifs(true); // Has chance for split-if optimization
3796   if (!stopped()) {
3797     set_result(newcopy);
3798   }
3799   return true;
3800 }
3801 
3802 
3803 //----------------------generate_virtual_guard---------------------------
3804 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3805 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3806                                              RegionNode* slow_region) {
3807   ciMethod* method = callee();
3808   int vtable_index = method->vtable_index();
3809   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3810          err_msg_res("bad index %d", vtable_index));
3811   // Get the Method* out of the appropriate vtable entry.
3812   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3813                      vtable_index*vtableEntry::size()) * wordSize +
3814                      vtableEntry::method_offset_in_bytes();
3815   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3816   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3817 
3818   // Compare the target method with the expected method (e.g., Object.hashCode).
3819   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3820 
3821   Node* native_call = makecon(native_call_addr);
3822   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3823   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3824 
3825   return generate_slow_guard(test_native, slow_region);
3826 }
3827 
3828 //-----------------------generate_method_call----------------------------
3829 // Use generate_method_call to make a slow-call to the real
3830 // method if the fast path fails.  An alternative would be to
3831 // use a stub like OptoRuntime::slow_arraycopy_Java.
3832 // This only works for expanding the current library call,
3833 // not another intrinsic.  (E.g., don't use this for making an
3834 // arraycopy call inside of the copyOf intrinsic.)
3835 CallJavaNode*
3836 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3837   // When compiling the intrinsic method itself, do not use this technique.
3838   guarantee(callee() != C->method(), "cannot make slow-call to self");
3839 
3840   ciMethod* method = callee();
3841   // ensure the JVMS we have will be correct for this call
3842   guarantee(method_id == method->intrinsic_id(), "must match");
3843 
3844   const TypeFunc* tf = TypeFunc::make(method);
3845   CallJavaNode* slow_call;
3846   if (is_static) {
3847     assert(!is_virtual, "");
3848     slow_call = new CallStaticJavaNode(C, tf,
3849                            SharedRuntime::get_resolve_static_call_stub(),
3850                            method, bci());
3851   } else if (is_virtual) {
3852     null_check_receiver();
3853     int vtable_index = Method::invalid_vtable_index;
3854     if (UseInlineCaches) {
3855       // Suppress the vtable call
3856     } else {
3857       // hashCode and clone are not a miranda methods,
3858       // so the vtable index is fixed.
3859       // No need to use the linkResolver to get it.
3860        vtable_index = method->vtable_index();
3861        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3862               err_msg_res("bad index %d", vtable_index));
3863     }
3864     slow_call = new CallDynamicJavaNode(tf,
3865                           SharedRuntime::get_resolve_virtual_call_stub(),
3866                           method, vtable_index, bci());
3867   } else {  // neither virtual nor static:  opt_virtual
3868     null_check_receiver();
3869     slow_call = new CallStaticJavaNode(C, tf,
3870                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3871                                 method, bci());
3872     slow_call->set_optimized_virtual(true);
3873   }
3874   set_arguments_for_java_call(slow_call);
3875   set_edges_for_java_call(slow_call);
3876   return slow_call;
3877 }
3878 
3879 
3880 /**
3881  * Build special case code for calls to hashCode on an object. This call may
3882  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3883  * slightly different code.
3884  */
3885 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3886   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3887   assert(!(is_virtual && is_static), "either virtual, special, or static");
3888 
3889   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3890 
3891   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3892   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3893   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3894   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3895   Node* obj = NULL;
3896   if (!is_static) {
3897     // Check for hashing null object
3898     obj = null_check_receiver();
3899     if (stopped())  return true;        // unconditionally null
3900     result_reg->init_req(_null_path, top());
3901     result_val->init_req(_null_path, top());
3902   } else {
3903     // Do a null check, and return zero if null.
3904     // System.identityHashCode(null) == 0
3905     obj = argument(0);
3906     Node* null_ctl = top();
3907     obj = null_check_oop(obj, &null_ctl);
3908     result_reg->init_req(_null_path, null_ctl);
3909     result_val->init_req(_null_path, _gvn.intcon(0));
3910   }
3911 
3912   // Unconditionally null?  Then return right away.
3913   if (stopped()) {
3914     set_control( result_reg->in(_null_path));
3915     if (!stopped())
3916       set_result(result_val->in(_null_path));
3917     return true;
3918   }
3919 
3920   // We only go to the fast case code if we pass a number of guards.  The
3921   // paths which do not pass are accumulated in the slow_region.
3922   RegionNode* slow_region = new RegionNode(1);
3923   record_for_igvn(slow_region);
3924 
3925   // If this is a virtual call, we generate a funny guard.  We pull out
3926   // the vtable entry corresponding to hashCode() from the target object.
3927   // If the target method which we are calling happens to be the native
3928   // Object hashCode() method, we pass the guard.  We do not need this
3929   // guard for non-virtual calls -- the caller is known to be the native
3930   // Object hashCode().
3931   if (is_virtual) {
3932     // After null check, get the object's klass.
3933     Node* obj_klass = load_object_klass(obj);
3934     generate_virtual_guard(obj_klass, slow_region);
3935   }
3936 
3937   // Get the header out of the object, use LoadMarkNode when available
3938   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3939   // The control of the load must be NULL. Otherwise, the load can move before
3940   // the null check after castPP removal.
3941   Node* no_ctrl = NULL;
3942   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3943 
3944   // Test the header to see if it is unlocked.
3945   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3946   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3947   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3948   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3949   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3950 
3951   generate_slow_guard(test_unlocked, slow_region);
3952 
3953   // Get the hash value and check to see that it has been properly assigned.
3954   // We depend on hash_mask being at most 32 bits and avoid the use of
3955   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3956   // vm: see markOop.hpp.
3957   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3958   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3959   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3960   // This hack lets the hash bits live anywhere in the mark object now, as long
3961   // as the shift drops the relevant bits into the low 32 bits.  Note that
3962   // Java spec says that HashCode is an int so there's no point in capturing
3963   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3964   hshifted_header      = ConvX2I(hshifted_header);
3965   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3966 
3967   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3968   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3969   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3970 
3971   generate_slow_guard(test_assigned, slow_region);
3972 
3973   Node* init_mem = reset_memory();
3974   // fill in the rest of the null path:
3975   result_io ->init_req(_null_path, i_o());
3976   result_mem->init_req(_null_path, init_mem);
3977 
3978   result_val->init_req(_fast_path, hash_val);
3979   result_reg->init_req(_fast_path, control());
3980   result_io ->init_req(_fast_path, i_o());
3981   result_mem->init_req(_fast_path, init_mem);
3982 
3983   // Generate code for the slow case.  We make a call to hashCode().
3984   set_control(_gvn.transform(slow_region));
3985   if (!stopped()) {
3986     // No need for PreserveJVMState, because we're using up the present state.
3987     set_all_memory(init_mem);
3988     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3989     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3990     Node* slow_result = set_results_for_java_call(slow_call);
3991     // this->control() comes from set_results_for_java_call
3992     result_reg->init_req(_slow_path, control());
3993     result_val->init_req(_slow_path, slow_result);
3994     result_io  ->set_req(_slow_path, i_o());
3995     result_mem ->set_req(_slow_path, reset_memory());
3996   }
3997 
3998   // Return the combined state.
3999   set_i_o(        _gvn.transform(result_io)  );
4000   set_all_memory( _gvn.transform(result_mem));
4001 
4002   set_result(result_reg, result_val);
4003   return true;
4004 }
4005 
4006 //---------------------------inline_native_getClass----------------------------
4007 // public final native Class<?> java.lang.Object.getClass();
4008 //
4009 // Build special case code for calls to getClass on an object.
4010 bool LibraryCallKit::inline_native_getClass() {
4011   Node* obj = null_check_receiver();
4012   if (stopped())  return true;
4013   set_result(load_mirror_from_klass(load_object_klass(obj)));
4014   return true;
4015 }
4016 
4017 //-----------------inline_native_Reflection_getCallerClass---------------------
4018 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4019 //
4020 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4021 //
4022 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4023 // in that it must skip particular security frames and checks for
4024 // caller sensitive methods.
4025 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4026 #ifndef PRODUCT
4027   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4028     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4029   }
4030 #endif
4031 
4032   if (!jvms()->has_method()) {
4033 #ifndef PRODUCT
4034     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4035       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4036     }
4037 #endif
4038     return false;
4039   }
4040 
4041   // Walk back up the JVM state to find the caller at the required
4042   // depth.
4043   JVMState* caller_jvms = jvms();
4044 
4045   // Cf. JVM_GetCallerClass
4046   // NOTE: Start the loop at depth 1 because the current JVM state does
4047   // not include the Reflection.getCallerClass() frame.
4048   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4049     ciMethod* m = caller_jvms->method();
4050     switch (n) {
4051     case 0:
4052       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4053       break;
4054     case 1:
4055       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4056       if (!m->caller_sensitive()) {
4057 #ifndef PRODUCT
4058         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4059           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4060         }
4061 #endif
4062         return false;  // bail-out; let JVM_GetCallerClass do the work
4063       }
4064       break;
4065     default:
4066       if (!m->is_ignored_by_security_stack_walk()) {
4067         // We have reached the desired frame; return the holder class.
4068         // Acquire method holder as java.lang.Class and push as constant.
4069         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4070         ciInstance* caller_mirror = caller_klass->java_mirror();
4071         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4072 
4073 #ifndef PRODUCT
4074         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4075           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4076           tty->print_cr("  JVM state at this point:");
4077           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4078             ciMethod* m = jvms()->of_depth(i)->method();
4079             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4080           }
4081         }
4082 #endif
4083         return true;
4084       }
4085       break;
4086     }
4087   }
4088 
4089 #ifndef PRODUCT
4090   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4091     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4092     tty->print_cr("  JVM state at this point:");
4093     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4094       ciMethod* m = jvms()->of_depth(i)->method();
4095       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4096     }
4097   }
4098 #endif
4099 
4100   return false;  // bail-out; let JVM_GetCallerClass do the work
4101 }
4102 
4103 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4104   Node* arg = argument(0);
4105   Node* result;
4106 
4107   switch (id) {
4108   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4109   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4110   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4111   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4112 
4113   case vmIntrinsics::_doubleToLongBits: {
4114     // two paths (plus control) merge in a wood
4115     RegionNode *r = new RegionNode(3);
4116     Node *phi = new PhiNode(r, TypeLong::LONG);
4117 
4118     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4119     // Build the boolean node
4120     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4121 
4122     // Branch either way.
4123     // NaN case is less traveled, which makes all the difference.
4124     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4125     Node *opt_isnan = _gvn.transform(ifisnan);
4126     assert( opt_isnan->is_If(), "Expect an IfNode");
4127     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4128     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4129 
4130     set_control(iftrue);
4131 
4132     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4133     Node *slow_result = longcon(nan_bits); // return NaN
4134     phi->init_req(1, _gvn.transform( slow_result ));
4135     r->init_req(1, iftrue);
4136 
4137     // Else fall through
4138     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4139     set_control(iffalse);
4140 
4141     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4142     r->init_req(2, iffalse);
4143 
4144     // Post merge
4145     set_control(_gvn.transform(r));
4146     record_for_igvn(r);
4147 
4148     C->set_has_split_ifs(true); // Has chance for split-if optimization
4149     result = phi;
4150     assert(result->bottom_type()->isa_long(), "must be");
4151     break;
4152   }
4153 
4154   case vmIntrinsics::_floatToIntBits: {
4155     // two paths (plus control) merge in a wood
4156     RegionNode *r = new RegionNode(3);
4157     Node *phi = new PhiNode(r, TypeInt::INT);
4158 
4159     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4160     // Build the boolean node
4161     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4162 
4163     // Branch either way.
4164     // NaN case is less traveled, which makes all the difference.
4165     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4166     Node *opt_isnan = _gvn.transform(ifisnan);
4167     assert( opt_isnan->is_If(), "Expect an IfNode");
4168     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4169     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4170 
4171     set_control(iftrue);
4172 
4173     static const jint nan_bits = 0x7fc00000;
4174     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4175     phi->init_req(1, _gvn.transform( slow_result ));
4176     r->init_req(1, iftrue);
4177 
4178     // Else fall through
4179     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4180     set_control(iffalse);
4181 
4182     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4183     r->init_req(2, iffalse);
4184 
4185     // Post merge
4186     set_control(_gvn.transform(r));
4187     record_for_igvn(r);
4188 
4189     C->set_has_split_ifs(true); // Has chance for split-if optimization
4190     result = phi;
4191     assert(result->bottom_type()->isa_int(), "must be");
4192     break;
4193   }
4194 
4195   default:
4196     fatal_unexpected_iid(id);
4197     break;
4198   }
4199   set_result(_gvn.transform(result));
4200   return true;
4201 }
4202 
4203 #ifdef _LP64
4204 #define XTOP ,top() /*additional argument*/
4205 #else  //_LP64
4206 #define XTOP        /*no additional argument*/
4207 #endif //_LP64
4208 
4209 //----------------------inline_unsafe_copyMemory-------------------------
4210 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4211 bool LibraryCallKit::inline_unsafe_copyMemory() {
4212   if (callee()->is_static())  return false;  // caller must have the capability!
4213   null_check_receiver();  // null-check receiver
4214   if (stopped())  return true;
4215 
4216   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4217 
4218   Node* src_ptr =         argument(1);   // type: oop
4219   Node* src_off = ConvL2X(argument(2));  // type: long
4220   Node* dst_ptr =         argument(4);   // type: oop
4221   Node* dst_off = ConvL2X(argument(5));  // type: long
4222   Node* size    = ConvL2X(argument(7));  // type: long
4223 
4224   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4225          "fieldOffset must be byte-scaled");
4226 
4227   Node* src = make_unsafe_address(src_ptr, src_off);
4228   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4229 
4230   // Conservatively insert a memory barrier on all memory slices.
4231   // Do not let writes of the copy source or destination float below the copy.
4232   insert_mem_bar(Op_MemBarCPUOrder);
4233 
4234   // Call it.  Note that the length argument is not scaled.
4235   make_runtime_call(RC_LEAF|RC_NO_FP,
4236                     OptoRuntime::fast_arraycopy_Type(),
4237                     StubRoutines::unsafe_arraycopy(),
4238                     "unsafe_arraycopy",
4239                     TypeRawPtr::BOTTOM,
4240                     src, dst, size XTOP);
4241 
4242   // Do not let reads of the copy destination float above the copy.
4243   insert_mem_bar(Op_MemBarCPUOrder);
4244 
4245   return true;
4246 }
4247 
4248 //------------------------clone_coping-----------------------------------
4249 // Helper function for inline_native_clone.
4250 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4251   assert(obj_size != NULL, "");
4252   Node* raw_obj = alloc_obj->in(1);
4253   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4254 
4255   AllocateNode* alloc = NULL;
4256   if (ReduceBulkZeroing) {
4257     // We will be completely responsible for initializing this object -
4258     // mark Initialize node as complete.
4259     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4260     // The object was just allocated - there should be no any stores!
4261     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4262     // Mark as complete_with_arraycopy so that on AllocateNode
4263     // expansion, we know this AllocateNode is initialized by an array
4264     // copy and a StoreStore barrier exists after the array copy.
4265     alloc->initialization()->set_complete_with_arraycopy();
4266   }
4267 
4268   // Copy the fastest available way.
4269   // TODO: generate fields copies for small objects instead.
4270   Node* src  = obj;
4271   Node* dest = alloc_obj;
4272   Node* size = _gvn.transform(obj_size);
4273 
4274   // Exclude the header but include array length to copy by 8 bytes words.
4275   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4276   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4277                             instanceOopDesc::base_offset_in_bytes();
4278   // base_off:
4279   // 8  - 32-bit VM
4280   // 12 - 64-bit VM, compressed klass
4281   // 16 - 64-bit VM, normal klass
4282   if (base_off % BytesPerLong != 0) {
4283     assert(UseCompressedClassPointers, "");
4284     if (is_array) {
4285       // Exclude length to copy by 8 bytes words.
4286       base_off += sizeof(int);
4287     } else {
4288       // Include klass to copy by 8 bytes words.
4289       base_off = instanceOopDesc::klass_offset_in_bytes();
4290     }
4291     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4292   }
4293   src  = basic_plus_adr(src,  base_off);
4294   dest = basic_plus_adr(dest, base_off);
4295 
4296   // Compute the length also, if needed:
4297   Node* countx = size;
4298   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4299   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4300 
4301   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4302 
4303   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4304   ac->set_clonebasic();
4305   Node* n = _gvn.transform(ac);
4306   if (n == ac) {
4307     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4308   } else {
4309     set_all_memory(n);
4310   }
4311 
4312   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4313   if (card_mark) {
4314     assert(!is_array, "");
4315     // Put in store barrier for any and all oops we are sticking
4316     // into this object.  (We could avoid this if we could prove
4317     // that the object type contains no oop fields at all.)
4318     Node* no_particular_value = NULL;
4319     Node* no_particular_field = NULL;
4320     int raw_adr_idx = Compile::AliasIdxRaw;
4321     post_barrier(control(),
4322                  memory(raw_adr_type),
4323                  alloc_obj,
4324                  no_particular_field,
4325                  raw_adr_idx,
4326                  no_particular_value,
4327                  T_OBJECT,
4328                  false);
4329   }
4330 
4331   // Do not let reads from the cloned object float above the arraycopy.
4332   if (alloc != NULL) {
4333     // Do not let stores that initialize this object be reordered with
4334     // a subsequent store that would make this object accessible by
4335     // other threads.
4336     // Record what AllocateNode this StoreStore protects so that
4337     // escape analysis can go from the MemBarStoreStoreNode to the
4338     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4339     // based on the escape status of the AllocateNode.
4340     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4341   } else {
4342     insert_mem_bar(Op_MemBarCPUOrder);
4343   }
4344 }
4345 
4346 //------------------------inline_native_clone----------------------------
4347 // protected native Object java.lang.Object.clone();
4348 //
4349 // Here are the simple edge cases:
4350 //  null receiver => normal trap
4351 //  virtual and clone was overridden => slow path to out-of-line clone
4352 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4353 //
4354 // The general case has two steps, allocation and copying.
4355 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4356 //
4357 // Copying also has two cases, oop arrays and everything else.
4358 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4359 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4360 //
4361 // These steps fold up nicely if and when the cloned object's klass
4362 // can be sharply typed as an object array, a type array, or an instance.
4363 //
4364 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4365   PhiNode* result_val;
4366 
4367   // Set the reexecute bit for the interpreter to reexecute
4368   // the bytecode that invokes Object.clone if deoptimization happens.
4369   { PreserveReexecuteState preexecs(this);
4370     jvms()->set_should_reexecute(true);
4371 
4372     Node* obj = null_check_receiver();
4373     if (stopped())  return true;
4374 
4375     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4376 
4377     // If we are going to clone an instance, we need its exact type to
4378     // know the number and types of fields to convert the clone to
4379     // loads/stores. Maybe a speculative type can help us.
4380     if (!obj_type->klass_is_exact() &&
4381         obj_type->speculative_type() != NULL &&
4382         obj_type->speculative_type()->is_instance_klass()) {
4383       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4384       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4385           !spec_ik->has_injected_fields()) {
4386         ciKlass* k = obj_type->klass();
4387         if (!k->is_instance_klass() ||
4388             k->as_instance_klass()->is_interface() ||
4389             k->as_instance_klass()->has_subklass()) {
4390           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4391         }
4392       }
4393     }
4394 
4395     Node* obj_klass = load_object_klass(obj);
4396     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4397     const TypeOopPtr*   toop   = ((tklass != NULL)
4398                                 ? tklass->as_instance_type()
4399                                 : TypeInstPtr::NOTNULL);
4400 
4401     // Conservatively insert a memory barrier on all memory slices.
4402     // Do not let writes into the original float below the clone.
4403     insert_mem_bar(Op_MemBarCPUOrder);
4404 
4405     // paths into result_reg:
4406     enum {
4407       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4408       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4409       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4410       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4411       PATH_LIMIT
4412     };
4413     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4414     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4415     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4416     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4417     record_for_igvn(result_reg);
4418 
4419     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4420     int raw_adr_idx = Compile::AliasIdxRaw;
4421 
4422     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4423     if (array_ctl != NULL) {
4424       // It's an array.
4425       PreserveJVMState pjvms(this);
4426       set_control(array_ctl);
4427       Node* obj_length = load_array_length(obj);
4428       Node* obj_size  = NULL;
4429       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4430 
4431       if (!use_ReduceInitialCardMarks()) {
4432         // If it is an oop array, it requires very special treatment,
4433         // because card marking is required on each card of the array.
4434         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4435         if (is_obja != NULL) {
4436           PreserveJVMState pjvms2(this);
4437           set_control(is_obja);
4438           // Generate a direct call to the right arraycopy function(s).
4439           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4440           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4441           ac->set_cloneoop();
4442           Node* n = _gvn.transform(ac);
4443           assert(n == ac, "cannot disappear");
4444           ac->connect_outputs(this);
4445 
4446           result_reg->init_req(_objArray_path, control());
4447           result_val->init_req(_objArray_path, alloc_obj);
4448           result_i_o ->set_req(_objArray_path, i_o());
4449           result_mem ->set_req(_objArray_path, reset_memory());
4450         }
4451       }
4452       // Otherwise, there are no card marks to worry about.
4453       // (We can dispense with card marks if we know the allocation
4454       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4455       //  causes the non-eden paths to take compensating steps to
4456       //  simulate a fresh allocation, so that no further
4457       //  card marks are required in compiled code to initialize
4458       //  the object.)
4459 
4460       if (!stopped()) {
4461         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4462 
4463         // Present the results of the copy.
4464         result_reg->init_req(_array_path, control());
4465         result_val->init_req(_array_path, alloc_obj);
4466         result_i_o ->set_req(_array_path, i_o());
4467         result_mem ->set_req(_array_path, reset_memory());
4468       }
4469     }
4470 
4471     // We only go to the instance fast case code if we pass a number of guards.
4472     // The paths which do not pass are accumulated in the slow_region.
4473     RegionNode* slow_region = new RegionNode(1);
4474     record_for_igvn(slow_region);
4475     if (!stopped()) {
4476       // It's an instance (we did array above).  Make the slow-path tests.
4477       // If this is a virtual call, we generate a funny guard.  We grab
4478       // the vtable entry corresponding to clone() from the target object.
4479       // If the target method which we are calling happens to be the
4480       // Object clone() method, we pass the guard.  We do not need this
4481       // guard for non-virtual calls; the caller is known to be the native
4482       // Object clone().
4483       if (is_virtual) {
4484         generate_virtual_guard(obj_klass, slow_region);
4485       }
4486 
4487       // The object must be cloneable and must not have a finalizer.
4488       // Both of these conditions may be checked in a single test.
4489       // We could optimize the cloneable test further, but we don't care.
4490       generate_access_flags_guard(obj_klass,
4491                                   // Test both conditions:
4492                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4493                                   // Must be cloneable but not finalizer:
4494                                   JVM_ACC_IS_CLONEABLE,
4495                                   slow_region);
4496     }
4497 
4498     if (!stopped()) {
4499       // It's an instance, and it passed the slow-path tests.
4500       PreserveJVMState pjvms(this);
4501       Node* obj_size  = NULL;
4502       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4503       // is reexecuted if deoptimization occurs and there could be problems when merging
4504       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4505       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4506 
4507       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4508 
4509       // Present the results of the slow call.
4510       result_reg->init_req(_instance_path, control());
4511       result_val->init_req(_instance_path, alloc_obj);
4512       result_i_o ->set_req(_instance_path, i_o());
4513       result_mem ->set_req(_instance_path, reset_memory());
4514     }
4515 
4516     // Generate code for the slow case.  We make a call to clone().
4517     set_control(_gvn.transform(slow_region));
4518     if (!stopped()) {
4519       PreserveJVMState pjvms(this);
4520       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4521       Node* slow_result = set_results_for_java_call(slow_call);
4522       // this->control() comes from set_results_for_java_call
4523       result_reg->init_req(_slow_path, control());
4524       result_val->init_req(_slow_path, slow_result);
4525       result_i_o ->set_req(_slow_path, i_o());
4526       result_mem ->set_req(_slow_path, reset_memory());
4527     }
4528 
4529     // Return the combined state.
4530     set_control(    _gvn.transform(result_reg));
4531     set_i_o(        _gvn.transform(result_i_o));
4532     set_all_memory( _gvn.transform(result_mem));
4533   } // original reexecute is set back here
4534 
4535   set_result(_gvn.transform(result_val));
4536   return true;
4537 }
4538 
4539 // If we have a tighly coupled allocation, the arraycopy may take care
4540 // of the array initialization. If one of the guards we insert between
4541 // the allocation and the arraycopy causes a deoptimization, an
4542 // unitialized array will escape the compiled method. To prevent that
4543 // we set the JVM state for uncommon traps between the allocation and
4544 // the arraycopy to the state before the allocation so, in case of
4545 // deoptimization, we'll reexecute the allocation and the
4546 // initialization.
4547 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4548   if (alloc != NULL) {
4549     ciMethod* trap_method = alloc->jvms()->method();
4550     int trap_bci = alloc->jvms()->bci();
4551 
4552     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4553           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4554       // Make sure there's no store between the allocation and the
4555       // arraycopy otherwise visible side effects could be rexecuted
4556       // in case of deoptimization and cause incorrect execution.
4557       bool no_interfering_store = true;
4558       Node* mem = alloc->in(TypeFunc::Memory);
4559       if (mem->is_MergeMem()) {
4560         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4561           Node* n = mms.memory();
4562           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4563             assert(n->is_Store(), "what else?");
4564             no_interfering_store = false;
4565             break;
4566           }
4567         }
4568       } else {
4569         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4570           Node* n = mms.memory();
4571           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4572             assert(n->is_Store(), "what else?");
4573             no_interfering_store = false;
4574             break;
4575           }
4576         }
4577       }
4578 
4579       if (no_interfering_store) {
4580         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4581         uint size = alloc->req();
4582         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4583         old_jvms->set_map(sfpt);
4584         for (uint i = 0; i < size; i++) {
4585           sfpt->init_req(i, alloc->in(i));
4586         }
4587         // re-push array length for deoptimization
4588         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4589         old_jvms->set_sp(old_jvms->sp()+1);
4590         old_jvms->set_monoff(old_jvms->monoff()+1);
4591         old_jvms->set_scloff(old_jvms->scloff()+1);
4592         old_jvms->set_endoff(old_jvms->endoff()+1);
4593         old_jvms->set_should_reexecute(true);
4594 
4595         sfpt->set_i_o(map()->i_o());
4596         sfpt->set_memory(map()->memory());
4597         sfpt->set_control(map()->control());
4598 
4599         JVMState* saved_jvms = jvms();
4600         saved_reexecute_sp = _reexecute_sp;
4601 
4602         set_jvms(sfpt->jvms());
4603         _reexecute_sp = jvms()->sp();
4604 
4605         return saved_jvms;
4606       }
4607     }
4608   }
4609   return NULL;
4610 }
4611 
4612 // In case of a deoptimization, we restart execution at the
4613 // allocation, allocating a new array. We would leave an uninitialized
4614 // array in the heap that GCs wouldn't expect. Move the allocation
4615 // after the traps so we don't allocate the array if we
4616 // deoptimize. This is possible because tightly_coupled_allocation()
4617 // guarantees there's no observer of the allocated array at this point
4618 // and the control flow is simple enough.
4619 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp) {
4620   if (saved_jvms != NULL && !stopped()) {
4621     assert(alloc != NULL, "only with a tightly coupled allocation");
4622     // restore JVM state to the state at the arraycopy
4623     saved_jvms->map()->set_control(map()->control());
4624     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4625     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4626     // If we've improved the types of some nodes (null check) while
4627     // emitting the guards, propagate them to the current state
4628     map()->replaced_nodes().apply(saved_jvms->map());
4629     set_jvms(saved_jvms);
4630     _reexecute_sp = saved_reexecute_sp;
4631 
4632     // Remove the allocation from above the guards
4633     CallProjections callprojs;
4634     alloc->extract_projections(&callprojs, true);
4635     InitializeNode* init = alloc->initialization();
4636     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4637     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4638     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4639     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4640 
4641     // move the allocation here (after the guards)
4642     _gvn.hash_delete(alloc);
4643     alloc->set_req(TypeFunc::Control, control());
4644     alloc->set_req(TypeFunc::I_O, i_o());
4645     Node *mem = reset_memory();
4646     set_all_memory(mem);
4647     alloc->set_req(TypeFunc::Memory, mem);
4648     set_control(init->proj_out(TypeFunc::Control));
4649     set_i_o(callprojs.fallthrough_ioproj);
4650 
4651     // Update memory as done in GraphKit::set_output_for_allocation()
4652     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4653     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4654     if (ary_type->isa_aryptr() && length_type != NULL) {
4655       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4656     }
4657     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4658     int            elemidx  = C->get_alias_index(telemref);
4659     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
4660     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
4661 
4662     Node* allocx = _gvn.transform(alloc);
4663     assert(allocx == alloc, "where has the allocation gone?");
4664     assert(dest->is_CheckCastPP(), "not an allocation result?");
4665 
4666     _gvn.hash_delete(dest);
4667     dest->set_req(0, control());
4668     Node* destx = _gvn.transform(dest);
4669     assert(destx == dest, "where has the allocation result gone?");
4670   }
4671 }
4672 
4673 
4674 //------------------------------inline_arraycopy-----------------------
4675 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4676 //                                                      Object dest, int destPos,
4677 //                                                      int length);
4678 bool LibraryCallKit::inline_arraycopy() {
4679   // Get the arguments.
4680   Node* src         = argument(0);  // type: oop
4681   Node* src_offset  = argument(1);  // type: int
4682   Node* dest        = argument(2);  // type: oop
4683   Node* dest_offset = argument(3);  // type: int
4684   Node* length      = argument(4);  // type: int
4685 
4686 
4687   // Check for allocation before we add nodes that would confuse
4688   // tightly_coupled_allocation()
4689   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4690 
4691   int saved_reexecute_sp = -1;
4692   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4693   // See arraycopy_restore_alloc_state() comment
4694   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4695   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4696   // if saved_jvms == NULL and alloc != NULL, we can’t emit any guards
4697   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4698 
4699   // The following tests must be performed
4700   // (1) src and dest are arrays.
4701   // (2) src and dest arrays must have elements of the same BasicType
4702   // (3) src and dest must not be null.
4703   // (4) src_offset must not be negative.
4704   // (5) dest_offset must not be negative.
4705   // (6) length must not be negative.
4706   // (7) src_offset + length must not exceed length of src.
4707   // (8) dest_offset + length must not exceed length of dest.
4708   // (9) each element of an oop array must be assignable
4709 
4710   // (3) src and dest must not be null.
4711   // always do this here because we need the JVM state for uncommon traps
4712   Node* null_ctl = top();
4713   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4714   assert(null_ctl->is_top(), "no null control here");
4715   dest = null_check(dest, T_ARRAY);
4716 
4717   if (!can_emit_guards) {
4718     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4719     // guards but the arraycopy node could still take advantage of a
4720     // tightly allocated allocation. tightly_coupled_allocation() is
4721     // called again to make sure it takes the null check above into
4722     // account: the null check is mandatory and if it caused an
4723     // uncommon trap to be emitted then the allocation can't be
4724     // considered tightly coupled in this context.
4725     alloc = tightly_coupled_allocation(dest, NULL);
4726   }
4727 
4728   bool validated = false;
4729 
4730   const Type* src_type  = _gvn.type(src);
4731   const Type* dest_type = _gvn.type(dest);
4732   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4733   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4734 
4735   // Do we have the type of src?
4736   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4737   // Do we have the type of dest?
4738   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4739   // Is the type for src from speculation?
4740   bool src_spec = false;
4741   // Is the type for dest from speculation?
4742   bool dest_spec = false;
4743 
4744   if ((!has_src || !has_dest) && can_emit_guards) {
4745     // We don't have sufficient type information, let's see if
4746     // speculative types can help. We need to have types for both src
4747     // and dest so that it pays off.
4748 
4749     // Do we already have or could we have type information for src
4750     bool could_have_src = has_src;
4751     // Do we already have or could we have type information for dest
4752     bool could_have_dest = has_dest;
4753 
4754     ciKlass* src_k = NULL;
4755     if (!has_src) {
4756       src_k = src_type->speculative_type_not_null();
4757       if (src_k != NULL && src_k->is_array_klass()) {
4758         could_have_src = true;
4759       }
4760     }
4761 
4762     ciKlass* dest_k = NULL;
4763     if (!has_dest) {
4764       dest_k = dest_type->speculative_type_not_null();
4765       if (dest_k != NULL && dest_k->is_array_klass()) {
4766         could_have_dest = true;
4767       }
4768     }
4769 
4770     if (could_have_src && could_have_dest) {
4771       // This is going to pay off so emit the required guards
4772       if (!has_src) {
4773         src = maybe_cast_profiled_obj(src, src_k, true);
4774         src_type  = _gvn.type(src);
4775         top_src  = src_type->isa_aryptr();
4776         has_src = (top_src != NULL && top_src->klass() != NULL);
4777         src_spec = true;
4778       }
4779       if (!has_dest) {
4780         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4781         dest_type  = _gvn.type(dest);
4782         top_dest  = dest_type->isa_aryptr();
4783         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4784         dest_spec = true;
4785       }
4786     }
4787   }
4788 
4789   if (has_src && has_dest && can_emit_guards) {
4790     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4791     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4792     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4793     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4794 
4795     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4796       // If both arrays are object arrays then having the exact types
4797       // for both will remove the need for a subtype check at runtime
4798       // before the call and may make it possible to pick a faster copy
4799       // routine (without a subtype check on every element)
4800       // Do we have the exact type of src?
4801       bool could_have_src = src_spec;
4802       // Do we have the exact type of dest?
4803       bool could_have_dest = dest_spec;
4804       ciKlass* src_k = top_src->klass();
4805       ciKlass* dest_k = top_dest->klass();
4806       if (!src_spec) {
4807         src_k = src_type->speculative_type_not_null();
4808         if (src_k != NULL && src_k->is_array_klass()) {
4809           could_have_src = true;
4810         }
4811       }
4812       if (!dest_spec) {
4813         dest_k = dest_type->speculative_type_not_null();
4814         if (dest_k != NULL && dest_k->is_array_klass()) {
4815           could_have_dest = true;
4816         }
4817       }
4818       if (could_have_src && could_have_dest) {
4819         // If we can have both exact types, emit the missing guards
4820         if (could_have_src && !src_spec) {
4821           src = maybe_cast_profiled_obj(src, src_k, true);
4822         }
4823         if (could_have_dest && !dest_spec) {
4824           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4825         }
4826       }
4827     }
4828   }
4829 
4830   ciMethod* trap_method = method();
4831   int trap_bci = bci();
4832   if (saved_jvms != NULL) {
4833     trap_method = alloc->jvms()->method();
4834     trap_bci = alloc->jvms()->bci();
4835   }
4836 
4837   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4838       can_emit_guards &&
4839       !src->is_top() && !dest->is_top()) {
4840     // validate arguments: enables transformation the ArrayCopyNode
4841     validated = true;
4842 
4843     RegionNode* slow_region = new RegionNode(1);
4844     record_for_igvn(slow_region);
4845 
4846     // (1) src and dest are arrays.
4847     generate_non_array_guard(load_object_klass(src), slow_region);
4848     generate_non_array_guard(load_object_klass(dest), slow_region);
4849 
4850     // (2) src and dest arrays must have elements of the same BasicType
4851     // done at macro expansion or at Ideal transformation time
4852 
4853     // (4) src_offset must not be negative.
4854     generate_negative_guard(src_offset, slow_region);
4855 
4856     // (5) dest_offset must not be negative.
4857     generate_negative_guard(dest_offset, slow_region);
4858 
4859     // (7) src_offset + length must not exceed length of src.
4860     generate_limit_guard(src_offset, length,
4861                          load_array_length(src),
4862                          slow_region);
4863 
4864     // (8) dest_offset + length must not exceed length of dest.
4865     generate_limit_guard(dest_offset, length,
4866                          load_array_length(dest),
4867                          slow_region);
4868 
4869     // (9) each element of an oop array must be assignable
4870     Node* src_klass  = load_object_klass(src);
4871     Node* dest_klass = load_object_klass(dest);
4872     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4873 
4874     if (not_subtype_ctrl != top()) {
4875       PreserveJVMState pjvms(this);
4876       set_control(not_subtype_ctrl);
4877       uncommon_trap(Deoptimization::Reason_intrinsic,
4878                     Deoptimization::Action_make_not_entrant);
4879       assert(stopped(), "Should be stopped");
4880     }
4881     {
4882       PreserveJVMState pjvms(this);
4883       set_control(_gvn.transform(slow_region));
4884       uncommon_trap(Deoptimization::Reason_intrinsic,
4885                     Deoptimization::Action_make_not_entrant);
4886       assert(stopped(), "Should be stopped");
4887     }
4888   }
4889 
4890   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp);
4891 
4892   if (stopped()) {
4893     return true;
4894   }
4895 
4896   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4897                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4898                                           // so the compiler has a chance to eliminate them: during macro expansion,
4899                                           // we have to set their control (CastPP nodes are eliminated).
4900                                           load_object_klass(src), load_object_klass(dest),
4901                                           load_array_length(src), load_array_length(dest));
4902 
4903   ac->set_arraycopy(validated);
4904 
4905   Node* n = _gvn.transform(ac);
4906   if (n == ac) {
4907     ac->connect_outputs(this);
4908   } else {
4909     assert(validated, "shouldn't transform if all arguments not validated");
4910     set_all_memory(n);
4911   }
4912 
4913   return true;
4914 }
4915 
4916 
4917 // Helper function which determines if an arraycopy immediately follows
4918 // an allocation, with no intervening tests or other escapes for the object.
4919 AllocateArrayNode*
4920 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4921                                            RegionNode* slow_region) {
4922   if (stopped())             return NULL;  // no fast path
4923   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4924 
4925   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4926   if (alloc == NULL)  return NULL;
4927 
4928   Node* rawmem = memory(Compile::AliasIdxRaw);
4929   // Is the allocation's memory state untouched?
4930   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4931     // Bail out if there have been raw-memory effects since the allocation.
4932     // (Example:  There might have been a call or safepoint.)
4933     return NULL;
4934   }
4935   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4936   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4937     return NULL;
4938   }
4939 
4940   // There must be no unexpected observers of this allocation.
4941   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4942     Node* obs = ptr->fast_out(i);
4943     if (obs != this->map()) {
4944       return NULL;
4945     }
4946   }
4947 
4948   // This arraycopy must unconditionally follow the allocation of the ptr.
4949   Node* alloc_ctl = ptr->in(0);
4950   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4951 
4952   Node* ctl = control();
4953   while (ctl != alloc_ctl) {
4954     // There may be guards which feed into the slow_region.
4955     // Any other control flow means that we might not get a chance
4956     // to finish initializing the allocated object.
4957     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4958       IfNode* iff = ctl->in(0)->as_If();
4959       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4960       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4961       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4962         ctl = iff->in(0);       // This test feeds the known slow_region.
4963         continue;
4964       }
4965       // One more try:  Various low-level checks bottom out in
4966       // uncommon traps.  If the debug-info of the trap omits
4967       // any reference to the allocation, as we've already
4968       // observed, then there can be no objection to the trap.
4969       bool found_trap = false;
4970       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4971         Node* obs = not_ctl->fast_out(j);
4972         if (obs->in(0) == not_ctl && obs->is_Call() &&
4973             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4974           found_trap = true; break;
4975         }
4976       }
4977       if (found_trap) {
4978         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4979         continue;
4980       }
4981     }
4982     return NULL;
4983   }
4984 
4985   // If we get this far, we have an allocation which immediately
4986   // precedes the arraycopy, and we can take over zeroing the new object.
4987   // The arraycopy will finish the initialization, and provide
4988   // a new control state to which we will anchor the destination pointer.
4989 
4990   return alloc;
4991 }
4992 
4993 //-------------inline_encodeISOArray-----------------------------------
4994 // encode char[] to byte[] in ISO_8859_1
4995 bool LibraryCallKit::inline_encodeISOArray() {
4996   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4997   // no receiver since it is static method
4998   Node *src         = argument(0);
4999   Node *src_offset  = argument(1);
5000   Node *dst         = argument(2);
5001   Node *dst_offset  = argument(3);
5002   Node *length      = argument(4);
5003 
5004   const Type* src_type = src->Value(&_gvn);
5005   const Type* dst_type = dst->Value(&_gvn);
5006   const TypeAryPtr* top_src = src_type->isa_aryptr();
5007   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5008   if (top_src  == NULL || top_src->klass()  == NULL ||
5009       top_dest == NULL || top_dest->klass() == NULL) {
5010     // failed array check
5011     return false;
5012   }
5013 
5014   // Figure out the size and type of the elements we will be copying.
5015   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5016   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5017   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5018     return false;
5019   }
5020   Node* src_start = array_element_address(src, src_offset, src_elem);
5021   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5022   // 'src_start' points to src array + scaled offset
5023   // 'dst_start' points to dst array + scaled offset
5024 
5025   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5026   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5027   enc = _gvn.transform(enc);
5028   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5029   set_memory(res_mem, mtype);
5030   set_result(enc);
5031   return true;
5032 }
5033 
5034 //-------------inline_multiplyToLen-----------------------------------
5035 bool LibraryCallKit::inline_multiplyToLen() {
5036   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5037 
5038   address stubAddr = StubRoutines::multiplyToLen();
5039   if (stubAddr == NULL) {
5040     return false; // Intrinsic's stub is not implemented on this platform
5041   }
5042   const char* stubName = "multiplyToLen";
5043 
5044   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5045 
5046   // no receiver because it is a static method
5047   Node* x    = argument(0);
5048   Node* xlen = argument(1);
5049   Node* y    = argument(2);
5050   Node* ylen = argument(3);
5051   Node* z    = argument(4);
5052 
5053   const Type* x_type = x->Value(&_gvn);
5054   const Type* y_type = y->Value(&_gvn);
5055   const TypeAryPtr* top_x = x_type->isa_aryptr();
5056   const TypeAryPtr* top_y = y_type->isa_aryptr();
5057   if (top_x  == NULL || top_x->klass()  == NULL ||
5058       top_y == NULL || top_y->klass() == NULL) {
5059     // failed array check
5060     return false;
5061   }
5062 
5063   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5064   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5065   if (x_elem != T_INT || y_elem != T_INT) {
5066     return false;
5067   }
5068 
5069   // Set the original stack and the reexecute bit for the interpreter to reexecute
5070   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5071   // on the return from z array allocation in runtime.
5072   { PreserveReexecuteState preexecs(this);
5073     jvms()->set_should_reexecute(true);
5074 
5075     Node* x_start = array_element_address(x, intcon(0), x_elem);
5076     Node* y_start = array_element_address(y, intcon(0), y_elem);
5077     // 'x_start' points to x array + scaled xlen
5078     // 'y_start' points to y array + scaled ylen
5079 
5080     // Allocate the result array
5081     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5082     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5083     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5084 
5085     IdealKit ideal(this);
5086 
5087 #define __ ideal.
5088      Node* one = __ ConI(1);
5089      Node* zero = __ ConI(0);
5090      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5091      __ set(need_alloc, zero);
5092      __ set(z_alloc, z);
5093      __ if_then(z, BoolTest::eq, null()); {
5094        __ increment (need_alloc, one);
5095      } __ else_(); {
5096        // Update graphKit memory and control from IdealKit.
5097        sync_kit(ideal);
5098        Node* zlen_arg = load_array_length(z);
5099        // Update IdealKit memory and control from graphKit.
5100        __ sync_kit(this);
5101        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5102          __ increment (need_alloc, one);
5103        } __ end_if();
5104      } __ end_if();
5105 
5106      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5107        // Update graphKit memory and control from IdealKit.
5108        sync_kit(ideal);
5109        Node * narr = new_array(klass_node, zlen, 1);
5110        // Update IdealKit memory and control from graphKit.
5111        __ sync_kit(this);
5112        __ set(z_alloc, narr);
5113      } __ end_if();
5114 
5115      sync_kit(ideal);
5116      z = __ value(z_alloc);
5117      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5118      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5119      // Final sync IdealKit and GraphKit.
5120      final_sync(ideal);
5121 #undef __
5122 
5123     Node* z_start = array_element_address(z, intcon(0), T_INT);
5124 
5125     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5126                                    OptoRuntime::multiplyToLen_Type(),
5127                                    stubAddr, stubName, TypePtr::BOTTOM,
5128                                    x_start, xlen, y_start, ylen, z_start, zlen);
5129   } // original reexecute is set back here
5130 
5131   C->set_has_split_ifs(true); // Has chance for split-if optimization
5132   set_result(z);
5133   return true;
5134 }
5135 
5136 //-------------inline_squareToLen------------------------------------
5137 bool LibraryCallKit::inline_squareToLen() {
5138   assert(UseSquareToLenIntrinsic, "not implementated on this platform");
5139 
5140   address stubAddr = StubRoutines::squareToLen();
5141   if (stubAddr == NULL) {
5142     return false; // Intrinsic's stub is not implemented on this platform
5143   }
5144   const char* stubName = "squareToLen";
5145 
5146   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5147 
5148   Node* x    = argument(0);
5149   Node* len  = argument(1);
5150   Node* z    = argument(2);
5151   Node* zlen = argument(3);
5152 
5153   const Type* x_type = x->Value(&_gvn);
5154   const Type* z_type = z->Value(&_gvn);
5155   const TypeAryPtr* top_x = x_type->isa_aryptr();
5156   const TypeAryPtr* top_z = z_type->isa_aryptr();
5157   if (top_x  == NULL || top_x->klass()  == NULL ||
5158       top_z  == NULL || top_z->klass()  == NULL) {
5159     // failed array check
5160     return false;
5161   }
5162 
5163   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5164   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5165   if (x_elem != T_INT || z_elem != T_INT) {
5166     return false;
5167   }
5168 
5169 
5170   Node* x_start = array_element_address(x, intcon(0), x_elem);
5171   Node* z_start = array_element_address(z, intcon(0), z_elem);
5172 
5173   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5174                                   OptoRuntime::squareToLen_Type(),
5175                                   stubAddr, stubName, TypePtr::BOTTOM,
5176                                   x_start, len, z_start, zlen);
5177 
5178   set_result(z);
5179   return true;
5180 }
5181 
5182 //-------------inline_mulAdd------------------------------------------
5183 bool LibraryCallKit::inline_mulAdd() {
5184   assert(UseMulAddIntrinsic, "not implementated on this platform");
5185 
5186   address stubAddr = StubRoutines::mulAdd();
5187   if (stubAddr == NULL) {
5188     return false; // Intrinsic's stub is not implemented on this platform
5189   }
5190   const char* stubName = "mulAdd";
5191 
5192   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5193 
5194   Node* out      = argument(0);
5195   Node* in       = argument(1);
5196   Node* offset   = argument(2);
5197   Node* len      = argument(3);
5198   Node* k        = argument(4);
5199 
5200   const Type* out_type = out->Value(&_gvn);
5201   const Type* in_type = in->Value(&_gvn);
5202   const TypeAryPtr* top_out = out_type->isa_aryptr();
5203   const TypeAryPtr* top_in = in_type->isa_aryptr();
5204   if (top_out  == NULL || top_out->klass()  == NULL ||
5205       top_in == NULL || top_in->klass() == NULL) {
5206     // failed array check
5207     return false;
5208   }
5209 
5210   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5211   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5212   if (out_elem != T_INT || in_elem != T_INT) {
5213     return false;
5214   }
5215 
5216   Node* outlen = load_array_length(out);
5217   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5218   Node* out_start = array_element_address(out, intcon(0), out_elem);
5219   Node* in_start = array_element_address(in, intcon(0), in_elem);
5220 
5221   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5222                                   OptoRuntime::mulAdd_Type(),
5223                                   stubAddr, stubName, TypePtr::BOTTOM,
5224                                   out_start,in_start, new_offset, len, k);
5225   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5226   set_result(result);
5227   return true;
5228 }
5229 
5230 //-------------inline_montgomeryMultiply-----------------------------------
5231 bool LibraryCallKit::inline_montgomeryMultiply() {
5232   address stubAddr = StubRoutines::montgomeryMultiply();
5233   if (stubAddr == NULL) {
5234     return false; // Intrinsic's stub is not implemented on this platform
5235   }
5236 
5237   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5238   const char* stubName = "montgomery_square";
5239 
5240   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5241 
5242   Node* a    = argument(0);
5243   Node* b    = argument(1);
5244   Node* n    = argument(2);
5245   Node* len  = argument(3);
5246   Node* inv  = argument(4);
5247   Node* m    = argument(6);
5248 
5249   const Type* a_type = a->Value(&_gvn);
5250   const TypeAryPtr* top_a = a_type->isa_aryptr();
5251   const Type* b_type = b->Value(&_gvn);
5252   const TypeAryPtr* top_b = b_type->isa_aryptr();
5253   const Type* n_type = a->Value(&_gvn);
5254   const TypeAryPtr* top_n = n_type->isa_aryptr();
5255   const Type* m_type = a->Value(&_gvn);
5256   const TypeAryPtr* top_m = m_type->isa_aryptr();
5257   if (top_a  == NULL || top_a->klass()  == NULL ||
5258       top_b == NULL || top_b->klass()  == NULL ||
5259       top_n == NULL || top_n->klass()  == NULL ||
5260       top_m == NULL || top_m->klass()  == NULL) {
5261     // failed array check
5262     return false;
5263   }
5264 
5265   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5266   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5267   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5268   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5269   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5270     return false;
5271   }
5272 
5273   // Make the call
5274   {
5275     Node* a_start = array_element_address(a, intcon(0), a_elem);
5276     Node* b_start = array_element_address(b, intcon(0), b_elem);
5277     Node* n_start = array_element_address(n, intcon(0), n_elem);
5278     Node* m_start = array_element_address(m, intcon(0), m_elem);
5279 
5280     Node* call = make_runtime_call(RC_LEAF,
5281                                    OptoRuntime::montgomeryMultiply_Type(),
5282                                    stubAddr, stubName, TypePtr::BOTTOM,
5283                                    a_start, b_start, n_start, len, inv, top(),
5284                                    m_start);
5285     set_result(m);
5286   }
5287 
5288   return true;
5289 }
5290 
5291 bool LibraryCallKit::inline_montgomerySquare() {
5292   address stubAddr = StubRoutines::montgomerySquare();
5293   if (stubAddr == NULL) {
5294     return false; // Intrinsic's stub is not implemented on this platform
5295   }
5296 
5297   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5298   const char* stubName = "montgomery_square";
5299 
5300   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5301 
5302   Node* a    = argument(0);
5303   Node* n    = argument(1);
5304   Node* len  = argument(2);
5305   Node* inv  = argument(3);
5306   Node* m    = argument(5);
5307 
5308   const Type* a_type = a->Value(&_gvn);
5309   const TypeAryPtr* top_a = a_type->isa_aryptr();
5310   const Type* n_type = a->Value(&_gvn);
5311   const TypeAryPtr* top_n = n_type->isa_aryptr();
5312   const Type* m_type = a->Value(&_gvn);
5313   const TypeAryPtr* top_m = m_type->isa_aryptr();
5314   if (top_a  == NULL || top_a->klass()  == NULL ||
5315       top_n == NULL || top_n->klass()  == NULL ||
5316       top_m == NULL || top_m->klass()  == NULL) {
5317     // failed array check
5318     return false;
5319   }
5320 
5321   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5322   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5323   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5324   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5325     return false;
5326   }
5327 
5328   // Make the call
5329   {
5330     Node* a_start = array_element_address(a, intcon(0), a_elem);
5331     Node* n_start = array_element_address(n, intcon(0), n_elem);
5332     Node* m_start = array_element_address(m, intcon(0), m_elem);
5333 
5334     Node* call = make_runtime_call(RC_LEAF,
5335                                    OptoRuntime::montgomerySquare_Type(),
5336                                    stubAddr, stubName, TypePtr::BOTTOM,
5337                                    a_start, n_start, len, inv, top(),
5338                                    m_start);
5339     set_result(m);
5340   }
5341 
5342   return true;
5343 }
5344 
5345 
5346 /**
5347  * Calculate CRC32 for byte.
5348  * int java.util.zip.CRC32.update(int crc, int b)
5349  */
5350 bool LibraryCallKit::inline_updateCRC32() {
5351   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5352   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5353   // no receiver since it is static method
5354   Node* crc  = argument(0); // type: int
5355   Node* b    = argument(1); // type: int
5356 
5357   /*
5358    *    int c = ~ crc;
5359    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5360    *    b = b ^ (c >>> 8);
5361    *    crc = ~b;
5362    */
5363 
5364   Node* M1 = intcon(-1);
5365   crc = _gvn.transform(new XorINode(crc, M1));
5366   Node* result = _gvn.transform(new XorINode(crc, b));
5367   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5368 
5369   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5370   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5371   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5372   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5373 
5374   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5375   result = _gvn.transform(new XorINode(crc, result));
5376   result = _gvn.transform(new XorINode(result, M1));
5377   set_result(result);
5378   return true;
5379 }
5380 
5381 /**
5382  * Calculate CRC32 for byte[] array.
5383  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5384  */
5385 bool LibraryCallKit::inline_updateBytesCRC32() {
5386   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5387   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5388   // no receiver since it is static method
5389   Node* crc     = argument(0); // type: int
5390   Node* src     = argument(1); // type: oop
5391   Node* offset  = argument(2); // type: int
5392   Node* length  = argument(3); // type: int
5393 
5394   const Type* src_type = src->Value(&_gvn);
5395   const TypeAryPtr* top_src = src_type->isa_aryptr();
5396   if (top_src  == NULL || top_src->klass()  == NULL) {
5397     // failed array check
5398     return false;
5399   }
5400 
5401   // Figure out the size and type of the elements we will be copying.
5402   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5403   if (src_elem != T_BYTE) {
5404     return false;
5405   }
5406 
5407   // 'src_start' points to src array + scaled offset
5408   Node* src_start = array_element_address(src, offset, src_elem);
5409 
5410   // We assume that range check is done by caller.
5411   // TODO: generate range check (offset+length < src.length) in debug VM.
5412 
5413   // Call the stub.
5414   address stubAddr = StubRoutines::updateBytesCRC32();
5415   const char *stubName = "updateBytesCRC32";
5416 
5417   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5418                                  stubAddr, stubName, TypePtr::BOTTOM,
5419                                  crc, src_start, length);
5420   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5421   set_result(result);
5422   return true;
5423 }
5424 
5425 /**
5426  * Calculate CRC32 for ByteBuffer.
5427  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5428  */
5429 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5430   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5431   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5432   // no receiver since it is static method
5433   Node* crc     = argument(0); // type: int
5434   Node* src     = argument(1); // type: long
5435   Node* offset  = argument(3); // type: int
5436   Node* length  = argument(4); // type: int
5437 
5438   src = ConvL2X(src);  // adjust Java long to machine word
5439   Node* base = _gvn.transform(new CastX2PNode(src));
5440   offset = ConvI2X(offset);
5441 
5442   // 'src_start' points to src array + scaled offset
5443   Node* src_start = basic_plus_adr(top(), base, offset);
5444 
5445   // Call the stub.
5446   address stubAddr = StubRoutines::updateBytesCRC32();
5447   const char *stubName = "updateBytesCRC32";
5448 
5449   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5450                                  stubAddr, stubName, TypePtr::BOTTOM,
5451                                  crc, src_start, length);
5452   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5453   set_result(result);
5454   return true;
5455 }
5456 
5457 //------------------------------get_table_from_crc32c_class-----------------------
5458 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5459   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5460   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5461 
5462   return table;
5463 }
5464 
5465 //------------------------------inline_updateBytesCRC32C-----------------------
5466 //
5467 // Calculate CRC32C for byte[] array.
5468 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5469 //
5470 bool LibraryCallKit::inline_updateBytesCRC32C() {
5471   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5472   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5473   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5474   // no receiver since it is a static method
5475   Node* crc     = argument(0); // type: int
5476   Node* src     = argument(1); // type: oop
5477   Node* offset  = argument(2); // type: int
5478   Node* end     = argument(3); // type: int
5479 
5480   Node* length = _gvn.transform(new SubINode(end, offset));
5481 
5482   const Type* src_type = src->Value(&_gvn);
5483   const TypeAryPtr* top_src = src_type->isa_aryptr();
5484   if (top_src  == NULL || top_src->klass()  == NULL) {
5485     // failed array check
5486     return false;
5487   }
5488 
5489   // Figure out the size and type of the elements we will be copying.
5490   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5491   if (src_elem != T_BYTE) {
5492     return false;
5493   }
5494 
5495   // 'src_start' points to src array + scaled offset
5496   Node* src_start = array_element_address(src, offset, src_elem);
5497 
5498   // static final int[] byteTable in class CRC32C
5499   Node* table = get_table_from_crc32c_class(callee()->holder());
5500   Node* table_start = array_element_address(table, intcon(0), T_INT);
5501 
5502   // We assume that range check is done by caller.
5503   // TODO: generate range check (offset+length < src.length) in debug VM.
5504 
5505   // Call the stub.
5506   address stubAddr = StubRoutines::updateBytesCRC32C();
5507   const char *stubName = "updateBytesCRC32C";
5508 
5509   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5510                                  stubAddr, stubName, TypePtr::BOTTOM,
5511                                  crc, src_start, length, table_start);
5512   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5513   set_result(result);
5514   return true;
5515 }
5516 
5517 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5518 //
5519 // Calculate CRC32C for DirectByteBuffer.
5520 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5521 //
5522 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5523   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5524   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5525   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5526   // no receiver since it is a static method
5527   Node* crc     = argument(0); // type: int
5528   Node* src     = argument(1); // type: long
5529   Node* offset  = argument(3); // type: int
5530   Node* end     = argument(4); // type: int
5531 
5532   Node* length = _gvn.transform(new SubINode(end, offset));
5533 
5534   src = ConvL2X(src);  // adjust Java long to machine word
5535   Node* base = _gvn.transform(new CastX2PNode(src));
5536   offset = ConvI2X(offset);
5537 
5538   // 'src_start' points to src array + scaled offset
5539   Node* src_start = basic_plus_adr(top(), base, offset);
5540 
5541   // static final int[] byteTable in class CRC32C
5542   Node* table = get_table_from_crc32c_class(callee()->holder());
5543   Node* table_start = array_element_address(table, intcon(0), T_INT);
5544 
5545   // Call the stub.
5546   address stubAddr = StubRoutines::updateBytesCRC32C();
5547   const char *stubName = "updateBytesCRC32C";
5548 
5549   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5550                                  stubAddr, stubName, TypePtr::BOTTOM,
5551                                  crc, src_start, length, table_start);
5552   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5553   set_result(result);
5554   return true;
5555 }
5556 
5557 //------------------------------inline_updateBytesAdler32----------------------
5558 //
5559 // Calculate Adler32 checksum for byte[] array.
5560 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5561 //
5562 bool LibraryCallKit::inline_updateBytesAdler32() {
5563   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5564   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5565   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5566   // no receiver since it is static method
5567   Node* crc     = argument(0); // type: int
5568   Node* src     = argument(1); // type: oop
5569   Node* offset  = argument(2); // type: int
5570   Node* length  = argument(3); // type: int
5571 
5572   const Type* src_type = src->Value(&_gvn);
5573   const TypeAryPtr* top_src = src_type->isa_aryptr();
5574   if (top_src  == NULL || top_src->klass()  == NULL) {
5575     // failed array check
5576     return false;
5577   }
5578 
5579   // Figure out the size and type of the elements we will be copying.
5580   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5581   if (src_elem != T_BYTE) {
5582     return false;
5583   }
5584 
5585   // 'src_start' points to src array + scaled offset
5586   Node* src_start = array_element_address(src, offset, src_elem);
5587 
5588   // We assume that range check is done by caller.
5589   // TODO: generate range check (offset+length < src.length) in debug VM.
5590 
5591   // Call the stub.
5592   address stubAddr = StubRoutines::updateBytesAdler32();
5593   const char *stubName = "updateBytesAdler32";
5594 
5595   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5596                                  stubAddr, stubName, TypePtr::BOTTOM,
5597                                  crc, src_start, length);
5598   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5599   set_result(result);
5600   return true;
5601 }
5602 
5603 //------------------------------inline_updateByteBufferAdler32---------------
5604 //
5605 // Calculate Adler32 checksum for DirectByteBuffer.
5606 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5607 //
5608 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5609   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5610   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5611   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5612   // no receiver since it is static method
5613   Node* crc     = argument(0); // type: int
5614   Node* src     = argument(1); // type: long
5615   Node* offset  = argument(3); // type: int
5616   Node* length  = argument(4); // type: int
5617 
5618   src = ConvL2X(src);  // adjust Java long to machine word
5619   Node* base = _gvn.transform(new CastX2PNode(src));
5620   offset = ConvI2X(offset);
5621 
5622   // 'src_start' points to src array + scaled offset
5623   Node* src_start = basic_plus_adr(top(), base, offset);
5624 
5625   // Call the stub.
5626   address stubAddr = StubRoutines::updateBytesAdler32();
5627   const char *stubName = "updateBytesAdler32";
5628 
5629   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5630                                  stubAddr, stubName, TypePtr::BOTTOM,
5631                                  crc, src_start, length);
5632 
5633   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5634   set_result(result);
5635   return true;
5636 }
5637 
5638 //----------------------------inline_reference_get----------------------------
5639 // public T java.lang.ref.Reference.get();
5640 bool LibraryCallKit::inline_reference_get() {
5641   const int referent_offset = java_lang_ref_Reference::referent_offset;
5642   guarantee(referent_offset > 0, "should have already been set");
5643 
5644   // Get the argument:
5645   Node* reference_obj = null_check_receiver();
5646   if (stopped()) return true;
5647 
5648   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5649 
5650   ciInstanceKlass* klass = env()->Object_klass();
5651   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5652 
5653   Node* no_ctrl = NULL;
5654   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5655 
5656   // Use the pre-barrier to record the value in the referent field
5657   pre_barrier(false /* do_load */,
5658               control(),
5659               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5660               result /* pre_val */,
5661               T_OBJECT);
5662 
5663   // Add memory barrier to prevent commoning reads from this field
5664   // across safepoint since GC can change its value.
5665   insert_mem_bar(Op_MemBarCPUOrder);
5666 
5667   set_result(result);
5668   return true;
5669 }
5670 
5671 
5672 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5673                                               bool is_exact=true, bool is_static=false,
5674                                               ciInstanceKlass * fromKls=NULL) {
5675   if (fromKls == NULL) {
5676     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5677     assert(tinst != NULL, "obj is null");
5678     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5679     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5680     fromKls = tinst->klass()->as_instance_klass();
5681   } else {
5682     assert(is_static, "only for static field access");
5683   }
5684   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5685                                               ciSymbol::make(fieldTypeString),
5686                                               is_static);
5687 
5688   assert (field != NULL, "undefined field");
5689   if (field == NULL) return (Node *) NULL;
5690 
5691   if (is_static) {
5692     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5693     fromObj = makecon(tip);
5694   }
5695 
5696   // Next code  copied from Parse::do_get_xxx():
5697 
5698   // Compute address and memory type.
5699   int offset  = field->offset_in_bytes();
5700   bool is_vol = field->is_volatile();
5701   ciType* field_klass = field->type();
5702   assert(field_klass->is_loaded(), "should be loaded");
5703   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5704   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5705   BasicType bt = field->layout_type();
5706 
5707   // Build the resultant type of the load
5708   const Type *type;
5709   if (bt == T_OBJECT) {
5710     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5711   } else {
5712     type = Type::get_const_basic_type(bt);
5713   }
5714 
5715   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5716     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5717   }
5718   // Build the load.
5719   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5720   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
5721   // If reference is volatile, prevent following memory ops from
5722   // floating up past the volatile read.  Also prevents commoning
5723   // another volatile read.
5724   if (is_vol) {
5725     // Memory barrier includes bogus read of value to force load BEFORE membar
5726     insert_mem_bar(Op_MemBarAcquire, loadedField);
5727   }
5728   return loadedField;
5729 }
5730 
5731 
5732 //------------------------------inline_aescrypt_Block-----------------------
5733 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5734   address stubAddr;
5735   const char *stubName;
5736   assert(UseAES, "need AES instruction support");
5737 
5738   switch(id) {
5739   case vmIntrinsics::_aescrypt_encryptBlock:
5740     stubAddr = StubRoutines::aescrypt_encryptBlock();
5741     stubName = "aescrypt_encryptBlock";
5742     break;
5743   case vmIntrinsics::_aescrypt_decryptBlock:
5744     stubAddr = StubRoutines::aescrypt_decryptBlock();
5745     stubName = "aescrypt_decryptBlock";
5746     break;
5747   }
5748   if (stubAddr == NULL) return false;
5749 
5750   Node* aescrypt_object = argument(0);
5751   Node* src             = argument(1);
5752   Node* src_offset      = argument(2);
5753   Node* dest            = argument(3);
5754   Node* dest_offset     = argument(4);
5755 
5756   // (1) src and dest are arrays.
5757   const Type* src_type = src->Value(&_gvn);
5758   const Type* dest_type = dest->Value(&_gvn);
5759   const TypeAryPtr* top_src = src_type->isa_aryptr();
5760   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5761   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5762 
5763   // for the quick and dirty code we will skip all the checks.
5764   // we are just trying to get the call to be generated.
5765   Node* src_start  = src;
5766   Node* dest_start = dest;
5767   if (src_offset != NULL || dest_offset != NULL) {
5768     assert(src_offset != NULL && dest_offset != NULL, "");
5769     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5770     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5771   }
5772 
5773   // now need to get the start of its expanded key array
5774   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5775   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5776   if (k_start == NULL) return false;
5777 
5778   if (Matcher::pass_original_key_for_aes()) {
5779     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5780     // compatibility issues between Java key expansion and SPARC crypto instructions
5781     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5782     if (original_k_start == NULL) return false;
5783 
5784     // Call the stub.
5785     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5786                       stubAddr, stubName, TypePtr::BOTTOM,
5787                       src_start, dest_start, k_start, original_k_start);
5788   } else {
5789     // Call the stub.
5790     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5791                       stubAddr, stubName, TypePtr::BOTTOM,
5792                       src_start, dest_start, k_start);
5793   }
5794 
5795   return true;
5796 }
5797 
5798 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5799 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5800   address stubAddr;
5801   const char *stubName;
5802 
5803   assert(UseAES, "need AES instruction support");
5804 
5805   switch(id) {
5806   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5807     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5808     stubName = "cipherBlockChaining_encryptAESCrypt";
5809     break;
5810   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5811     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5812     stubName = "cipherBlockChaining_decryptAESCrypt";
5813     break;
5814   }
5815   if (stubAddr == NULL) return false;
5816 
5817   Node* cipherBlockChaining_object = argument(0);
5818   Node* src                        = argument(1);
5819   Node* src_offset                 = argument(2);
5820   Node* len                        = argument(3);
5821   Node* dest                       = argument(4);
5822   Node* dest_offset                = argument(5);
5823 
5824   // (1) src and dest are arrays.
5825   const Type* src_type = src->Value(&_gvn);
5826   const Type* dest_type = dest->Value(&_gvn);
5827   const TypeAryPtr* top_src = src_type->isa_aryptr();
5828   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5829   assert (top_src  != NULL && top_src->klass()  != NULL
5830           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5831 
5832   // checks are the responsibility of the caller
5833   Node* src_start  = src;
5834   Node* dest_start = dest;
5835   if (src_offset != NULL || dest_offset != NULL) {
5836     assert(src_offset != NULL && dest_offset != NULL, "");
5837     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5838     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5839   }
5840 
5841   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5842   // (because of the predicated logic executed earlier).
5843   // so we cast it here safely.
5844   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5845 
5846   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5847   if (embeddedCipherObj == NULL) return false;
5848 
5849   // cast it to what we know it will be at runtime
5850   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5851   assert(tinst != NULL, "CBC obj is null");
5852   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5853   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5854   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5855 
5856   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5857   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5858   const TypeOopPtr* xtype = aklass->as_instance_type();
5859   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5860   aescrypt_object = _gvn.transform(aescrypt_object);
5861 
5862   // we need to get the start of the aescrypt_object's expanded key array
5863   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5864   if (k_start == NULL) return false;
5865 
5866   // similarly, get the start address of the r vector
5867   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5868   if (objRvec == NULL) return false;
5869   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5870 
5871   Node* cbcCrypt;
5872   if (Matcher::pass_original_key_for_aes()) {
5873     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5874     // compatibility issues between Java key expansion and SPARC crypto instructions
5875     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5876     if (original_k_start == NULL) return false;
5877 
5878     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5879     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5880                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5881                                  stubAddr, stubName, TypePtr::BOTTOM,
5882                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5883   } else {
5884     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5885     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5886                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5887                                  stubAddr, stubName, TypePtr::BOTTOM,
5888                                  src_start, dest_start, k_start, r_start, len);
5889   }
5890 
5891   // return cipher length (int)
5892   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5893   set_result(retvalue);
5894   return true;
5895 }
5896 
5897 //------------------------------get_key_start_from_aescrypt_object-----------------------
5898 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5899   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5900   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5901   if (objAESCryptKey == NULL) return (Node *) NULL;
5902 
5903   // now have the array, need to get the start address of the K array
5904   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5905   return k_start;
5906 }
5907 
5908 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5909 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5910   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5911   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5912   if (objAESCryptKey == NULL) return (Node *) NULL;
5913 
5914   // now have the array, need to get the start address of the lastKey array
5915   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5916   return original_k_start;
5917 }
5918 
5919 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5920 // Return node representing slow path of predicate check.
5921 // the pseudo code we want to emulate with this predicate is:
5922 // for encryption:
5923 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5924 // for decryption:
5925 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5926 //    note cipher==plain is more conservative than the original java code but that's OK
5927 //
5928 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5929   // The receiver was checked for NULL already.
5930   Node* objCBC = argument(0);
5931 
5932   // Load embeddedCipher field of CipherBlockChaining object.
5933   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5934 
5935   // get AESCrypt klass for instanceOf check
5936   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5937   // will have same classloader as CipherBlockChaining object
5938   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5939   assert(tinst != NULL, "CBCobj is null");
5940   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5941 
5942   // we want to do an instanceof comparison against the AESCrypt class
5943   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5944   if (!klass_AESCrypt->is_loaded()) {
5945     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5946     Node* ctrl = control();
5947     set_control(top()); // no regular fast path
5948     return ctrl;
5949   }
5950   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5951 
5952   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5953   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5954   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5955 
5956   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5957 
5958   // for encryption, we are done
5959   if (!decrypting)
5960     return instof_false;  // even if it is NULL
5961 
5962   // for decryption, we need to add a further check to avoid
5963   // taking the intrinsic path when cipher and plain are the same
5964   // see the original java code for why.
5965   RegionNode* region = new RegionNode(3);
5966   region->init_req(1, instof_false);
5967   Node* src = argument(1);
5968   Node* dest = argument(4);
5969   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5970   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5971   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5972   region->init_req(2, src_dest_conjoint);
5973 
5974   record_for_igvn(region);
5975   return _gvn.transform(region);
5976 }
5977 
5978 //------------------------------inline_ghash_processBlocks
5979 bool LibraryCallKit::inline_ghash_processBlocks() {
5980   address stubAddr;
5981   const char *stubName;
5982   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
5983 
5984   stubAddr = StubRoutines::ghash_processBlocks();
5985   stubName = "ghash_processBlocks";
5986 
5987   Node* data           = argument(0);
5988   Node* offset         = argument(1);
5989   Node* len            = argument(2);
5990   Node* state          = argument(3);
5991   Node* subkeyH        = argument(4);
5992 
5993   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
5994   assert(state_start, "state is NULL");
5995   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
5996   assert(subkeyH_start, "subkeyH is NULL");
5997   Node* data_start  = array_element_address(data, offset, T_BYTE);
5998   assert(data_start, "data is NULL");
5999 
6000   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6001                                   OptoRuntime::ghash_processBlocks_Type(),
6002                                   stubAddr, stubName, TypePtr::BOTTOM,
6003                                   state_start, subkeyH_start, data_start, len);
6004   return true;
6005 }
6006 
6007 //------------------------------inline_sha_implCompress-----------------------
6008 //
6009 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6010 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6011 //
6012 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6013 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6014 //
6015 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6016 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6017 //
6018 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6019   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6020 
6021   Node* sha_obj = argument(0);
6022   Node* src     = argument(1); // type oop
6023   Node* ofs     = argument(2); // type int
6024 
6025   const Type* src_type = src->Value(&_gvn);
6026   const TypeAryPtr* top_src = src_type->isa_aryptr();
6027   if (top_src  == NULL || top_src->klass()  == NULL) {
6028     // failed array check
6029     return false;
6030   }
6031   // Figure out the size and type of the elements we will be copying.
6032   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6033   if (src_elem != T_BYTE) {
6034     return false;
6035   }
6036   // 'src_start' points to src array + offset
6037   Node* src_start = array_element_address(src, ofs, src_elem);
6038   Node* state = NULL;
6039   address stubAddr;
6040   const char *stubName;
6041 
6042   switch(id) {
6043   case vmIntrinsics::_sha_implCompress:
6044     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6045     state = get_state_from_sha_object(sha_obj);
6046     stubAddr = StubRoutines::sha1_implCompress();
6047     stubName = "sha1_implCompress";
6048     break;
6049   case vmIntrinsics::_sha2_implCompress:
6050     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6051     state = get_state_from_sha_object(sha_obj);
6052     stubAddr = StubRoutines::sha256_implCompress();
6053     stubName = "sha256_implCompress";
6054     break;
6055   case vmIntrinsics::_sha5_implCompress:
6056     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6057     state = get_state_from_sha5_object(sha_obj);
6058     stubAddr = StubRoutines::sha512_implCompress();
6059     stubName = "sha512_implCompress";
6060     break;
6061   default:
6062     fatal_unexpected_iid(id);
6063     return false;
6064   }
6065   if (state == NULL) return false;
6066 
6067   // Call the stub.
6068   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6069                                  stubAddr, stubName, TypePtr::BOTTOM,
6070                                  src_start, state);
6071 
6072   return true;
6073 }
6074 
6075 //------------------------------inline_digestBase_implCompressMB-----------------------
6076 //
6077 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6078 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6079 //
6080 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6081   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6082          "need SHA1/SHA256/SHA512 instruction support");
6083   assert((uint)predicate < 3, "sanity");
6084   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6085 
6086   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6087   Node* src            = argument(1); // byte[] array
6088   Node* ofs            = argument(2); // type int
6089   Node* limit          = argument(3); // type int
6090 
6091   const Type* src_type = src->Value(&_gvn);
6092   const TypeAryPtr* top_src = src_type->isa_aryptr();
6093   if (top_src  == NULL || top_src->klass()  == NULL) {
6094     // failed array check
6095     return false;
6096   }
6097   // Figure out the size and type of the elements we will be copying.
6098   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6099   if (src_elem != T_BYTE) {
6100     return false;
6101   }
6102   // 'src_start' points to src array + offset
6103   Node* src_start = array_element_address(src, ofs, src_elem);
6104 
6105   const char* klass_SHA_name = NULL;
6106   const char* stub_name = NULL;
6107   address     stub_addr = NULL;
6108   bool        long_state = false;
6109 
6110   switch (predicate) {
6111   case 0:
6112     if (UseSHA1Intrinsics) {
6113       klass_SHA_name = "sun/security/provider/SHA";
6114       stub_name = "sha1_implCompressMB";
6115       stub_addr = StubRoutines::sha1_implCompressMB();
6116     }
6117     break;
6118   case 1:
6119     if (UseSHA256Intrinsics) {
6120       klass_SHA_name = "sun/security/provider/SHA2";
6121       stub_name = "sha256_implCompressMB";
6122       stub_addr = StubRoutines::sha256_implCompressMB();
6123     }
6124     break;
6125   case 2:
6126     if (UseSHA512Intrinsics) {
6127       klass_SHA_name = "sun/security/provider/SHA5";
6128       stub_name = "sha512_implCompressMB";
6129       stub_addr = StubRoutines::sha512_implCompressMB();
6130       long_state = true;
6131     }
6132     break;
6133   default:
6134     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6135   }
6136   if (klass_SHA_name != NULL) {
6137     // get DigestBase klass to lookup for SHA klass
6138     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6139     assert(tinst != NULL, "digestBase_obj is not instance???");
6140     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6141 
6142     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6143     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6144     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6145     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6146   }
6147   return false;
6148 }
6149 //------------------------------inline_sha_implCompressMB-----------------------
6150 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6151                                                bool long_state, address stubAddr, const char *stubName,
6152                                                Node* src_start, Node* ofs, Node* limit) {
6153   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6154   const TypeOopPtr* xtype = aklass->as_instance_type();
6155   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6156   sha_obj = _gvn.transform(sha_obj);
6157 
6158   Node* state;
6159   if (long_state) {
6160     state = get_state_from_sha5_object(sha_obj);
6161   } else {
6162     state = get_state_from_sha_object(sha_obj);
6163   }
6164   if (state == NULL) return false;
6165 
6166   // Call the stub.
6167   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6168                                  OptoRuntime::digestBase_implCompressMB_Type(),
6169                                  stubAddr, stubName, TypePtr::BOTTOM,
6170                                  src_start, state, ofs, limit);
6171   // return ofs (int)
6172   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6173   set_result(result);
6174 
6175   return true;
6176 }
6177 
6178 //------------------------------get_state_from_sha_object-----------------------
6179 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6180   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6181   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6182   if (sha_state == NULL) return (Node *) NULL;
6183 
6184   // now have the array, need to get the start address of the state array
6185   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6186   return state;
6187 }
6188 
6189 //------------------------------get_state_from_sha5_object-----------------------
6190 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6191   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6192   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6193   if (sha_state == NULL) return (Node *) NULL;
6194 
6195   // now have the array, need to get the start address of the state array
6196   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6197   return state;
6198 }
6199 
6200 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6201 // Return node representing slow path of predicate check.
6202 // the pseudo code we want to emulate with this predicate is:
6203 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6204 //
6205 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6206   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6207          "need SHA1/SHA256/SHA512 instruction support");
6208   assert((uint)predicate < 3, "sanity");
6209 
6210   // The receiver was checked for NULL already.
6211   Node* digestBaseObj = argument(0);
6212 
6213   // get DigestBase klass for instanceOf check
6214   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6215   assert(tinst != NULL, "digestBaseObj is null");
6216   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6217 
6218   const char* klass_SHA_name = NULL;
6219   switch (predicate) {
6220   case 0:
6221     if (UseSHA1Intrinsics) {
6222       // we want to do an instanceof comparison against the SHA class
6223       klass_SHA_name = "sun/security/provider/SHA";
6224     }
6225     break;
6226   case 1:
6227     if (UseSHA256Intrinsics) {
6228       // we want to do an instanceof comparison against the SHA2 class
6229       klass_SHA_name = "sun/security/provider/SHA2";
6230     }
6231     break;
6232   case 2:
6233     if (UseSHA512Intrinsics) {
6234       // we want to do an instanceof comparison against the SHA5 class
6235       klass_SHA_name = "sun/security/provider/SHA5";
6236     }
6237     break;
6238   default:
6239     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
6240   }
6241 
6242   ciKlass* klass_SHA = NULL;
6243   if (klass_SHA_name != NULL) {
6244     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6245   }
6246   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6247     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6248     Node* ctrl = control();
6249     set_control(top()); // no intrinsic path
6250     return ctrl;
6251   }
6252   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6253 
6254   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6255   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6256   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6257   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6258 
6259   return instof_false;  // even if it is NULL
6260 }
6261 
6262 bool LibraryCallKit::inline_profileBoolean() {
6263   Node* counts = argument(1);
6264   const TypeAryPtr* ary = NULL;
6265   ciArray* aobj = NULL;
6266   if (counts->is_Con()
6267       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6268       && (aobj = ary->const_oop()->as_array()) != NULL
6269       && (aobj->length() == 2)) {
6270     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6271     jint false_cnt = aobj->element_value(0).as_int();
6272     jint  true_cnt = aobj->element_value(1).as_int();
6273 
6274     if (C->log() != NULL) {
6275       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6276                      false_cnt, true_cnt);
6277     }
6278 
6279     if (false_cnt + true_cnt == 0) {
6280       // According to profile, never executed.
6281       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6282                           Deoptimization::Action_reinterpret);
6283       return true;
6284     }
6285 
6286     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6287     // is a number of each value occurrences.
6288     Node* result = argument(0);
6289     if (false_cnt == 0 || true_cnt == 0) {
6290       // According to profile, one value has been never seen.
6291       int expected_val = (false_cnt == 0) ? 1 : 0;
6292 
6293       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6294       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6295 
6296       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6297       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6298       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6299 
6300       { // Slow path: uncommon trap for never seen value and then reexecute
6301         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6302         // the value has been seen at least once.
6303         PreserveJVMState pjvms(this);
6304         PreserveReexecuteState preexecs(this);
6305         jvms()->set_should_reexecute(true);
6306 
6307         set_control(slow_path);
6308         set_i_o(i_o());
6309 
6310         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6311                             Deoptimization::Action_reinterpret);
6312       }
6313       // The guard for never seen value enables sharpening of the result and
6314       // returning a constant. It allows to eliminate branches on the same value
6315       // later on.
6316       set_control(fast_path);
6317       result = intcon(expected_val);
6318     }
6319     // Stop profiling.
6320     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6321     // By replacing method body with profile data (represented as ProfileBooleanNode
6322     // on IR level) we effectively disable profiling.
6323     // It enables full speed execution once optimized code is generated.
6324     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6325     C->record_for_igvn(profile);
6326     set_result(profile);
6327     return true;
6328   } else {
6329     // Continue profiling.
6330     // Profile data isn't available at the moment. So, execute method's bytecode version.
6331     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6332     // is compiled and counters aren't available since corresponding MethodHandle
6333     // isn't a compile-time constant.
6334     return false;
6335   }
6336 }
6337 
6338 bool LibraryCallKit::inline_isCompileConstant() {
6339   Node* n = argument(0);
6340   set_result(n->is_Con() ? intcon(1) : intcon(0));
6341   return true;
6342 }