1 /*
   2  * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "memory/allocation.inline.hpp"
  26 #include "opto/connode.hpp"
  27 #include "opto/vectornode.hpp"
  28 
  29 //------------------------------VectorNode--------------------------------------
  30 
  31 // Return the vector operator for the specified scalar operation
  32 // and vector length.
  33 int VectorNode::opcode(int sopc, BasicType bt) {
  34   switch (sopc) {
  35   case Op_AddI:
  36     switch (bt) {
  37     case T_BOOLEAN:
  38     case T_BYTE:      return Op_AddVB;
  39     case T_CHAR:
  40     case T_SHORT:     return Op_AddVS;
  41     case T_INT:       return Op_AddVI;
  42     }
  43     ShouldNotReachHere();
  44   case Op_AddL:
  45     assert(bt == T_LONG, "must be");
  46     return Op_AddVL;
  47   case Op_AddF:
  48     assert(bt == T_FLOAT, "must be");
  49     return Op_AddVF;
  50   case Op_AddD:
  51     assert(bt == T_DOUBLE, "must be");
  52     return Op_AddVD;
  53   case Op_SubI:
  54     switch (bt) {
  55     case T_BOOLEAN:
  56     case T_BYTE:   return Op_SubVB;
  57     case T_CHAR:
  58     case T_SHORT:  return Op_SubVS;
  59     case T_INT:    return Op_SubVI;
  60     }
  61     ShouldNotReachHere();
  62   case Op_SubL:
  63     assert(bt == T_LONG, "must be");
  64     return Op_SubVL;
  65   case Op_SubF:
  66     assert(bt == T_FLOAT, "must be");
  67     return Op_SubVF;
  68   case Op_SubD:
  69     assert(bt == T_DOUBLE, "must be");
  70     return Op_SubVD;
  71   case Op_MulI:
  72     switch (bt) {
  73     case T_BOOLEAN:
  74     case T_BYTE:   return 0;   // Unimplemented
  75     case T_CHAR:
  76     case T_SHORT:  return Op_MulVS;
  77     case T_INT:    return Op_MulVI;
  78     }
  79     ShouldNotReachHere();
  80   case Op_MulL:
  81     assert(bt == T_LONG, "must be");
  82     return Op_MulVL;
  83   case Op_MulF:
  84     assert(bt == T_FLOAT, "must be");
  85     return Op_MulVF;
  86   case Op_MulD:
  87     assert(bt == T_DOUBLE, "must be");
  88     return Op_MulVD;
  89   case Op_DivF:
  90     assert(bt == T_FLOAT, "must be");
  91     return Op_DivVF;
  92   case Op_DivD:
  93     assert(bt == T_DOUBLE, "must be");
  94     return Op_DivVD;
  95   case Op_LShiftI:
  96     switch (bt) {
  97     case T_BOOLEAN:
  98     case T_BYTE:   return Op_LShiftVB;
  99     case T_CHAR:
 100     case T_SHORT:  return Op_LShiftVS;
 101     case T_INT:    return Op_LShiftVI;
 102     }
 103     ShouldNotReachHere();
 104   case Op_LShiftL:
 105     assert(bt == T_LONG, "must be");
 106     return Op_LShiftVL;
 107   case Op_RShiftI:
 108     switch (bt) {
 109     case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
 110     case T_CHAR:   return Op_URShiftVS; // char is unsigned value
 111     case T_BYTE:   return Op_RShiftVB;
 112     case T_SHORT:  return Op_RShiftVS;
 113     case T_INT:    return Op_RShiftVI;
 114     }
 115     ShouldNotReachHere();
 116   case Op_RShiftL:
 117     assert(bt == T_LONG, "must be");
 118     return Op_RShiftVL;
 119   case Op_URShiftI:
 120     switch (bt) {
 121     case T_BOOLEAN:return Op_URShiftVB;
 122     case T_CHAR:   return Op_URShiftVS;
 123     case T_BYTE:
 124     case T_SHORT:  return 0; // Vector logical right shift for signed short
 125                              // values produces incorrect Java result for
 126                              // negative data because java code should convert
 127                              // a short value into int value with sign
 128                              // extension before a shift.
 129     case T_INT:    return Op_URShiftVI;
 130     }
 131     ShouldNotReachHere();
 132   case Op_URShiftL:
 133     assert(bt == T_LONG, "must be");
 134     return Op_URShiftVL;
 135   case Op_AndI:
 136   case Op_AndL:
 137     return Op_AndV;
 138   case Op_OrI:
 139   case Op_OrL:
 140     return Op_OrV;
 141   case Op_XorI:
 142   case Op_XorL:
 143     return Op_XorV;
 144 
 145   case Op_LoadB:
 146   case Op_LoadUB:
 147   case Op_LoadUS:
 148   case Op_LoadS:
 149   case Op_LoadI:
 150   case Op_LoadL:
 151   case Op_LoadF:
 152   case Op_LoadD:
 153     return Op_LoadVector;
 154 
 155   case Op_StoreB:
 156   case Op_StoreC:
 157   case Op_StoreI:
 158   case Op_StoreL:
 159   case Op_StoreF:
 160   case Op_StoreD:
 161     return Op_StoreVector;
 162   }
 163   return 0; // Unimplemented
 164 }
 165 
 166 // Also used to check if the code generator
 167 // supports the vector operation.
 168 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
 169   if (is_java_primitive(bt) &&
 170       (vlen > 1) && is_power_of_2(vlen) &&
 171       Matcher::vector_size_supported(bt, vlen)) {
 172     int vopc = VectorNode::opcode(opc, bt);
 173     return vopc > 0 && Matcher::match_rule_supported(vopc);
 174   }
 175   return false;
 176 }
 177 
 178 bool VectorNode::is_shift(Node* n) {
 179   switch (n->Opcode()) {
 180   case Op_LShiftI:
 181   case Op_LShiftL:
 182   case Op_RShiftI:
 183   case Op_RShiftL:
 184   case Op_URShiftI:
 185   case Op_URShiftL:
 186     return true;
 187   }
 188   return false;
 189 }
 190 
 191 // Check if input is loop invariant vector.
 192 bool VectorNode::is_invariant_vector(Node* n) {
 193   // Only Replicate vector nodes are loop invariant for now.
 194   switch (n->Opcode()) {
 195   case Op_ReplicateB:
 196   case Op_ReplicateS:
 197   case Op_ReplicateI:
 198   case Op_ReplicateL:
 199   case Op_ReplicateF:
 200   case Op_ReplicateD:
 201     return true;
 202   }
 203   return false;
 204 }
 205 
 206 // [Start, end) half-open range defining which operands are vectors
 207 void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
 208   switch (n->Opcode()) {
 209   case Op_LoadB:   case Op_LoadUB:
 210   case Op_LoadS:   case Op_LoadUS:
 211   case Op_LoadI:   case Op_LoadL:
 212   case Op_LoadF:   case Op_LoadD:
 213   case Op_LoadP:   case Op_LoadN:
 214     *start = 0;
 215     *end   = 0; // no vector operands
 216     break;
 217   case Op_StoreB:  case Op_StoreC:
 218   case Op_StoreI:  case Op_StoreL:
 219   case Op_StoreF:  case Op_StoreD:
 220   case Op_StoreP:  case Op_StoreN:
 221     *start = MemNode::ValueIn;
 222     *end   = MemNode::ValueIn + 1; // 1 vector operand
 223     break;
 224   case Op_LShiftI:  case Op_LShiftL:
 225   case Op_RShiftI:  case Op_RShiftL:
 226   case Op_URShiftI: case Op_URShiftL:
 227     *start = 1;
 228     *end   = 2; // 1 vector operand
 229     break;
 230   case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
 231   case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
 232   case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
 233   case Op_DivF: case Op_DivD:
 234   case Op_AndI: case Op_AndL:
 235   case Op_OrI:  case Op_OrL:
 236   case Op_XorI: case Op_XorL:
 237     *start = 1;
 238     *end   = 3; // 2 vector operands
 239     break;
 240   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
 241     *start = 2;
 242     *end   = n->req();
 243     break;
 244   default:
 245     *start = 1;
 246     *end   = n->req(); // default is all operands
 247   }
 248 }
 249 
 250 // Return the vector version of a scalar operation node.
 251 VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
 252   const TypeVect* vt = TypeVect::make(bt, vlen);
 253   int vopc = VectorNode::opcode(opc, bt);
 254   // This method should not be called for unimplemented vectors.
 255   guarantee(vopc > 0, err_msg_res("Vector for '%s' is not implemented", NodeClassNames[opc]));
 256   switch (vopc) {
 257   case Op_AddVB: return new AddVBNode(n1, n2, vt);
 258   case Op_AddVS: return new AddVSNode(n1, n2, vt);
 259   case Op_AddVI: return new AddVINode(n1, n2, vt);
 260   case Op_AddVL: return new AddVLNode(n1, n2, vt);
 261   case Op_AddVF: return new AddVFNode(n1, n2, vt);
 262   case Op_AddVD: return new AddVDNode(n1, n2, vt);
 263 
 264   case Op_SubVB: return new SubVBNode(n1, n2, vt);
 265   case Op_SubVS: return new SubVSNode(n1, n2, vt);
 266   case Op_SubVI: return new SubVINode(n1, n2, vt);
 267   case Op_SubVL: return new SubVLNode(n1, n2, vt);
 268   case Op_SubVF: return new SubVFNode(n1, n2, vt);
 269   case Op_SubVD: return new SubVDNode(n1, n2, vt);
 270 
 271   case Op_MulVS: return new MulVSNode(n1, n2, vt);
 272   case Op_MulVI: return new MulVINode(n1, n2, vt);
 273   case Op_MulVL: return new MulVLNode(n1, n2, vt);
 274   case Op_MulVF: return new MulVFNode(n1, n2, vt);
 275   case Op_MulVD: return new MulVDNode(n1, n2, vt);
 276 
 277   case Op_DivVF: return new DivVFNode(n1, n2, vt);
 278   case Op_DivVD: return new DivVDNode(n1, n2, vt);
 279 
 280   case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
 281   case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
 282   case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
 283   case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt);
 284 
 285   case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt);
 286   case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt);
 287   case Op_RShiftVI: return new RShiftVINode(n1, n2, vt);
 288   case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt);
 289 
 290   case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt);
 291   case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt);
 292   case Op_URShiftVI: return new URShiftVINode(n1, n2, vt);
 293   case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt);
 294 
 295   case Op_AndV: return new AndVNode(n1, n2, vt);
 296   case Op_OrV:  return new OrVNode (n1, n2, vt);
 297   case Op_XorV: return new XorVNode(n1, n2, vt);
 298   }
 299   fatal(err_msg_res("Missed vector creation for '%s'", NodeClassNames[vopc]));
 300   return NULL;
 301 
 302 }
 303 
 304 // Scalar promotion
 305 VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) {
 306   BasicType bt = opd_t->array_element_basic_type();
 307   const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
 308                                           : TypeVect::make(bt, vlen);
 309   switch (bt) {
 310   case T_BOOLEAN:
 311   case T_BYTE:
 312     return new ReplicateBNode(s, vt);
 313   case T_CHAR:
 314   case T_SHORT:
 315     return new ReplicateSNode(s, vt);
 316   case T_INT:
 317     return new ReplicateINode(s, vt);
 318   case T_LONG:
 319     return new ReplicateLNode(s, vt);
 320   case T_FLOAT:
 321     return new ReplicateFNode(s, vt);
 322   case T_DOUBLE:
 323     return new ReplicateDNode(s, vt);
 324   }
 325   fatal(err_msg_res("Type '%s' is not supported for vectors", type2name(bt)));
 326   return NULL;
 327 }
 328 
 329 VectorNode* VectorNode::shift_count(Node* shift, Node* cnt, uint vlen, BasicType bt) {
 330   assert(VectorNode::is_shift(shift) && !cnt->is_Con(), "only variable shift count");
 331   // Match shift count type with shift vector type.
 332   const TypeVect* vt = TypeVect::make(bt, vlen);
 333   switch (shift->Opcode()) {
 334   case Op_LShiftI:
 335   case Op_LShiftL:
 336     return new LShiftCntVNode(cnt, vt);
 337   case Op_RShiftI:
 338   case Op_RShiftL:
 339   case Op_URShiftI:
 340   case Op_URShiftL:
 341     return new RShiftCntVNode(cnt, vt);
 342   }
 343   fatal(err_msg_res("Missed vector creation for '%s'", NodeClassNames[shift->Opcode()]));
 344   return NULL;
 345 }
 346 
 347 // Return initial Pack node. Additional operands added with add_opd() calls.
 348 PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
 349   const TypeVect* vt = TypeVect::make(bt, vlen);
 350   switch (bt) {
 351   case T_BOOLEAN:
 352   case T_BYTE:
 353     return new PackBNode(s, vt);
 354   case T_CHAR:
 355   case T_SHORT:
 356     return new PackSNode(s, vt);
 357   case T_INT:
 358     return new PackINode(s, vt);
 359   case T_LONG:
 360     return new PackLNode(s, vt);
 361   case T_FLOAT:
 362     return new PackFNode(s, vt);
 363   case T_DOUBLE:
 364     return new PackDNode(s, vt);
 365   }
 366   fatal(err_msg_res("Type '%s' is not supported for vectors", type2name(bt)));
 367   return NULL;
 368 }
 369 
 370 // Create a binary tree form for Packs. [lo, hi) (half-open) range
 371 PackNode* PackNode::binary_tree_pack(int lo, int hi) {
 372   int ct = hi - lo;
 373   assert(is_power_of_2(ct), "power of 2");
 374   if (ct == 2) {
 375     PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
 376     pk->add_opd(in(lo+1));
 377     return pk;
 378 
 379   } else {
 380     int mid = lo + ct/2;
 381     PackNode* n1 = binary_tree_pack(lo,  mid);
 382     PackNode* n2 = binary_tree_pack(mid, hi );
 383 
 384     BasicType bt = n1->vect_type()->element_basic_type();
 385     assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
 386     switch (bt) {
 387     case T_BOOLEAN:
 388     case T_BYTE:
 389       return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
 390     case T_CHAR:
 391     case T_SHORT:
 392       return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
 393     case T_INT:
 394       return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
 395     case T_LONG:
 396       return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
 397     case T_FLOAT:
 398       return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
 399     case T_DOUBLE:
 400       return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
 401     }
 402     fatal(err_msg_res("Type '%s' is not supported for vectors", type2name(bt)));
 403   }
 404   return NULL;
 405 }
 406 
 407 // Return the vector version of a scalar load node.
 408 LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
 409                                      Node* adr, const TypePtr* atyp,
 410                                      uint vlen, BasicType bt,
 411                                      ControlDependency control_dependency) {
 412   const TypeVect* vt = TypeVect::make(bt, vlen);
 413   return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
 414 }
 415 
 416 // Return the vector version of a scalar store node.
 417 StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem,
 418                                        Node* adr, const TypePtr* atyp, Node* val,
 419                                        uint vlen) {
 420   return new StoreVectorNode(ctl, mem, adr, atyp, val);
 421 }
 422 
 423 // Extract a scalar element of vector.
 424 Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
 425   assert((int)position < Matcher::max_vector_size(bt), "pos in range");
 426   ConINode* pos = ConINode::make((int)position);
 427   switch (bt) {
 428   case T_BOOLEAN:
 429     return new ExtractUBNode(v, pos);
 430   case T_BYTE:
 431     return new ExtractBNode(v, pos);
 432   case T_CHAR:
 433     return new ExtractCNode(v, pos);
 434   case T_SHORT:
 435     return new ExtractSNode(v, pos);
 436   case T_INT:
 437     return new ExtractINode(v, pos);
 438   case T_LONG:
 439     return new ExtractLNode(v, pos);
 440   case T_FLOAT:
 441     return new ExtractFNode(v, pos);
 442   case T_DOUBLE:
 443     return new ExtractDNode(v, pos);
 444   }
 445   fatal(err_msg_res("Type '%s' is not supported for vectors", type2name(bt)));
 446   return NULL;
 447 }
 448 
 449 int ReductionNode::opcode(int opc, BasicType bt) {
 450   int vopc = opc;
 451   switch (opc) {
 452     case Op_AddI:
 453       assert(bt == T_INT, "must be");
 454       vopc = Op_AddReductionVI;
 455       break;
 456     case Op_AddL:
 457       assert(bt == T_LONG, "must be");
 458       vopc = Op_AddReductionVL;
 459       break;
 460     case Op_AddF:
 461       assert(bt == T_FLOAT, "must be");
 462       vopc = Op_AddReductionVF;
 463       break;
 464     case Op_AddD:
 465       assert(bt == T_DOUBLE, "must be");
 466       vopc = Op_AddReductionVD;
 467       break;
 468     case Op_MulI:
 469       assert(bt == T_INT, "must be");
 470       vopc = Op_MulReductionVI;
 471       break;
 472     case Op_MulL:
 473       assert(bt == T_LONG, "must be");
 474       vopc = Op_MulReductionVL;
 475       break;
 476     case Op_MulF:
 477       assert(bt == T_FLOAT, "must be");
 478       vopc = Op_MulReductionVF;
 479       break;
 480     case Op_MulD:
 481       assert(bt == T_DOUBLE, "must be");
 482       vopc = Op_MulReductionVD;
 483       break;
 484     // TODO: add MulL for targets that support it
 485     default:
 486       break;
 487   }
 488   return vopc;
 489 }
 490 
 491 // Return the appropriate reduction node.
 492 ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
 493 
 494   int vopc = opcode(opc, bt);
 495 
 496   // This method should not be called for unimplemented vectors.
 497   guarantee(vopc != opc, err_msg_res("Vector for '%s' is not implemented", NodeClassNames[opc]));
 498 
 499   switch (vopc) {
 500   case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
 501   case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
 502   case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
 503   case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
 504   case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
 505   case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
 506   case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
 507   case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
 508   }
 509   fatal(err_msg_res("Missed vector creation for '%s'", NodeClassNames[vopc]));
 510   return NULL;
 511 }
 512 
 513 bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
 514   if (is_java_primitive(bt) &&
 515       (vlen > 1) && is_power_of_2(vlen) &&
 516       Matcher::vector_size_supported(bt, vlen)) {
 517     int vopc = ReductionNode::opcode(opc, bt);
 518     return vopc != opc && Matcher::match_rule_supported(vopc);
 519   }
 520   return false;
 521 }
 522