1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1Log.hpp"
  43 #include "gc/g1/g1MarkSweep.hpp"
  44 #include "gc/g1/g1OopClosures.inline.hpp"
  45 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  46 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  47 #include "gc/g1/g1RemSet.inline.hpp"
  48 #include "gc/g1/g1RootClosures.hpp"
  49 #include "gc/g1/g1RootProcessor.hpp"
  50 #include "gc/g1/g1StringDedup.hpp"
  51 #include "gc/g1/g1YCTypes.hpp"
  52 #include "gc/g1/heapRegion.inline.hpp"
  53 #include "gc/g1/heapRegionRemSet.hpp"
  54 #include "gc/g1/heapRegionSet.inline.hpp"
  55 #include "gc/g1/suspendibleThreadSet.hpp"
  56 #include "gc/g1/vm_operations_g1.hpp"
  57 #include "gc/shared/gcHeapSummary.hpp"
  58 #include "gc/shared/gcId.hpp"
  59 #include "gc/shared/gcLocker.inline.hpp"
  60 #include "gc/shared/gcTimer.hpp"
  61 #include "gc/shared/gcTrace.hpp"
  62 #include "gc/shared/gcTraceTime.hpp"
  63 #include "gc/shared/generationSpec.hpp"
  64 #include "gc/shared/isGCActiveMark.hpp"
  65 #include "gc/shared/referenceProcessor.hpp"
  66 #include "gc/shared/taskqueue.inline.hpp"
  67 #include "memory/allocation.hpp"
  68 #include "memory/iterator.hpp"
  69 #include "oops/oop.inline.hpp"
  70 #include "runtime/atomic.inline.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/orderAccess.inline.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "utilities/globalDefinitions.hpp"
  75 #include "utilities/stack.inline.hpp"
  76 
  77 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  78 
  79 // INVARIANTS/NOTES
  80 //
  81 // All allocation activity covered by the G1CollectedHeap interface is
  82 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  83 // and allocate_new_tlab, which are the "entry" points to the
  84 // allocation code from the rest of the JVM.  (Note that this does not
  85 // apply to TLAB allocation, which is not part of this interface: it
  86 // is done by clients of this interface.)
  87 
  88 // Local to this file.
  89 
  90 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure() : _concurrent(true) { }
  94 
  95   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  96     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  97     // This path is executed by the concurrent refine or mutator threads,
  98     // concurrently, and so we do not care if card_ptr contains references
  99     // that point into the collection set.
 100     assert(!oops_into_cset, "should be");
 101 
 102     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 103       // Caller will actually yield.
 104       return false;
 105     }
 106     // Otherwise, we finished successfully; return true.
 107     return true;
 108   }
 109 
 110   void set_concurrent(bool b) { _concurrent = b; }
 111 };
 112 
 113 
 114 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 115  private:
 116   size_t _num_processed;
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 120 
 121   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 122     *card_ptr = CardTableModRefBS::dirty_card_val();
 123     _num_processed++;
 124     return true;
 125   }
 126 
 127   size_t num_processed() const { return _num_processed; }
 128 };
 129 
 130 
 131 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 132   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 133 }
 134 
 135 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 136   // The from card cache is not the memory that is actually committed. So we cannot
 137   // take advantage of the zero_filled parameter.
 138   reset_from_card_cache(start_idx, num_regions);
 139 }
 140 
 141 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 142 {
 143   // Claim the right to put the region on the dirty cards region list
 144   // by installing a self pointer.
 145   HeapRegion* next = hr->get_next_dirty_cards_region();
 146   if (next == NULL) {
 147     HeapRegion* res = (HeapRegion*)
 148       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 149                           NULL);
 150     if (res == NULL) {
 151       HeapRegion* head;
 152       do {
 153         // Put the region to the dirty cards region list.
 154         head = _dirty_cards_region_list;
 155         next = (HeapRegion*)
 156           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 157         if (next == head) {
 158           assert(hr->get_next_dirty_cards_region() == hr,
 159                  "hr->get_next_dirty_cards_region() != hr");
 160           if (next == NULL) {
 161             // The last region in the list points to itself.
 162             hr->set_next_dirty_cards_region(hr);
 163           } else {
 164             hr->set_next_dirty_cards_region(next);
 165           }
 166         }
 167       } while (next != head);
 168     }
 169   }
 170 }
 171 
 172 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 173 {
 174   HeapRegion* head;
 175   HeapRegion* hr;
 176   do {
 177     head = _dirty_cards_region_list;
 178     if (head == NULL) {
 179       return NULL;
 180     }
 181     HeapRegion* new_head = head->get_next_dirty_cards_region();
 182     if (head == new_head) {
 183       // The last region.
 184       new_head = NULL;
 185     }
 186     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 187                                           head);
 188   } while (hr != head);
 189   assert(hr != NULL, "invariant");
 190   hr->set_next_dirty_cards_region(NULL);
 191   return hr;
 192 }
 193 
 194 // Returns true if the reference points to an object that
 195 // can move in an incremental collection.
 196 bool G1CollectedHeap::is_scavengable(const void* p) {
 197   HeapRegion* hr = heap_region_containing(p);
 198   return !hr->is_pinned();
 199 }
 200 
 201 // Private methods.
 202 
 203 HeapRegion*
 204 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 205   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 206   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 207     if (!_secondary_free_list.is_empty()) {
 208       if (G1ConcRegionFreeingVerbose) {
 209         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 210                                "secondary_free_list has %u entries",
 211                                _secondary_free_list.length());
 212       }
 213       // It looks as if there are free regions available on the
 214       // secondary_free_list. Let's move them to the free_list and try
 215       // again to allocate from it.
 216       append_secondary_free_list();
 217 
 218       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 219              "empty we should have moved at least one entry to the free_list");
 220       HeapRegion* res = _hrm.allocate_free_region(is_old);
 221       if (G1ConcRegionFreeingVerbose) {
 222         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 223                                "allocated " HR_FORMAT " from secondary_free_list",
 224                                HR_FORMAT_PARAMS(res));
 225       }
 226       return res;
 227     }
 228 
 229     // Wait here until we get notified either when (a) there are no
 230     // more free regions coming or (b) some regions have been moved on
 231     // the secondary_free_list.
 232     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 233   }
 234 
 235   if (G1ConcRegionFreeingVerbose) {
 236     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 237                            "could not allocate from secondary_free_list");
 238   }
 239   return NULL;
 240 }
 241 
 242 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 243   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 244          "the only time we use this to allocate a humongous region is "
 245          "when we are allocating a single humongous region");
 246 
 247   HeapRegion* res;
 248   if (G1StressConcRegionFreeing) {
 249     if (!_secondary_free_list.is_empty()) {
 250       if (G1ConcRegionFreeingVerbose) {
 251         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 252                                "forced to look at the secondary_free_list");
 253       }
 254       res = new_region_try_secondary_free_list(is_old);
 255       if (res != NULL) {
 256         return res;
 257       }
 258     }
 259   }
 260 
 261   res = _hrm.allocate_free_region(is_old);
 262 
 263   if (res == NULL) {
 264     if (G1ConcRegionFreeingVerbose) {
 265       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 266                              "res == NULL, trying the secondary_free_list");
 267     }
 268     res = new_region_try_secondary_free_list(is_old);
 269   }
 270   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 271     // Currently, only attempts to allocate GC alloc regions set
 272     // do_expand to true. So, we should only reach here during a
 273     // safepoint. If this assumption changes we might have to
 274     // reconsider the use of _expand_heap_after_alloc_failure.
 275     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 276 
 277     ergo_verbose1(ErgoHeapSizing,
 278                   "attempt heap expansion",
 279                   ergo_format_reason("region allocation request failed")
 280                   ergo_format_byte("allocation request"),
 281                   word_size * HeapWordSize);
 282     if (expand(word_size * HeapWordSize)) {
 283       // Given that expand() succeeded in expanding the heap, and we
 284       // always expand the heap by an amount aligned to the heap
 285       // region size, the free list should in theory not be empty.
 286       // In either case allocate_free_region() will check for NULL.
 287       res = _hrm.allocate_free_region(is_old);
 288     } else {
 289       _expand_heap_after_alloc_failure = false;
 290     }
 291   }
 292   return res;
 293 }
 294 
 295 HeapWord*
 296 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 297                                                            uint num_regions,
 298                                                            size_t word_size,
 299                                                            AllocationContext_t context) {
 300   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 301   assert(is_humongous(word_size), "word_size should be humongous");
 302   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 303 
 304   // Index of last region in the series + 1.
 305   uint last = first + num_regions;
 306 
 307   // We need to initialize the region(s) we just discovered. This is
 308   // a bit tricky given that it can happen concurrently with
 309   // refinement threads refining cards on these regions and
 310   // potentially wanting to refine the BOT as they are scanning
 311   // those cards (this can happen shortly after a cleanup; see CR
 312   // 6991377). So we have to set up the region(s) carefully and in
 313   // a specific order.
 314 
 315   // The word size sum of all the regions we will allocate.
 316   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 317   assert(word_size <= word_size_sum, "sanity");
 318 
 319   // This will be the "starts humongous" region.
 320   HeapRegion* first_hr = region_at(first);
 321   // The header of the new object will be placed at the bottom of
 322   // the first region.
 323   HeapWord* new_obj = first_hr->bottom();
 324   // This will be the new top of the new object.
 325   HeapWord* obj_top = new_obj + word_size;
 326 
 327   // First, we need to zero the header of the space that we will be
 328   // allocating. When we update top further down, some refinement
 329   // threads might try to scan the region. By zeroing the header we
 330   // ensure that any thread that will try to scan the region will
 331   // come across the zero klass word and bail out.
 332   //
 333   // NOTE: It would not have been correct to have used
 334   // CollectedHeap::fill_with_object() and make the space look like
 335   // an int array. The thread that is doing the allocation will
 336   // later update the object header to a potentially different array
 337   // type and, for a very short period of time, the klass and length
 338   // fields will be inconsistent. This could cause a refinement
 339   // thread to calculate the object size incorrectly.
 340   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 341 
 342   // We will set up the first region as "starts humongous". This
 343   // will also update the BOT covering all the regions to reflect
 344   // that there is a single object that starts at the bottom of the
 345   // first region.
 346   first_hr->set_starts_humongous(obj_top);
 347   first_hr->set_allocation_context(context);
 348   // Then, if there are any, we will set up the "continues
 349   // humongous" regions.
 350   HeapRegion* hr = NULL;
 351   for (uint i = first + 1; i < last; ++i) {
 352     hr = region_at(i);
 353     hr->set_continues_humongous(first_hr);
 354     hr->set_allocation_context(context);
 355   }
 356 
 357   // Up to this point no concurrent thread would have been able to
 358   // do any scanning on any region in this series. All the top
 359   // fields still point to bottom, so the intersection between
 360   // [bottom,top] and [card_start,card_end] will be empty. Before we
 361   // update the top fields, we'll do a storestore to make sure that
 362   // no thread sees the update to top before the zeroing of the
 363   // object header and the BOT initialization.
 364   OrderAccess::storestore();
 365 
 366   // Now that the BOT and the object header have been initialized,
 367   // we can update top of the "starts humongous" region.
 368   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 369   if (_hr_printer.is_active()) {
 370     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 371   }
 372 
 373   // Now, we will update the top fields of the "continues humongous"
 374   // regions.
 375   hr = NULL;
 376   for (uint i = first + 1; i < last; ++i) {
 377     hr = region_at(i);
 378     if ((i + 1) == last) {
 379       // last continues humongous region
 380       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 381              "new_top should fall on this region");
 382       hr->set_top(obj_top);
 383       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 384     } else {
 385       // not last one
 386       assert(obj_top > hr->end(), "obj_top should be above this region");
 387       hr->set_top(hr->end());
 388       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 389     }
 390   }
 391   // If we have continues humongous regions (hr != NULL), its top should
 392   // match obj_top.
 393   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 394   check_bitmaps("Humongous Region Allocation", first_hr);
 395 
 396   increase_used(word_size * HeapWordSize);
 397 
 398   for (uint i = first; i < last; ++i) {
 399     _humongous_set.add(region_at(i));
 400   }
 401 
 402   return new_obj;
 403 }
 404 
 405 // If could fit into free regions w/o expansion, try.
 406 // Otherwise, if can expand, do so.
 407 // Otherwise, if using ex regions might help, try with ex given back.
 408 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 409   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 410 
 411   verify_region_sets_optional();
 412 
 413   uint first = G1_NO_HRM_INDEX;
 414   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 415 
 416   if (obj_regions == 1) {
 417     // Only one region to allocate, try to use a fast path by directly allocating
 418     // from the free lists. Do not try to expand here, we will potentially do that
 419     // later.
 420     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 421     if (hr != NULL) {
 422       first = hr->hrm_index();
 423     }
 424   } else {
 425     // We can't allocate humongous regions spanning more than one region while
 426     // cleanupComplete() is running, since some of the regions we find to be
 427     // empty might not yet be added to the free list. It is not straightforward
 428     // to know in which list they are on so that we can remove them. We only
 429     // need to do this if we need to allocate more than one region to satisfy the
 430     // current humongous allocation request. If we are only allocating one region
 431     // we use the one-region region allocation code (see above), that already
 432     // potentially waits for regions from the secondary free list.
 433     wait_while_free_regions_coming();
 434     append_secondary_free_list_if_not_empty_with_lock();
 435 
 436     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 437     // are lucky enough to find some.
 438     first = _hrm.find_contiguous_only_empty(obj_regions);
 439     if (first != G1_NO_HRM_INDEX) {
 440       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 441     }
 442   }
 443 
 444   if (first == G1_NO_HRM_INDEX) {
 445     // Policy: We could not find enough regions for the humongous object in the
 446     // free list. Look through the heap to find a mix of free and uncommitted regions.
 447     // If so, try expansion.
 448     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 449     if (first != G1_NO_HRM_INDEX) {
 450       // We found something. Make sure these regions are committed, i.e. expand
 451       // the heap. Alternatively we could do a defragmentation GC.
 452       ergo_verbose1(ErgoHeapSizing,
 453                     "attempt heap expansion",
 454                     ergo_format_reason("humongous allocation request failed")
 455                     ergo_format_byte("allocation request"),
 456                     word_size * HeapWordSize);
 457 
 458       _hrm.expand_at(first, obj_regions);
 459       g1_policy()->record_new_heap_size(num_regions());
 460 
 461 #ifdef ASSERT
 462       for (uint i = first; i < first + obj_regions; ++i) {
 463         HeapRegion* hr = region_at(i);
 464         assert(hr->is_free(), "sanity");
 465         assert(hr->is_empty(), "sanity");
 466         assert(is_on_master_free_list(hr), "sanity");
 467       }
 468 #endif
 469       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 470     } else {
 471       // Policy: Potentially trigger a defragmentation GC.
 472     }
 473   }
 474 
 475   HeapWord* result = NULL;
 476   if (first != G1_NO_HRM_INDEX) {
 477     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 478                                                        word_size, context);
 479     assert(result != NULL, "it should always return a valid result");
 480 
 481     // A successful humongous object allocation changes the used space
 482     // information of the old generation so we need to recalculate the
 483     // sizes and update the jstat counters here.
 484     g1mm()->update_sizes();
 485   }
 486 
 487   verify_region_sets_optional();
 488 
 489   return result;
 490 }
 491 
 492 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 493   assert_heap_not_locked_and_not_at_safepoint();
 494   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 495 
 496   uint dummy_gc_count_before;
 497   uint dummy_gclocker_retry_count = 0;
 498   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 499 }
 500 
 501 HeapWord*
 502 G1CollectedHeap::mem_allocate(size_t word_size,
 503                               bool*  gc_overhead_limit_was_exceeded) {
 504   assert_heap_not_locked_and_not_at_safepoint();
 505 
 506   // Loop until the allocation is satisfied, or unsatisfied after GC.
 507   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 508     uint gc_count_before;
 509 
 510     HeapWord* result = NULL;
 511     if (!is_humongous(word_size)) {
 512       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 513     } else {
 514       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 515     }
 516     if (result != NULL) {
 517       return result;
 518     }
 519 
 520     // Create the garbage collection operation...
 521     VM_G1CollectForAllocation op(gc_count_before, word_size);
 522     op.set_allocation_context(AllocationContext::current());
 523 
 524     // ...and get the VM thread to execute it.
 525     VMThread::execute(&op);
 526 
 527     if (op.prologue_succeeded() && op.pause_succeeded()) {
 528       // If the operation was successful we'll return the result even
 529       // if it is NULL. If the allocation attempt failed immediately
 530       // after a Full GC, it's unlikely we'll be able to allocate now.
 531       HeapWord* result = op.result();
 532       if (result != NULL && !is_humongous(word_size)) {
 533         // Allocations that take place on VM operations do not do any
 534         // card dirtying and we have to do it here. We only have to do
 535         // this for non-humongous allocations, though.
 536         dirty_young_block(result, word_size);
 537       }
 538       return result;
 539     } else {
 540       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 541         return NULL;
 542       }
 543       assert(op.result() == NULL,
 544              "the result should be NULL if the VM op did not succeed");
 545     }
 546 
 547     // Give a warning if we seem to be looping forever.
 548     if ((QueuedAllocationWarningCount > 0) &&
 549         (try_count % QueuedAllocationWarningCount == 0)) {
 550       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 551     }
 552   }
 553 
 554   ShouldNotReachHere();
 555   return NULL;
 556 }
 557 
 558 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 559                                                    AllocationContext_t context,
 560                                                    uint* gc_count_before_ret,
 561                                                    uint* gclocker_retry_count_ret) {
 562   // Make sure you read the note in attempt_allocation_humongous().
 563 
 564   assert_heap_not_locked_and_not_at_safepoint();
 565   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 566          "be called for humongous allocation requests");
 567 
 568   // We should only get here after the first-level allocation attempt
 569   // (attempt_allocation()) failed to allocate.
 570 
 571   // We will loop until a) we manage to successfully perform the
 572   // allocation or b) we successfully schedule a collection which
 573   // fails to perform the allocation. b) is the only case when we'll
 574   // return NULL.
 575   HeapWord* result = NULL;
 576   for (int try_count = 1; /* we'll return */; try_count += 1) {
 577     bool should_try_gc;
 578     uint gc_count_before;
 579 
 580     {
 581       MutexLockerEx x(Heap_lock);
 582       result = _allocator->attempt_allocation_locked(word_size, context);
 583       if (result != NULL) {
 584         return result;
 585       }
 586 
 587       if (GC_locker::is_active_and_needs_gc()) {
 588         if (g1_policy()->can_expand_young_list()) {
 589           // No need for an ergo verbose message here,
 590           // can_expand_young_list() does this when it returns true.
 591           result = _allocator->attempt_allocation_force(word_size, context);
 592           if (result != NULL) {
 593             return result;
 594           }
 595         }
 596         should_try_gc = false;
 597       } else {
 598         // The GCLocker may not be active but the GCLocker initiated
 599         // GC may not yet have been performed (GCLocker::needs_gc()
 600         // returns true). In this case we do not try this GC and
 601         // wait until the GCLocker initiated GC is performed, and
 602         // then retry the allocation.
 603         if (GC_locker::needs_gc()) {
 604           should_try_gc = false;
 605         } else {
 606           // Read the GC count while still holding the Heap_lock.
 607           gc_count_before = total_collections();
 608           should_try_gc = true;
 609         }
 610       }
 611     }
 612 
 613     if (should_try_gc) {
 614       bool succeeded;
 615       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 616                                    GCCause::_g1_inc_collection_pause);
 617       if (result != NULL) {
 618         assert(succeeded, "only way to get back a non-NULL result");
 619         return result;
 620       }
 621 
 622       if (succeeded) {
 623         // If we get here we successfully scheduled a collection which
 624         // failed to allocate. No point in trying to allocate
 625         // further. We'll just return NULL.
 626         MutexLockerEx x(Heap_lock);
 627         *gc_count_before_ret = total_collections();
 628         return NULL;
 629       }
 630     } else {
 631       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 632         MutexLockerEx x(Heap_lock);
 633         *gc_count_before_ret = total_collections();
 634         return NULL;
 635       }
 636       // The GCLocker is either active or the GCLocker initiated
 637       // GC has not yet been performed. Stall until it is and
 638       // then retry the allocation.
 639       GC_locker::stall_until_clear();
 640       (*gclocker_retry_count_ret) += 1;
 641     }
 642 
 643     // We can reach here if we were unsuccessful in scheduling a
 644     // collection (because another thread beat us to it) or if we were
 645     // stalled due to the GC locker. In either can we should retry the
 646     // allocation attempt in case another thread successfully
 647     // performed a collection and reclaimed enough space. We do the
 648     // first attempt (without holding the Heap_lock) here and the
 649     // follow-on attempt will be at the start of the next loop
 650     // iteration (after taking the Heap_lock).
 651     result = _allocator->attempt_allocation(word_size, context);
 652     if (result != NULL) {
 653       return result;
 654     }
 655 
 656     // Give a warning if we seem to be looping forever.
 657     if ((QueuedAllocationWarningCount > 0) &&
 658         (try_count % QueuedAllocationWarningCount == 0)) {
 659       warning("G1CollectedHeap::attempt_allocation_slow() "
 660               "retries %d times", try_count);
 661     }
 662   }
 663 
 664   ShouldNotReachHere();
 665   return NULL;
 666 }
 667 
 668 void G1CollectedHeap::begin_archive_alloc_range() {
 669   assert_at_safepoint(true /* should_be_vm_thread */);
 670   if (_archive_allocator == NULL) {
 671     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 672   }
 673 }
 674 
 675 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 676   // Allocations in archive regions cannot be of a size that would be considered
 677   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 678   // may be different at archive-restore time.
 679   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 680 }
 681 
 682 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 683   assert_at_safepoint(true /* should_be_vm_thread */);
 684   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 685   if (is_archive_alloc_too_large(word_size)) {
 686     return NULL;
 687   }
 688   return _archive_allocator->archive_mem_allocate(word_size);
 689 }
 690 
 691 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 692                                               size_t end_alignment_in_bytes) {
 693   assert_at_safepoint(true /* should_be_vm_thread */);
 694   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 695 
 696   // Call complete_archive to do the real work, filling in the MemRegion
 697   // array with the archive regions.
 698   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 699   delete _archive_allocator;
 700   _archive_allocator = NULL;
 701 }
 702 
 703 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 704   assert(ranges != NULL, "MemRegion array NULL");
 705   assert(count != 0, "No MemRegions provided");
 706   MemRegion reserved = _hrm.reserved();
 707   for (size_t i = 0; i < count; i++) {
 708     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 709       return false;
 710     }
 711   }
 712   return true;
 713 }
 714 
 715 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 716   assert(!is_init_completed(), "Expect to be called at JVM init time");
 717   assert(ranges != NULL, "MemRegion array NULL");
 718   assert(count != 0, "No MemRegions provided");
 719   MutexLockerEx x(Heap_lock);
 720 
 721   MemRegion reserved = _hrm.reserved();
 722   HeapWord* prev_last_addr = NULL;
 723   HeapRegion* prev_last_region = NULL;
 724 
 725   // Temporarily disable pretouching of heap pages. This interface is used
 726   // when mmap'ing archived heap data in, so pre-touching is wasted.
 727   FlagSetting fs(AlwaysPreTouch, false);
 728 
 729   // Enable archive object checking in G1MarkSweep. We have to let it know
 730   // about each archive range, so that objects in those ranges aren't marked.
 731   G1MarkSweep::enable_archive_object_check();
 732 
 733   // For each specified MemRegion range, allocate the corresponding G1
 734   // regions and mark them as archive regions. We expect the ranges in
 735   // ascending starting address order, without overlap.
 736   for (size_t i = 0; i < count; i++) {
 737     MemRegion curr_range = ranges[i];
 738     HeapWord* start_address = curr_range.start();
 739     size_t word_size = curr_range.word_size();
 740     HeapWord* last_address = curr_range.last();
 741     size_t commits = 0;
 742 
 743     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 744               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 745               p2i(start_address), p2i(last_address));
 746     guarantee(start_address > prev_last_addr,
 747               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 748               p2i(start_address), p2i(prev_last_addr));
 749     prev_last_addr = last_address;
 750 
 751     // Check for ranges that start in the same G1 region in which the previous
 752     // range ended, and adjust the start address so we don't try to allocate
 753     // the same region again. If the current range is entirely within that
 754     // region, skip it, just adjusting the recorded top.
 755     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 756     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 757       start_address = start_region->end();
 758       if (start_address > last_address) {
 759         increase_used(word_size * HeapWordSize);
 760         start_region->set_top(last_address + 1);
 761         continue;
 762       }
 763       start_region->set_top(start_address);
 764       curr_range = MemRegion(start_address, last_address + 1);
 765       start_region = _hrm.addr_to_region(start_address);
 766     }
 767 
 768     // Perform the actual region allocation, exiting if it fails.
 769     // Then note how much new space we have allocated.
 770     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 771       return false;
 772     }
 773     increase_used(word_size * HeapWordSize);
 774     if (commits != 0) {
 775       ergo_verbose1(ErgoHeapSizing,
 776                     "attempt heap expansion",
 777                     ergo_format_reason("allocate archive regions")
 778                     ergo_format_byte("total size"),
 779                     HeapRegion::GrainWords * HeapWordSize * commits);
 780     }
 781 
 782     // Mark each G1 region touched by the range as archive, add it to the old set,
 783     // and set the allocation context and top.
 784     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 785     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 786     prev_last_region = last_region;
 787 
 788     while (curr_region != NULL) {
 789       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 790              "Region already in use (index %u)", curr_region->hrm_index());
 791       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 792       curr_region->set_allocation_context(AllocationContext::system());
 793       curr_region->set_archive();
 794       _old_set.add(curr_region);
 795       if (curr_region != last_region) {
 796         curr_region->set_top(curr_region->end());
 797         curr_region = _hrm.next_region_in_heap(curr_region);
 798       } else {
 799         curr_region->set_top(last_address + 1);
 800         curr_region = NULL;
 801       }
 802     }
 803 
 804     // Notify mark-sweep of the archive range.
 805     G1MarkSweep::set_range_archive(curr_range, true);
 806   }
 807   return true;
 808 }
 809 
 810 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 811   assert(!is_init_completed(), "Expect to be called at JVM init time");
 812   assert(ranges != NULL, "MemRegion array NULL");
 813   assert(count != 0, "No MemRegions provided");
 814   MemRegion reserved = _hrm.reserved();
 815   HeapWord *prev_last_addr = NULL;
 816   HeapRegion* prev_last_region = NULL;
 817 
 818   // For each MemRegion, create filler objects, if needed, in the G1 regions
 819   // that contain the address range. The address range actually within the
 820   // MemRegion will not be modified. That is assumed to have been initialized
 821   // elsewhere, probably via an mmap of archived heap data.
 822   MutexLockerEx x(Heap_lock);
 823   for (size_t i = 0; i < count; i++) {
 824     HeapWord* start_address = ranges[i].start();
 825     HeapWord* last_address = ranges[i].last();
 826 
 827     assert(reserved.contains(start_address) && reserved.contains(last_address),
 828            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 829            p2i(start_address), p2i(last_address));
 830     assert(start_address > prev_last_addr,
 831            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 832            p2i(start_address), p2i(prev_last_addr));
 833 
 834     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 835     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 836     HeapWord* bottom_address = start_region->bottom();
 837 
 838     // Check for a range beginning in the same region in which the
 839     // previous one ended.
 840     if (start_region == prev_last_region) {
 841       bottom_address = prev_last_addr + 1;
 842     }
 843 
 844     // Verify that the regions were all marked as archive regions by
 845     // alloc_archive_regions.
 846     HeapRegion* curr_region = start_region;
 847     while (curr_region != NULL) {
 848       guarantee(curr_region->is_archive(),
 849                 "Expected archive region at index %u", curr_region->hrm_index());
 850       if (curr_region != last_region) {
 851         curr_region = _hrm.next_region_in_heap(curr_region);
 852       } else {
 853         curr_region = NULL;
 854       }
 855     }
 856 
 857     prev_last_addr = last_address;
 858     prev_last_region = last_region;
 859 
 860     // Fill the memory below the allocated range with dummy object(s),
 861     // if the region bottom does not match the range start, or if the previous
 862     // range ended within the same G1 region, and there is a gap.
 863     if (start_address != bottom_address) {
 864       size_t fill_size = pointer_delta(start_address, bottom_address);
 865       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 866       increase_used(fill_size * HeapWordSize);
 867     }
 868   }
 869 }
 870 
 871 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 872                                                      uint* gc_count_before_ret,
 873                                                      uint* gclocker_retry_count_ret) {
 874   assert_heap_not_locked_and_not_at_safepoint();
 875   assert(!is_humongous(word_size), "attempt_allocation() should not "
 876          "be called for humongous allocation requests");
 877 
 878   AllocationContext_t context = AllocationContext::current();
 879   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 880 
 881   if (result == NULL) {
 882     result = attempt_allocation_slow(word_size,
 883                                      context,
 884                                      gc_count_before_ret,
 885                                      gclocker_retry_count_ret);
 886   }
 887   assert_heap_not_locked();
 888   if (result != NULL) {
 889     dirty_young_block(result, word_size);
 890   }
 891   return result;
 892 }
 893 
 894 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 895   assert(!is_init_completed(), "Expect to be called at JVM init time");
 896   assert(ranges != NULL, "MemRegion array NULL");
 897   assert(count != 0, "No MemRegions provided");
 898   MemRegion reserved = _hrm.reserved();
 899   HeapWord* prev_last_addr = NULL;
 900   HeapRegion* prev_last_region = NULL;
 901   size_t size_used = 0;
 902   size_t uncommitted_regions = 0;
 903 
 904   // For each Memregion, free the G1 regions that constitute it, and
 905   // notify mark-sweep that the range is no longer to be considered 'archive.'
 906   MutexLockerEx x(Heap_lock);
 907   for (size_t i = 0; i < count; i++) {
 908     HeapWord* start_address = ranges[i].start();
 909     HeapWord* last_address = ranges[i].last();
 910 
 911     assert(reserved.contains(start_address) && reserved.contains(last_address),
 912            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 913            p2i(start_address), p2i(last_address));
 914     assert(start_address > prev_last_addr,
 915            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 916            p2i(start_address), p2i(prev_last_addr));
 917     size_used += ranges[i].byte_size();
 918     prev_last_addr = last_address;
 919 
 920     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 921     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 922 
 923     // Check for ranges that start in the same G1 region in which the previous
 924     // range ended, and adjust the start address so we don't try to free
 925     // the same region again. If the current range is entirely within that
 926     // region, skip it.
 927     if (start_region == prev_last_region) {
 928       start_address = start_region->end();
 929       if (start_address > last_address) {
 930         continue;
 931       }
 932       start_region = _hrm.addr_to_region(start_address);
 933     }
 934     prev_last_region = last_region;
 935 
 936     // After verifying that each region was marked as an archive region by
 937     // alloc_archive_regions, set it free and empty and uncommit it.
 938     HeapRegion* curr_region = start_region;
 939     while (curr_region != NULL) {
 940       guarantee(curr_region->is_archive(),
 941                 "Expected archive region at index %u", curr_region->hrm_index());
 942       uint curr_index = curr_region->hrm_index();
 943       _old_set.remove(curr_region);
 944       curr_region->set_free();
 945       curr_region->set_top(curr_region->bottom());
 946       if (curr_region != last_region) {
 947         curr_region = _hrm.next_region_in_heap(curr_region);
 948       } else {
 949         curr_region = NULL;
 950       }
 951       _hrm.shrink_at(curr_index, 1);
 952       uncommitted_regions++;
 953     }
 954 
 955     // Notify mark-sweep that this is no longer an archive range.
 956     G1MarkSweep::set_range_archive(ranges[i], false);
 957   }
 958 
 959   if (uncommitted_regions != 0) {
 960     ergo_verbose1(ErgoHeapSizing,
 961                   "attempt heap shrinking",
 962                   ergo_format_reason("uncommitted archive regions")
 963                   ergo_format_byte("total size"),
 964                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 965   }
 966   decrease_used(size_used);
 967 }
 968 
 969 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 970                                                         uint* gc_count_before_ret,
 971                                                         uint* gclocker_retry_count_ret) {
 972   // The structure of this method has a lot of similarities to
 973   // attempt_allocation_slow(). The reason these two were not merged
 974   // into a single one is that such a method would require several "if
 975   // allocation is not humongous do this, otherwise do that"
 976   // conditional paths which would obscure its flow. In fact, an early
 977   // version of this code did use a unified method which was harder to
 978   // follow and, as a result, it had subtle bugs that were hard to
 979   // track down. So keeping these two methods separate allows each to
 980   // be more readable. It will be good to keep these two in sync as
 981   // much as possible.
 982 
 983   assert_heap_not_locked_and_not_at_safepoint();
 984   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 985          "should only be called for humongous allocations");
 986 
 987   // Humongous objects can exhaust the heap quickly, so we should check if we
 988   // need to start a marking cycle at each humongous object allocation. We do
 989   // the check before we do the actual allocation. The reason for doing it
 990   // before the allocation is that we avoid having to keep track of the newly
 991   // allocated memory while we do a GC.
 992   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 993                                            word_size)) {
 994     collect(GCCause::_g1_humongous_allocation);
 995   }
 996 
 997   // We will loop until a) we manage to successfully perform the
 998   // allocation or b) we successfully schedule a collection which
 999   // fails to perform the allocation. b) is the only case when we'll
1000   // return NULL.
1001   HeapWord* result = NULL;
1002   for (int try_count = 1; /* we'll return */; try_count += 1) {
1003     bool should_try_gc;
1004     uint gc_count_before;
1005 
1006     {
1007       MutexLockerEx x(Heap_lock);
1008 
1009       // Given that humongous objects are not allocated in young
1010       // regions, we'll first try to do the allocation without doing a
1011       // collection hoping that there's enough space in the heap.
1012       result = humongous_obj_allocate(word_size, AllocationContext::current());
1013       if (result != NULL) {
1014         return result;
1015       }
1016 
1017       if (GC_locker::is_active_and_needs_gc()) {
1018         should_try_gc = false;
1019       } else {
1020          // The GCLocker may not be active but the GCLocker initiated
1021         // GC may not yet have been performed (GCLocker::needs_gc()
1022         // returns true). In this case we do not try this GC and
1023         // wait until the GCLocker initiated GC is performed, and
1024         // then retry the allocation.
1025         if (GC_locker::needs_gc()) {
1026           should_try_gc = false;
1027         } else {
1028           // Read the GC count while still holding the Heap_lock.
1029           gc_count_before = total_collections();
1030           should_try_gc = true;
1031         }
1032       }
1033     }
1034 
1035     if (should_try_gc) {
1036       // If we failed to allocate the humongous object, we should try to
1037       // do a collection pause (if we're allowed) in case it reclaims
1038       // enough space for the allocation to succeed after the pause.
1039 
1040       bool succeeded;
1041       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1042                                    GCCause::_g1_humongous_allocation);
1043       if (result != NULL) {
1044         assert(succeeded, "only way to get back a non-NULL result");
1045         return result;
1046       }
1047 
1048       if (succeeded) {
1049         // If we get here we successfully scheduled a collection which
1050         // failed to allocate. No point in trying to allocate
1051         // further. We'll just return NULL.
1052         MutexLockerEx x(Heap_lock);
1053         *gc_count_before_ret = total_collections();
1054         return NULL;
1055       }
1056     } else {
1057       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1058         MutexLockerEx x(Heap_lock);
1059         *gc_count_before_ret = total_collections();
1060         return NULL;
1061       }
1062       // The GCLocker is either active or the GCLocker initiated
1063       // GC has not yet been performed. Stall until it is and
1064       // then retry the allocation.
1065       GC_locker::stall_until_clear();
1066       (*gclocker_retry_count_ret) += 1;
1067     }
1068 
1069     // We can reach here if we were unsuccessful in scheduling a
1070     // collection (because another thread beat us to it) or if we were
1071     // stalled due to the GC locker. In either can we should retry the
1072     // allocation attempt in case another thread successfully
1073     // performed a collection and reclaimed enough space.  Give a
1074     // warning if we seem to be looping forever.
1075 
1076     if ((QueuedAllocationWarningCount > 0) &&
1077         (try_count % QueuedAllocationWarningCount == 0)) {
1078       warning("G1CollectedHeap::attempt_allocation_humongous() "
1079               "retries %d times", try_count);
1080     }
1081   }
1082 
1083   ShouldNotReachHere();
1084   return NULL;
1085 }
1086 
1087 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1088                                                            AllocationContext_t context,
1089                                                            bool expect_null_mutator_alloc_region) {
1090   assert_at_safepoint(true /* should_be_vm_thread */);
1091   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1092          "the current alloc region was unexpectedly found to be non-NULL");
1093 
1094   if (!is_humongous(word_size)) {
1095     return _allocator->attempt_allocation_locked(word_size, context);
1096   } else {
1097     HeapWord* result = humongous_obj_allocate(word_size, context);
1098     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1099       collector_state()->set_initiate_conc_mark_if_possible(true);
1100     }
1101     return result;
1102   }
1103 
1104   ShouldNotReachHere();
1105 }
1106 
1107 class PostMCRemSetClearClosure: public HeapRegionClosure {
1108   G1CollectedHeap* _g1h;
1109   ModRefBarrierSet* _mr_bs;
1110 public:
1111   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1112     _g1h(g1h), _mr_bs(mr_bs) {}
1113 
1114   bool doHeapRegion(HeapRegion* r) {
1115     HeapRegionRemSet* hrrs = r->rem_set();
1116 
1117     _g1h->reset_gc_time_stamps(r);
1118 
1119     if (r->is_continues_humongous()) {
1120       // We'll assert that the strong code root list and RSet is empty
1121       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1122       assert(hrrs->occupied() == 0, "RSet should be empty");
1123     } else {
1124       hrrs->clear();
1125     }
1126     // You might think here that we could clear just the cards
1127     // corresponding to the used region.  But no: if we leave a dirty card
1128     // in a region we might allocate into, then it would prevent that card
1129     // from being enqueued, and cause it to be missed.
1130     // Re: the performance cost: we shouldn't be doing full GC anyway!
1131     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1132 
1133     return false;
1134   }
1135 };
1136 
1137 void G1CollectedHeap::clear_rsets_post_compaction() {
1138   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1139   heap_region_iterate(&rs_clear);
1140 }
1141 
1142 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1143   G1CollectedHeap*   _g1h;
1144   UpdateRSOopClosure _cl;
1145 public:
1146   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1147     _cl(g1->g1_rem_set(), worker_i),
1148     _g1h(g1)
1149   { }
1150 
1151   bool doHeapRegion(HeapRegion* r) {
1152     if (!r->is_continues_humongous()) {
1153       _cl.set_from(r);
1154       r->oop_iterate(&_cl);
1155     }
1156     return false;
1157   }
1158 };
1159 
1160 class ParRebuildRSTask: public AbstractGangTask {
1161   G1CollectedHeap* _g1;
1162   HeapRegionClaimer _hrclaimer;
1163 
1164 public:
1165   ParRebuildRSTask(G1CollectedHeap* g1) :
1166       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1167 
1168   void work(uint worker_id) {
1169     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1170     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1171   }
1172 };
1173 
1174 class PostCompactionPrinterClosure: public HeapRegionClosure {
1175 private:
1176   G1HRPrinter* _hr_printer;
1177 public:
1178   bool doHeapRegion(HeapRegion* hr) {
1179     assert(!hr->is_young(), "not expecting to find young regions");
1180     if (hr->is_free()) {
1181       // We only generate output for non-empty regions.
1182     } else if (hr->is_starts_humongous()) {
1183       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1184     } else if (hr->is_continues_humongous()) {
1185       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1186     } else if (hr->is_archive()) {
1187       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1188     } else if (hr->is_old()) {
1189       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1190     } else {
1191       ShouldNotReachHere();
1192     }
1193     return false;
1194   }
1195 
1196   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1197     : _hr_printer(hr_printer) { }
1198 };
1199 
1200 void G1CollectedHeap::print_hrm_post_compaction() {
1201   PostCompactionPrinterClosure cl(hr_printer());
1202   heap_region_iterate(&cl);
1203 }
1204 
1205 bool G1CollectedHeap::do_collection(bool explicit_gc,
1206                                     bool clear_all_soft_refs,
1207                                     size_t word_size) {
1208   assert_at_safepoint(true /* should_be_vm_thread */);
1209 
1210   if (GC_locker::check_active_before_gc()) {
1211     return false;
1212   }
1213 
1214   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1215   gc_timer->register_gc_start();
1216 
1217   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1218   GCIdMark gc_id_mark;
1219   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1220 
1221   SvcGCMarker sgcm(SvcGCMarker::FULL);
1222   ResourceMark rm;
1223 
1224   G1Log::update_level();
1225   print_heap_before_gc();
1226   trace_heap_before_gc(gc_tracer);
1227 
1228   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1229 
1230   verify_region_sets_optional();
1231 
1232   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1233                            collector_policy()->should_clear_all_soft_refs();
1234 
1235   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1236 
1237   {
1238     IsGCActiveMark x;
1239 
1240     // Timing
1241     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1242     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1243 
1244     {
1245       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1246       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1247       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1248 
1249       g1_policy()->record_full_collection_start();
1250 
1251       // Note: When we have a more flexible GC logging framework that
1252       // allows us to add optional attributes to a GC log record we
1253       // could consider timing and reporting how long we wait in the
1254       // following two methods.
1255       wait_while_free_regions_coming();
1256       // If we start the compaction before the CM threads finish
1257       // scanning the root regions we might trip them over as we'll
1258       // be moving objects / updating references. So let's wait until
1259       // they are done. By telling them to abort, they should complete
1260       // early.
1261       _cm->root_regions()->abort();
1262       _cm->root_regions()->wait_until_scan_finished();
1263       append_secondary_free_list_if_not_empty_with_lock();
1264 
1265       gc_prologue(true);
1266       increment_total_collections(true /* full gc */);
1267       increment_old_marking_cycles_started();
1268 
1269       assert(used() == recalculate_used(), "Should be equal");
1270 
1271       verify_before_gc();
1272 
1273       check_bitmaps("Full GC Start");
1274       pre_full_gc_dump(gc_timer);
1275 
1276 #if defined(COMPILER2) || INCLUDE_JVMCI
1277       DerivedPointerTable::clear();
1278 #endif
1279 
1280       // Disable discovery and empty the discovered lists
1281       // for the CM ref processor.
1282       ref_processor_cm()->disable_discovery();
1283       ref_processor_cm()->abandon_partial_discovery();
1284       ref_processor_cm()->verify_no_references_recorded();
1285 
1286       // Abandon current iterations of concurrent marking and concurrent
1287       // refinement, if any are in progress. We have to do this before
1288       // wait_until_scan_finished() below.
1289       concurrent_mark()->abort();
1290 
1291       // Make sure we'll choose a new allocation region afterwards.
1292       _allocator->release_mutator_alloc_region();
1293       _allocator->abandon_gc_alloc_regions();
1294       g1_rem_set()->cleanupHRRS();
1295 
1296       // We should call this after we retire any currently active alloc
1297       // regions so that all the ALLOC / RETIRE events are generated
1298       // before the start GC event.
1299       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1300 
1301       // We may have added regions to the current incremental collection
1302       // set between the last GC or pause and now. We need to clear the
1303       // incremental collection set and then start rebuilding it afresh
1304       // after this full GC.
1305       abandon_collection_set(g1_policy()->inc_cset_head());
1306       g1_policy()->clear_incremental_cset();
1307       g1_policy()->stop_incremental_cset_building();
1308 
1309       tear_down_region_sets(false /* free_list_only */);
1310       collector_state()->set_gcs_are_young(true);
1311 
1312       // See the comments in g1CollectedHeap.hpp and
1313       // G1CollectedHeap::ref_processing_init() about
1314       // how reference processing currently works in G1.
1315 
1316       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1317       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1318 
1319       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1320       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1321 
1322       ref_processor_stw()->enable_discovery();
1323       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1324 
1325       // Do collection work
1326       {
1327         HandleMark hm;  // Discard invalid handles created during gc
1328         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1329       }
1330 
1331       assert(num_free_regions() == 0, "we should not have added any free regions");
1332       rebuild_region_sets(false /* free_list_only */);
1333 
1334       // Enqueue any discovered reference objects that have
1335       // not been removed from the discovered lists.
1336       ref_processor_stw()->enqueue_discovered_references();
1337 
1338 #if defined(COMPILER2) || INCLUDE_JVMCI
1339       DerivedPointerTable::update_pointers();
1340 #endif
1341 
1342       MemoryService::track_memory_usage();
1343 
1344       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1345       ref_processor_stw()->verify_no_references_recorded();
1346 
1347       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1348       ClassLoaderDataGraph::purge();
1349       MetaspaceAux::verify_metrics();
1350 
1351       // Note: since we've just done a full GC, concurrent
1352       // marking is no longer active. Therefore we need not
1353       // re-enable reference discovery for the CM ref processor.
1354       // That will be done at the start of the next marking cycle.
1355       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1356       ref_processor_cm()->verify_no_references_recorded();
1357 
1358       reset_gc_time_stamp();
1359       // Since everything potentially moved, we will clear all remembered
1360       // sets, and clear all cards.  Later we will rebuild remembered
1361       // sets. We will also reset the GC time stamps of the regions.
1362       clear_rsets_post_compaction();
1363       check_gc_time_stamps();
1364 
1365       // Resize the heap if necessary.
1366       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1367 
1368       if (_hr_printer.is_active()) {
1369         // We should do this after we potentially resize the heap so
1370         // that all the COMMIT / UNCOMMIT events are generated before
1371         // the end GC event.
1372 
1373         print_hrm_post_compaction();
1374         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1375       }
1376 
1377       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1378       if (hot_card_cache->use_cache()) {
1379         hot_card_cache->reset_card_counts();
1380         hot_card_cache->reset_hot_cache();
1381       }
1382 
1383       // Rebuild remembered sets of all regions.
1384       uint n_workers =
1385         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1386                                                 workers()->active_workers(),
1387                                                 Threads::number_of_non_daemon_threads());
1388       workers()->set_active_workers(n_workers);
1389 
1390       ParRebuildRSTask rebuild_rs_task(this);
1391       workers()->run_task(&rebuild_rs_task);
1392 
1393       // Rebuild the strong code root lists for each region
1394       rebuild_strong_code_roots();
1395 
1396       if (true) { // FIXME
1397         MetaspaceGC::compute_new_size();
1398       }
1399 
1400 #ifdef TRACESPINNING
1401       ParallelTaskTerminator::print_termination_counts();
1402 #endif
1403 
1404       // Discard all rset updates
1405       JavaThread::dirty_card_queue_set().abandon_logs();
1406       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1407 
1408       _young_list->reset_sampled_info();
1409       // At this point there should be no regions in the
1410       // entire heap tagged as young.
1411       assert(check_young_list_empty(true /* check_heap */),
1412              "young list should be empty at this point");
1413 
1414       // Update the number of full collections that have been completed.
1415       increment_old_marking_cycles_completed(false /* concurrent */);
1416 
1417       _hrm.verify_optional();
1418       verify_region_sets_optional();
1419 
1420       verify_after_gc();
1421 
1422       // Clear the previous marking bitmap, if needed for bitmap verification.
1423       // Note we cannot do this when we clear the next marking bitmap in
1424       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1425       // objects marked during a full GC against the previous bitmap.
1426       // But we need to clear it before calling check_bitmaps below since
1427       // the full GC has compacted objects and updated TAMS but not updated
1428       // the prev bitmap.
1429       if (G1VerifyBitmaps) {
1430         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1431       }
1432       check_bitmaps("Full GC End");
1433 
1434       // Start a new incremental collection set for the next pause
1435       assert(g1_policy()->collection_set() == NULL, "must be");
1436       g1_policy()->start_incremental_cset_building();
1437 
1438       clear_cset_fast_test();
1439 
1440       _allocator->init_mutator_alloc_region();
1441 
1442       g1_policy()->record_full_collection_end();
1443 
1444       if (G1Log::fine()) {
1445         g1_policy()->print_heap_transition();
1446       }
1447 
1448       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1449       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1450       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1451       // before any GC notifications are raised.
1452       g1mm()->update_sizes();
1453 
1454       gc_epilogue(true);
1455     }
1456 
1457     if (G1Log::finer()) {
1458       g1_policy()->print_detailed_heap_transition(true /* full */);
1459     }
1460 
1461     print_heap_after_gc();
1462     trace_heap_after_gc(gc_tracer);
1463 
1464     post_full_gc_dump(gc_timer);
1465 
1466     gc_timer->register_gc_end();
1467     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1468   }
1469 
1470   return true;
1471 }
1472 
1473 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1474   // do_collection() will return whether it succeeded in performing
1475   // the GC. Currently, there is no facility on the
1476   // do_full_collection() API to notify the caller than the collection
1477   // did not succeed (e.g., because it was locked out by the GC
1478   // locker). So, right now, we'll ignore the return value.
1479   bool dummy = do_collection(true,                /* explicit_gc */
1480                              clear_all_soft_refs,
1481                              0                    /* word_size */);
1482 }
1483 
1484 // This code is mostly copied from TenuredGeneration.
1485 void
1486 G1CollectedHeap::
1487 resize_if_necessary_after_full_collection(size_t word_size) {
1488   // Include the current allocation, if any, and bytes that will be
1489   // pre-allocated to support collections, as "used".
1490   const size_t used_after_gc = used();
1491   const size_t capacity_after_gc = capacity();
1492   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1493 
1494   // This is enforced in arguments.cpp.
1495   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1496          "otherwise the code below doesn't make sense");
1497 
1498   // We don't have floating point command-line arguments
1499   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1500   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1501   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1502   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1503 
1504   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1505   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1506 
1507   // We have to be careful here as these two calculations can overflow
1508   // 32-bit size_t's.
1509   double used_after_gc_d = (double) used_after_gc;
1510   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1511   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1512 
1513   // Let's make sure that they are both under the max heap size, which
1514   // by default will make them fit into a size_t.
1515   double desired_capacity_upper_bound = (double) max_heap_size;
1516   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1517                                     desired_capacity_upper_bound);
1518   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1519                                     desired_capacity_upper_bound);
1520 
1521   // We can now safely turn them into size_t's.
1522   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1523   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1524 
1525   // This assert only makes sense here, before we adjust them
1526   // with respect to the min and max heap size.
1527   assert(minimum_desired_capacity <= maximum_desired_capacity,
1528          "minimum_desired_capacity = " SIZE_FORMAT ", "
1529          "maximum_desired_capacity = " SIZE_FORMAT,
1530          minimum_desired_capacity, maximum_desired_capacity);
1531 
1532   // Should not be greater than the heap max size. No need to adjust
1533   // it with respect to the heap min size as it's a lower bound (i.e.,
1534   // we'll try to make the capacity larger than it, not smaller).
1535   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1536   // Should not be less than the heap min size. No need to adjust it
1537   // with respect to the heap max size as it's an upper bound (i.e.,
1538   // we'll try to make the capacity smaller than it, not greater).
1539   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1540 
1541   if (capacity_after_gc < minimum_desired_capacity) {
1542     // Don't expand unless it's significant
1543     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1544     ergo_verbose4(ErgoHeapSizing,
1545                   "attempt heap expansion",
1546                   ergo_format_reason("capacity lower than "
1547                                      "min desired capacity after Full GC")
1548                   ergo_format_byte("capacity")
1549                   ergo_format_byte("occupancy")
1550                   ergo_format_byte_perc("min desired capacity"),
1551                   capacity_after_gc, used_after_gc,
1552                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1553     expand(expand_bytes);
1554 
1555     // No expansion, now see if we want to shrink
1556   } else if (capacity_after_gc > maximum_desired_capacity) {
1557     // Capacity too large, compute shrinking size
1558     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1559     ergo_verbose4(ErgoHeapSizing,
1560                   "attempt heap shrinking",
1561                   ergo_format_reason("capacity higher than "
1562                                      "max desired capacity after Full GC")
1563                   ergo_format_byte("capacity")
1564                   ergo_format_byte("occupancy")
1565                   ergo_format_byte_perc("max desired capacity"),
1566                   capacity_after_gc, used_after_gc,
1567                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1568     shrink(shrink_bytes);
1569   }
1570 }
1571 
1572 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1573                                                             AllocationContext_t context,
1574                                                             bool do_gc,
1575                                                             bool clear_all_soft_refs,
1576                                                             bool expect_null_mutator_alloc_region,
1577                                                             bool* gc_succeeded) {
1578   *gc_succeeded = true;
1579   // Let's attempt the allocation first.
1580   HeapWord* result =
1581     attempt_allocation_at_safepoint(word_size,
1582                                     context,
1583                                     expect_null_mutator_alloc_region);
1584   if (result != NULL) {
1585     assert(*gc_succeeded, "sanity");
1586     return result;
1587   }
1588 
1589   // In a G1 heap, we're supposed to keep allocation from failing by
1590   // incremental pauses.  Therefore, at least for now, we'll favor
1591   // expansion over collection.  (This might change in the future if we can
1592   // do something smarter than full collection to satisfy a failed alloc.)
1593   result = expand_and_allocate(word_size, context);
1594   if (result != NULL) {
1595     assert(*gc_succeeded, "sanity");
1596     return result;
1597   }
1598 
1599   if (do_gc) {
1600     // Expansion didn't work, we'll try to do a Full GC.
1601     *gc_succeeded = do_collection(false, /* explicit_gc */
1602                                   clear_all_soft_refs,
1603                                   word_size);
1604   }
1605 
1606   return NULL;
1607 }
1608 
1609 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1610                                                      AllocationContext_t context,
1611                                                      bool* succeeded) {
1612   assert_at_safepoint(true /* should_be_vm_thread */);
1613 
1614   // Attempts to allocate followed by Full GC.
1615   HeapWord* result =
1616     satisfy_failed_allocation_helper(word_size,
1617                                      context,
1618                                      true,  /* do_gc */
1619                                      false, /* clear_all_soft_refs */
1620                                      false, /* expect_null_mutator_alloc_region */
1621                                      succeeded);
1622 
1623   if (result != NULL || !*succeeded) {
1624     return result;
1625   }
1626 
1627   // Attempts to allocate followed by Full GC that will collect all soft references.
1628   result = satisfy_failed_allocation_helper(word_size,
1629                                             context,
1630                                             true, /* do_gc */
1631                                             true, /* clear_all_soft_refs */
1632                                             true, /* expect_null_mutator_alloc_region */
1633                                             succeeded);
1634 
1635   if (result != NULL || !*succeeded) {
1636     return result;
1637   }
1638 
1639   // Attempts to allocate, no GC
1640   result = satisfy_failed_allocation_helper(word_size,
1641                                             context,
1642                                             false, /* do_gc */
1643                                             false, /* clear_all_soft_refs */
1644                                             true,  /* expect_null_mutator_alloc_region */
1645                                             succeeded);
1646 
1647   if (result != NULL) {
1648     assert(*succeeded, "sanity");
1649     return result;
1650   }
1651 
1652   assert(!collector_policy()->should_clear_all_soft_refs(),
1653          "Flag should have been handled and cleared prior to this point");
1654 
1655   // What else?  We might try synchronous finalization later.  If the total
1656   // space available is large enough for the allocation, then a more
1657   // complete compaction phase than we've tried so far might be
1658   // appropriate.
1659   assert(*succeeded, "sanity");
1660   return NULL;
1661 }
1662 
1663 // Attempting to expand the heap sufficiently
1664 // to support an allocation of the given "word_size".  If
1665 // successful, perform the allocation and return the address of the
1666 // allocated block, or else "NULL".
1667 
1668 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1669   assert_at_safepoint(true /* should_be_vm_thread */);
1670 
1671   verify_region_sets_optional();
1672 
1673   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1674   ergo_verbose1(ErgoHeapSizing,
1675                 "attempt heap expansion",
1676                 ergo_format_reason("allocation request failed")
1677                 ergo_format_byte("allocation request"),
1678                 word_size * HeapWordSize);
1679   if (expand(expand_bytes)) {
1680     _hrm.verify_optional();
1681     verify_region_sets_optional();
1682     return attempt_allocation_at_safepoint(word_size,
1683                                            context,
1684                                            false /* expect_null_mutator_alloc_region */);
1685   }
1686   return NULL;
1687 }
1688 
1689 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1690   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1691   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1692                                        HeapRegion::GrainBytes);
1693   ergo_verbose2(ErgoHeapSizing,
1694                 "expand the heap",
1695                 ergo_format_byte("requested expansion amount")
1696                 ergo_format_byte("attempted expansion amount"),
1697                 expand_bytes, aligned_expand_bytes);
1698 
1699   if (is_maximal_no_gc()) {
1700     ergo_verbose0(ErgoHeapSizing,
1701                       "did not expand the heap",
1702                       ergo_format_reason("heap already fully expanded"));
1703     return false;
1704   }
1705 
1706   double expand_heap_start_time_sec = os::elapsedTime();
1707   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1708   assert(regions_to_expand > 0, "Must expand by at least one region");
1709 
1710   uint expanded_by = _hrm.expand_by(regions_to_expand);
1711   if (expand_time_ms != NULL) {
1712     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1713   }
1714 
1715   if (expanded_by > 0) {
1716     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1717     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1718     g1_policy()->record_new_heap_size(num_regions());
1719   } else {
1720     ergo_verbose0(ErgoHeapSizing,
1721                   "did not expand the heap",
1722                   ergo_format_reason("heap expansion operation failed"));
1723     // The expansion of the virtual storage space was unsuccessful.
1724     // Let's see if it was because we ran out of swap.
1725     if (G1ExitOnExpansionFailure &&
1726         _hrm.available() >= regions_to_expand) {
1727       // We had head room...
1728       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1729     }
1730   }
1731   return regions_to_expand > 0;
1732 }
1733 
1734 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1735   size_t aligned_shrink_bytes =
1736     ReservedSpace::page_align_size_down(shrink_bytes);
1737   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1738                                          HeapRegion::GrainBytes);
1739   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1740 
1741   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1742   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1743 
1744   ergo_verbose3(ErgoHeapSizing,
1745                 "shrink the heap",
1746                 ergo_format_byte("requested shrinking amount")
1747                 ergo_format_byte("aligned shrinking amount")
1748                 ergo_format_byte("attempted shrinking amount"),
1749                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1750   if (num_regions_removed > 0) {
1751     g1_policy()->record_new_heap_size(num_regions());
1752   } else {
1753     ergo_verbose0(ErgoHeapSizing,
1754                   "did not shrink the heap",
1755                   ergo_format_reason("heap shrinking operation failed"));
1756   }
1757 }
1758 
1759 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1760   verify_region_sets_optional();
1761 
1762   // We should only reach here at the end of a Full GC which means we
1763   // should not not be holding to any GC alloc regions. The method
1764   // below will make sure of that and do any remaining clean up.
1765   _allocator->abandon_gc_alloc_regions();
1766 
1767   // Instead of tearing down / rebuilding the free lists here, we
1768   // could instead use the remove_all_pending() method on free_list to
1769   // remove only the ones that we need to remove.
1770   tear_down_region_sets(true /* free_list_only */);
1771   shrink_helper(shrink_bytes);
1772   rebuild_region_sets(true /* free_list_only */);
1773 
1774   _hrm.verify_optional();
1775   verify_region_sets_optional();
1776 }
1777 
1778 // Public methods.
1779 
1780 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1781   CollectedHeap(),
1782   _g1_policy(policy_),
1783   _dirty_card_queue_set(false),
1784   _is_alive_closure_cm(this),
1785   _is_alive_closure_stw(this),
1786   _ref_processor_cm(NULL),
1787   _ref_processor_stw(NULL),
1788   _bot_shared(NULL),
1789   _cg1r(NULL),
1790   _g1mm(NULL),
1791   _refine_cte_cl(NULL),
1792   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1793   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1794   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1795   _humongous_reclaim_candidates(),
1796   _has_humongous_reclaim_candidates(false),
1797   _archive_allocator(NULL),
1798   _free_regions_coming(false),
1799   _young_list(new YoungList(this)),
1800   _gc_time_stamp(0),
1801   _summary_bytes_used(0),
1802   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1803   _old_evac_stats(OldPLABSize, PLABWeight),
1804   _expand_heap_after_alloc_failure(true),
1805   _old_marking_cycles_started(0),
1806   _old_marking_cycles_completed(0),
1807   _heap_summary_sent(false),
1808   _in_cset_fast_test(),
1809   _dirty_cards_region_list(NULL),
1810   _worker_cset_start_region(NULL),
1811   _worker_cset_start_region_time_stamp(NULL),
1812   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1813   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1814   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1815   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1816 
1817   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1818                           /* are_GC_task_threads */true,
1819                           /* are_ConcurrentGC_threads */false);
1820   _workers->initialize_workers();
1821 
1822   _allocator = G1Allocator::create_allocator(this);
1823   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1824 
1825   // Override the default _filler_array_max_size so that no humongous filler
1826   // objects are created.
1827   _filler_array_max_size = _humongous_object_threshold_in_words;
1828 
1829   uint n_queues = ParallelGCThreads;
1830   _task_queues = new RefToScanQueueSet(n_queues);
1831 
1832   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1833   assert(n_rem_sets > 0, "Invariant.");
1834 
1835   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1836   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1837   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1838 
1839   for (uint i = 0; i < n_queues; i++) {
1840     RefToScanQueue* q = new RefToScanQueue();
1841     q->initialize();
1842     _task_queues->register_queue(i, q);
1843     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1844   }
1845   clear_cset_start_regions();
1846 
1847   // Initialize the G1EvacuationFailureALot counters and flags.
1848   NOT_PRODUCT(reset_evacuation_should_fail();)
1849 
1850   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1851 }
1852 
1853 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1854                                                                  size_t size,
1855                                                                  size_t translation_factor) {
1856   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1857   // Allocate a new reserved space, preferring to use large pages.
1858   ReservedSpace rs(size, preferred_page_size);
1859   G1RegionToSpaceMapper* result  =
1860     G1RegionToSpaceMapper::create_mapper(rs,
1861                                          size,
1862                                          rs.alignment(),
1863                                          HeapRegion::GrainBytes,
1864                                          translation_factor,
1865                                          mtGC);
1866   if (TracePageSizes) {
1867     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1868                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1869   }
1870   return result;
1871 }
1872 
1873 jint G1CollectedHeap::initialize() {
1874   CollectedHeap::pre_initialize();
1875   os::enable_vtime();
1876 
1877   G1Log::init();
1878 
1879   // Necessary to satisfy locking discipline assertions.
1880 
1881   MutexLocker x(Heap_lock);
1882 
1883   // We have to initialize the printer before committing the heap, as
1884   // it will be used then.
1885   _hr_printer.set_active(G1PrintHeapRegions);
1886 
1887   // While there are no constraints in the GC code that HeapWordSize
1888   // be any particular value, there are multiple other areas in the
1889   // system which believe this to be true (e.g. oop->object_size in some
1890   // cases incorrectly returns the size in wordSize units rather than
1891   // HeapWordSize).
1892   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1893 
1894   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1895   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1896   size_t heap_alignment = collector_policy()->heap_alignment();
1897 
1898   // Ensure that the sizes are properly aligned.
1899   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1900   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1901   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1902 
1903   _refine_cte_cl = new RefineCardTableEntryClosure();
1904 
1905   jint ecode = JNI_OK;
1906   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1907   if (_cg1r == NULL) {
1908     return ecode;
1909   }
1910 
1911   // Reserve the maximum.
1912 
1913   // When compressed oops are enabled, the preferred heap base
1914   // is calculated by subtracting the requested size from the
1915   // 32Gb boundary and using the result as the base address for
1916   // heap reservation. If the requested size is not aligned to
1917   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1918   // into the ReservedHeapSpace constructor) then the actual
1919   // base of the reserved heap may end up differing from the
1920   // address that was requested (i.e. the preferred heap base).
1921   // If this happens then we could end up using a non-optimal
1922   // compressed oops mode.
1923 
1924   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1925                                                  heap_alignment);
1926 
1927   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1928 
1929   // Create the barrier set for the entire reserved region.
1930   G1SATBCardTableLoggingModRefBS* bs
1931     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1932   bs->initialize();
1933   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1934   set_barrier_set(bs);
1935 
1936   // Also create a G1 rem set.
1937   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1938 
1939   // Carve out the G1 part of the heap.
1940 
1941   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1942   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1943   G1RegionToSpaceMapper* heap_storage =
1944     G1RegionToSpaceMapper::create_mapper(g1_rs,
1945                                          g1_rs.size(),
1946                                          page_size,
1947                                          HeapRegion::GrainBytes,
1948                                          1,
1949                                          mtJavaHeap);
1950   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1951                        max_byte_size, page_size,
1952                        heap_rs.base(),
1953                        heap_rs.size());
1954   heap_storage->set_mapping_changed_listener(&_listener);
1955 
1956   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1957   G1RegionToSpaceMapper* bot_storage =
1958     create_aux_memory_mapper("Block offset table",
1959                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1960                              G1BlockOffsetSharedArray::heap_map_factor());
1961 
1962   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1963   G1RegionToSpaceMapper* cardtable_storage =
1964     create_aux_memory_mapper("Card table",
1965                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1966                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1967 
1968   G1RegionToSpaceMapper* card_counts_storage =
1969     create_aux_memory_mapper("Card counts table",
1970                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1971                              G1CardCounts::heap_map_factor());
1972 
1973   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1974   G1RegionToSpaceMapper* prev_bitmap_storage =
1975     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1976   G1RegionToSpaceMapper* next_bitmap_storage =
1977     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1978 
1979   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1980   g1_barrier_set()->initialize(cardtable_storage);
1981    // Do later initialization work for concurrent refinement.
1982   _cg1r->init(card_counts_storage);
1983 
1984   // 6843694 - ensure that the maximum region index can fit
1985   // in the remembered set structures.
1986   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1987   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1988 
1989   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1990   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1991   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1992             "too many cards per region");
1993 
1994   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1995 
1996   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1997 
1998   {
1999     HeapWord* start = _hrm.reserved().start();
2000     HeapWord* end = _hrm.reserved().end();
2001     size_t granularity = HeapRegion::GrainBytes;
2002 
2003     _in_cset_fast_test.initialize(start, end, granularity);
2004     _humongous_reclaim_candidates.initialize(start, end, granularity);
2005   }
2006 
2007   // Create the ConcurrentMark data structure and thread.
2008   // (Must do this late, so that "max_regions" is defined.)
2009   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2010   if (_cm == NULL || !_cm->completed_initialization()) {
2011     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2012     return JNI_ENOMEM;
2013   }
2014   _cmThread = _cm->cmThread();
2015 
2016   // Initialize the from_card cache structure of HeapRegionRemSet.
2017   HeapRegionRemSet::init_heap(max_regions());
2018 
2019   // Now expand into the initial heap size.
2020   if (!expand(init_byte_size)) {
2021     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2022     return JNI_ENOMEM;
2023   }
2024 
2025   // Perform any initialization actions delegated to the policy.
2026   g1_policy()->init();
2027 
2028   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2029                                                SATB_Q_FL_lock,
2030                                                G1SATBProcessCompletedThreshold,
2031                                                Shared_SATB_Q_lock);
2032 
2033   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2034                                                 DirtyCardQ_CBL_mon,
2035                                                 DirtyCardQ_FL_lock,
2036                                                 concurrent_g1_refine()->yellow_zone(),
2037                                                 concurrent_g1_refine()->red_zone(),
2038                                                 Shared_DirtyCardQ_lock);
2039 
2040   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2041                                     DirtyCardQ_CBL_mon,
2042                                     DirtyCardQ_FL_lock,
2043                                     -1, // never trigger processing
2044                                     -1, // no limit on length
2045                                     Shared_DirtyCardQ_lock,
2046                                     &JavaThread::dirty_card_queue_set());
2047 
2048   // Here we allocate the dummy HeapRegion that is required by the
2049   // G1AllocRegion class.
2050   HeapRegion* dummy_region = _hrm.get_dummy_region();
2051 
2052   // We'll re-use the same region whether the alloc region will
2053   // require BOT updates or not and, if it doesn't, then a non-young
2054   // region will complain that it cannot support allocations without
2055   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2056   dummy_region->set_eden();
2057   // Make sure it's full.
2058   dummy_region->set_top(dummy_region->end());
2059   G1AllocRegion::setup(this, dummy_region);
2060 
2061   _allocator->init_mutator_alloc_region();
2062 
2063   // Do create of the monitoring and management support so that
2064   // values in the heap have been properly initialized.
2065   _g1mm = new G1MonitoringSupport(this);
2066 
2067   G1StringDedup::initialize();
2068 
2069   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2070   for (uint i = 0; i < ParallelGCThreads; i++) {
2071     new (&_preserved_objs[i]) OopAndMarkOopStack();
2072   }
2073 
2074   return JNI_OK;
2075 }
2076 
2077 void G1CollectedHeap::stop() {
2078   // Stop all concurrent threads. We do this to make sure these threads
2079   // do not continue to execute and access resources (e.g. gclog_or_tty)
2080   // that are destroyed during shutdown.
2081   _cg1r->stop();
2082   _cmThread->stop();
2083   if (G1StringDedup::is_enabled()) {
2084     G1StringDedup::stop();
2085   }
2086 }
2087 
2088 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2089   return HeapRegion::max_region_size();
2090 }
2091 
2092 void G1CollectedHeap::post_initialize() {
2093   CollectedHeap::post_initialize();
2094   ref_processing_init();
2095 }
2096 
2097 void G1CollectedHeap::ref_processing_init() {
2098   // Reference processing in G1 currently works as follows:
2099   //
2100   // * There are two reference processor instances. One is
2101   //   used to record and process discovered references
2102   //   during concurrent marking; the other is used to
2103   //   record and process references during STW pauses
2104   //   (both full and incremental).
2105   // * Both ref processors need to 'span' the entire heap as
2106   //   the regions in the collection set may be dotted around.
2107   //
2108   // * For the concurrent marking ref processor:
2109   //   * Reference discovery is enabled at initial marking.
2110   //   * Reference discovery is disabled and the discovered
2111   //     references processed etc during remarking.
2112   //   * Reference discovery is MT (see below).
2113   //   * Reference discovery requires a barrier (see below).
2114   //   * Reference processing may or may not be MT
2115   //     (depending on the value of ParallelRefProcEnabled
2116   //     and ParallelGCThreads).
2117   //   * A full GC disables reference discovery by the CM
2118   //     ref processor and abandons any entries on it's
2119   //     discovered lists.
2120   //
2121   // * For the STW processor:
2122   //   * Non MT discovery is enabled at the start of a full GC.
2123   //   * Processing and enqueueing during a full GC is non-MT.
2124   //   * During a full GC, references are processed after marking.
2125   //
2126   //   * Discovery (may or may not be MT) is enabled at the start
2127   //     of an incremental evacuation pause.
2128   //   * References are processed near the end of a STW evacuation pause.
2129   //   * For both types of GC:
2130   //     * Discovery is atomic - i.e. not concurrent.
2131   //     * Reference discovery will not need a barrier.
2132 
2133   MemRegion mr = reserved_region();
2134 
2135   // Concurrent Mark ref processor
2136   _ref_processor_cm =
2137     new ReferenceProcessor(mr,    // span
2138                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2139                                 // mt processing
2140                            ParallelGCThreads,
2141                                 // degree of mt processing
2142                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2143                                 // mt discovery
2144                            MAX2(ParallelGCThreads, ConcGCThreads),
2145                                 // degree of mt discovery
2146                            false,
2147                                 // Reference discovery is not atomic
2148                            &_is_alive_closure_cm);
2149                                 // is alive closure
2150                                 // (for efficiency/performance)
2151 
2152   // STW ref processor
2153   _ref_processor_stw =
2154     new ReferenceProcessor(mr,    // span
2155                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2156                                 // mt processing
2157                            ParallelGCThreads,
2158                                 // degree of mt processing
2159                            (ParallelGCThreads > 1),
2160                                 // mt discovery
2161                            ParallelGCThreads,
2162                                 // degree of mt discovery
2163                            true,
2164                                 // Reference discovery is atomic
2165                            &_is_alive_closure_stw);
2166                                 // is alive closure
2167                                 // (for efficiency/performance)
2168 }
2169 
2170 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2171   return g1_policy();
2172 }
2173 
2174 size_t G1CollectedHeap::capacity() const {
2175   return _hrm.length() * HeapRegion::GrainBytes;
2176 }
2177 
2178 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2179   hr->reset_gc_time_stamp();
2180 }
2181 
2182 #ifndef PRODUCT
2183 
2184 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2185 private:
2186   unsigned _gc_time_stamp;
2187   bool _failures;
2188 
2189 public:
2190   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2191     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2192 
2193   virtual bool doHeapRegion(HeapRegion* hr) {
2194     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2195     if (_gc_time_stamp != region_gc_time_stamp) {
2196       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2197                              "expected %d", HR_FORMAT_PARAMS(hr),
2198                              region_gc_time_stamp, _gc_time_stamp);
2199       _failures = true;
2200     }
2201     return false;
2202   }
2203 
2204   bool failures() { return _failures; }
2205 };
2206 
2207 void G1CollectedHeap::check_gc_time_stamps() {
2208   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2209   heap_region_iterate(&cl);
2210   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2211 }
2212 #endif // PRODUCT
2213 
2214 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2215   _cg1r->hot_card_cache()->drain(cl, worker_i);
2216 }
2217 
2218 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2219   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2220   size_t n_completed_buffers = 0;
2221   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2222     n_completed_buffers++;
2223   }
2224   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2225   dcqs.clear_n_completed_buffers();
2226   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2227 }
2228 
2229 // Computes the sum of the storage used by the various regions.
2230 size_t G1CollectedHeap::used() const {
2231   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2232   if (_archive_allocator != NULL) {
2233     result += _archive_allocator->used();
2234   }
2235   return result;
2236 }
2237 
2238 size_t G1CollectedHeap::used_unlocked() const {
2239   return _summary_bytes_used;
2240 }
2241 
2242 class SumUsedClosure: public HeapRegionClosure {
2243   size_t _used;
2244 public:
2245   SumUsedClosure() : _used(0) {}
2246   bool doHeapRegion(HeapRegion* r) {
2247     _used += r->used();
2248     return false;
2249   }
2250   size_t result() { return _used; }
2251 };
2252 
2253 size_t G1CollectedHeap::recalculate_used() const {
2254   double recalculate_used_start = os::elapsedTime();
2255 
2256   SumUsedClosure blk;
2257   heap_region_iterate(&blk);
2258 
2259   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2260   return blk.result();
2261 }
2262 
2263 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2264   switch (cause) {
2265     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2266     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2267     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2268     case GCCause::_g1_humongous_allocation: return true;
2269     case GCCause::_update_allocation_context_stats_inc: return true;
2270     case GCCause::_wb_conc_mark:            return true;
2271     default:                                return false;
2272   }
2273 }
2274 
2275 #ifndef PRODUCT
2276 void G1CollectedHeap::allocate_dummy_regions() {
2277   // Let's fill up most of the region
2278   size_t word_size = HeapRegion::GrainWords - 1024;
2279   // And as a result the region we'll allocate will be humongous.
2280   guarantee(is_humongous(word_size), "sanity");
2281 
2282   // _filler_array_max_size is set to humongous object threshold
2283   // but temporarily change it to use CollectedHeap::fill_with_object().
2284   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2285 
2286   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2287     // Let's use the existing mechanism for the allocation
2288     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2289                                                  AllocationContext::system());
2290     if (dummy_obj != NULL) {
2291       MemRegion mr(dummy_obj, word_size);
2292       CollectedHeap::fill_with_object(mr);
2293     } else {
2294       // If we can't allocate once, we probably cannot allocate
2295       // again. Let's get out of the loop.
2296       break;
2297     }
2298   }
2299 }
2300 #endif // !PRODUCT
2301 
2302 void G1CollectedHeap::increment_old_marking_cycles_started() {
2303   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2304          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2305          "Wrong marking cycle count (started: %d, completed: %d)",
2306          _old_marking_cycles_started, _old_marking_cycles_completed);
2307 
2308   _old_marking_cycles_started++;
2309 }
2310 
2311 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2312   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2313 
2314   // We assume that if concurrent == true, then the caller is a
2315   // concurrent thread that was joined the Suspendible Thread
2316   // Set. If there's ever a cheap way to check this, we should add an
2317   // assert here.
2318 
2319   // Given that this method is called at the end of a Full GC or of a
2320   // concurrent cycle, and those can be nested (i.e., a Full GC can
2321   // interrupt a concurrent cycle), the number of full collections
2322   // completed should be either one (in the case where there was no
2323   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2324   // behind the number of full collections started.
2325 
2326   // This is the case for the inner caller, i.e. a Full GC.
2327   assert(concurrent ||
2328          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2329          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2330          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2331          "is inconsistent with _old_marking_cycles_completed = %u",
2332          _old_marking_cycles_started, _old_marking_cycles_completed);
2333 
2334   // This is the case for the outer caller, i.e. the concurrent cycle.
2335   assert(!concurrent ||
2336          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2337          "for outer caller (concurrent cycle): "
2338          "_old_marking_cycles_started = %u "
2339          "is inconsistent with _old_marking_cycles_completed = %u",
2340          _old_marking_cycles_started, _old_marking_cycles_completed);
2341 
2342   _old_marking_cycles_completed += 1;
2343 
2344   // We need to clear the "in_progress" flag in the CM thread before
2345   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2346   // is set) so that if a waiter requests another System.gc() it doesn't
2347   // incorrectly see that a marking cycle is still in progress.
2348   if (concurrent) {
2349     _cmThread->set_idle();
2350   }
2351 
2352   // This notify_all() will ensure that a thread that called
2353   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2354   // and it's waiting for a full GC to finish will be woken up. It is
2355   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2356   FullGCCount_lock->notify_all();
2357 }
2358 
2359 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2360   GCIdMarkAndRestore conc_gc_id_mark;
2361   collector_state()->set_concurrent_cycle_started(true);
2362   _gc_timer_cm->register_gc_start(start_time);
2363 
2364   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2365   trace_heap_before_gc(_gc_tracer_cm);
2366   _cmThread->set_gc_id(GCId::current());
2367 }
2368 
2369 void G1CollectedHeap::register_concurrent_cycle_end() {
2370   if (collector_state()->concurrent_cycle_started()) {
2371     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2372     if (_cm->has_aborted()) {
2373       _gc_tracer_cm->report_concurrent_mode_failure();
2374     }
2375 
2376     _gc_timer_cm->register_gc_end();
2377     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2378 
2379     // Clear state variables to prepare for the next concurrent cycle.
2380      collector_state()->set_concurrent_cycle_started(false);
2381     _heap_summary_sent = false;
2382   }
2383 }
2384 
2385 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2386   if (collector_state()->concurrent_cycle_started()) {
2387     // This function can be called when:
2388     //  the cleanup pause is run
2389     //  the concurrent cycle is aborted before the cleanup pause.
2390     //  the concurrent cycle is aborted after the cleanup pause,
2391     //   but before the concurrent cycle end has been registered.
2392     // Make sure that we only send the heap information once.
2393     if (!_heap_summary_sent) {
2394       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2395       trace_heap_after_gc(_gc_tracer_cm);
2396       _heap_summary_sent = true;
2397     }
2398   }
2399 }
2400 
2401 void G1CollectedHeap::collect(GCCause::Cause cause) {
2402   assert_heap_not_locked();
2403 
2404   uint gc_count_before;
2405   uint old_marking_count_before;
2406   uint full_gc_count_before;
2407   bool retry_gc;
2408 
2409   do {
2410     retry_gc = false;
2411 
2412     {
2413       MutexLocker ml(Heap_lock);
2414 
2415       // Read the GC count while holding the Heap_lock
2416       gc_count_before = total_collections();
2417       full_gc_count_before = total_full_collections();
2418       old_marking_count_before = _old_marking_cycles_started;
2419     }
2420 
2421     if (should_do_concurrent_full_gc(cause)) {
2422       // Schedule an initial-mark evacuation pause that will start a
2423       // concurrent cycle. We're setting word_size to 0 which means that
2424       // we are not requesting a post-GC allocation.
2425       VM_G1IncCollectionPause op(gc_count_before,
2426                                  0,     /* word_size */
2427                                  true,  /* should_initiate_conc_mark */
2428                                  g1_policy()->max_pause_time_ms(),
2429                                  cause);
2430       op.set_allocation_context(AllocationContext::current());
2431 
2432       VMThread::execute(&op);
2433       if (!op.pause_succeeded()) {
2434         if (old_marking_count_before == _old_marking_cycles_started) {
2435           retry_gc = op.should_retry_gc();
2436         } else {
2437           // A Full GC happened while we were trying to schedule the
2438           // initial-mark GC. No point in starting a new cycle given
2439           // that the whole heap was collected anyway.
2440         }
2441 
2442         if (retry_gc) {
2443           if (GC_locker::is_active_and_needs_gc()) {
2444             GC_locker::stall_until_clear();
2445           }
2446         }
2447       }
2448     } else {
2449       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2450           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2451 
2452         // Schedule a standard evacuation pause. We're setting word_size
2453         // to 0 which means that we are not requesting a post-GC allocation.
2454         VM_G1IncCollectionPause op(gc_count_before,
2455                                    0,     /* word_size */
2456                                    false, /* should_initiate_conc_mark */
2457                                    g1_policy()->max_pause_time_ms(),
2458                                    cause);
2459         VMThread::execute(&op);
2460       } else {
2461         // Schedule a Full GC.
2462         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2463         VMThread::execute(&op);
2464       }
2465     }
2466   } while (retry_gc);
2467 }
2468 
2469 bool G1CollectedHeap::is_in(const void* p) const {
2470   if (_hrm.reserved().contains(p)) {
2471     // Given that we know that p is in the reserved space,
2472     // heap_region_containing() should successfully
2473     // return the containing region.
2474     HeapRegion* hr = heap_region_containing(p);
2475     return hr->is_in(p);
2476   } else {
2477     return false;
2478   }
2479 }
2480 
2481 #ifdef ASSERT
2482 bool G1CollectedHeap::is_in_exact(const void* p) const {
2483   bool contains = reserved_region().contains(p);
2484   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2485   if (contains && available) {
2486     return true;
2487   } else {
2488     return false;
2489   }
2490 }
2491 #endif
2492 
2493 bool G1CollectedHeap::obj_in_cs(oop obj) {
2494   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2495   return r != NULL && r->in_collection_set();
2496 }
2497 
2498 // Iteration functions.
2499 
2500 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2501 
2502 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2503   ExtendedOopClosure* _cl;
2504 public:
2505   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2506   bool doHeapRegion(HeapRegion* r) {
2507     if (!r->is_continues_humongous()) {
2508       r->oop_iterate(_cl);
2509     }
2510     return false;
2511   }
2512 };
2513 
2514 // Iterates an ObjectClosure over all objects within a HeapRegion.
2515 
2516 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2517   ObjectClosure* _cl;
2518 public:
2519   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2520   bool doHeapRegion(HeapRegion* r) {
2521     if (!r->is_continues_humongous()) {
2522       r->object_iterate(_cl);
2523     }
2524     return false;
2525   }
2526 };
2527 
2528 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2529   IterateObjectClosureRegionClosure blk(cl);
2530   heap_region_iterate(&blk);
2531 }
2532 
2533 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2534   _hrm.iterate(cl);
2535 }
2536 
2537 void
2538 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2539                                          uint worker_id,
2540                                          HeapRegionClaimer *hrclaimer,
2541                                          bool concurrent) const {
2542   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2543 }
2544 
2545 // Clear the cached CSet starting regions and (more importantly)
2546 // the time stamps. Called when we reset the GC time stamp.
2547 void G1CollectedHeap::clear_cset_start_regions() {
2548   assert(_worker_cset_start_region != NULL, "sanity");
2549   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2550 
2551   for (uint i = 0; i < ParallelGCThreads; i++) {
2552     _worker_cset_start_region[i] = NULL;
2553     _worker_cset_start_region_time_stamp[i] = 0;
2554   }
2555 }
2556 
2557 // Given the id of a worker, obtain or calculate a suitable
2558 // starting region for iterating over the current collection set.
2559 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2560   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2561 
2562   HeapRegion* result = NULL;
2563   unsigned gc_time_stamp = get_gc_time_stamp();
2564 
2565   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2566     // Cached starting region for current worker was set
2567     // during the current pause - so it's valid.
2568     // Note: the cached starting heap region may be NULL
2569     // (when the collection set is empty).
2570     result = _worker_cset_start_region[worker_i];
2571     assert(result == NULL || result->in_collection_set(), "sanity");
2572     return result;
2573   }
2574 
2575   // The cached entry was not valid so let's calculate
2576   // a suitable starting heap region for this worker.
2577 
2578   // We want the parallel threads to start their collection
2579   // set iteration at different collection set regions to
2580   // avoid contention.
2581   // If we have:
2582   //          n collection set regions
2583   //          p threads
2584   // Then thread t will start at region floor ((t * n) / p)
2585 
2586   result = g1_policy()->collection_set();
2587   uint cs_size = g1_policy()->cset_region_length();
2588   uint active_workers = workers()->active_workers();
2589 
2590   uint end_ind   = (cs_size * worker_i) / active_workers;
2591   uint start_ind = 0;
2592 
2593   if (worker_i > 0 &&
2594       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2595     // Previous workers starting region is valid
2596     // so let's iterate from there
2597     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2598     result = _worker_cset_start_region[worker_i - 1];
2599   }
2600 
2601   for (uint i = start_ind; i < end_ind; i++) {
2602     result = result->next_in_collection_set();
2603   }
2604 
2605   // Note: the calculated starting heap region may be NULL
2606   // (when the collection set is empty).
2607   assert(result == NULL || result->in_collection_set(), "sanity");
2608   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2609          "should be updated only once per pause");
2610   _worker_cset_start_region[worker_i] = result;
2611   OrderAccess::storestore();
2612   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2613   return result;
2614 }
2615 
2616 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2617   HeapRegion* r = g1_policy()->collection_set();
2618   while (r != NULL) {
2619     HeapRegion* next = r->next_in_collection_set();
2620     if (cl->doHeapRegion(r)) {
2621       cl->incomplete();
2622       return;
2623     }
2624     r = next;
2625   }
2626 }
2627 
2628 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2629                                                   HeapRegionClosure *cl) {
2630   if (r == NULL) {
2631     // The CSet is empty so there's nothing to do.
2632     return;
2633   }
2634 
2635   assert(r->in_collection_set(),
2636          "Start region must be a member of the collection set.");
2637   HeapRegion* cur = r;
2638   while (cur != NULL) {
2639     HeapRegion* next = cur->next_in_collection_set();
2640     if (cl->doHeapRegion(cur) && false) {
2641       cl->incomplete();
2642       return;
2643     }
2644     cur = next;
2645   }
2646   cur = g1_policy()->collection_set();
2647   while (cur != r) {
2648     HeapRegion* next = cur->next_in_collection_set();
2649     if (cl->doHeapRegion(cur) && false) {
2650       cl->incomplete();
2651       return;
2652     }
2653     cur = next;
2654   }
2655 }
2656 
2657 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2658   HeapRegion* result = _hrm.next_region_in_heap(from);
2659   while (result != NULL && result->is_pinned()) {
2660     result = _hrm.next_region_in_heap(result);
2661   }
2662   return result;
2663 }
2664 
2665 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2666   HeapRegion* hr = heap_region_containing(addr);
2667   return hr->block_start(addr);
2668 }
2669 
2670 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2671   HeapRegion* hr = heap_region_containing(addr);
2672   return hr->block_size(addr);
2673 }
2674 
2675 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2676   HeapRegion* hr = heap_region_containing(addr);
2677   return hr->block_is_obj(addr);
2678 }
2679 
2680 bool G1CollectedHeap::supports_tlab_allocation() const {
2681   return true;
2682 }
2683 
2684 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2685   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2686 }
2687 
2688 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2689   return young_list()->eden_used_bytes();
2690 }
2691 
2692 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2693 // must be equal to the humongous object limit.
2694 size_t G1CollectedHeap::max_tlab_size() const {
2695   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2696 }
2697 
2698 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2699   AllocationContext_t context = AllocationContext::current();
2700   return _allocator->unsafe_max_tlab_alloc(context);
2701 }
2702 
2703 size_t G1CollectedHeap::max_capacity() const {
2704   return _hrm.reserved().byte_size();
2705 }
2706 
2707 jlong G1CollectedHeap::millis_since_last_gc() {
2708   // assert(false, "NYI");
2709   return 0;
2710 }
2711 
2712 void G1CollectedHeap::prepare_for_verify() {
2713   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2714     ensure_parsability(false);
2715   }
2716   g1_rem_set()->prepare_for_verify();
2717 }
2718 
2719 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2720                                               VerifyOption vo) {
2721   switch (vo) {
2722   case VerifyOption_G1UsePrevMarking:
2723     return hr->obj_allocated_since_prev_marking(obj);
2724   case VerifyOption_G1UseNextMarking:
2725     return hr->obj_allocated_since_next_marking(obj);
2726   case VerifyOption_G1UseMarkWord:
2727     return false;
2728   default:
2729     ShouldNotReachHere();
2730   }
2731   return false; // keep some compilers happy
2732 }
2733 
2734 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2735   switch (vo) {
2736   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2737   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2738   case VerifyOption_G1UseMarkWord:    return NULL;
2739   default:                            ShouldNotReachHere();
2740   }
2741   return NULL; // keep some compilers happy
2742 }
2743 
2744 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2745   switch (vo) {
2746   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2747   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2748   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2749   default:                            ShouldNotReachHere();
2750   }
2751   return false; // keep some compilers happy
2752 }
2753 
2754 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2755   switch (vo) {
2756   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2757   case VerifyOption_G1UseNextMarking: return "NTAMS";
2758   case VerifyOption_G1UseMarkWord:    return "NONE";
2759   default:                            ShouldNotReachHere();
2760   }
2761   return NULL; // keep some compilers happy
2762 }
2763 
2764 class VerifyRootsClosure: public OopClosure {
2765 private:
2766   G1CollectedHeap* _g1h;
2767   VerifyOption     _vo;
2768   bool             _failures;
2769 public:
2770   // _vo == UsePrevMarking -> use "prev" marking information,
2771   // _vo == UseNextMarking -> use "next" marking information,
2772   // _vo == UseMarkWord    -> use mark word from object header.
2773   VerifyRootsClosure(VerifyOption vo) :
2774     _g1h(G1CollectedHeap::heap()),
2775     _vo(vo),
2776     _failures(false) { }
2777 
2778   bool failures() { return _failures; }
2779 
2780   template <class T> void do_oop_nv(T* p) {
2781     T heap_oop = oopDesc::load_heap_oop(p);
2782     if (!oopDesc::is_null(heap_oop)) {
2783       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2784       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2785         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2786                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2787         if (_vo == VerifyOption_G1UseMarkWord) {
2788           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2789         }
2790         obj->print_on(gclog_or_tty);
2791         _failures = true;
2792       }
2793     }
2794   }
2795 
2796   void do_oop(oop* p)       { do_oop_nv(p); }
2797   void do_oop(narrowOop* p) { do_oop_nv(p); }
2798 };
2799 
2800 class G1VerifyCodeRootOopClosure: public OopClosure {
2801   G1CollectedHeap* _g1h;
2802   OopClosure* _root_cl;
2803   nmethod* _nm;
2804   VerifyOption _vo;
2805   bool _failures;
2806 
2807   template <class T> void do_oop_work(T* p) {
2808     // First verify that this root is live
2809     _root_cl->do_oop(p);
2810 
2811     if (!G1VerifyHeapRegionCodeRoots) {
2812       // We're not verifying the code roots attached to heap region.
2813       return;
2814     }
2815 
2816     // Don't check the code roots during marking verification in a full GC
2817     if (_vo == VerifyOption_G1UseMarkWord) {
2818       return;
2819     }
2820 
2821     // Now verify that the current nmethod (which contains p) is
2822     // in the code root list of the heap region containing the
2823     // object referenced by p.
2824 
2825     T heap_oop = oopDesc::load_heap_oop(p);
2826     if (!oopDesc::is_null(heap_oop)) {
2827       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2828 
2829       // Now fetch the region containing the object
2830       HeapRegion* hr = _g1h->heap_region_containing(obj);
2831       HeapRegionRemSet* hrrs = hr->rem_set();
2832       // Verify that the strong code root list for this region
2833       // contains the nmethod
2834       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2835         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2836                                "from nmethod " PTR_FORMAT " not in strong "
2837                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2838                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2839         _failures = true;
2840       }
2841     }
2842   }
2843 
2844 public:
2845   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2846     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2847 
2848   void do_oop(oop* p) { do_oop_work(p); }
2849   void do_oop(narrowOop* p) { do_oop_work(p); }
2850 
2851   void set_nmethod(nmethod* nm) { _nm = nm; }
2852   bool failures() { return _failures; }
2853 };
2854 
2855 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2856   G1VerifyCodeRootOopClosure* _oop_cl;
2857 
2858 public:
2859   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2860     _oop_cl(oop_cl) {}
2861 
2862   void do_code_blob(CodeBlob* cb) {
2863     nmethod* nm = cb->as_nmethod_or_null();
2864     if (nm != NULL) {
2865       _oop_cl->set_nmethod(nm);
2866       nm->oops_do(_oop_cl);
2867     }
2868   }
2869 };
2870 
2871 class YoungRefCounterClosure : public OopClosure {
2872   G1CollectedHeap* _g1h;
2873   int              _count;
2874  public:
2875   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2876   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2877   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2878 
2879   int count() { return _count; }
2880   void reset_count() { _count = 0; };
2881 };
2882 
2883 class VerifyKlassClosure: public KlassClosure {
2884   YoungRefCounterClosure _young_ref_counter_closure;
2885   OopClosure *_oop_closure;
2886  public:
2887   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2888   void do_klass(Klass* k) {
2889     k->oops_do(_oop_closure);
2890 
2891     _young_ref_counter_closure.reset_count();
2892     k->oops_do(&_young_ref_counter_closure);
2893     if (_young_ref_counter_closure.count() > 0) {
2894       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2895     }
2896   }
2897 };
2898 
2899 class VerifyLivenessOopClosure: public OopClosure {
2900   G1CollectedHeap* _g1h;
2901   VerifyOption _vo;
2902 public:
2903   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2904     _g1h(g1h), _vo(vo)
2905   { }
2906   void do_oop(narrowOop *p) { do_oop_work(p); }
2907   void do_oop(      oop *p) { do_oop_work(p); }
2908 
2909   template <class T> void do_oop_work(T *p) {
2910     oop obj = oopDesc::load_decode_heap_oop(p);
2911     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2912               "Dead object referenced by a not dead object");
2913   }
2914 };
2915 
2916 class VerifyObjsInRegionClosure: public ObjectClosure {
2917 private:
2918   G1CollectedHeap* _g1h;
2919   size_t _live_bytes;
2920   HeapRegion *_hr;
2921   VerifyOption _vo;
2922 public:
2923   // _vo == UsePrevMarking -> use "prev" marking information,
2924   // _vo == UseNextMarking -> use "next" marking information,
2925   // _vo == UseMarkWord    -> use mark word from object header.
2926   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2927     : _live_bytes(0), _hr(hr), _vo(vo) {
2928     _g1h = G1CollectedHeap::heap();
2929   }
2930   void do_object(oop o) {
2931     VerifyLivenessOopClosure isLive(_g1h, _vo);
2932     assert(o != NULL, "Huh?");
2933     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2934       // If the object is alive according to the mark word,
2935       // then verify that the marking information agrees.
2936       // Note we can't verify the contra-positive of the
2937       // above: if the object is dead (according to the mark
2938       // word), it may not be marked, or may have been marked
2939       // but has since became dead, or may have been allocated
2940       // since the last marking.
2941       if (_vo == VerifyOption_G1UseMarkWord) {
2942         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2943       }
2944 
2945       o->oop_iterate_no_header(&isLive);
2946       if (!_hr->obj_allocated_since_prev_marking(o)) {
2947         size_t obj_size = o->size();    // Make sure we don't overflow
2948         _live_bytes += (obj_size * HeapWordSize);
2949       }
2950     }
2951   }
2952   size_t live_bytes() { return _live_bytes; }
2953 };
2954 
2955 class VerifyArchiveOopClosure: public OopClosure {
2956 public:
2957   VerifyArchiveOopClosure(HeapRegion *hr) { }
2958   void do_oop(narrowOop *p) { do_oop_work(p); }
2959   void do_oop(      oop *p) { do_oop_work(p); }
2960 
2961   template <class T> void do_oop_work(T *p) {
2962     oop obj = oopDesc::load_decode_heap_oop(p);
2963     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2964               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2965               p2i(p), p2i(obj));
2966   }
2967 };
2968 
2969 class VerifyArchiveRegionClosure: public ObjectClosure {
2970 public:
2971   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2972   // Verify that all object pointers are to archive regions.
2973   void do_object(oop o) {
2974     VerifyArchiveOopClosure checkOop(NULL);
2975     assert(o != NULL, "Should not be here for NULL oops");
2976     o->oop_iterate_no_header(&checkOop);
2977   }
2978 };
2979 
2980 class VerifyRegionClosure: public HeapRegionClosure {
2981 private:
2982   bool             _par;
2983   VerifyOption     _vo;
2984   bool             _failures;
2985 public:
2986   // _vo == UsePrevMarking -> use "prev" marking information,
2987   // _vo == UseNextMarking -> use "next" marking information,
2988   // _vo == UseMarkWord    -> use mark word from object header.
2989   VerifyRegionClosure(bool par, VerifyOption vo)
2990     : _par(par),
2991       _vo(vo),
2992       _failures(false) {}
2993 
2994   bool failures() {
2995     return _failures;
2996   }
2997 
2998   bool doHeapRegion(HeapRegion* r) {
2999     // For archive regions, verify there are no heap pointers to
3000     // non-pinned regions. For all others, verify liveness info.
3001     if (r->is_archive()) {
3002       VerifyArchiveRegionClosure verify_oop_pointers(r);
3003       r->object_iterate(&verify_oop_pointers);
3004       return true;
3005     }
3006     if (!r->is_continues_humongous()) {
3007       bool failures = false;
3008       r->verify(_vo, &failures);
3009       if (failures) {
3010         _failures = true;
3011       } else if (!r->is_starts_humongous()) {
3012         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3013         r->object_iterate(&not_dead_yet_cl);
3014         if (_vo != VerifyOption_G1UseNextMarking) {
3015           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3016             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3017                                    "max_live_bytes " SIZE_FORMAT " "
3018                                    "< calculated " SIZE_FORMAT,
3019                                    p2i(r->bottom()), p2i(r->end()),
3020                                    r->max_live_bytes(),
3021                                  not_dead_yet_cl.live_bytes());
3022             _failures = true;
3023           }
3024         } else {
3025           // When vo == UseNextMarking we cannot currently do a sanity
3026           // check on the live bytes as the calculation has not been
3027           // finalized yet.
3028         }
3029       }
3030     }
3031     return false; // stop the region iteration if we hit a failure
3032   }
3033 };
3034 
3035 // This is the task used for parallel verification of the heap regions
3036 
3037 class G1ParVerifyTask: public AbstractGangTask {
3038 private:
3039   G1CollectedHeap*  _g1h;
3040   VerifyOption      _vo;
3041   bool              _failures;
3042   HeapRegionClaimer _hrclaimer;
3043 
3044 public:
3045   // _vo == UsePrevMarking -> use "prev" marking information,
3046   // _vo == UseNextMarking -> use "next" marking information,
3047   // _vo == UseMarkWord    -> use mark word from object header.
3048   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3049       AbstractGangTask("Parallel verify task"),
3050       _g1h(g1h),
3051       _vo(vo),
3052       _failures(false),
3053       _hrclaimer(g1h->workers()->active_workers()) {}
3054 
3055   bool failures() {
3056     return _failures;
3057   }
3058 
3059   void work(uint worker_id) {
3060     HandleMark hm;
3061     VerifyRegionClosure blk(true, _vo);
3062     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3063     if (blk.failures()) {
3064       _failures = true;
3065     }
3066   }
3067 };
3068 
3069 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3070   if (SafepointSynchronize::is_at_safepoint()) {
3071     assert(Thread::current()->is_VM_thread(),
3072            "Expected to be executed serially by the VM thread at this point");
3073 
3074     if (!silent) { gclog_or_tty->print("Roots "); }
3075     VerifyRootsClosure rootsCl(vo);
3076     VerifyKlassClosure klassCl(this, &rootsCl);
3077     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3078 
3079     // We apply the relevant closures to all the oops in the
3080     // system dictionary, class loader data graph, the string table
3081     // and the nmethods in the code cache.
3082     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3083     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3084 
3085     {
3086       G1RootProcessor root_processor(this, 1);
3087       root_processor.process_all_roots(&rootsCl,
3088                                        &cldCl,
3089                                        &blobsCl);
3090     }
3091 
3092     bool failures = rootsCl.failures() || codeRootsCl.failures();
3093 
3094     if (vo != VerifyOption_G1UseMarkWord) {
3095       // If we're verifying during a full GC then the region sets
3096       // will have been torn down at the start of the GC. Therefore
3097       // verifying the region sets will fail. So we only verify
3098       // the region sets when not in a full GC.
3099       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3100       verify_region_sets();
3101     }
3102 
3103     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3104     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3105 
3106       G1ParVerifyTask task(this, vo);
3107       workers()->run_task(&task);
3108       if (task.failures()) {
3109         failures = true;
3110       }
3111 
3112     } else {
3113       VerifyRegionClosure blk(false, vo);
3114       heap_region_iterate(&blk);
3115       if (blk.failures()) {
3116         failures = true;
3117       }
3118     }
3119 
3120     if (G1StringDedup::is_enabled()) {
3121       if (!silent) gclog_or_tty->print("StrDedup ");
3122       G1StringDedup::verify();
3123     }
3124 
3125     if (failures) {
3126       gclog_or_tty->print_cr("Heap:");
3127       // It helps to have the per-region information in the output to
3128       // help us track down what went wrong. This is why we call
3129       // print_extended_on() instead of print_on().
3130       print_extended_on(gclog_or_tty);
3131       gclog_or_tty->cr();
3132       gclog_or_tty->flush();
3133     }
3134     guarantee(!failures, "there should not have been any failures");
3135   } else {
3136     if (!silent) {
3137       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3138       if (G1StringDedup::is_enabled()) {
3139         gclog_or_tty->print(", StrDedup");
3140       }
3141       gclog_or_tty->print(") ");
3142     }
3143   }
3144 }
3145 
3146 void G1CollectedHeap::verify(bool silent) {
3147   verify(silent, VerifyOption_G1UsePrevMarking);
3148 }
3149 
3150 double G1CollectedHeap::verify(bool guard, const char* msg) {
3151   double verify_time_ms = 0.0;
3152 
3153   if (guard && total_collections() >= VerifyGCStartAt) {
3154     double verify_start = os::elapsedTime();
3155     HandleMark hm;  // Discard invalid handles created during verification
3156     prepare_for_verify();
3157     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3158     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3159   }
3160 
3161   return verify_time_ms;
3162 }
3163 
3164 void G1CollectedHeap::verify_before_gc() {
3165   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3166   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3167 }
3168 
3169 void G1CollectedHeap::verify_after_gc() {
3170   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3171   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3172 }
3173 
3174 class PrintRegionClosure: public HeapRegionClosure {
3175   outputStream* _st;
3176 public:
3177   PrintRegionClosure(outputStream* st) : _st(st) {}
3178   bool doHeapRegion(HeapRegion* r) {
3179     r->print_on(_st);
3180     return false;
3181   }
3182 };
3183 
3184 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3185                                        const HeapRegion* hr,
3186                                        const VerifyOption vo) const {
3187   switch (vo) {
3188   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3189   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3190   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3191   default:                            ShouldNotReachHere();
3192   }
3193   return false; // keep some compilers happy
3194 }
3195 
3196 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3197                                        const VerifyOption vo) const {
3198   switch (vo) {
3199   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3200   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3201   case VerifyOption_G1UseMarkWord: {
3202     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3203     return !obj->is_gc_marked() && !hr->is_archive();
3204   }
3205   default:                            ShouldNotReachHere();
3206   }
3207   return false; // keep some compilers happy
3208 }
3209 
3210 void G1CollectedHeap::print_on(outputStream* st) const {
3211   st->print(" %-20s", "garbage-first heap");
3212   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3213             capacity()/K, used_unlocked()/K);
3214   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3215             p2i(_hrm.reserved().start()),
3216             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3217             p2i(_hrm.reserved().end()));
3218   st->cr();
3219   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3220   uint young_regions = _young_list->length();
3221   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3222             (size_t) young_regions * HeapRegion::GrainBytes / K);
3223   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3224   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3225             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3226   st->cr();
3227   MetaspaceAux::print_on(st);
3228 }
3229 
3230 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3231   print_on(st);
3232 
3233   // Print the per-region information.
3234   st->cr();
3235   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3236                "HS=humongous(starts), HC=humongous(continues), "
3237                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3238                "PTAMS=previous top-at-mark-start, "
3239                "NTAMS=next top-at-mark-start)");
3240   PrintRegionClosure blk(st);
3241   heap_region_iterate(&blk);
3242 }
3243 
3244 void G1CollectedHeap::print_on_error(outputStream* st) const {
3245   this->CollectedHeap::print_on_error(st);
3246 
3247   if (_cm != NULL) {
3248     st->cr();
3249     _cm->print_on_error(st);
3250   }
3251 }
3252 
3253 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3254   workers()->print_worker_threads_on(st);
3255   _cmThread->print_on(st);
3256   st->cr();
3257   _cm->print_worker_threads_on(st);
3258   _cg1r->print_worker_threads_on(st);
3259   if (G1StringDedup::is_enabled()) {
3260     G1StringDedup::print_worker_threads_on(st);
3261   }
3262 }
3263 
3264 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3265   workers()->threads_do(tc);
3266   tc->do_thread(_cmThread);
3267   _cg1r->threads_do(tc);
3268   if (G1StringDedup::is_enabled()) {
3269     G1StringDedup::threads_do(tc);
3270   }
3271 }
3272 
3273 void G1CollectedHeap::print_tracing_info() const {
3274   // We'll overload this to mean "trace GC pause statistics."
3275   if (TraceYoungGenTime || TraceOldGenTime) {
3276     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3277     // to that.
3278     g1_policy()->print_tracing_info();
3279   }
3280   if (G1SummarizeRSetStats) {
3281     g1_rem_set()->print_summary_info();
3282   }
3283   if (G1SummarizeConcMark) {
3284     concurrent_mark()->print_summary_info();
3285   }
3286   g1_policy()->print_yg_surv_rate_info();
3287 }
3288 
3289 #ifndef PRODUCT
3290 // Helpful for debugging RSet issues.
3291 
3292 class PrintRSetsClosure : public HeapRegionClosure {
3293 private:
3294   const char* _msg;
3295   size_t _occupied_sum;
3296 
3297 public:
3298   bool doHeapRegion(HeapRegion* r) {
3299     HeapRegionRemSet* hrrs = r->rem_set();
3300     size_t occupied = hrrs->occupied();
3301     _occupied_sum += occupied;
3302 
3303     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3304                            HR_FORMAT_PARAMS(r));
3305     if (occupied == 0) {
3306       gclog_or_tty->print_cr("  RSet is empty");
3307     } else {
3308       hrrs->print();
3309     }
3310     gclog_or_tty->print_cr("----------");
3311     return false;
3312   }
3313 
3314   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3315     gclog_or_tty->cr();
3316     gclog_or_tty->print_cr("========================================");
3317     gclog_or_tty->print_cr("%s", msg);
3318     gclog_or_tty->cr();
3319   }
3320 
3321   ~PrintRSetsClosure() {
3322     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3323     gclog_or_tty->print_cr("========================================");
3324     gclog_or_tty->cr();
3325   }
3326 };
3327 
3328 void G1CollectedHeap::print_cset_rsets() {
3329   PrintRSetsClosure cl("Printing CSet RSets");
3330   collection_set_iterate(&cl);
3331 }
3332 
3333 void G1CollectedHeap::print_all_rsets() {
3334   PrintRSetsClosure cl("Printing All RSets");;
3335   heap_region_iterate(&cl);
3336 }
3337 #endif // PRODUCT
3338 
3339 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3340   YoungList* young_list = heap()->young_list();
3341 
3342   size_t eden_used_bytes = young_list->eden_used_bytes();
3343   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3344 
3345   size_t eden_capacity_bytes =
3346     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3347 
3348   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3349   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3350 }
3351 
3352 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3353   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3354                        stats->unused(), stats->used(), stats->region_end_waste(),
3355                        stats->regions_filled(), stats->direct_allocated(),
3356                        stats->failure_used(), stats->failure_waste());
3357 }
3358 
3359 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3360   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3361   gc_tracer->report_gc_heap_summary(when, heap_summary);
3362 
3363   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3364   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3365 }
3366 
3367 
3368 G1CollectedHeap* G1CollectedHeap::heap() {
3369   CollectedHeap* heap = Universe::heap();
3370   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3371   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3372   return (G1CollectedHeap*)heap;
3373 }
3374 
3375 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3376   // always_do_update_barrier = false;
3377   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3378   // Fill TLAB's and such
3379   accumulate_statistics_all_tlabs();
3380   ensure_parsability(true);
3381 
3382   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3383       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3384     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3385   }
3386 }
3387 
3388 void G1CollectedHeap::gc_epilogue(bool full) {
3389 
3390   if (G1SummarizeRSetStats &&
3391       (G1SummarizeRSetStatsPeriod > 0) &&
3392       // we are at the end of the GC. Total collections has already been increased.
3393       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3394     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3395   }
3396 
3397   // FIXME: what is this about?
3398   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3399   // is set.
3400 #if defined(COMPILER2) || INCLUDE_JVMCI
3401   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3402 #endif
3403   // always_do_update_barrier = true;
3404 
3405   resize_all_tlabs();
3406   allocation_context_stats().update(full);
3407 
3408   // We have just completed a GC. Update the soft reference
3409   // policy with the new heap occupancy
3410   Universe::update_heap_info_at_gc();
3411 }
3412 
3413 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3414                                                uint gc_count_before,
3415                                                bool* succeeded,
3416                                                GCCause::Cause gc_cause) {
3417   assert_heap_not_locked_and_not_at_safepoint();
3418   g1_policy()->record_stop_world_start();
3419   VM_G1IncCollectionPause op(gc_count_before,
3420                              word_size,
3421                              false, /* should_initiate_conc_mark */
3422                              g1_policy()->max_pause_time_ms(),
3423                              gc_cause);
3424 
3425   op.set_allocation_context(AllocationContext::current());
3426   VMThread::execute(&op);
3427 
3428   HeapWord* result = op.result();
3429   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3430   assert(result == NULL || ret_succeeded,
3431          "the result should be NULL if the VM did not succeed");
3432   *succeeded = ret_succeeded;
3433 
3434   assert_heap_not_locked();
3435   return result;
3436 }
3437 
3438 void
3439 G1CollectedHeap::doConcurrentMark() {
3440   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3441   if (!_cmThread->in_progress()) {
3442     _cmThread->set_started();
3443     CGC_lock->notify();
3444   }
3445 }
3446 
3447 size_t G1CollectedHeap::pending_card_num() {
3448   size_t extra_cards = 0;
3449   JavaThread *curr = Threads::first();
3450   while (curr != NULL) {
3451     DirtyCardQueue& dcq = curr->dirty_card_queue();
3452     extra_cards += dcq.size();
3453     curr = curr->next();
3454   }
3455   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3456   size_t buffer_size = dcqs.buffer_size();
3457   size_t buffer_num = dcqs.completed_buffers_num();
3458 
3459   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3460   // in bytes - not the number of 'entries'. We need to convert
3461   // into a number of cards.
3462   return (buffer_size * buffer_num + extra_cards) / oopSize;
3463 }
3464 
3465 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3466  private:
3467   size_t _total_humongous;
3468   size_t _candidate_humongous;
3469 
3470   DirtyCardQueue _dcq;
3471 
3472   // We don't nominate objects with many remembered set entries, on
3473   // the assumption that such objects are likely still live.
3474   bool is_remset_small(HeapRegion* region) const {
3475     HeapRegionRemSet* const rset = region->rem_set();
3476     return G1EagerReclaimHumongousObjectsWithStaleRefs
3477       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3478       : rset->is_empty();
3479   }
3480 
3481   bool is_typeArray_region(HeapRegion* region) const {
3482     return oop(region->bottom())->is_typeArray();
3483   }
3484 
3485   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3486     assert(region->is_starts_humongous(), "Must start a humongous object");
3487 
3488     // Candidate selection must satisfy the following constraints
3489     // while concurrent marking is in progress:
3490     //
3491     // * In order to maintain SATB invariants, an object must not be
3492     // reclaimed if it was allocated before the start of marking and
3493     // has not had its references scanned.  Such an object must have
3494     // its references (including type metadata) scanned to ensure no
3495     // live objects are missed by the marking process.  Objects
3496     // allocated after the start of concurrent marking don't need to
3497     // be scanned.
3498     //
3499     // * An object must not be reclaimed if it is on the concurrent
3500     // mark stack.  Objects allocated after the start of concurrent
3501     // marking are never pushed on the mark stack.
3502     //
3503     // Nominating only objects allocated after the start of concurrent
3504     // marking is sufficient to meet both constraints.  This may miss
3505     // some objects that satisfy the constraints, but the marking data
3506     // structures don't support efficiently performing the needed
3507     // additional tests or scrubbing of the mark stack.
3508     //
3509     // However, we presently only nominate is_typeArray() objects.
3510     // A humongous object containing references induces remembered
3511     // set entries on other regions.  In order to reclaim such an
3512     // object, those remembered sets would need to be cleaned up.
3513     //
3514     // We also treat is_typeArray() objects specially, allowing them
3515     // to be reclaimed even if allocated before the start of
3516     // concurrent mark.  For this we rely on mark stack insertion to
3517     // exclude is_typeArray() objects, preventing reclaiming an object
3518     // that is in the mark stack.  We also rely on the metadata for
3519     // such objects to be built-in and so ensured to be kept live.
3520     // Frequent allocation and drop of large binary blobs is an
3521     // important use case for eager reclaim, and this special handling
3522     // may reduce needed headroom.
3523 
3524     return is_typeArray_region(region) && is_remset_small(region);
3525   }
3526 
3527  public:
3528   RegisterHumongousWithInCSetFastTestClosure()
3529   : _total_humongous(0),
3530     _candidate_humongous(0),
3531     _dcq(&JavaThread::dirty_card_queue_set()) {
3532   }
3533 
3534   virtual bool doHeapRegion(HeapRegion* r) {
3535     if (!r->is_starts_humongous()) {
3536       return false;
3537     }
3538     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3539 
3540     bool is_candidate = humongous_region_is_candidate(g1h, r);
3541     uint rindex = r->hrm_index();
3542     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3543     if (is_candidate) {
3544       _candidate_humongous++;
3545       g1h->register_humongous_region_with_cset(rindex);
3546       // Is_candidate already filters out humongous object with large remembered sets.
3547       // If we have a humongous object with a few remembered sets, we simply flush these
3548       // remembered set entries into the DCQS. That will result in automatic
3549       // re-evaluation of their remembered set entries during the following evacuation
3550       // phase.
3551       if (!r->rem_set()->is_empty()) {
3552         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3553                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3554         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3555         HeapRegionRemSetIterator hrrs(r->rem_set());
3556         size_t card_index;
3557         while (hrrs.has_next(card_index)) {
3558           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3559           // The remembered set might contain references to already freed
3560           // regions. Filter out such entries to avoid failing card table
3561           // verification.
3562           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3563             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3564               *card_ptr = CardTableModRefBS::dirty_card_val();
3565               _dcq.enqueue(card_ptr);
3566             }
3567           }
3568         }
3569         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3570                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3571                hrrs.n_yielded(), r->rem_set()->occupied());
3572         r->rem_set()->clear_locked();
3573       }
3574       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3575     }
3576     _total_humongous++;
3577 
3578     return false;
3579   }
3580 
3581   size_t total_humongous() const { return _total_humongous; }
3582   size_t candidate_humongous() const { return _candidate_humongous; }
3583 
3584   void flush_rem_set_entries() { _dcq.flush(); }
3585 };
3586 
3587 void G1CollectedHeap::register_humongous_regions_with_cset() {
3588   if (!G1EagerReclaimHumongousObjects) {
3589     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3590     return;
3591   }
3592   double time = os::elapsed_counter();
3593 
3594   // Collect reclaim candidate information and register candidates with cset.
3595   RegisterHumongousWithInCSetFastTestClosure cl;
3596   heap_region_iterate(&cl);
3597 
3598   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3599   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3600                                                                   cl.total_humongous(),
3601                                                                   cl.candidate_humongous());
3602   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3603 
3604   // Finally flush all remembered set entries to re-check into the global DCQS.
3605   cl.flush_rem_set_entries();
3606 }
3607 
3608 #ifdef ASSERT
3609 class VerifyCSetClosure: public HeapRegionClosure {
3610 public:
3611   bool doHeapRegion(HeapRegion* hr) {
3612     // Here we check that the CSet region's RSet is ready for parallel
3613     // iteration. The fields that we'll verify are only manipulated
3614     // when the region is part of a CSet and is collected. Afterwards,
3615     // we reset these fields when we clear the region's RSet (when the
3616     // region is freed) so they are ready when the region is
3617     // re-allocated. The only exception to this is if there's an
3618     // evacuation failure and instead of freeing the region we leave
3619     // it in the heap. In that case, we reset these fields during
3620     // evacuation failure handling.
3621     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3622 
3623     // Here's a good place to add any other checks we'd like to
3624     // perform on CSet regions.
3625     return false;
3626   }
3627 };
3628 #endif // ASSERT
3629 
3630 uint G1CollectedHeap::num_task_queues() const {
3631   return _task_queues->size();
3632 }
3633 
3634 #if TASKQUEUE_STATS
3635 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3636   st->print_raw_cr("GC Task Stats");
3637   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3638   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3639 }
3640 
3641 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3642   print_taskqueue_stats_hdr(st);
3643 
3644   TaskQueueStats totals;
3645   const uint n = num_task_queues();
3646   for (uint i = 0; i < n; ++i) {
3647     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3648     totals += task_queue(i)->stats;
3649   }
3650   st->print_raw("tot "); totals.print(st); st->cr();
3651 
3652   DEBUG_ONLY(totals.verify());
3653 }
3654 
3655 void G1CollectedHeap::reset_taskqueue_stats() {
3656   const uint n = num_task_queues();
3657   for (uint i = 0; i < n; ++i) {
3658     task_queue(i)->stats.reset();
3659   }
3660 }
3661 #endif // TASKQUEUE_STATS
3662 
3663 void G1CollectedHeap::log_gc_header() {
3664   if (!G1Log::fine()) {
3665     return;
3666   }
3667 
3668   gclog_or_tty->gclog_stamp();
3669 
3670   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3671     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3672     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3673 
3674   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3675 }
3676 
3677 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3678   if (!G1Log::fine()) {
3679     return;
3680   }
3681 
3682   if (G1Log::finer()) {
3683     if (evacuation_failed()) {
3684       gclog_or_tty->print(" (to-space exhausted)");
3685     }
3686     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3687     g1_policy()->print_phases(pause_time_sec);
3688     g1_policy()->print_detailed_heap_transition();
3689   } else {
3690     if (evacuation_failed()) {
3691       gclog_or_tty->print("--");
3692     }
3693     g1_policy()->print_heap_transition();
3694     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3695   }
3696   gclog_or_tty->flush();
3697 }
3698 
3699 void G1CollectedHeap::wait_for_root_region_scanning() {
3700   double scan_wait_start = os::elapsedTime();
3701   // We have to wait until the CM threads finish scanning the
3702   // root regions as it's the only way to ensure that all the
3703   // objects on them have been correctly scanned before we start
3704   // moving them during the GC.
3705   bool waited = _cm->root_regions()->wait_until_scan_finished();
3706   double wait_time_ms = 0.0;
3707   if (waited) {
3708     double scan_wait_end = os::elapsedTime();
3709     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3710   }
3711   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3712 }
3713 
3714 bool
3715 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3716   assert_at_safepoint(true /* should_be_vm_thread */);
3717   guarantee(!is_gc_active(), "collection is not reentrant");
3718 
3719   if (GC_locker::check_active_before_gc()) {
3720     return false;
3721   }
3722 
3723   _gc_timer_stw->register_gc_start();
3724 
3725   GCIdMark gc_id_mark;
3726   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3727 
3728   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3729   ResourceMark rm;
3730 
3731   wait_for_root_region_scanning();
3732 
3733   G1Log::update_level();
3734   print_heap_before_gc();
3735   trace_heap_before_gc(_gc_tracer_stw);
3736 
3737   verify_region_sets_optional();
3738   verify_dirty_young_regions();
3739 
3740   // This call will decide whether this pause is an initial-mark
3741   // pause. If it is, during_initial_mark_pause() will return true
3742   // for the duration of this pause.
3743   g1_policy()->decide_on_conc_mark_initiation();
3744 
3745   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3746   assert(!collector_state()->during_initial_mark_pause() ||
3747           collector_state()->gcs_are_young(), "sanity");
3748 
3749   // We also do not allow mixed GCs during marking.
3750   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3751 
3752   // Record whether this pause is an initial mark. When the current
3753   // thread has completed its logging output and it's safe to signal
3754   // the CM thread, the flag's value in the policy has been reset.
3755   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3756 
3757   // Inner scope for scope based logging, timers, and stats collection
3758   {
3759     EvacuationInfo evacuation_info;
3760 
3761     if (collector_state()->during_initial_mark_pause()) {
3762       // We are about to start a marking cycle, so we increment the
3763       // full collection counter.
3764       increment_old_marking_cycles_started();
3765       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3766     }
3767 
3768     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3769 
3770     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3771 
3772     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3773                                                                   workers()->active_workers(),
3774                                                                   Threads::number_of_non_daemon_threads());
3775     workers()->set_active_workers(active_workers);
3776 
3777     double pause_start_sec = os::elapsedTime();
3778     g1_policy()->note_gc_start(active_workers);
3779     log_gc_header();
3780 
3781     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3782     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3783 
3784     // If the secondary_free_list is not empty, append it to the
3785     // free_list. No need to wait for the cleanup operation to finish;
3786     // the region allocation code will check the secondary_free_list
3787     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3788     // set, skip this step so that the region allocation code has to
3789     // get entries from the secondary_free_list.
3790     if (!G1StressConcRegionFreeing) {
3791       append_secondary_free_list_if_not_empty_with_lock();
3792     }
3793 
3794     assert(check_young_list_well_formed(), "young list should be well formed");
3795 
3796     // Don't dynamically change the number of GC threads this early.  A value of
3797     // 0 is used to indicate serial work.  When parallel work is done,
3798     // it will be set.
3799 
3800     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3801       IsGCActiveMark x;
3802 
3803       gc_prologue(false);
3804       increment_total_collections(false /* full gc */);
3805       increment_gc_time_stamp();
3806 
3807       verify_before_gc();
3808 
3809       check_bitmaps("GC Start");
3810 
3811 #if defined(COMPILER2) || INCLUDE_JVMCI
3812       DerivedPointerTable::clear();
3813 #endif
3814 
3815       // Please see comment in g1CollectedHeap.hpp and
3816       // G1CollectedHeap::ref_processing_init() to see how
3817       // reference processing currently works in G1.
3818 
3819       // Enable discovery in the STW reference processor
3820       ref_processor_stw()->enable_discovery();
3821 
3822       {
3823         // We want to temporarily turn off discovery by the
3824         // CM ref processor, if necessary, and turn it back on
3825         // on again later if we do. Using a scoped
3826         // NoRefDiscovery object will do this.
3827         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3828 
3829         // Forget the current alloc region (we might even choose it to be part
3830         // of the collection set!).
3831         _allocator->release_mutator_alloc_region();
3832 
3833         // We should call this after we retire the mutator alloc
3834         // region(s) so that all the ALLOC / RETIRE events are generated
3835         // before the start GC event.
3836         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3837 
3838         // This timing is only used by the ergonomics to handle our pause target.
3839         // It is unclear why this should not include the full pause. We will
3840         // investigate this in CR 7178365.
3841         //
3842         // Preserving the old comment here if that helps the investigation:
3843         //
3844         // The elapsed time induced by the start time below deliberately elides
3845         // the possible verification above.
3846         double sample_start_time_sec = os::elapsedTime();
3847 
3848         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3849 
3850         if (collector_state()->during_initial_mark_pause()) {
3851           concurrent_mark()->checkpointRootsInitialPre();
3852         }
3853 
3854         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3855         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3856 
3857         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3858 
3859         // Make sure the remembered sets are up to date. This needs to be
3860         // done before register_humongous_regions_with_cset(), because the
3861         // remembered sets are used there to choose eager reclaim candidates.
3862         // If the remembered sets are not up to date we might miss some
3863         // entries that need to be handled.
3864         g1_rem_set()->cleanupHRRS();
3865 
3866         register_humongous_regions_with_cset();
3867 
3868         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3869 
3870         _cm->note_start_of_gc();
3871         // We call this after finalize_cset() to
3872         // ensure that the CSet has been finalized.
3873         _cm->verify_no_cset_oops();
3874 
3875         if (_hr_printer.is_active()) {
3876           HeapRegion* hr = g1_policy()->collection_set();
3877           while (hr != NULL) {
3878             _hr_printer.cset(hr);
3879             hr = hr->next_in_collection_set();
3880           }
3881         }
3882 
3883 #ifdef ASSERT
3884         VerifyCSetClosure cl;
3885         collection_set_iterate(&cl);
3886 #endif // ASSERT
3887 
3888         // Initialize the GC alloc regions.
3889         _allocator->init_gc_alloc_regions(evacuation_info);
3890 
3891         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3892         pre_evacuate_collection_set();
3893 
3894         // Actually do the work...
3895         evacuate_collection_set(evacuation_info, &per_thread_states);
3896 
3897         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3898 
3899         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3900         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3901 
3902         eagerly_reclaim_humongous_regions();
3903 
3904         g1_policy()->clear_collection_set();
3905 
3906         // Start a new incremental collection set for the next pause.
3907         g1_policy()->start_incremental_cset_building();
3908 
3909         clear_cset_fast_test();
3910 
3911         _young_list->reset_sampled_info();
3912 
3913         // Don't check the whole heap at this point as the
3914         // GC alloc regions from this pause have been tagged
3915         // as survivors and moved on to the survivor list.
3916         // Survivor regions will fail the !is_young() check.
3917         assert(check_young_list_empty(false /* check_heap */),
3918           "young list should be empty");
3919 
3920         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3921                                              _young_list->first_survivor_region(),
3922                                              _young_list->last_survivor_region());
3923 
3924         _young_list->reset_auxilary_lists();
3925 
3926         if (evacuation_failed()) {
3927           set_used(recalculate_used());
3928           if (_archive_allocator != NULL) {
3929             _archive_allocator->clear_used();
3930           }
3931           for (uint i = 0; i < ParallelGCThreads; i++) {
3932             if (_evacuation_failed_info_array[i].has_failed()) {
3933               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3934             }
3935           }
3936         } else {
3937           // The "used" of the the collection set have already been subtracted
3938           // when they were freed.  Add in the bytes evacuated.
3939           increase_used(g1_policy()->bytes_copied_during_gc());
3940         }
3941 
3942         if (collector_state()->during_initial_mark_pause()) {
3943           // We have to do this before we notify the CM threads that
3944           // they can start working to make sure that all the
3945           // appropriate initialization is done on the CM object.
3946           concurrent_mark()->checkpointRootsInitialPost();
3947           collector_state()->set_mark_in_progress(true);
3948           // Note that we don't actually trigger the CM thread at
3949           // this point. We do that later when we're sure that
3950           // the current thread has completed its logging output.
3951         }
3952 
3953         allocate_dummy_regions();
3954 
3955         _allocator->init_mutator_alloc_region();
3956 
3957         {
3958           size_t expand_bytes = g1_policy()->expansion_amount();
3959           if (expand_bytes > 0) {
3960             size_t bytes_before = capacity();
3961             // No need for an ergo verbose message here,
3962             // expansion_amount() does this when it returns a value > 0.
3963             double expand_ms;
3964             if (!expand(expand_bytes, &expand_ms)) {
3965               // We failed to expand the heap. Cannot do anything about it.
3966             }
3967             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3968           }
3969         }
3970 
3971         // We redo the verification but now wrt to the new CSet which
3972         // has just got initialized after the previous CSet was freed.
3973         _cm->verify_no_cset_oops();
3974         _cm->note_end_of_gc();
3975 
3976         // This timing is only used by the ergonomics to handle our pause target.
3977         // It is unclear why this should not include the full pause. We will
3978         // investigate this in CR 7178365.
3979         double sample_end_time_sec = os::elapsedTime();
3980         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3981         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3982         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3983 
3984         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3985         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3986 
3987         MemoryService::track_memory_usage();
3988 
3989         // In prepare_for_verify() below we'll need to scan the deferred
3990         // update buffers to bring the RSets up-to-date if
3991         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3992         // the update buffers we'll probably need to scan cards on the
3993         // regions we just allocated to (i.e., the GC alloc
3994         // regions). However, during the last GC we called
3995         // set_saved_mark() on all the GC alloc regions, so card
3996         // scanning might skip the [saved_mark_word()...top()] area of
3997         // those regions (i.e., the area we allocated objects into
3998         // during the last GC). But it shouldn't. Given that
3999         // saved_mark_word() is conditional on whether the GC time stamp
4000         // on the region is current or not, by incrementing the GC time
4001         // stamp here we invalidate all the GC time stamps on all the
4002         // regions and saved_mark_word() will simply return top() for
4003         // all the regions. This is a nicer way of ensuring this rather
4004         // than iterating over the regions and fixing them. In fact, the
4005         // GC time stamp increment here also ensures that
4006         // saved_mark_word() will return top() between pauses, i.e.,
4007         // during concurrent refinement. So we don't need the
4008         // is_gc_active() check to decided which top to use when
4009         // scanning cards (see CR 7039627).
4010         increment_gc_time_stamp();
4011 
4012         verify_after_gc();
4013         check_bitmaps("GC End");
4014 
4015         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4016         ref_processor_stw()->verify_no_references_recorded();
4017 
4018         // CM reference discovery will be re-enabled if necessary.
4019       }
4020 
4021       // We should do this after we potentially expand the heap so
4022       // that all the COMMIT events are generated before the end GC
4023       // event, and after we retire the GC alloc regions so that all
4024       // RETIRE events are generated before the end GC event.
4025       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4026 
4027 #ifdef TRACESPINNING
4028       ParallelTaskTerminator::print_termination_counts();
4029 #endif
4030 
4031       gc_epilogue(false);
4032     }
4033 
4034     // Print the remainder of the GC log output.
4035     log_gc_footer(os::elapsedTime() - pause_start_sec);
4036 
4037     // It is not yet to safe to tell the concurrent mark to
4038     // start as we have some optional output below. We don't want the
4039     // output from the concurrent mark thread interfering with this
4040     // logging output either.
4041 
4042     _hrm.verify_optional();
4043     verify_region_sets_optional();
4044 
4045     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4046     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4047 
4048     print_heap_after_gc();
4049     trace_heap_after_gc(_gc_tracer_stw);
4050 
4051     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4052     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4053     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4054     // before any GC notifications are raised.
4055     g1mm()->update_sizes();
4056 
4057     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4058     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4059     _gc_timer_stw->register_gc_end();
4060     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4061   }
4062   // It should now be safe to tell the concurrent mark thread to start
4063   // without its logging output interfering with the logging output
4064   // that came from the pause.
4065 
4066   if (should_start_conc_mark) {
4067     // CAUTION: after the doConcurrentMark() call below,
4068     // the concurrent marking thread(s) could be running
4069     // concurrently with us. Make sure that anything after
4070     // this point does not assume that we are the only GC thread
4071     // running. Note: of course, the actual marking work will
4072     // not start until the safepoint itself is released in
4073     // SuspendibleThreadSet::desynchronize().
4074     doConcurrentMark();
4075   }
4076 
4077   return true;
4078 }
4079 
4080 void G1CollectedHeap::remove_self_forwarding_pointers() {
4081   double remove_self_forwards_start = os::elapsedTime();
4082 
4083   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4084   workers()->run_task(&rsfp_task);
4085 
4086   // Now restore saved marks, if any.
4087   for (uint i = 0; i < ParallelGCThreads; i++) {
4088     OopAndMarkOopStack& cur = _preserved_objs[i];
4089     while (!cur.is_empty()) {
4090       OopAndMarkOop elem = cur.pop();
4091       elem.set_mark();
4092     }
4093     cur.clear(true);
4094   }
4095 
4096   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4097 }
4098 
4099 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4100   if (!_evacuation_failed) {
4101     _evacuation_failed = true;
4102   }
4103 
4104   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4105 
4106   // We want to call the "for_promotion_failure" version only in the
4107   // case of a promotion failure.
4108   if (m->must_be_preserved_for_promotion_failure(obj)) {
4109     OopAndMarkOop elem(obj, m);
4110     _preserved_objs[worker_id].push(elem);
4111   }
4112 }
4113 
4114 class G1ParEvacuateFollowersClosure : public VoidClosure {
4115 private:
4116   double _start_term;
4117   double _term_time;
4118   size_t _term_attempts;
4119 
4120   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4121   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4122 protected:
4123   G1CollectedHeap*              _g1h;
4124   G1ParScanThreadState*         _par_scan_state;
4125   RefToScanQueueSet*            _queues;
4126   ParallelTaskTerminator*       _terminator;
4127 
4128   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4129   RefToScanQueueSet*      queues()         { return _queues; }
4130   ParallelTaskTerminator* terminator()     { return _terminator; }
4131 
4132 public:
4133   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4134                                 G1ParScanThreadState* par_scan_state,
4135                                 RefToScanQueueSet* queues,
4136                                 ParallelTaskTerminator* terminator)
4137     : _g1h(g1h), _par_scan_state(par_scan_state),
4138       _queues(queues), _terminator(terminator),
4139       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4140 
4141   void do_void();
4142 
4143   double term_time() const { return _term_time; }
4144   size_t term_attempts() const { return _term_attempts; }
4145 
4146 private:
4147   inline bool offer_termination();
4148 };
4149 
4150 bool G1ParEvacuateFollowersClosure::offer_termination() {
4151   G1ParScanThreadState* const pss = par_scan_state();
4152   start_term_time();
4153   const bool res = terminator()->offer_termination();
4154   end_term_time();
4155   return res;
4156 }
4157 
4158 void G1ParEvacuateFollowersClosure::do_void() {
4159   G1ParScanThreadState* const pss = par_scan_state();
4160   pss->trim_queue();
4161   do {
4162     pss->steal_and_trim_queue(queues());
4163   } while (!offer_termination());
4164 }
4165 
4166 class G1ParTask : public AbstractGangTask {
4167 protected:
4168   G1CollectedHeap*         _g1h;
4169   G1ParScanThreadStateSet* _pss;
4170   RefToScanQueueSet*       _queues;
4171   G1RootProcessor*         _root_processor;
4172   ParallelTaskTerminator   _terminator;
4173   uint                     _n_workers;
4174 
4175 public:
4176   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4177     : AbstractGangTask("G1 collection"),
4178       _g1h(g1h),
4179       _pss(per_thread_states),
4180       _queues(task_queues),
4181       _root_processor(root_processor),
4182       _terminator(n_workers, _queues),
4183       _n_workers(n_workers)
4184   {}
4185 
4186   void work(uint worker_id) {
4187     if (worker_id >= _n_workers) return;  // no work needed this round
4188 
4189     double start_sec = os::elapsedTime();
4190     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4191 
4192     {
4193       ResourceMark rm;
4194       HandleMark   hm;
4195 
4196       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4197 
4198       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4199       pss->set_ref_processor(rp);
4200 
4201       double start_strong_roots_sec = os::elapsedTime();
4202 
4203       _root_processor->evacuate_roots(pss->closures(), worker_id);
4204 
4205       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4206 
4207       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4208       // treating the nmethods visited to act as roots for concurrent marking.
4209       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4210       // objects copied by the current evacuation.
4211       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4212                                                                              pss->closures()->weak_codeblobs(),
4213                                                                              worker_id);
4214 
4215       _pss->add_cards_scanned(worker_id, cards_scanned);
4216 
4217       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4218 
4219       double term_sec = 0.0;
4220       size_t evac_term_attempts = 0;
4221       {
4222         double start = os::elapsedTime();
4223         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4224         evac.do_void();
4225 
4226         evac_term_attempts = evac.term_attempts();
4227         term_sec = evac.term_time();
4228         double elapsed_sec = os::elapsedTime() - start;
4229         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4230         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4231         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4232       }
4233 
4234       assert(pss->queue_is_empty(), "should be empty");
4235 
4236       if (PrintTerminationStats) {
4237         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4238         size_t lab_waste;
4239         size_t lab_undo_waste;
4240         pss->waste(lab_waste, lab_undo_waste);
4241         _g1h->print_termination_stats(gclog_or_tty,
4242                                       worker_id,
4243                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4244                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4245                                       term_sec * 1000.0,                          /* evac term time */
4246                                       evac_term_attempts,                         /* evac term attempts */
4247                                       lab_waste,                                  /* alloc buffer waste */
4248                                       lab_undo_waste                              /* undo waste */
4249                                       );
4250       }
4251 
4252       // Close the inner scope so that the ResourceMark and HandleMark
4253       // destructors are executed here and are included as part of the
4254       // "GC Worker Time".
4255     }
4256     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4257   }
4258 };
4259 
4260 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4261   st->print_raw_cr("GC Termination Stats");
4262   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4263   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4264   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4265 }
4266 
4267 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4268                                               uint worker_id,
4269                                               double elapsed_ms,
4270                                               double strong_roots_ms,
4271                                               double term_ms,
4272                                               size_t term_attempts,
4273                                               size_t alloc_buffer_waste,
4274                                               size_t undo_waste) const {
4275   st->print_cr("%3d %9.2f %9.2f %6.2f "
4276                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4277                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4278                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4279                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4280                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4281                alloc_buffer_waste * HeapWordSize / K,
4282                undo_waste * HeapWordSize / K);
4283 }
4284 
4285 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4286 private:
4287   BoolObjectClosure* _is_alive;
4288   int _initial_string_table_size;
4289   int _initial_symbol_table_size;
4290 
4291   bool  _process_strings;
4292   int _strings_processed;
4293   int _strings_removed;
4294 
4295   bool  _process_symbols;
4296   int _symbols_processed;
4297   int _symbols_removed;
4298 
4299 public:
4300   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4301     AbstractGangTask("String/Symbol Unlinking"),
4302     _is_alive(is_alive),
4303     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4304     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4305 
4306     _initial_string_table_size = StringTable::the_table()->table_size();
4307     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4308     if (process_strings) {
4309       StringTable::clear_parallel_claimed_index();
4310     }
4311     if (process_symbols) {
4312       SymbolTable::clear_parallel_claimed_index();
4313     }
4314   }
4315 
4316   ~G1StringSymbolTableUnlinkTask() {
4317     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4318               "claim value %d after unlink less than initial string table size %d",
4319               StringTable::parallel_claimed_index(), _initial_string_table_size);
4320     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4321               "claim value %d after unlink less than initial symbol table size %d",
4322               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4323 
4324     if (G1TraceStringSymbolTableScrubbing) {
4325       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4326                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4327                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4328                              strings_processed(), strings_removed(),
4329                              symbols_processed(), symbols_removed());
4330     }
4331   }
4332 
4333   void work(uint worker_id) {
4334     int strings_processed = 0;
4335     int strings_removed = 0;
4336     int symbols_processed = 0;
4337     int symbols_removed = 0;
4338     if (_process_strings) {
4339       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4340       Atomic::add(strings_processed, &_strings_processed);
4341       Atomic::add(strings_removed, &_strings_removed);
4342     }
4343     if (_process_symbols) {
4344       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4345       Atomic::add(symbols_processed, &_symbols_processed);
4346       Atomic::add(symbols_removed, &_symbols_removed);
4347     }
4348   }
4349 
4350   size_t strings_processed() const { return (size_t)_strings_processed; }
4351   size_t strings_removed()   const { return (size_t)_strings_removed; }
4352 
4353   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4354   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4355 };
4356 
4357 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4358 private:
4359   static Monitor* _lock;
4360 
4361   BoolObjectClosure* const _is_alive;
4362   const bool               _unloading_occurred;
4363   const uint               _num_workers;
4364 
4365   // Variables used to claim nmethods.
4366   nmethod* _first_nmethod;
4367   volatile nmethod* _claimed_nmethod;
4368 
4369   // The list of nmethods that need to be processed by the second pass.
4370   volatile nmethod* _postponed_list;
4371   volatile uint     _num_entered_barrier;
4372 
4373  public:
4374   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4375       _is_alive(is_alive),
4376       _unloading_occurred(unloading_occurred),
4377       _num_workers(num_workers),
4378       _first_nmethod(NULL),
4379       _claimed_nmethod(NULL),
4380       _postponed_list(NULL),
4381       _num_entered_barrier(0)
4382   {
4383     nmethod::increase_unloading_clock();
4384     // Get first alive nmethod
4385     NMethodIterator iter = NMethodIterator();
4386     if(iter.next_alive()) {
4387       _first_nmethod = iter.method();
4388     }
4389     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4390   }
4391 
4392   ~G1CodeCacheUnloadingTask() {
4393     CodeCache::verify_clean_inline_caches();
4394 
4395     CodeCache::set_needs_cache_clean(false);
4396     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4397 
4398     CodeCache::verify_icholder_relocations();
4399   }
4400 
4401  private:
4402   void add_to_postponed_list(nmethod* nm) {
4403       nmethod* old;
4404       do {
4405         old = (nmethod*)_postponed_list;
4406         nm->set_unloading_next(old);
4407       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4408   }
4409 
4410   void clean_nmethod(nmethod* nm) {
4411     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4412 
4413     if (postponed) {
4414       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4415       add_to_postponed_list(nm);
4416     }
4417 
4418     // Mark that this thread has been cleaned/unloaded.
4419     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4420     nm->set_unloading_clock(nmethod::global_unloading_clock());
4421   }
4422 
4423   void clean_nmethod_postponed(nmethod* nm) {
4424     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4425   }
4426 
4427   static const int MaxClaimNmethods = 16;
4428 
4429   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4430     nmethod* first;
4431     NMethodIterator last;
4432 
4433     do {
4434       *num_claimed_nmethods = 0;
4435 
4436       first = (nmethod*)_claimed_nmethod;
4437       last = NMethodIterator(first);
4438 
4439       if (first != NULL) {
4440 
4441         for (int i = 0; i < MaxClaimNmethods; i++) {
4442           if (!last.next_alive()) {
4443             break;
4444           }
4445           claimed_nmethods[i] = last.method();
4446           (*num_claimed_nmethods)++;
4447         }
4448       }
4449 
4450     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4451   }
4452 
4453   nmethod* claim_postponed_nmethod() {
4454     nmethod* claim;
4455     nmethod* next;
4456 
4457     do {
4458       claim = (nmethod*)_postponed_list;
4459       if (claim == NULL) {
4460         return NULL;
4461       }
4462 
4463       next = claim->unloading_next();
4464 
4465     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4466 
4467     return claim;
4468   }
4469 
4470  public:
4471   // Mark that we're done with the first pass of nmethod cleaning.
4472   void barrier_mark(uint worker_id) {
4473     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4474     _num_entered_barrier++;
4475     if (_num_entered_barrier == _num_workers) {
4476       ml.notify_all();
4477     }
4478   }
4479 
4480   // See if we have to wait for the other workers to
4481   // finish their first-pass nmethod cleaning work.
4482   void barrier_wait(uint worker_id) {
4483     if (_num_entered_barrier < _num_workers) {
4484       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4485       while (_num_entered_barrier < _num_workers) {
4486           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4487       }
4488     }
4489   }
4490 
4491   // Cleaning and unloading of nmethods. Some work has to be postponed
4492   // to the second pass, when we know which nmethods survive.
4493   void work_first_pass(uint worker_id) {
4494     // The first nmethods is claimed by the first worker.
4495     if (worker_id == 0 && _first_nmethod != NULL) {
4496       clean_nmethod(_first_nmethod);
4497       _first_nmethod = NULL;
4498     }
4499 
4500     int num_claimed_nmethods;
4501     nmethod* claimed_nmethods[MaxClaimNmethods];
4502 
4503     while (true) {
4504       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4505 
4506       if (num_claimed_nmethods == 0) {
4507         break;
4508       }
4509 
4510       for (int i = 0; i < num_claimed_nmethods; i++) {
4511         clean_nmethod(claimed_nmethods[i]);
4512       }
4513     }
4514   }
4515 
4516   void work_second_pass(uint worker_id) {
4517     nmethod* nm;
4518     // Take care of postponed nmethods.
4519     while ((nm = claim_postponed_nmethod()) != NULL) {
4520       clean_nmethod_postponed(nm);
4521     }
4522   }
4523 };
4524 
4525 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4526 
4527 class G1KlassCleaningTask : public StackObj {
4528   BoolObjectClosure*                      _is_alive;
4529   volatile jint                           _clean_klass_tree_claimed;
4530   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4531 
4532  public:
4533   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4534       _is_alive(is_alive),
4535       _clean_klass_tree_claimed(0),
4536       _klass_iterator() {
4537   }
4538 
4539  private:
4540   bool claim_clean_klass_tree_task() {
4541     if (_clean_klass_tree_claimed) {
4542       return false;
4543     }
4544 
4545     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4546   }
4547 
4548   InstanceKlass* claim_next_klass() {
4549     Klass* klass;
4550     do {
4551       klass =_klass_iterator.next_klass();
4552     } while (klass != NULL && !klass->is_instance_klass());
4553 
4554     // this can be null so don't call InstanceKlass::cast
4555     return static_cast<InstanceKlass*>(klass);
4556   }
4557 
4558 public:
4559 
4560   void clean_klass(InstanceKlass* ik) {
4561     ik->clean_weak_instanceklass_links(_is_alive);
4562   }
4563 
4564   void work() {
4565     ResourceMark rm;
4566 
4567     // One worker will clean the subklass/sibling klass tree.
4568     if (claim_clean_klass_tree_task()) {
4569       Klass::clean_subklass_tree(_is_alive);
4570     }
4571 
4572     // All workers will help cleaning the classes,
4573     InstanceKlass* klass;
4574     while ((klass = claim_next_klass()) != NULL) {
4575       clean_klass(klass);
4576     }
4577   }
4578 };
4579 
4580 // To minimize the remark pause times, the tasks below are done in parallel.
4581 class G1ParallelCleaningTask : public AbstractGangTask {
4582 private:
4583   G1StringSymbolTableUnlinkTask _string_symbol_task;
4584   G1CodeCacheUnloadingTask      _code_cache_task;
4585   G1KlassCleaningTask           _klass_cleaning_task;
4586 
4587 public:
4588   // The constructor is run in the VMThread.
4589   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4590       AbstractGangTask("Parallel Cleaning"),
4591       _string_symbol_task(is_alive, process_strings, process_symbols),
4592       _code_cache_task(num_workers, is_alive, unloading_occurred),
4593       _klass_cleaning_task(is_alive) {
4594   }
4595 
4596   // The parallel work done by all worker threads.
4597   void work(uint worker_id) {
4598     // Do first pass of code cache cleaning.
4599     _code_cache_task.work_first_pass(worker_id);
4600 
4601     // Let the threads mark that the first pass is done.
4602     _code_cache_task.barrier_mark(worker_id);
4603 
4604     // Clean the Strings and Symbols.
4605     _string_symbol_task.work(worker_id);
4606 
4607     // Wait for all workers to finish the first code cache cleaning pass.
4608     _code_cache_task.barrier_wait(worker_id);
4609 
4610     // Do the second code cache cleaning work, which realize on
4611     // the liveness information gathered during the first pass.
4612     _code_cache_task.work_second_pass(worker_id);
4613 
4614     // Clean all klasses that were not unloaded.
4615     _klass_cleaning_task.work();
4616   }
4617 };
4618 
4619 
4620 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4621                                         bool process_strings,
4622                                         bool process_symbols,
4623                                         bool class_unloading_occurred) {
4624   uint n_workers = workers()->active_workers();
4625 
4626   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4627                                         n_workers, class_unloading_occurred);
4628   workers()->run_task(&g1_unlink_task);
4629 }
4630 
4631 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4632                                                      bool process_strings, bool process_symbols) {
4633   {
4634     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4635     workers()->run_task(&g1_unlink_task);
4636   }
4637 
4638   if (G1StringDedup::is_enabled()) {
4639     G1StringDedup::unlink(is_alive);
4640   }
4641 }
4642 
4643 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4644  private:
4645   DirtyCardQueueSet* _queue;
4646  public:
4647   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4648 
4649   virtual void work(uint worker_id) {
4650     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4651     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4652 
4653     RedirtyLoggedCardTableEntryClosure cl;
4654     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4655 
4656     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4657   }
4658 };
4659 
4660 void G1CollectedHeap::redirty_logged_cards() {
4661   double redirty_logged_cards_start = os::elapsedTime();
4662 
4663   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4664   dirty_card_queue_set().reset_for_par_iteration();
4665   workers()->run_task(&redirty_task);
4666 
4667   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4668   dcq.merge_bufferlists(&dirty_card_queue_set());
4669   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4670 
4671   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4672 }
4673 
4674 // Weak Reference Processing support
4675 
4676 // An always "is_alive" closure that is used to preserve referents.
4677 // If the object is non-null then it's alive.  Used in the preservation
4678 // of referent objects that are pointed to by reference objects
4679 // discovered by the CM ref processor.
4680 class G1AlwaysAliveClosure: public BoolObjectClosure {
4681   G1CollectedHeap* _g1;
4682 public:
4683   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4684   bool do_object_b(oop p) {
4685     if (p != NULL) {
4686       return true;
4687     }
4688     return false;
4689   }
4690 };
4691 
4692 bool G1STWIsAliveClosure::do_object_b(oop p) {
4693   // An object is reachable if it is outside the collection set,
4694   // or is inside and copied.
4695   return !_g1->is_in_cset(p) || p->is_forwarded();
4696 }
4697 
4698 // Non Copying Keep Alive closure
4699 class G1KeepAliveClosure: public OopClosure {
4700   G1CollectedHeap* _g1;
4701 public:
4702   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4703   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4704   void do_oop(oop* p) {
4705     oop obj = *p;
4706     assert(obj != NULL, "the caller should have filtered out NULL values");
4707 
4708     const InCSetState cset_state = _g1->in_cset_state(obj);
4709     if (!cset_state.is_in_cset_or_humongous()) {
4710       return;
4711     }
4712     if (cset_state.is_in_cset()) {
4713       assert( obj->is_forwarded(), "invariant" );
4714       *p = obj->forwardee();
4715     } else {
4716       assert(!obj->is_forwarded(), "invariant" );
4717       assert(cset_state.is_humongous(),
4718              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4719       _g1->set_humongous_is_live(obj);
4720     }
4721   }
4722 };
4723 
4724 // Copying Keep Alive closure - can be called from both
4725 // serial and parallel code as long as different worker
4726 // threads utilize different G1ParScanThreadState instances
4727 // and different queues.
4728 
4729 class G1CopyingKeepAliveClosure: public OopClosure {
4730   G1CollectedHeap*         _g1h;
4731   OopClosure*              _copy_non_heap_obj_cl;
4732   G1ParScanThreadState*    _par_scan_state;
4733 
4734 public:
4735   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4736                             OopClosure* non_heap_obj_cl,
4737                             G1ParScanThreadState* pss):
4738     _g1h(g1h),
4739     _copy_non_heap_obj_cl(non_heap_obj_cl),
4740     _par_scan_state(pss)
4741   {}
4742 
4743   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4744   virtual void do_oop(      oop* p) { do_oop_work(p); }
4745 
4746   template <class T> void do_oop_work(T* p) {
4747     oop obj = oopDesc::load_decode_heap_oop(p);
4748 
4749     if (_g1h->is_in_cset_or_humongous(obj)) {
4750       // If the referent object has been forwarded (either copied
4751       // to a new location or to itself in the event of an
4752       // evacuation failure) then we need to update the reference
4753       // field and, if both reference and referent are in the G1
4754       // heap, update the RSet for the referent.
4755       //
4756       // If the referent has not been forwarded then we have to keep
4757       // it alive by policy. Therefore we have copy the referent.
4758       //
4759       // If the reference field is in the G1 heap then we can push
4760       // on the PSS queue. When the queue is drained (after each
4761       // phase of reference processing) the object and it's followers
4762       // will be copied, the reference field set to point to the
4763       // new location, and the RSet updated. Otherwise we need to
4764       // use the the non-heap or metadata closures directly to copy
4765       // the referent object and update the pointer, while avoiding
4766       // updating the RSet.
4767 
4768       if (_g1h->is_in_g1_reserved(p)) {
4769         _par_scan_state->push_on_queue(p);
4770       } else {
4771         assert(!Metaspace::contains((const void*)p),
4772                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4773         _copy_non_heap_obj_cl->do_oop(p);
4774       }
4775     }
4776   }
4777 };
4778 
4779 // Serial drain queue closure. Called as the 'complete_gc'
4780 // closure for each discovered list in some of the
4781 // reference processing phases.
4782 
4783 class G1STWDrainQueueClosure: public VoidClosure {
4784 protected:
4785   G1CollectedHeap* _g1h;
4786   G1ParScanThreadState* _par_scan_state;
4787 
4788   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4789 
4790 public:
4791   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4792     _g1h(g1h),
4793     _par_scan_state(pss)
4794   { }
4795 
4796   void do_void() {
4797     G1ParScanThreadState* const pss = par_scan_state();
4798     pss->trim_queue();
4799   }
4800 };
4801 
4802 // Parallel Reference Processing closures
4803 
4804 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4805 // processing during G1 evacuation pauses.
4806 
4807 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4808 private:
4809   G1CollectedHeap*          _g1h;
4810   G1ParScanThreadStateSet*  _pss;
4811   RefToScanQueueSet*        _queues;
4812   WorkGang*                 _workers;
4813   uint                      _active_workers;
4814 
4815 public:
4816   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4817                            G1ParScanThreadStateSet* per_thread_states,
4818                            WorkGang* workers,
4819                            RefToScanQueueSet *task_queues,
4820                            uint n_workers) :
4821     _g1h(g1h),
4822     _pss(per_thread_states),
4823     _queues(task_queues),
4824     _workers(workers),
4825     _active_workers(n_workers)
4826   {
4827     assert(n_workers > 0, "shouldn't call this otherwise");
4828   }
4829 
4830   // Executes the given task using concurrent marking worker threads.
4831   virtual void execute(ProcessTask& task);
4832   virtual void execute(EnqueueTask& task);
4833 };
4834 
4835 // Gang task for possibly parallel reference processing
4836 
4837 class G1STWRefProcTaskProxy: public AbstractGangTask {
4838   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4839   ProcessTask&     _proc_task;
4840   G1CollectedHeap* _g1h;
4841   G1ParScanThreadStateSet* _pss;
4842   RefToScanQueueSet* _task_queues;
4843   ParallelTaskTerminator* _terminator;
4844 
4845 public:
4846   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4847                         G1CollectedHeap* g1h,
4848                         G1ParScanThreadStateSet* per_thread_states,
4849                         RefToScanQueueSet *task_queues,
4850                         ParallelTaskTerminator* terminator) :
4851     AbstractGangTask("Process reference objects in parallel"),
4852     _proc_task(proc_task),
4853     _g1h(g1h),
4854     _pss(per_thread_states),
4855     _task_queues(task_queues),
4856     _terminator(terminator)
4857   {}
4858 
4859   virtual void work(uint worker_id) {
4860     // The reference processing task executed by a single worker.
4861     ResourceMark rm;
4862     HandleMark   hm;
4863 
4864     G1STWIsAliveClosure is_alive(_g1h);
4865 
4866     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4867     pss->set_ref_processor(NULL);
4868 
4869     // Keep alive closure.
4870     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4871 
4872     // Complete GC closure
4873     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4874 
4875     // Call the reference processing task's work routine.
4876     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4877 
4878     // Note we cannot assert that the refs array is empty here as not all
4879     // of the processing tasks (specifically phase2 - pp2_work) execute
4880     // the complete_gc closure (which ordinarily would drain the queue) so
4881     // the queue may not be empty.
4882   }
4883 };
4884 
4885 // Driver routine for parallel reference processing.
4886 // Creates an instance of the ref processing gang
4887 // task and has the worker threads execute it.
4888 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4889   assert(_workers != NULL, "Need parallel worker threads.");
4890 
4891   ParallelTaskTerminator terminator(_active_workers, _queues);
4892   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4893 
4894   _workers->run_task(&proc_task_proxy);
4895 }
4896 
4897 // Gang task for parallel reference enqueueing.
4898 
4899 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4900   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4901   EnqueueTask& _enq_task;
4902 
4903 public:
4904   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4905     AbstractGangTask("Enqueue reference objects in parallel"),
4906     _enq_task(enq_task)
4907   { }
4908 
4909   virtual void work(uint worker_id) {
4910     _enq_task.work(worker_id);
4911   }
4912 };
4913 
4914 // Driver routine for parallel reference enqueueing.
4915 // Creates an instance of the ref enqueueing gang
4916 // task and has the worker threads execute it.
4917 
4918 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4919   assert(_workers != NULL, "Need parallel worker threads.");
4920 
4921   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4922 
4923   _workers->run_task(&enq_task_proxy);
4924 }
4925 
4926 // End of weak reference support closures
4927 
4928 // Abstract task used to preserve (i.e. copy) any referent objects
4929 // that are in the collection set and are pointed to by reference
4930 // objects discovered by the CM ref processor.
4931 
4932 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4933 protected:
4934   G1CollectedHeap*         _g1h;
4935   G1ParScanThreadStateSet* _pss;
4936   RefToScanQueueSet*       _queues;
4937   ParallelTaskTerminator   _terminator;
4938   uint                     _n_workers;
4939 
4940 public:
4941   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4942     AbstractGangTask("ParPreserveCMReferents"),
4943     _g1h(g1h),
4944     _pss(per_thread_states),
4945     _queues(task_queues),
4946     _terminator(workers, _queues),
4947     _n_workers(workers)
4948   { }
4949 
4950   void work(uint worker_id) {
4951     ResourceMark rm;
4952     HandleMark   hm;
4953 
4954     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4955     pss->set_ref_processor(NULL);
4956     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4957 
4958     // Is alive closure
4959     G1AlwaysAliveClosure always_alive(_g1h);
4960 
4961     // Copying keep alive closure. Applied to referent objects that need
4962     // to be copied.
4963     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4964 
4965     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4966 
4967     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4968     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4969 
4970     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4971     // So this must be true - but assert just in case someone decides to
4972     // change the worker ids.
4973     assert(worker_id < limit, "sanity");
4974     assert(!rp->discovery_is_atomic(), "check this code");
4975 
4976     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4977     for (uint idx = worker_id; idx < limit; idx += stride) {
4978       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4979 
4980       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4981       while (iter.has_next()) {
4982         // Since discovery is not atomic for the CM ref processor, we
4983         // can see some null referent objects.
4984         iter.load_ptrs(DEBUG_ONLY(true));
4985         oop ref = iter.obj();
4986 
4987         // This will filter nulls.
4988         if (iter.is_referent_alive()) {
4989           iter.make_referent_alive();
4990         }
4991         iter.move_to_next();
4992       }
4993     }
4994 
4995     // Drain the queue - which may cause stealing
4996     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4997     drain_queue.do_void();
4998     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4999     assert(pss->queue_is_empty(), "should be");
5000   }
5001 };
5002 
5003 // Weak Reference processing during an evacuation pause (part 1).
5004 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5005   double ref_proc_start = os::elapsedTime();
5006 
5007   ReferenceProcessor* rp = _ref_processor_stw;
5008   assert(rp->discovery_enabled(), "should have been enabled");
5009 
5010   // Any reference objects, in the collection set, that were 'discovered'
5011   // by the CM ref processor should have already been copied (either by
5012   // applying the external root copy closure to the discovered lists, or
5013   // by following an RSet entry).
5014   //
5015   // But some of the referents, that are in the collection set, that these
5016   // reference objects point to may not have been copied: the STW ref
5017   // processor would have seen that the reference object had already
5018   // been 'discovered' and would have skipped discovering the reference,
5019   // but would not have treated the reference object as a regular oop.
5020   // As a result the copy closure would not have been applied to the
5021   // referent object.
5022   //
5023   // We need to explicitly copy these referent objects - the references
5024   // will be processed at the end of remarking.
5025   //
5026   // We also need to do this copying before we process the reference
5027   // objects discovered by the STW ref processor in case one of these
5028   // referents points to another object which is also referenced by an
5029   // object discovered by the STW ref processor.
5030 
5031   uint no_of_gc_workers = workers()->active_workers();
5032 
5033   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5034                                                  per_thread_states,
5035                                                  no_of_gc_workers,
5036                                                  _task_queues);
5037 
5038   workers()->run_task(&keep_cm_referents);
5039 
5040   // Closure to test whether a referent is alive.
5041   G1STWIsAliveClosure is_alive(this);
5042 
5043   // Even when parallel reference processing is enabled, the processing
5044   // of JNI refs is serial and performed serially by the current thread
5045   // rather than by a worker. The following PSS will be used for processing
5046   // JNI refs.
5047 
5048   // Use only a single queue for this PSS.
5049   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5050   pss->set_ref_processor(NULL);
5051   assert(pss->queue_is_empty(), "pre-condition");
5052 
5053   // Keep alive closure.
5054   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5055 
5056   // Serial Complete GC closure
5057   G1STWDrainQueueClosure drain_queue(this, pss);
5058 
5059   // Setup the soft refs policy...
5060   rp->setup_policy(false);
5061 
5062   ReferenceProcessorStats stats;
5063   if (!rp->processing_is_mt()) {
5064     // Serial reference processing...
5065     stats = rp->process_discovered_references(&is_alive,
5066                                               &keep_alive,
5067                                               &drain_queue,
5068                                               NULL,
5069                                               _gc_timer_stw);
5070   } else {
5071     // Parallel reference processing
5072     assert(rp->num_q() == no_of_gc_workers, "sanity");
5073     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5074 
5075     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5076     stats = rp->process_discovered_references(&is_alive,
5077                                               &keep_alive,
5078                                               &drain_queue,
5079                                               &par_task_executor,
5080                                               _gc_timer_stw);
5081   }
5082 
5083   _gc_tracer_stw->report_gc_reference_stats(stats);
5084 
5085   // We have completed copying any necessary live referent objects.
5086   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5087 
5088   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5089   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5090 }
5091 
5092 // Weak Reference processing during an evacuation pause (part 2).
5093 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5094   double ref_enq_start = os::elapsedTime();
5095 
5096   ReferenceProcessor* rp = _ref_processor_stw;
5097   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5098 
5099   // Now enqueue any remaining on the discovered lists on to
5100   // the pending list.
5101   if (!rp->processing_is_mt()) {
5102     // Serial reference processing...
5103     rp->enqueue_discovered_references();
5104   } else {
5105     // Parallel reference enqueueing
5106 
5107     uint n_workers = workers()->active_workers();
5108 
5109     assert(rp->num_q() == n_workers, "sanity");
5110     assert(n_workers <= rp->max_num_q(), "sanity");
5111 
5112     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5113     rp->enqueue_discovered_references(&par_task_executor);
5114   }
5115 
5116   rp->verify_no_references_recorded();
5117   assert(!rp->discovery_enabled(), "should have been disabled");
5118 
5119   // FIXME
5120   // CM's reference processing also cleans up the string and symbol tables.
5121   // Should we do that here also? We could, but it is a serial operation
5122   // and could significantly increase the pause time.
5123 
5124   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5125   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5126 }
5127 
5128 void G1CollectedHeap::pre_evacuate_collection_set() {
5129   _expand_heap_after_alloc_failure = true;
5130   _evacuation_failed = false;
5131 
5132   // Disable the hot card cache.
5133   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5134   hot_card_cache->reset_hot_cache_claimed_index();
5135   hot_card_cache->set_use_cache(false);
5136 
5137 }
5138 
5139 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5140   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5141 
5142   // Should G1EvacuationFailureALot be in effect for this GC?
5143   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5144 
5145   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5146   double start_par_time_sec = os::elapsedTime();
5147   double end_par_time_sec;
5148 
5149   {
5150     const uint n_workers = workers()->active_workers();
5151     G1RootProcessor root_processor(this, n_workers);
5152     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5153     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5154     if (collector_state()->during_initial_mark_pause()) {
5155       ClassLoaderDataGraph::clear_claimed_marks();
5156     }
5157 
5158     // The individual threads will set their evac-failure closures.
5159     if (PrintTerminationStats) {
5160       print_termination_stats_hdr(gclog_or_tty);
5161     }
5162 
5163     workers()->run_task(&g1_par_task);
5164     end_par_time_sec = os::elapsedTime();
5165 
5166     // Closing the inner scope will execute the destructor
5167     // for the G1RootProcessor object. We record the current
5168     // elapsed time before closing the scope so that time
5169     // taken for the destructor is NOT included in the
5170     // reported parallel time.
5171   }
5172 
5173   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5174 
5175   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5176   phase_times->record_par_time(par_time_ms);
5177 
5178   double code_root_fixup_time_ms =
5179         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5180   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5181 
5182   // Process any discovered reference objects - we have
5183   // to do this _before_ we retire the GC alloc regions
5184   // as we may have to copy some 'reachable' referent
5185   // objects (and their reachable sub-graphs) that were
5186   // not copied during the pause.
5187   process_discovered_references(per_thread_states);
5188 
5189   if (G1StringDedup::is_enabled()) {
5190     double fixup_start = os::elapsedTime();
5191 
5192     G1STWIsAliveClosure is_alive(this);
5193     G1KeepAliveClosure keep_alive(this);
5194     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5195 
5196     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5197     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5198   }
5199 
5200   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5201 
5202   if (evacuation_failed()) {
5203     remove_self_forwarding_pointers();
5204 
5205     // Reset the G1EvacuationFailureALot counters and flags
5206     // Note: the values are reset only when an actual
5207     // evacuation failure occurs.
5208     NOT_PRODUCT(reset_evacuation_should_fail();)
5209   }
5210 
5211   // Enqueue any remaining references remaining on the STW
5212   // reference processor's discovered lists. We need to do
5213   // this after the card table is cleaned (and verified) as
5214   // the act of enqueueing entries on to the pending list
5215   // will log these updates (and dirty their associated
5216   // cards). We need these updates logged to update any
5217   // RSets.
5218   enqueue_discovered_references(per_thread_states);
5219 }
5220 
5221 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5222   _allocator->release_gc_alloc_regions(evacuation_info);
5223 
5224   per_thread_states->flush();
5225 
5226   record_obj_copy_mem_stats();
5227 
5228   _survivor_evac_stats.adjust_desired_plab_sz();
5229   _old_evac_stats.adjust_desired_plab_sz();
5230 
5231   // Reset and re-enable the hot card cache.
5232   // Note the counts for the cards in the regions in the
5233   // collection set are reset when the collection set is freed.
5234   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5235   hot_card_cache->reset_hot_cache();
5236   hot_card_cache->set_use_cache(true);
5237 
5238   purge_code_root_memory();
5239 
5240   redirty_logged_cards();
5241 #if defined(COMPILER2) || INCLUDE_JVMCI
5242   DerivedPointerTable::update_pointers();
5243 #endif
5244 }
5245 
5246 void G1CollectedHeap::record_obj_copy_mem_stats() {
5247   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5248                                                create_g1_evac_summary(&_old_evac_stats));
5249 }
5250 
5251 void G1CollectedHeap::free_region(HeapRegion* hr,
5252                                   FreeRegionList* free_list,
5253                                   bool par,
5254                                   bool locked) {
5255   assert(!hr->is_free(), "the region should not be free");
5256   assert(!hr->is_empty(), "the region should not be empty");
5257   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5258   assert(free_list != NULL, "pre-condition");
5259 
5260   if (G1VerifyBitmaps) {
5261     MemRegion mr(hr->bottom(), hr->end());
5262     concurrent_mark()->clearRangePrevBitmap(mr);
5263   }
5264 
5265   // Clear the card counts for this region.
5266   // Note: we only need to do this if the region is not young
5267   // (since we don't refine cards in young regions).
5268   if (!hr->is_young()) {
5269     _cg1r->hot_card_cache()->reset_card_counts(hr);
5270   }
5271   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5272   free_list->add_ordered(hr);
5273 }
5274 
5275 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5276                                             FreeRegionList* free_list,
5277                                             bool par) {
5278   assert(hr->is_humongous(), "this is only for humongous regions");
5279   assert(free_list != NULL, "pre-condition");
5280   hr->clear_humongous();
5281   free_region(hr, free_list, par);
5282 }
5283 
5284 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5285                                            const HeapRegionSetCount& humongous_regions_removed) {
5286   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5287     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5288     _old_set.bulk_remove(old_regions_removed);
5289     _humongous_set.bulk_remove(humongous_regions_removed);
5290   }
5291 
5292 }
5293 
5294 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5295   assert(list != NULL, "list can't be null");
5296   if (!list->is_empty()) {
5297     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5298     _hrm.insert_list_into_free_list(list);
5299   }
5300 }
5301 
5302 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5303   decrease_used(bytes);
5304 }
5305 
5306 class G1ParCleanupCTTask : public AbstractGangTask {
5307   G1SATBCardTableModRefBS* _ct_bs;
5308   G1CollectedHeap* _g1h;
5309   HeapRegion* volatile _su_head;
5310 public:
5311   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5312                      G1CollectedHeap* g1h) :
5313     AbstractGangTask("G1 Par Cleanup CT Task"),
5314     _ct_bs(ct_bs), _g1h(g1h) { }
5315 
5316   void work(uint worker_id) {
5317     HeapRegion* r;
5318     while (r = _g1h->pop_dirty_cards_region()) {
5319       clear_cards(r);
5320     }
5321   }
5322 
5323   void clear_cards(HeapRegion* r) {
5324     // Cards of the survivors should have already been dirtied.
5325     if (!r->is_survivor()) {
5326       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5327     }
5328   }
5329 };
5330 
5331 #ifndef PRODUCT
5332 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5333   G1CollectedHeap* _g1h;
5334   G1SATBCardTableModRefBS* _ct_bs;
5335 public:
5336   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5337     : _g1h(g1h), _ct_bs(ct_bs) { }
5338   virtual bool doHeapRegion(HeapRegion* r) {
5339     if (r->is_survivor()) {
5340       _g1h->verify_dirty_region(r);
5341     } else {
5342       _g1h->verify_not_dirty_region(r);
5343     }
5344     return false;
5345   }
5346 };
5347 
5348 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5349   // All of the region should be clean.
5350   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5351   MemRegion mr(hr->bottom(), hr->end());
5352   ct_bs->verify_not_dirty_region(mr);
5353 }
5354 
5355 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5356   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5357   // dirty allocated blocks as they allocate them. The thread that
5358   // retires each region and replaces it with a new one will do a
5359   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5360   // not dirty that area (one less thing to have to do while holding
5361   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5362   // is dirty.
5363   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5364   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5365   if (hr->is_young()) {
5366     ct_bs->verify_g1_young_region(mr);
5367   } else {
5368     ct_bs->verify_dirty_region(mr);
5369   }
5370 }
5371 
5372 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5373   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5374   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5375     verify_dirty_region(hr);
5376   }
5377 }
5378 
5379 void G1CollectedHeap::verify_dirty_young_regions() {
5380   verify_dirty_young_list(_young_list->first_region());
5381 }
5382 
5383 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5384                                                HeapWord* tams, HeapWord* end) {
5385   guarantee(tams <= end,
5386             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5387   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5388   if (result < end) {
5389     gclog_or_tty->cr();
5390     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5391                            bitmap_name, p2i(result));
5392     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5393                            bitmap_name, p2i(tams), p2i(end));
5394     return false;
5395   }
5396   return true;
5397 }
5398 
5399 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5400   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5401   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5402 
5403   HeapWord* bottom = hr->bottom();
5404   HeapWord* ptams  = hr->prev_top_at_mark_start();
5405   HeapWord* ntams  = hr->next_top_at_mark_start();
5406   HeapWord* end    = hr->end();
5407 
5408   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5409 
5410   bool res_n = true;
5411   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5412   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5413   // if we happen to be in that state.
5414   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5415     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5416   }
5417   if (!res_p || !res_n) {
5418     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5419                            HR_FORMAT_PARAMS(hr));
5420     gclog_or_tty->print_cr("#### Caller: %s", caller);
5421     return false;
5422   }
5423   return true;
5424 }
5425 
5426 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5427   if (!G1VerifyBitmaps) return;
5428 
5429   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5430 }
5431 
5432 class G1VerifyBitmapClosure : public HeapRegionClosure {
5433 private:
5434   const char* _caller;
5435   G1CollectedHeap* _g1h;
5436   bool _failures;
5437 
5438 public:
5439   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5440     _caller(caller), _g1h(g1h), _failures(false) { }
5441 
5442   bool failures() { return _failures; }
5443 
5444   virtual bool doHeapRegion(HeapRegion* hr) {
5445     bool result = _g1h->verify_bitmaps(_caller, hr);
5446     if (!result) {
5447       _failures = true;
5448     }
5449     return false;
5450   }
5451 };
5452 
5453 void G1CollectedHeap::check_bitmaps(const char* caller) {
5454   if (!G1VerifyBitmaps) return;
5455 
5456   G1VerifyBitmapClosure cl(caller, this);
5457   heap_region_iterate(&cl);
5458   guarantee(!cl.failures(), "bitmap verification");
5459 }
5460 
5461 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5462  private:
5463   bool _failures;
5464  public:
5465   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5466 
5467   virtual bool doHeapRegion(HeapRegion* hr) {
5468     uint i = hr->hrm_index();
5469     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5470     if (hr->is_humongous()) {
5471       if (hr->in_collection_set()) {
5472         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5473         _failures = true;
5474         return true;
5475       }
5476       if (cset_state.is_in_cset()) {
5477         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5478         _failures = true;
5479         return true;
5480       }
5481       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5482         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5483         _failures = true;
5484         return true;
5485       }
5486     } else {
5487       if (cset_state.is_humongous()) {
5488         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5489         _failures = true;
5490         return true;
5491       }
5492       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5493         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5494                                hr->in_collection_set(), cset_state.value(), i);
5495         _failures = true;
5496         return true;
5497       }
5498       if (cset_state.is_in_cset()) {
5499         if (hr->is_young() != (cset_state.is_young())) {
5500           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5501                                  hr->is_young(), cset_state.value(), i);
5502           _failures = true;
5503           return true;
5504         }
5505         if (hr->is_old() != (cset_state.is_old())) {
5506           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5507                                  hr->is_old(), cset_state.value(), i);
5508           _failures = true;
5509           return true;
5510         }
5511       }
5512     }
5513     return false;
5514   }
5515 
5516   bool failures() const { return _failures; }
5517 };
5518 
5519 bool G1CollectedHeap::check_cset_fast_test() {
5520   G1CheckCSetFastTableClosure cl;
5521   _hrm.iterate(&cl);
5522   return !cl.failures();
5523 }
5524 #endif // PRODUCT
5525 
5526 void G1CollectedHeap::cleanUpCardTable() {
5527   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5528   double start = os::elapsedTime();
5529 
5530   {
5531     // Iterate over the dirty cards region list.
5532     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5533 
5534     workers()->run_task(&cleanup_task);
5535 #ifndef PRODUCT
5536     if (G1VerifyCTCleanup || VerifyAfterGC) {
5537       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5538       heap_region_iterate(&cleanup_verifier);
5539     }
5540 #endif
5541   }
5542 
5543   double elapsed = os::elapsedTime() - start;
5544   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5545 }
5546 
5547 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5548   size_t pre_used = 0;
5549   FreeRegionList local_free_list("Local List for CSet Freeing");
5550 
5551   double young_time_ms     = 0.0;
5552   double non_young_time_ms = 0.0;
5553 
5554   // Since the collection set is a superset of the the young list,
5555   // all we need to do to clear the young list is clear its
5556   // head and length, and unlink any young regions in the code below
5557   _young_list->clear();
5558 
5559   G1CollectorPolicy* policy = g1_policy();
5560 
5561   double start_sec = os::elapsedTime();
5562   bool non_young = true;
5563 
5564   HeapRegion* cur = cs_head;
5565   int age_bound = -1;
5566   size_t rs_lengths = 0;
5567 
5568   while (cur != NULL) {
5569     assert(!is_on_master_free_list(cur), "sanity");
5570     if (non_young) {
5571       if (cur->is_young()) {
5572         double end_sec = os::elapsedTime();
5573         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5574         non_young_time_ms += elapsed_ms;
5575 
5576         start_sec = os::elapsedTime();
5577         non_young = false;
5578       }
5579     } else {
5580       if (!cur->is_young()) {
5581         double end_sec = os::elapsedTime();
5582         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5583         young_time_ms += elapsed_ms;
5584 
5585         start_sec = os::elapsedTime();
5586         non_young = true;
5587       }
5588     }
5589 
5590     rs_lengths += cur->rem_set()->occupied_locked();
5591 
5592     HeapRegion* next = cur->next_in_collection_set();
5593     assert(cur->in_collection_set(), "bad CS");
5594     cur->set_next_in_collection_set(NULL);
5595     clear_in_cset(cur);
5596 
5597     if (cur->is_young()) {
5598       int index = cur->young_index_in_cset();
5599       assert(index != -1, "invariant");
5600       assert((uint) index < policy->young_cset_region_length(), "invariant");
5601       size_t words_survived = surviving_young_words[index];
5602       cur->record_surv_words_in_group(words_survived);
5603 
5604       // At this point the we have 'popped' cur from the collection set
5605       // (linked via next_in_collection_set()) but it is still in the
5606       // young list (linked via next_young_region()). Clear the
5607       // _next_young_region field.
5608       cur->set_next_young_region(NULL);
5609     } else {
5610       int index = cur->young_index_in_cset();
5611       assert(index == -1, "invariant");
5612     }
5613 
5614     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5615             (!cur->is_young() && cur->young_index_in_cset() == -1),
5616             "invariant" );
5617 
5618     if (!cur->evacuation_failed()) {
5619       MemRegion used_mr = cur->used_region();
5620 
5621       // And the region is empty.
5622       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5623       pre_used += cur->used();
5624       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5625     } else {
5626       cur->uninstall_surv_rate_group();
5627       if (cur->is_young()) {
5628         cur->set_young_index_in_cset(-1);
5629       }
5630       cur->set_evacuation_failed(false);
5631       // The region is now considered to be old.
5632       cur->set_old();
5633       // Do some allocation statistics accounting. Regions that failed evacuation
5634       // are always made old, so there is no need to update anything in the young
5635       // gen statistics, but we need to update old gen statistics.
5636       size_t used_words = cur->marked_bytes() / HeapWordSize;
5637       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5638       _old_set.add(cur);
5639       evacuation_info.increment_collectionset_used_after(cur->used());
5640     }
5641     cur = next;
5642   }
5643 
5644   evacuation_info.set_regions_freed(local_free_list.length());
5645   policy->record_max_rs_lengths(rs_lengths);
5646   policy->cset_regions_freed();
5647 
5648   double end_sec = os::elapsedTime();
5649   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5650 
5651   if (non_young) {
5652     non_young_time_ms += elapsed_ms;
5653   } else {
5654     young_time_ms += elapsed_ms;
5655   }
5656 
5657   prepend_to_freelist(&local_free_list);
5658   decrement_summary_bytes(pre_used);
5659   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5660   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5661 }
5662 
5663 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5664  private:
5665   FreeRegionList* _free_region_list;
5666   HeapRegionSet* _proxy_set;
5667   HeapRegionSetCount _humongous_regions_removed;
5668   size_t _freed_bytes;
5669  public:
5670 
5671   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5672     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5673   }
5674 
5675   virtual bool doHeapRegion(HeapRegion* r) {
5676     if (!r->is_starts_humongous()) {
5677       return false;
5678     }
5679 
5680     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5681 
5682     oop obj = (oop)r->bottom();
5683     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5684 
5685     // The following checks whether the humongous object is live are sufficient.
5686     // The main additional check (in addition to having a reference from the roots
5687     // or the young gen) is whether the humongous object has a remembered set entry.
5688     //
5689     // A humongous object cannot be live if there is no remembered set for it
5690     // because:
5691     // - there can be no references from within humongous starts regions referencing
5692     // the object because we never allocate other objects into them.
5693     // (I.e. there are no intra-region references that may be missed by the
5694     // remembered set)
5695     // - as soon there is a remembered set entry to the humongous starts region
5696     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5697     // until the end of a concurrent mark.
5698     //
5699     // It is not required to check whether the object has been found dead by marking
5700     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5701     // all objects allocated during that time are considered live.
5702     // SATB marking is even more conservative than the remembered set.
5703     // So if at this point in the collection there is no remembered set entry,
5704     // nobody has a reference to it.
5705     // At the start of collection we flush all refinement logs, and remembered sets
5706     // are completely up-to-date wrt to references to the humongous object.
5707     //
5708     // Other implementation considerations:
5709     // - never consider object arrays at this time because they would pose
5710     // considerable effort for cleaning up the the remembered sets. This is
5711     // required because stale remembered sets might reference locations that
5712     // are currently allocated into.
5713     uint region_idx = r->hrm_index();
5714     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5715         !r->rem_set()->is_empty()) {
5716 
5717       if (G1TraceEagerReclaimHumongousObjects) {
5718         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5719                                region_idx,
5720                                (size_t)obj->size() * HeapWordSize,
5721                                p2i(r->bottom()),
5722                                r->rem_set()->occupied(),
5723                                r->rem_set()->strong_code_roots_list_length(),
5724                                next_bitmap->isMarked(r->bottom()),
5725                                g1h->is_humongous_reclaim_candidate(region_idx),
5726                                obj->is_typeArray()
5727                               );
5728       }
5729 
5730       return false;
5731     }
5732 
5733     guarantee(obj->is_typeArray(),
5734               "Only eagerly reclaiming type arrays is supported, but the object "
5735               PTR_FORMAT " is not.", p2i(r->bottom()));
5736 
5737     if (G1TraceEagerReclaimHumongousObjects) {
5738       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5739                              region_idx,
5740                              (size_t)obj->size() * HeapWordSize,
5741                              p2i(r->bottom()),
5742                              r->rem_set()->occupied(),
5743                              r->rem_set()->strong_code_roots_list_length(),
5744                              next_bitmap->isMarked(r->bottom()),
5745                              g1h->is_humongous_reclaim_candidate(region_idx),
5746                              obj->is_typeArray()
5747                             );
5748     }
5749     // Need to clear mark bit of the humongous object if already set.
5750     if (next_bitmap->isMarked(r->bottom())) {
5751       next_bitmap->clear(r->bottom());
5752     }
5753     do {
5754       HeapRegion* next = g1h->next_region_in_humongous(r);
5755       _freed_bytes += r->used();
5756       r->set_containing_set(NULL);
5757       _humongous_regions_removed.increment(1u, r->capacity());
5758       g1h->free_humongous_region(r, _free_region_list, false);
5759       r = next;
5760     } while (r != NULL);
5761 
5762     return false;
5763   }
5764 
5765   HeapRegionSetCount& humongous_free_count() {
5766     return _humongous_regions_removed;
5767   }
5768 
5769   size_t bytes_freed() const {
5770     return _freed_bytes;
5771   }
5772 
5773   size_t humongous_reclaimed() const {
5774     return _humongous_regions_removed.length();
5775   }
5776 };
5777 
5778 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5779   assert_at_safepoint(true);
5780 
5781   if (!G1EagerReclaimHumongousObjects ||
5782       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5783     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5784     return;
5785   }
5786 
5787   double start_time = os::elapsedTime();
5788 
5789   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5790 
5791   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5792   heap_region_iterate(&cl);
5793 
5794   HeapRegionSetCount empty_set;
5795   remove_from_old_sets(empty_set, cl.humongous_free_count());
5796 
5797   G1HRPrinter* hrp = hr_printer();
5798   if (hrp->is_active()) {
5799     FreeRegionListIterator iter(&local_cleanup_list);
5800     while (iter.more_available()) {
5801       HeapRegion* hr = iter.get_next();
5802       hrp->cleanup(hr);
5803     }
5804   }
5805 
5806   prepend_to_freelist(&local_cleanup_list);
5807   decrement_summary_bytes(cl.bytes_freed());
5808 
5809   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5810                                                                     cl.humongous_reclaimed());
5811 }
5812 
5813 // This routine is similar to the above but does not record
5814 // any policy statistics or update free lists; we are abandoning
5815 // the current incremental collection set in preparation of a
5816 // full collection. After the full GC we will start to build up
5817 // the incremental collection set again.
5818 // This is only called when we're doing a full collection
5819 // and is immediately followed by the tearing down of the young list.
5820 
5821 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5822   HeapRegion* cur = cs_head;
5823 
5824   while (cur != NULL) {
5825     HeapRegion* next = cur->next_in_collection_set();
5826     assert(cur->in_collection_set(), "bad CS");
5827     cur->set_next_in_collection_set(NULL);
5828     clear_in_cset(cur);
5829     cur->set_young_index_in_cset(-1);
5830     cur = next;
5831   }
5832 }
5833 
5834 void G1CollectedHeap::set_free_regions_coming() {
5835   if (G1ConcRegionFreeingVerbose) {
5836     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5837                            "setting free regions coming");
5838   }
5839 
5840   assert(!free_regions_coming(), "pre-condition");
5841   _free_regions_coming = true;
5842 }
5843 
5844 void G1CollectedHeap::reset_free_regions_coming() {
5845   assert(free_regions_coming(), "pre-condition");
5846 
5847   {
5848     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5849     _free_regions_coming = false;
5850     SecondaryFreeList_lock->notify_all();
5851   }
5852 
5853   if (G1ConcRegionFreeingVerbose) {
5854     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5855                            "reset free regions coming");
5856   }
5857 }
5858 
5859 void G1CollectedHeap::wait_while_free_regions_coming() {
5860   // Most of the time we won't have to wait, so let's do a quick test
5861   // first before we take the lock.
5862   if (!free_regions_coming()) {
5863     return;
5864   }
5865 
5866   if (G1ConcRegionFreeingVerbose) {
5867     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5868                            "waiting for free regions");
5869   }
5870 
5871   {
5872     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5873     while (free_regions_coming()) {
5874       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5875     }
5876   }
5877 
5878   if (G1ConcRegionFreeingVerbose) {
5879     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5880                            "done waiting for free regions");
5881   }
5882 }
5883 
5884 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5885   return _allocator->is_retained_old_region(hr);
5886 }
5887 
5888 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5889   _young_list->push_region(hr);
5890 }
5891 
5892 class NoYoungRegionsClosure: public HeapRegionClosure {
5893 private:
5894   bool _success;
5895 public:
5896   NoYoungRegionsClosure() : _success(true) { }
5897   bool doHeapRegion(HeapRegion* r) {
5898     if (r->is_young()) {
5899       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5900                              p2i(r->bottom()), p2i(r->end()));
5901       _success = false;
5902     }
5903     return false;
5904   }
5905   bool success() { return _success; }
5906 };
5907 
5908 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5909   bool ret = _young_list->check_list_empty(check_sample);
5910 
5911   if (check_heap) {
5912     NoYoungRegionsClosure closure;
5913     heap_region_iterate(&closure);
5914     ret = ret && closure.success();
5915   }
5916 
5917   return ret;
5918 }
5919 
5920 class TearDownRegionSetsClosure : public HeapRegionClosure {
5921 private:
5922   HeapRegionSet *_old_set;
5923 
5924 public:
5925   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5926 
5927   bool doHeapRegion(HeapRegion* r) {
5928     if (r->is_old()) {
5929       _old_set->remove(r);
5930     } else {
5931       // We ignore free regions, we'll empty the free list afterwards.
5932       // We ignore young regions, we'll empty the young list afterwards.
5933       // We ignore humongous regions, we're not tearing down the
5934       // humongous regions set.
5935       assert(r->is_free() || r->is_young() || r->is_humongous(),
5936              "it cannot be another type");
5937     }
5938     return false;
5939   }
5940 
5941   ~TearDownRegionSetsClosure() {
5942     assert(_old_set->is_empty(), "post-condition");
5943   }
5944 };
5945 
5946 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5947   assert_at_safepoint(true /* should_be_vm_thread */);
5948 
5949   if (!free_list_only) {
5950     TearDownRegionSetsClosure cl(&_old_set);
5951     heap_region_iterate(&cl);
5952 
5953     // Note that emptying the _young_list is postponed and instead done as
5954     // the first step when rebuilding the regions sets again. The reason for
5955     // this is that during a full GC string deduplication needs to know if
5956     // a collected region was young or old when the full GC was initiated.
5957   }
5958   _hrm.remove_all_free_regions();
5959 }
5960 
5961 void G1CollectedHeap::increase_used(size_t bytes) {
5962   _summary_bytes_used += bytes;
5963 }
5964 
5965 void G1CollectedHeap::decrease_used(size_t bytes) {
5966   assert(_summary_bytes_used >= bytes,
5967          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5968          _summary_bytes_used, bytes);
5969   _summary_bytes_used -= bytes;
5970 }
5971 
5972 void G1CollectedHeap::set_used(size_t bytes) {
5973   _summary_bytes_used = bytes;
5974 }
5975 
5976 class RebuildRegionSetsClosure : public HeapRegionClosure {
5977 private:
5978   bool            _free_list_only;
5979   HeapRegionSet*   _old_set;
5980   HeapRegionManager*   _hrm;
5981   size_t          _total_used;
5982 
5983 public:
5984   RebuildRegionSetsClosure(bool free_list_only,
5985                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5986     _free_list_only(free_list_only),
5987     _old_set(old_set), _hrm(hrm), _total_used(0) {
5988     assert(_hrm->num_free_regions() == 0, "pre-condition");
5989     if (!free_list_only) {
5990       assert(_old_set->is_empty(), "pre-condition");
5991     }
5992   }
5993 
5994   bool doHeapRegion(HeapRegion* r) {
5995     if (r->is_empty()) {
5996       // Add free regions to the free list
5997       r->set_free();
5998       r->set_allocation_context(AllocationContext::system());
5999       _hrm->insert_into_free_list(r);
6000     } else if (!_free_list_only) {
6001       assert(!r->is_young(), "we should not come across young regions");
6002 
6003       if (r->is_humongous()) {
6004         // We ignore humongous regions. We left the humongous set unchanged.
6005       } else {
6006         // Objects that were compacted would have ended up on regions
6007         // that were previously old or free.  Archive regions (which are
6008         // old) will not have been touched.
6009         assert(r->is_free() || r->is_old(), "invariant");
6010         // We now consider them old, so register as such. Leave
6011         // archive regions set that way, however, while still adding
6012         // them to the old set.
6013         if (!r->is_archive()) {
6014           r->set_old();
6015         }
6016         _old_set->add(r);
6017       }
6018       _total_used += r->used();
6019     }
6020 
6021     return false;
6022   }
6023 
6024   size_t total_used() {
6025     return _total_used;
6026   }
6027 };
6028 
6029 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6030   assert_at_safepoint(true /* should_be_vm_thread */);
6031 
6032   if (!free_list_only) {
6033     _young_list->empty_list();
6034   }
6035 
6036   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6037   heap_region_iterate(&cl);
6038 
6039   if (!free_list_only) {
6040     set_used(cl.total_used());
6041     if (_archive_allocator != NULL) {
6042       _archive_allocator->clear_used();
6043     }
6044   }
6045   assert(used_unlocked() == recalculate_used(),
6046          "inconsistent used_unlocked(), "
6047          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6048          used_unlocked(), recalculate_used());
6049 }
6050 
6051 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6052   _refine_cte_cl->set_concurrent(concurrent);
6053 }
6054 
6055 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6056   HeapRegion* hr = heap_region_containing(p);
6057   return hr->is_in(p);
6058 }
6059 
6060 // Methods for the mutator alloc region
6061 
6062 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6063                                                       bool force) {
6064   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6065   assert(!force || g1_policy()->can_expand_young_list(),
6066          "if force is true we should be able to expand the young list");
6067   bool young_list_full = g1_policy()->is_young_list_full();
6068   if (force || !young_list_full) {
6069     HeapRegion* new_alloc_region = new_region(word_size,
6070                                               false /* is_old */,
6071                                               false /* do_expand */);
6072     if (new_alloc_region != NULL) {
6073       set_region_short_lived_locked(new_alloc_region);
6074       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6075       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6076       return new_alloc_region;
6077     }
6078   }
6079   return NULL;
6080 }
6081 
6082 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6083                                                   size_t allocated_bytes) {
6084   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6085   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6086 
6087   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6088   increase_used(allocated_bytes);
6089   _hr_printer.retire(alloc_region);
6090   // We update the eden sizes here, when the region is retired,
6091   // instead of when it's allocated, since this is the point that its
6092   // used space has been recored in _summary_bytes_used.
6093   g1mm()->update_eden_size();
6094 }
6095 
6096 // Methods for the GC alloc regions
6097 
6098 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6099                                                  uint count,
6100                                                  InCSetState dest) {
6101   assert(FreeList_lock->owned_by_self(), "pre-condition");
6102 
6103   if (count < g1_policy()->max_regions(dest)) {
6104     const bool is_survivor = (dest.is_young());
6105     HeapRegion* new_alloc_region = new_region(word_size,
6106                                               !is_survivor,
6107                                               true /* do_expand */);
6108     if (new_alloc_region != NULL) {
6109       // We really only need to do this for old regions given that we
6110       // should never scan survivors. But it doesn't hurt to do it
6111       // for survivors too.
6112       new_alloc_region->record_timestamp();
6113       if (is_survivor) {
6114         new_alloc_region->set_survivor();
6115         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6116         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6117       } else {
6118         new_alloc_region->set_old();
6119         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6120         check_bitmaps("Old Region Allocation", new_alloc_region);
6121       }
6122       bool during_im = collector_state()->during_initial_mark_pause();
6123       new_alloc_region->note_start_of_copying(during_im);
6124       return new_alloc_region;
6125     }
6126   }
6127   return NULL;
6128 }
6129 
6130 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6131                                              size_t allocated_bytes,
6132                                              InCSetState dest) {
6133   bool during_im = collector_state()->during_initial_mark_pause();
6134   alloc_region->note_end_of_copying(during_im);
6135   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6136   if (dest.is_young()) {
6137     young_list()->add_survivor_region(alloc_region);
6138   } else {
6139     _old_set.add(alloc_region);
6140   }
6141   _hr_printer.retire(alloc_region);
6142 }
6143 
6144 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6145   bool expanded = false;
6146   uint index = _hrm.find_highest_free(&expanded);
6147 
6148   if (index != G1_NO_HRM_INDEX) {
6149     if (expanded) {
6150       ergo_verbose1(ErgoHeapSizing,
6151                     "attempt heap expansion",
6152                     ergo_format_reason("requested address range outside heap bounds")
6153                     ergo_format_byte("region size"),
6154                     HeapRegion::GrainWords * HeapWordSize);
6155     }
6156     _hrm.allocate_free_regions_starting_at(index, 1);
6157     return region_at(index);
6158   }
6159   return NULL;
6160 }
6161 
6162 // Heap region set verification
6163 
6164 class VerifyRegionListsClosure : public HeapRegionClosure {
6165 private:
6166   HeapRegionSet*   _old_set;
6167   HeapRegionSet*   _humongous_set;
6168   HeapRegionManager*   _hrm;
6169 
6170 public:
6171   HeapRegionSetCount _old_count;
6172   HeapRegionSetCount _humongous_count;
6173   HeapRegionSetCount _free_count;
6174 
6175   VerifyRegionListsClosure(HeapRegionSet* old_set,
6176                            HeapRegionSet* humongous_set,
6177                            HeapRegionManager* hrm) :
6178     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6179     _old_count(), _humongous_count(), _free_count(){ }
6180 
6181   bool doHeapRegion(HeapRegion* hr) {
6182     if (hr->is_young()) {
6183       // TODO
6184     } else if (hr->is_humongous()) {
6185       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6186       _humongous_count.increment(1u, hr->capacity());
6187     } else if (hr->is_empty()) {
6188       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6189       _free_count.increment(1u, hr->capacity());
6190     } else if (hr->is_old()) {
6191       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6192       _old_count.increment(1u, hr->capacity());
6193     } else {
6194       // There are no other valid region types. Check for one invalid
6195       // one we can identify: pinned without old or humongous set.
6196       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6197       ShouldNotReachHere();
6198     }
6199     return false;
6200   }
6201 
6202   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6203     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6204     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6205               old_set->total_capacity_bytes(), _old_count.capacity());
6206 
6207     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6208     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6209               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6210 
6211     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6212     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6213               free_list->total_capacity_bytes(), _free_count.capacity());
6214   }
6215 };
6216 
6217 void G1CollectedHeap::verify_region_sets() {
6218   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6219 
6220   // First, check the explicit lists.
6221   _hrm.verify();
6222   {
6223     // Given that a concurrent operation might be adding regions to
6224     // the secondary free list we have to take the lock before
6225     // verifying it.
6226     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6227     _secondary_free_list.verify_list();
6228   }
6229 
6230   // If a concurrent region freeing operation is in progress it will
6231   // be difficult to correctly attributed any free regions we come
6232   // across to the correct free list given that they might belong to
6233   // one of several (free_list, secondary_free_list, any local lists,
6234   // etc.). So, if that's the case we will skip the rest of the
6235   // verification operation. Alternatively, waiting for the concurrent
6236   // operation to complete will have a non-trivial effect on the GC's
6237   // operation (no concurrent operation will last longer than the
6238   // interval between two calls to verification) and it might hide
6239   // any issues that we would like to catch during testing.
6240   if (free_regions_coming()) {
6241     return;
6242   }
6243 
6244   // Make sure we append the secondary_free_list on the free_list so
6245   // that all free regions we will come across can be safely
6246   // attributed to the free_list.
6247   append_secondary_free_list_if_not_empty_with_lock();
6248 
6249   // Finally, make sure that the region accounting in the lists is
6250   // consistent with what we see in the heap.
6251 
6252   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6253   heap_region_iterate(&cl);
6254   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6255 }
6256 
6257 // Optimized nmethod scanning
6258 
6259 class RegisterNMethodOopClosure: public OopClosure {
6260   G1CollectedHeap* _g1h;
6261   nmethod* _nm;
6262 
6263   template <class T> void do_oop_work(T* p) {
6264     T heap_oop = oopDesc::load_heap_oop(p);
6265     if (!oopDesc::is_null(heap_oop)) {
6266       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6267       HeapRegion* hr = _g1h->heap_region_containing(obj);
6268       assert(!hr->is_continues_humongous(),
6269              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6270              " starting at " HR_FORMAT,
6271              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6272 
6273       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6274       hr->add_strong_code_root_locked(_nm);
6275     }
6276   }
6277 
6278 public:
6279   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6280     _g1h(g1h), _nm(nm) {}
6281 
6282   void do_oop(oop* p)       { do_oop_work(p); }
6283   void do_oop(narrowOop* p) { do_oop_work(p); }
6284 };
6285 
6286 class UnregisterNMethodOopClosure: public OopClosure {
6287   G1CollectedHeap* _g1h;
6288   nmethod* _nm;
6289 
6290   template <class T> void do_oop_work(T* p) {
6291     T heap_oop = oopDesc::load_heap_oop(p);
6292     if (!oopDesc::is_null(heap_oop)) {
6293       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6294       HeapRegion* hr = _g1h->heap_region_containing(obj);
6295       assert(!hr->is_continues_humongous(),
6296              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6297              " starting at " HR_FORMAT,
6298              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6299 
6300       hr->remove_strong_code_root(_nm);
6301     }
6302   }
6303 
6304 public:
6305   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6306     _g1h(g1h), _nm(nm) {}
6307 
6308   void do_oop(oop* p)       { do_oop_work(p); }
6309   void do_oop(narrowOop* p) { do_oop_work(p); }
6310 };
6311 
6312 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6313   CollectedHeap::register_nmethod(nm);
6314 
6315   guarantee(nm != NULL, "sanity");
6316   RegisterNMethodOopClosure reg_cl(this, nm);
6317   nm->oops_do(&reg_cl);
6318 }
6319 
6320 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6321   CollectedHeap::unregister_nmethod(nm);
6322 
6323   guarantee(nm != NULL, "sanity");
6324   UnregisterNMethodOopClosure reg_cl(this, nm);
6325   nm->oops_do(&reg_cl, true);
6326 }
6327 
6328 void G1CollectedHeap::purge_code_root_memory() {
6329   double purge_start = os::elapsedTime();
6330   G1CodeRootSet::purge();
6331   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6332   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6333 }
6334 
6335 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6336   G1CollectedHeap* _g1h;
6337 
6338 public:
6339   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6340     _g1h(g1h) {}
6341 
6342   void do_code_blob(CodeBlob* cb) {
6343     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6344     if (nm == NULL) {
6345       return;
6346     }
6347 
6348     if (ScavengeRootsInCode) {
6349       _g1h->register_nmethod(nm);
6350     }
6351   }
6352 };
6353 
6354 void G1CollectedHeap::rebuild_strong_code_roots() {
6355   RebuildStrongCodeRootClosure blob_cl(this);
6356   CodeCache::blobs_do(&blob_cl);
6357 }