1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"
  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)
  86 
  87 // Local to this file.
  88 
  89 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  90   bool _concurrent;
  91 public:
  92   RefineCardTableEntryClosure() : _concurrent(true) { }
  93 
  94   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  95     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  96     // This path is executed by the concurrent refine or mutator threads,
  97     // concurrently, and so we do not care if card_ptr contains references
  98     // that point into the collection set.
  99     assert(!oops_into_cset, "should be");
 100 
 101     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 102       // Caller will actually yield.
 103       return false;
 104     }
 105     // Otherwise, we finished successfully; return true.
 106     return true;
 107   }
 108 
 109   void set_concurrent(bool b) { _concurrent = b; }
 110 };
 111 
 112 
 113 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 114  private:
 115   size_t _num_processed;
 116 
 117  public:
 118   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 119 
 120   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 121     *card_ptr = CardTableModRefBS::dirty_card_val();
 122     _num_processed++;
 123     return true;
 124   }
 125 
 126   size_t num_processed() const { return _num_processed; }
 127 };
 128 
 129 
 130 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 131   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 132 }
 133 
 134 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 135   // The from card cache is not the memory that is actually committed. So we cannot
 136   // take advantage of the zero_filled parameter.
 137   reset_from_card_cache(start_idx, num_regions);
 138 }
 139 
 140 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 141 {
 142   // Claim the right to put the region on the dirty cards region list
 143   // by installing a self pointer.
 144   HeapRegion* next = hr->get_next_dirty_cards_region();
 145   if (next == NULL) {
 146     HeapRegion* res = (HeapRegion*)
 147       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 148                           NULL);
 149     if (res == NULL) {
 150       HeapRegion* head;
 151       do {
 152         // Put the region to the dirty cards region list.
 153         head = _dirty_cards_region_list;
 154         next = (HeapRegion*)
 155           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 156         if (next == head) {
 157           assert(hr->get_next_dirty_cards_region() == hr,
 158                  "hr->get_next_dirty_cards_region() != hr");
 159           if (next == NULL) {
 160             // The last region in the list points to itself.
 161             hr->set_next_dirty_cards_region(hr);
 162           } else {
 163             hr->set_next_dirty_cards_region(next);
 164           }
 165         }
 166       } while (next != head);
 167     }
 168   }
 169 }
 170 
 171 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 172 {
 173   HeapRegion* head;
 174   HeapRegion* hr;
 175   do {
 176     head = _dirty_cards_region_list;
 177     if (head == NULL) {
 178       return NULL;
 179     }
 180     HeapRegion* new_head = head->get_next_dirty_cards_region();
 181     if (head == new_head) {
 182       // The last region.
 183       new_head = NULL;
 184     }
 185     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 186                                           head);
 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);
 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");
 301   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 302 
 303   // Index of last region in the series + 1.
 304   uint last = first + num_regions;
 305 
 306   // We need to initialize the region(s) we just discovered. This is
 307   // a bit tricky given that it can happen concurrently with
 308   // refinement threads refining cards on these regions and
 309   // potentially wanting to refine the BOT as they are scanning
 310   // those cards (this can happen shortly after a cleanup; see CR
 311   // 6991377). So we have to set up the region(s) carefully and in
 312   // a specific order.
 313 
 314   // The word size sum of all the regions we will allocate.
 315   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 316   assert(word_size <= word_size_sum, "sanity");
 317 
 318   // This will be the "starts humongous" region.
 319   HeapRegion* first_hr = region_at(first);
 320   // The header of the new object will be placed at the bottom of
 321   // the first region.
 322   HeapWord* new_obj = first_hr->bottom();
 323   // This will be the new top of the new object.
 324   HeapWord* obj_top = new_obj + word_size;
 325 
 326   // First, we need to zero the header of the space that we will be
 327   // allocating. When we update top further down, some refinement
 328   // threads might try to scan the region. By zeroing the header we
 329   // ensure that any thread that will try to scan the region will
 330   // come across the zero klass word and bail out.
 331   //
 332   // NOTE: It would not have been correct to have used
 333   // CollectedHeap::fill_with_object() and make the space look like
 334   // an int array. The thread that is doing the allocation will
 335   // later update the object header to a potentially different array
 336   // type and, for a very short period of time, the klass and length
 337   // fields will be inconsistent. This could cause a refinement
 338   // thread to calculate the object size incorrectly.
 339   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 340 
 341   // We will set up the first region as "starts humongous". This
 342   // will also update the BOT covering all the regions to reflect
 343   // that there is a single object that starts at the bottom of the
 344   // first region.
 345   first_hr->set_starts_humongous(obj_top);
 346   first_hr->set_allocation_context(context);
 347   // Then, if there are any, we will set up the "continues
 348   // humongous" regions.
 349   HeapRegion* hr = NULL;
 350   for (uint i = first + 1; i < last; ++i) {
 351     hr = region_at(i);
 352     hr->set_continues_humongous(first_hr);
 353     hr->set_allocation_context(context);
 354   }
 355 
 356   // Up to this point no concurrent thread would have been able to
 357   // do any scanning on any region in this series. All the top
 358   // fields still point to bottom, so the intersection between
 359   // [bottom,top] and [card_start,card_end] will be empty. Before we
 360   // update the top fields, we'll do a storestore to make sure that
 361   // no thread sees the update to top before the zeroing of the
 362   // object header and the BOT initialization.
 363   OrderAccess::storestore();
 364 
 365   // Now that the BOT and the object header have been initialized,
 366   // we can update top of the "starts humongous" region.
 367   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 368   if (_hr_printer.is_active()) {
 369     if ((first + 1) == last) {
 370       // the series has a single humongous region
 371       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, obj_top);
 372     } else {
 373       // the series has more than one humongous regions
 374       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->end());
 375     }
 376   }
 377 
 378   // Now, we will update the top fields of the "continues humongous"
 379   // regions. The reason we need to do this is that, otherwise,
 380   // these regions would look empty and this will confuse parts of
 381   // G1. For example, the code that looks for a consecutive number
 382   // of empty regions will consider them empty and try to
 383   // re-allocate them. We can extend is_empty() to also include
 384   // !is_continues_humongous(), but it is easier to just update the top
 385   // fields here. The way we set top for all regions (i.e., top ==
 386   // end for all regions but the last one, top == new_top for the
 387   // last one) is actually used when we will free up the humongous
 388   // region in free_humongous_region().
 389   hr = NULL;
 390   for (uint i = first + 1; i < last; ++i) {
 391     hr = region_at(i);
 392     if ((i + 1) == last) {
 393       // last continues humongous region
 394       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 395              "new_top should fall on this region");
 396       hr->set_top(obj_top);
 397       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 398     } else {
 399       // not last one
 400       assert(obj_top > hr->end(), "obj_top should be above this region");
 401       hr->set_top(hr->end());
 402       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 403     }
 404   }
 405   // If we have continues humongous regions (hr != NULL), its top should
 406   // match obj_top.
 407   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 408   check_bitmaps("Humongous Region Allocation", first_hr);
 409 
 410   increase_used(word_size * HeapWordSize);
 411 
 412   for (uint i = first; i < last; ++i) {
 413     _humongous_set.add(region_at(i));
 414   }
 415 
 416   return new_obj;
 417 }
 418 
 419 // If could fit into free regions w/o expansion, try.
 420 // Otherwise, if can expand, do so.
 421 // Otherwise, if using ex regions might help, try with ex given back.
 422 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 423   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 424 
 425   verify_region_sets_optional();
 426 
 427   uint first = G1_NO_HRM_INDEX;
 428   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 429 
 430   if (obj_regions == 1) {
 431     // Only one region to allocate, try to use a fast path by directly allocating
 432     // from the free lists. Do not try to expand here, we will potentially do that
 433     // later.
 434     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 435     if (hr != NULL) {
 436       first = hr->hrm_index();
 437     }
 438   } else {
 439     // We can't allocate humongous regions spanning more than one region while
 440     // cleanupComplete() is running, since some of the regions we find to be
 441     // empty might not yet be added to the free list. It is not straightforward
 442     // to know in which list they are on so that we can remove them. We only
 443     // need to do this if we need to allocate more than one region to satisfy the
 444     // current humongous allocation request. If we are only allocating one region
 445     // we use the one-region region allocation code (see above), that already
 446     // potentially waits for regions from the secondary free list.
 447     wait_while_free_regions_coming();
 448     append_secondary_free_list_if_not_empty_with_lock();
 449 
 450     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 451     // are lucky enough to find some.
 452     first = _hrm.find_contiguous_only_empty(obj_regions);
 453     if (first != G1_NO_HRM_INDEX) {
 454       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 455     }
 456   }
 457 
 458   if (first == G1_NO_HRM_INDEX) {
 459     // Policy: We could not find enough regions for the humongous object in the
 460     // free list. Look through the heap to find a mix of free and uncommitted regions.
 461     // If so, try expansion.
 462     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 463     if (first != G1_NO_HRM_INDEX) {
 464       // We found something. Make sure these regions are committed, i.e. expand
 465       // the heap. Alternatively we could do a defragmentation GC.
 466       ergo_verbose1(ErgoHeapSizing,
 467                     "attempt heap expansion",
 468                     ergo_format_reason("humongous allocation request failed")
 469                     ergo_format_byte("allocation request"),
 470                     word_size * HeapWordSize);
 471 
 472       _hrm.expand_at(first, obj_regions);
 473       g1_policy()->record_new_heap_size(num_regions());
 474 
 475 #ifdef ASSERT
 476       for (uint i = first; i < first + obj_regions; ++i) {
 477         HeapRegion* hr = region_at(i);
 478         assert(hr->is_free(), "sanity");
 479         assert(hr->is_empty(), "sanity");
 480         assert(is_on_master_free_list(hr), "sanity");
 481       }
 482 #endif
 483       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 484     } else {
 485       // Policy: Potentially trigger a defragmentation GC.
 486     }
 487   }
 488 
 489   HeapWord* result = NULL;
 490   if (first != G1_NO_HRM_INDEX) {
 491     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 492                                                        word_size, context);
 493     assert(result != NULL, "it should always return a valid result");
 494 
 495     // A successful humongous object allocation changes the used space
 496     // information of the old generation so we need to recalculate the
 497     // sizes and update the jstat counters here.
 498     g1mm()->update_sizes();
 499   }
 500 
 501   verify_region_sets_optional();
 502 
 503   return result;
 504 }
 505 
 506 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 507   assert_heap_not_locked_and_not_at_safepoint();
 508   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 509 
 510   uint dummy_gc_count_before;
 511   uint dummy_gclocker_retry_count = 0;
 512   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 513 }
 514 
 515 HeapWord*
 516 G1CollectedHeap::mem_allocate(size_t word_size,
 517                               bool*  gc_overhead_limit_was_exceeded) {
 518   assert_heap_not_locked_and_not_at_safepoint();
 519 
 520   // Loop until the allocation is satisfied, or unsatisfied after GC.
 521   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 522     uint gc_count_before;
 523 
 524     HeapWord* result = NULL;
 525     if (!is_humongous(word_size)) {
 526       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 527     } else {
 528       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 529     }
 530     if (result != NULL) {
 531       return result;
 532     }
 533 
 534     // Create the garbage collection operation...
 535     VM_G1CollectForAllocation op(gc_count_before, word_size);
 536     op.set_allocation_context(AllocationContext::current());
 537 
 538     // ...and get the VM thread to execute it.
 539     VMThread::execute(&op);
 540 
 541     if (op.prologue_succeeded() && op.pause_succeeded()) {
 542       // If the operation was successful we'll return the result even
 543       // if it is NULL. If the allocation attempt failed immediately
 544       // after a Full GC, it's unlikely we'll be able to allocate now.
 545       HeapWord* result = op.result();
 546       if (result != NULL && !is_humongous(word_size)) {
 547         // Allocations that take place on VM operations do not do any
 548         // card dirtying and we have to do it here. We only have to do
 549         // this for non-humongous allocations, though.
 550         dirty_young_block(result, word_size);
 551       }
 552       return result;
 553     } else {
 554       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 555         return NULL;
 556       }
 557       assert(op.result() == NULL,
 558              "the result should be NULL if the VM op did not succeed");
 559     }
 560 
 561     // Give a warning if we seem to be looping forever.
 562     if ((QueuedAllocationWarningCount > 0) &&
 563         (try_count % QueuedAllocationWarningCount == 0)) {
 564       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 565     }
 566   }
 567 
 568   ShouldNotReachHere();
 569   return NULL;
 570 }
 571 
 572 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 573                                                    AllocationContext_t context,
 574                                                    uint* gc_count_before_ret,
 575                                                    uint* gclocker_retry_count_ret) {
 576   // Make sure you read the note in attempt_allocation_humongous().
 577 
 578   assert_heap_not_locked_and_not_at_safepoint();
 579   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 580          "be called for humongous allocation requests");
 581 
 582   // We should only get here after the first-level allocation attempt
 583   // (attempt_allocation()) failed to allocate.
 584 
 585   // We will loop until a) we manage to successfully perform the
 586   // allocation or b) we successfully schedule a collection which
 587   // fails to perform the allocation. b) is the only case when we'll
 588   // return NULL.
 589   HeapWord* result = NULL;
 590   for (int try_count = 1; /* we'll return */; try_count += 1) {
 591     bool should_try_gc;
 592     uint gc_count_before;
 593 
 594     {
 595       MutexLockerEx x(Heap_lock);
 596       result = _allocator->attempt_allocation_locked(word_size, context);
 597       if (result != NULL) {
 598         return result;
 599       }
 600 
 601       if (GC_locker::is_active_and_needs_gc()) {
 602         if (g1_policy()->can_expand_young_list()) {
 603           // No need for an ergo verbose message here,
 604           // can_expand_young_list() does this when it returns true.
 605           result = _allocator->attempt_allocation_force(word_size, context);
 606           if (result != NULL) {
 607             return result;
 608           }
 609         }
 610         should_try_gc = false;
 611       } else {
 612         // The GCLocker may not be active but the GCLocker initiated
 613         // GC may not yet have been performed (GCLocker::needs_gc()
 614         // returns true). In this case we do not try this GC and
 615         // wait until the GCLocker initiated GC is performed, and
 616         // then retry the allocation.
 617         if (GC_locker::needs_gc()) {
 618           should_try_gc = false;
 619         } else {
 620           // Read the GC count while still holding the Heap_lock.
 621           gc_count_before = total_collections();
 622           should_try_gc = true;
 623         }
 624       }
 625     }
 626 
 627     if (should_try_gc) {
 628       bool succeeded;
 629       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 630                                    GCCause::_g1_inc_collection_pause);
 631       if (result != NULL) {
 632         assert(succeeded, "only way to get back a non-NULL result");
 633         return result;
 634       }
 635 
 636       if (succeeded) {
 637         // If we get here we successfully scheduled a collection which
 638         // failed to allocate. No point in trying to allocate
 639         // further. We'll just return NULL.
 640         MutexLockerEx x(Heap_lock);
 641         *gc_count_before_ret = total_collections();
 642         return NULL;
 643       }
 644     } else {
 645       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 646         MutexLockerEx x(Heap_lock);
 647         *gc_count_before_ret = total_collections();
 648         return NULL;
 649       }
 650       // The GCLocker is either active or the GCLocker initiated
 651       // GC has not yet been performed. Stall until it is and
 652       // then retry the allocation.
 653       GC_locker::stall_until_clear();
 654       (*gclocker_retry_count_ret) += 1;
 655     }
 656 
 657     // We can reach here if we were unsuccessful in scheduling a
 658     // collection (because another thread beat us to it) or if we were
 659     // stalled due to the GC locker. In either can we should retry the
 660     // allocation attempt in case another thread successfully
 661     // performed a collection and reclaimed enough space. We do the
 662     // first attempt (without holding the Heap_lock) here and the
 663     // follow-on attempt will be at the start of the next loop
 664     // iteration (after taking the Heap_lock).
 665     result = _allocator->attempt_allocation(word_size, context);
 666     if (result != NULL) {
 667       return result;
 668     }
 669 
 670     // Give a warning if we seem to be looping forever.
 671     if ((QueuedAllocationWarningCount > 0) &&
 672         (try_count % QueuedAllocationWarningCount == 0)) {
 673       warning("G1CollectedHeap::attempt_allocation_slow() "
 674               "retries %d times", try_count);
 675     }
 676   }
 677 
 678   ShouldNotReachHere();
 679   return NULL;
 680 }
 681 
 682 void G1CollectedHeap::begin_archive_alloc_range() {
 683   assert_at_safepoint(true /* should_be_vm_thread */);
 684   if (_archive_allocator == NULL) {
 685     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 686   }
 687 }
 688 
 689 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 690   // Allocations in archive regions cannot be of a size that would be considered
 691   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 692   // may be different at archive-restore time.
 693   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 694 }
 695 
 696 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 697   assert_at_safepoint(true /* should_be_vm_thread */);
 698   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 699   if (is_archive_alloc_too_large(word_size)) {
 700     return NULL;
 701   }
 702   return _archive_allocator->archive_mem_allocate(word_size);
 703 }
 704 
 705 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 706                                               size_t end_alignment_in_bytes) {
 707   assert_at_safepoint(true /* should_be_vm_thread */);
 708   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 709 
 710   // Call complete_archive to do the real work, filling in the MemRegion
 711   // array with the archive regions.
 712   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 713   delete _archive_allocator;
 714   _archive_allocator = NULL;
 715 }
 716 
 717 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 718   assert(ranges != NULL, "MemRegion array NULL");
 719   assert(count != 0, "No MemRegions provided");
 720   MemRegion reserved = _hrm.reserved();
 721   for (size_t i = 0; i < count; i++) {
 722     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 723       return false;
 724     }
 725   }
 726   return true;
 727 }
 728 
 729 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 730   assert(!is_init_completed(), "Expect to be called at JVM init time");
 731   assert(ranges != NULL, "MemRegion array NULL");
 732   assert(count != 0, "No MemRegions provided");
 733   MutexLockerEx x(Heap_lock);
 734 
 735   MemRegion reserved = _hrm.reserved();
 736   HeapWord* prev_last_addr = NULL;
 737   HeapRegion* prev_last_region = NULL;
 738 
 739   // Temporarily disable pretouching of heap pages. This interface is used
 740   // when mmap'ing archived heap data in, so pre-touching is wasted.
 741   FlagSetting fs(AlwaysPreTouch, false);
 742 
 743   // Enable archive object checking in G1MarkSweep. We have to let it know
 744   // about each archive range, so that objects in those ranges aren't marked.
 745   G1MarkSweep::enable_archive_object_check();
 746 
 747   // For each specified MemRegion range, allocate the corresponding G1
 748   // regions and mark them as archive regions. We expect the ranges in
 749   // ascending starting address order, without overlap.
 750   for (size_t i = 0; i < count; i++) {
 751     MemRegion curr_range = ranges[i];
 752     HeapWord* start_address = curr_range.start();
 753     size_t word_size = curr_range.word_size();
 754     HeapWord* last_address = curr_range.last();
 755     size_t commits = 0;
 756 
 757     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 758               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 759               p2i(start_address), p2i(last_address));
 760     guarantee(start_address > prev_last_addr,
 761               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 762               p2i(start_address), p2i(prev_last_addr));
 763     prev_last_addr = last_address;
 764 
 765     // Check for ranges that start in the same G1 region in which the previous
 766     // range ended, and adjust the start address so we don't try to allocate
 767     // the same region again. If the current range is entirely within that
 768     // region, skip it, just adjusting the recorded top.
 769     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 770     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 771       start_address = start_region->end();
 772       if (start_address > last_address) {
 773         increase_used(word_size * HeapWordSize);
 774         start_region->set_top(last_address + 1);
 775         continue;
 776       }
 777       start_region->set_top(start_address);
 778       curr_range = MemRegion(start_address, last_address + 1);
 779       start_region = _hrm.addr_to_region(start_address);
 780     }
 781 
 782     // Perform the actual region allocation, exiting if it fails.
 783     // Then note how much new space we have allocated.
 784     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 785       return false;
 786     }
 787     increase_used(word_size * HeapWordSize);
 788     if (commits != 0) {
 789       ergo_verbose1(ErgoHeapSizing,
 790                     "attempt heap expansion",
 791                     ergo_format_reason("allocate archive regions")
 792                     ergo_format_byte("total size"),
 793                     HeapRegion::GrainWords * HeapWordSize * commits);
 794     }
 795 
 796     // Mark each G1 region touched by the range as archive, add it to the old set,
 797     // and set the allocation context and top.
 798     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 799     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 800     prev_last_region = last_region;
 801 
 802     while (curr_region != NULL) {
 803       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 804              "Region already in use (index %u)", curr_region->hrm_index());
 805       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 806       curr_region->set_allocation_context(AllocationContext::system());
 807       curr_region->set_archive();
 808       _old_set.add(curr_region);
 809       if (curr_region != last_region) {
 810         curr_region->set_top(curr_region->end());
 811         curr_region = _hrm.next_region_in_heap(curr_region);
 812       } else {
 813         curr_region->set_top(last_address + 1);
 814         curr_region = NULL;
 815       }
 816     }
 817 
 818     // Notify mark-sweep of the archive range.
 819     G1MarkSweep::set_range_archive(curr_range, true);
 820   }
 821   return true;
 822 }
 823 
 824 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 825   assert(!is_init_completed(), "Expect to be called at JVM init time");
 826   assert(ranges != NULL, "MemRegion array NULL");
 827   assert(count != 0, "No MemRegions provided");
 828   MemRegion reserved = _hrm.reserved();
 829   HeapWord *prev_last_addr = NULL;
 830   HeapRegion* prev_last_region = NULL;
 831 
 832   // For each MemRegion, create filler objects, if needed, in the G1 regions
 833   // that contain the address range. The address range actually within the
 834   // MemRegion will not be modified. That is assumed to have been initialized
 835   // elsewhere, probably via an mmap of archived heap data.
 836   MutexLockerEx x(Heap_lock);
 837   for (size_t i = 0; i < count; i++) {
 838     HeapWord* start_address = ranges[i].start();
 839     HeapWord* last_address = ranges[i].last();
 840 
 841     assert(reserved.contains(start_address) && reserved.contains(last_address),
 842            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 843            p2i(start_address), p2i(last_address));
 844     assert(start_address > prev_last_addr,
 845            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 846            p2i(start_address), p2i(prev_last_addr));
 847 
 848     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 849     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 850     HeapWord* bottom_address = start_region->bottom();
 851 
 852     // Check for a range beginning in the same region in which the
 853     // previous one ended.
 854     if (start_region == prev_last_region) {
 855       bottom_address = prev_last_addr + 1;
 856     }
 857 
 858     // Verify that the regions were all marked as archive regions by
 859     // alloc_archive_regions.
 860     HeapRegion* curr_region = start_region;
 861     while (curr_region != NULL) {
 862       guarantee(curr_region->is_archive(),
 863                 "Expected archive region at index %u", curr_region->hrm_index());
 864       if (curr_region != last_region) {
 865         curr_region = _hrm.next_region_in_heap(curr_region);
 866       } else {
 867         curr_region = NULL;
 868       }
 869     }
 870 
 871     prev_last_addr = last_address;
 872     prev_last_region = last_region;
 873 
 874     // Fill the memory below the allocated range with dummy object(s),
 875     // if the region bottom does not match the range start, or if the previous
 876     // range ended within the same G1 region, and there is a gap.
 877     if (start_address != bottom_address) {
 878       size_t fill_size = pointer_delta(start_address, bottom_address);
 879       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 880       increase_used(fill_size * HeapWordSize);
 881     }
 882   }
 883 }
 884 
 885 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 886                                                      uint* gc_count_before_ret,
 887                                                      uint* gclocker_retry_count_ret) {
 888   assert_heap_not_locked_and_not_at_safepoint();
 889   assert(!is_humongous(word_size), "attempt_allocation() should not "
 890          "be called for humongous allocation requests");
 891 
 892   AllocationContext_t context = AllocationContext::current();
 893   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 894 
 895   if (result == NULL) {
 896     result = attempt_allocation_slow(word_size,
 897                                      context,
 898                                      gc_count_before_ret,
 899                                      gclocker_retry_count_ret);
 900   }
 901   assert_heap_not_locked();
 902   if (result != NULL) {
 903     dirty_young_block(result, word_size);
 904   }
 905   return result;
 906 }
 907 
 908 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 909   assert(!is_init_completed(), "Expect to be called at JVM init time");
 910   assert(ranges != NULL, "MemRegion array NULL");
 911   assert(count != 0, "No MemRegions provided");
 912   MemRegion reserved = _hrm.reserved();
 913   HeapWord* prev_last_addr = NULL;
 914   HeapRegion* prev_last_region = NULL;
 915   size_t size_used = 0;
 916   size_t uncommitted_regions = 0;
 917 
 918   // For each Memregion, free the G1 regions that constitute it, and
 919   // notify mark-sweep that the range is no longer to be considered 'archive.'
 920   MutexLockerEx x(Heap_lock);
 921   for (size_t i = 0; i < count; i++) {
 922     HeapWord* start_address = ranges[i].start();
 923     HeapWord* last_address = ranges[i].last();
 924 
 925     assert(reserved.contains(start_address) && reserved.contains(last_address),
 926            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 927            p2i(start_address), p2i(last_address));
 928     assert(start_address > prev_last_addr,
 929            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 930            p2i(start_address), p2i(prev_last_addr));
 931     size_used += ranges[i].byte_size();
 932     prev_last_addr = last_address;
 933 
 934     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 935     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 936 
 937     // Check for ranges that start in the same G1 region in which the previous
 938     // range ended, and adjust the start address so we don't try to free
 939     // the same region again. If the current range is entirely within that
 940     // region, skip it.
 941     if (start_region == prev_last_region) {
 942       start_address = start_region->end();
 943       if (start_address > last_address) {
 944         continue;
 945       }
 946       start_region = _hrm.addr_to_region(start_address);
 947     }
 948     prev_last_region = last_region;
 949 
 950     // After verifying that each region was marked as an archive region by
 951     // alloc_archive_regions, set it free and empty and uncommit it.
 952     HeapRegion* curr_region = start_region;
 953     while (curr_region != NULL) {
 954       guarantee(curr_region->is_archive(),
 955                 "Expected archive region at index %u", curr_region->hrm_index());
 956       uint curr_index = curr_region->hrm_index();
 957       _old_set.remove(curr_region);
 958       curr_region->set_free();
 959       curr_region->set_top(curr_region->bottom());
 960       if (curr_region != last_region) {
 961         curr_region = _hrm.next_region_in_heap(curr_region);
 962       } else {
 963         curr_region = NULL;
 964       }
 965       _hrm.shrink_at(curr_index, 1);
 966       uncommitted_regions++;
 967     }
 968 
 969     // Notify mark-sweep that this is no longer an archive range.
 970     G1MarkSweep::set_range_archive(ranges[i], false);
 971   }
 972 
 973   if (uncommitted_regions != 0) {
 974     ergo_verbose1(ErgoHeapSizing,
 975                   "attempt heap shrinking",
 976                   ergo_format_reason("uncommitted archive regions")
 977                   ergo_format_byte("total size"),
 978                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 979   }
 980   decrease_used(size_used);
 981 }
 982 
 983 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 984                                                         uint* gc_count_before_ret,
 985                                                         uint* gclocker_retry_count_ret) {
 986   // The structure of this method has a lot of similarities to
 987   // attempt_allocation_slow(). The reason these two were not merged
 988   // into a single one is that such a method would require several "if
 989   // allocation is not humongous do this, otherwise do that"
 990   // conditional paths which would obscure its flow. In fact, an early
 991   // version of this code did use a unified method which was harder to
 992   // follow and, as a result, it had subtle bugs that were hard to
 993   // track down. So keeping these two methods separate allows each to
 994   // be more readable. It will be good to keep these two in sync as
 995   // much as possible.
 996 
 997   assert_heap_not_locked_and_not_at_safepoint();
 998   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 999          "should only be called for humongous allocations");
1000 
1001   // Humongous objects can exhaust the heap quickly, so we should check if we
1002   // need to start a marking cycle at each humongous object allocation. We do
1003   // the check before we do the actual allocation. The reason for doing it
1004   // before the allocation is that we avoid having to keep track of the newly
1005   // allocated memory while we do a GC.
1006   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1007                                            word_size)) {
1008     collect(GCCause::_g1_humongous_allocation);
1009   }
1010 
1011   // We will loop until a) we manage to successfully perform the
1012   // allocation or b) we successfully schedule a collection which
1013   // fails to perform the allocation. b) is the only case when we'll
1014   // return NULL.
1015   HeapWord* result = NULL;
1016   for (int try_count = 1; /* we'll return */; try_count += 1) {
1017     bool should_try_gc;
1018     uint gc_count_before;
1019 
1020     {
1021       MutexLockerEx x(Heap_lock);
1022 
1023       // Given that humongous objects are not allocated in young
1024       // regions, we'll first try to do the allocation without doing a
1025       // collection hoping that there's enough space in the heap.
1026       result = humongous_obj_allocate(word_size, AllocationContext::current());
1027       if (result != NULL) {
1028         return result;
1029       }
1030 
1031       if (GC_locker::is_active_and_needs_gc()) {
1032         should_try_gc = false;
1033       } else {
1034          // The GCLocker may not be active but the GCLocker initiated
1035         // GC may not yet have been performed (GCLocker::needs_gc()
1036         // returns true). In this case we do not try this GC and
1037         // wait until the GCLocker initiated GC is performed, and
1038         // then retry the allocation.
1039         if (GC_locker::needs_gc()) {
1040           should_try_gc = false;
1041         } else {
1042           // Read the GC count while still holding the Heap_lock.
1043           gc_count_before = total_collections();
1044           should_try_gc = true;
1045         }
1046       }
1047     }
1048 
1049     if (should_try_gc) {
1050       // If we failed to allocate the humongous object, we should try to
1051       // do a collection pause (if we're allowed) in case it reclaims
1052       // enough space for the allocation to succeed after the pause.
1053 
1054       bool succeeded;
1055       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1056                                    GCCause::_g1_humongous_allocation);
1057       if (result != NULL) {
1058         assert(succeeded, "only way to get back a non-NULL result");
1059         return result;
1060       }
1061 
1062       if (succeeded) {
1063         // If we get here we successfully scheduled a collection which
1064         // failed to allocate. No point in trying to allocate
1065         // further. We'll just return NULL.
1066         MutexLockerEx x(Heap_lock);
1067         *gc_count_before_ret = total_collections();
1068         return NULL;
1069       }
1070     } else {
1071       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1072         MutexLockerEx x(Heap_lock);
1073         *gc_count_before_ret = total_collections();
1074         return NULL;
1075       }
1076       // The GCLocker is either active or the GCLocker initiated
1077       // GC has not yet been performed. Stall until it is and
1078       // then retry the allocation.
1079       GC_locker::stall_until_clear();
1080       (*gclocker_retry_count_ret) += 1;
1081     }
1082 
1083     // We can reach here if we were unsuccessful in scheduling a
1084     // collection (because another thread beat us to it) or if we were
1085     // stalled due to the GC locker. In either can we should retry the
1086     // allocation attempt in case another thread successfully
1087     // performed a collection and reclaimed enough space.  Give a
1088     // warning if we seem to be looping forever.
1089 
1090     if ((QueuedAllocationWarningCount > 0) &&
1091         (try_count % QueuedAllocationWarningCount == 0)) {
1092       warning("G1CollectedHeap::attempt_allocation_humongous() "
1093               "retries %d times", try_count);
1094     }
1095   }
1096 
1097   ShouldNotReachHere();
1098   return NULL;
1099 }
1100 
1101 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1102                                                            AllocationContext_t context,
1103                                                            bool expect_null_mutator_alloc_region) {
1104   assert_at_safepoint(true /* should_be_vm_thread */);
1105   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1106          "the current alloc region was unexpectedly found to be non-NULL");
1107 
1108   if (!is_humongous(word_size)) {
1109     return _allocator->attempt_allocation_locked(word_size, context);
1110   } else {
1111     HeapWord* result = humongous_obj_allocate(word_size, context);
1112     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1113       collector_state()->set_initiate_conc_mark_if_possible(true);
1114     }
1115     return result;
1116   }
1117 
1118   ShouldNotReachHere();
1119 }
1120 
1121 class PostMCRemSetClearClosure: public HeapRegionClosure {
1122   G1CollectedHeap* _g1h;
1123   ModRefBarrierSet* _mr_bs;
1124 public:
1125   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1126     _g1h(g1h), _mr_bs(mr_bs) {}
1127 
1128   bool doHeapRegion(HeapRegion* r) {
1129     HeapRegionRemSet* hrrs = r->rem_set();
1130 
1131     _g1h->reset_gc_time_stamps(r);
1132     hrrs->clear();
1133     // You might think here that we could clear just the cards
1134     // corresponding to the used region.  But no: if we leave a dirty card
1135     // in a region we might allocate into, then it would prevent that card
1136     // from being enqueued, and cause it to be missed.
1137     // Re: the performance cost: we shouldn't be doing full GC anyway!
1138     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1139 
1140     return false;
1141   }
1142 };
1143 
1144 void G1CollectedHeap::clear_rsets_post_compaction() {
1145   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1146   heap_region_iterate(&rs_clear);
1147 }
1148 
1149 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1150   G1CollectedHeap*   _g1h;
1151   UpdateRSOopClosure _cl;
1152 public:
1153   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1154     _cl(g1->g1_rem_set(), worker_i),
1155     _g1h(g1)
1156   { }
1157 
1158   bool doHeapRegion(HeapRegion* r) {
1159     if (!r->is_continues_humongous()) {
1160       _cl.set_from(r);
1161       r->oop_iterate(&_cl);
1162     }
1163     return false;
1164   }
1165 };
1166 
1167 class ParRebuildRSTask: public AbstractGangTask {
1168   G1CollectedHeap* _g1;
1169   HeapRegionClaimer _hrclaimer;
1170 
1171 public:
1172   ParRebuildRSTask(G1CollectedHeap* g1) :
1173       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1174 
1175   void work(uint worker_id) {
1176     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1177     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1178   }
1179 };
1180 
1181 class PostCompactionPrinterClosure: public HeapRegionClosure {
1182 private:
1183   G1HRPrinter* _hr_printer;
1184 public:
1185   bool doHeapRegion(HeapRegion* hr) {
1186     assert(!hr->is_young(), "not expecting to find young regions");
1187     if (hr->is_free()) {
1188       // We only generate output for non-empty regions.
1189     } else if (hr->is_starts_humongous()) {
1190       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1191     } else if (hr->is_continues_humongous()) {
1192       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1193     } else if (hr->is_archive()) {
1194       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1195     } else if (hr->is_old()) {
1196       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1197     } else {
1198       ShouldNotReachHere();
1199     }
1200     return false;
1201   }
1202 
1203   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1204     : _hr_printer(hr_printer) { }
1205 };
1206 
1207 void G1CollectedHeap::print_hrm_post_compaction() {
1208   PostCompactionPrinterClosure cl(hr_printer());
1209   heap_region_iterate(&cl);
1210 }
1211 
1212 bool G1CollectedHeap::do_collection(bool explicit_gc,
1213                                     bool clear_all_soft_refs,
1214                                     size_t word_size) {
1215   assert_at_safepoint(true /* should_be_vm_thread */);
1216 
1217   if (GC_locker::check_active_before_gc()) {
1218     return false;
1219   }
1220 
1221   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1222   gc_timer->register_gc_start();
1223 
1224   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1225   GCIdMark gc_id_mark;
1226   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1227 
1228   SvcGCMarker sgcm(SvcGCMarker::FULL);
1229   ResourceMark rm;
1230 
1231   G1Log::update_level();
1232   print_heap_before_gc();
1233   trace_heap_before_gc(gc_tracer);
1234 
1235   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1236 
1237   verify_region_sets_optional();
1238 
1239   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1240                            collector_policy()->should_clear_all_soft_refs();
1241 
1242   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1243 
1244   {
1245     IsGCActiveMark x;
1246 
1247     // Timing
1248     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1249     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1250 
1251     {
1252       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1253       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1254       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1255 
1256       g1_policy()->record_full_collection_start();
1257 
1258       // Note: When we have a more flexible GC logging framework that
1259       // allows us to add optional attributes to a GC log record we
1260       // could consider timing and reporting how long we wait in the
1261       // following two methods.
1262       wait_while_free_regions_coming();
1263       // If we start the compaction before the CM threads finish
1264       // scanning the root regions we might trip them over as we'll
1265       // be moving objects / updating references. So let's wait until
1266       // they are done. By telling them to abort, they should complete
1267       // early.
1268       _cm->root_regions()->abort();
1269       _cm->root_regions()->wait_until_scan_finished();
1270       append_secondary_free_list_if_not_empty_with_lock();
1271 
1272       gc_prologue(true);
1273       increment_total_collections(true /* full gc */);
1274       increment_old_marking_cycles_started();
1275 
1276       assert(used() == recalculate_used(), "Should be equal");
1277 
1278       verify_before_gc();
1279 
1280       check_bitmaps("Full GC Start");
1281       pre_full_gc_dump(gc_timer);
1282 
1283 #if defined(COMPILER2) || INCLUDE_JVMCI
1284       DerivedPointerTable::clear();
1285 #endif
1286 
1287       // Disable discovery and empty the discovered lists
1288       // for the CM ref processor.
1289       ref_processor_cm()->disable_discovery();
1290       ref_processor_cm()->abandon_partial_discovery();
1291       ref_processor_cm()->verify_no_references_recorded();
1292 
1293       // Abandon current iterations of concurrent marking and concurrent
1294       // refinement, if any are in progress. We have to do this before
1295       // wait_until_scan_finished() below.
1296       concurrent_mark()->abort();
1297 
1298       // Make sure we'll choose a new allocation region afterwards.
1299       _allocator->release_mutator_alloc_region();
1300       _allocator->abandon_gc_alloc_regions();
1301       g1_rem_set()->cleanupHRRS();
1302 
1303       // We should call this after we retire any currently active alloc
1304       // regions so that all the ALLOC / RETIRE events are generated
1305       // before the start GC event.
1306       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1307 
1308       // We may have added regions to the current incremental collection
1309       // set between the last GC or pause and now. We need to clear the
1310       // incremental collection set and then start rebuilding it afresh
1311       // after this full GC.
1312       abandon_collection_set(g1_policy()->inc_cset_head());
1313       g1_policy()->clear_incremental_cset();
1314       g1_policy()->stop_incremental_cset_building();
1315 
1316       tear_down_region_sets(false /* free_list_only */);
1317       collector_state()->set_gcs_are_young(true);
1318 
1319       // See the comments in g1CollectedHeap.hpp and
1320       // G1CollectedHeap::ref_processing_init() about
1321       // how reference processing currently works in G1.
1322 
1323       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1324       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1325 
1326       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1327       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1328 
1329       ref_processor_stw()->enable_discovery();
1330       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1331 
1332       // Do collection work
1333       {
1334         HandleMark hm;  // Discard invalid handles created during gc
1335         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1336       }
1337 
1338       assert(num_free_regions() == 0, "we should not have added any free regions");
1339       rebuild_region_sets(false /* free_list_only */);
1340 
1341       // Enqueue any discovered reference objects that have
1342       // not been removed from the discovered lists.
1343       ref_processor_stw()->enqueue_discovered_references();
1344 
1345 #if defined(COMPILER2) || INCLUDE_JVMCI
1346       DerivedPointerTable::update_pointers();
1347 #endif
1348 
1349       MemoryService::track_memory_usage();
1350 
1351       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1352       ref_processor_stw()->verify_no_references_recorded();
1353 
1354       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1355       ClassLoaderDataGraph::purge();
1356       MetaspaceAux::verify_metrics();
1357 
1358       // Note: since we've just done a full GC, concurrent
1359       // marking is no longer active. Therefore we need not
1360       // re-enable reference discovery for the CM ref processor.
1361       // That will be done at the start of the next marking cycle.
1362       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1363       ref_processor_cm()->verify_no_references_recorded();
1364 
1365       reset_gc_time_stamp();
1366       // Since everything potentially moved, we will clear all remembered
1367       // sets, and clear all cards.  Later we will rebuild remembered
1368       // sets. We will also reset the GC time stamps of the regions.
1369       clear_rsets_post_compaction();
1370       check_gc_time_stamps();
1371 
1372       // Resize the heap if necessary.
1373       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1374 
1375       if (_hr_printer.is_active()) {
1376         // We should do this after we potentially resize the heap so
1377         // that all the COMMIT / UNCOMMIT events are generated before
1378         // the end GC event.
1379 
1380         print_hrm_post_compaction();
1381         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1382       }
1383 
1384       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1385       if (hot_card_cache->use_cache()) {
1386         hot_card_cache->reset_card_counts();
1387         hot_card_cache->reset_hot_cache();
1388       }
1389 
1390       // Rebuild remembered sets of all regions.
1391       uint n_workers =
1392         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1393                                                 workers()->active_workers(),
1394                                                 Threads::number_of_non_daemon_threads());
1395       workers()->set_active_workers(n_workers);
1396 
1397       ParRebuildRSTask rebuild_rs_task(this);
1398       workers()->run_task(&rebuild_rs_task);
1399 
1400       // Rebuild the strong code root lists for each region
1401       rebuild_strong_code_roots();
1402 
1403       if (true) { // FIXME
1404         MetaspaceGC::compute_new_size();
1405       }
1406 
1407 #ifdef TRACESPINNING
1408       ParallelTaskTerminator::print_termination_counts();
1409 #endif
1410 
1411       // Discard all rset updates
1412       JavaThread::dirty_card_queue_set().abandon_logs();
1413       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1414 
1415       _young_list->reset_sampled_info();
1416       // At this point there should be no regions in the
1417       // entire heap tagged as young.
1418       assert(check_young_list_empty(true /* check_heap */),
1419              "young list should be empty at this point");
1420 
1421       // Update the number of full collections that have been completed.
1422       increment_old_marking_cycles_completed(false /* concurrent */);
1423 
1424       _hrm.verify_optional();
1425       verify_region_sets_optional();
1426 
1427       verify_after_gc();
1428 
1429       // Clear the previous marking bitmap, if needed for bitmap verification.
1430       // Note we cannot do this when we clear the next marking bitmap in
1431       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1432       // objects marked during a full GC against the previous bitmap.
1433       // But we need to clear it before calling check_bitmaps below since
1434       // the full GC has compacted objects and updated TAMS but not updated
1435       // the prev bitmap.
1436       if (G1VerifyBitmaps) {
1437         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1438       }
1439       check_bitmaps("Full GC End");
1440 
1441       // Start a new incremental collection set for the next pause
1442       assert(g1_policy()->collection_set() == NULL, "must be");
1443       g1_policy()->start_incremental_cset_building();
1444 
1445       clear_cset_fast_test();
1446 
1447       _allocator->init_mutator_alloc_region();
1448 
1449       g1_policy()->record_full_collection_end();
1450 
1451       if (G1Log::fine()) {
1452         g1_policy()->print_heap_transition();
1453       }
1454 
1455       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1456       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1457       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1458       // before any GC notifications are raised.
1459       g1mm()->update_sizes();
1460 
1461       gc_epilogue(true);
1462     }
1463 
1464     if (G1Log::finer()) {
1465       g1_policy()->print_detailed_heap_transition(true /* full */);
1466     }
1467 
1468     print_heap_after_gc();
1469     trace_heap_after_gc(gc_tracer);
1470 
1471     post_full_gc_dump(gc_timer);
1472 
1473     gc_timer->register_gc_end();
1474     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1475   }
1476 
1477   return true;
1478 }
1479 
1480 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1481   // do_collection() will return whether it succeeded in performing
1482   // the GC. Currently, there is no facility on the
1483   // do_full_collection() API to notify the caller than the collection
1484   // did not succeed (e.g., because it was locked out by the GC
1485   // locker). So, right now, we'll ignore the return value.
1486   bool dummy = do_collection(true,                /* explicit_gc */
1487                              clear_all_soft_refs,
1488                              0                    /* word_size */);
1489 }
1490 
1491 // This code is mostly copied from TenuredGeneration.
1492 void
1493 G1CollectedHeap::
1494 resize_if_necessary_after_full_collection(size_t word_size) {
1495   // Include the current allocation, if any, and bytes that will be
1496   // pre-allocated to support collections, as "used".
1497   const size_t used_after_gc = used();
1498   const size_t capacity_after_gc = capacity();
1499   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1500 
1501   // This is enforced in arguments.cpp.
1502   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1503          "otherwise the code below doesn't make sense");
1504 
1505   // We don't have floating point command-line arguments
1506   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1507   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1508   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1509   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1510 
1511   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1512   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1513 
1514   // We have to be careful here as these two calculations can overflow
1515   // 32-bit size_t's.
1516   double used_after_gc_d = (double) used_after_gc;
1517   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1518   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1519 
1520   // Let's make sure that they are both under the max heap size, which
1521   // by default will make them fit into a size_t.
1522   double desired_capacity_upper_bound = (double) max_heap_size;
1523   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1524                                     desired_capacity_upper_bound);
1525   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1526                                     desired_capacity_upper_bound);
1527 
1528   // We can now safely turn them into size_t's.
1529   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1530   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1531 
1532   // This assert only makes sense here, before we adjust them
1533   // with respect to the min and max heap size.
1534   assert(minimum_desired_capacity <= maximum_desired_capacity,
1535          "minimum_desired_capacity = " SIZE_FORMAT ", "
1536          "maximum_desired_capacity = " SIZE_FORMAT,
1537          minimum_desired_capacity, maximum_desired_capacity);
1538 
1539   // Should not be greater than the heap max size. No need to adjust
1540   // it with respect to the heap min size as it's a lower bound (i.e.,
1541   // we'll try to make the capacity larger than it, not smaller).
1542   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1543   // Should not be less than the heap min size. No need to adjust it
1544   // with respect to the heap max size as it's an upper bound (i.e.,
1545   // we'll try to make the capacity smaller than it, not greater).
1546   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1547 
1548   if (capacity_after_gc < minimum_desired_capacity) {
1549     // Don't expand unless it's significant
1550     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1551     ergo_verbose4(ErgoHeapSizing,
1552                   "attempt heap expansion",
1553                   ergo_format_reason("capacity lower than "
1554                                      "min desired capacity after Full GC")
1555                   ergo_format_byte("capacity")
1556                   ergo_format_byte("occupancy")
1557                   ergo_format_byte_perc("min desired capacity"),
1558                   capacity_after_gc, used_after_gc,
1559                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1560     expand(expand_bytes);
1561 
1562     // No expansion, now see if we want to shrink
1563   } else if (capacity_after_gc > maximum_desired_capacity) {
1564     // Capacity too large, compute shrinking size
1565     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1566     ergo_verbose4(ErgoHeapSizing,
1567                   "attempt heap shrinking",
1568                   ergo_format_reason("capacity higher than "
1569                                      "max desired capacity after Full GC")
1570                   ergo_format_byte("capacity")
1571                   ergo_format_byte("occupancy")
1572                   ergo_format_byte_perc("max desired capacity"),
1573                   capacity_after_gc, used_after_gc,
1574                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1575     shrink(shrink_bytes);
1576   }
1577 }
1578 
1579 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1580                                                             AllocationContext_t context,
1581                                                             bool do_gc,
1582                                                             bool clear_all_soft_refs,
1583                                                             bool expect_null_mutator_alloc_region,
1584                                                             bool* gc_succeeded) {
1585   *gc_succeeded = true;
1586   // Let's attempt the allocation first.
1587   HeapWord* result =
1588     attempt_allocation_at_safepoint(word_size,
1589                                     context,
1590                                     expect_null_mutator_alloc_region);
1591   if (result != NULL) {
1592     assert(*gc_succeeded, "sanity");
1593     return result;
1594   }
1595 
1596   // In a G1 heap, we're supposed to keep allocation from failing by
1597   // incremental pauses.  Therefore, at least for now, we'll favor
1598   // expansion over collection.  (This might change in the future if we can
1599   // do something smarter than full collection to satisfy a failed alloc.)
1600   result = expand_and_allocate(word_size, context);
1601   if (result != NULL) {
1602     assert(*gc_succeeded, "sanity");
1603     return result;
1604   }
1605 
1606   if (do_gc) {
1607     // Expansion didn't work, we'll try to do a Full GC.
1608     *gc_succeeded = do_collection(false, /* explicit_gc */
1609                                   clear_all_soft_refs,
1610                                   word_size);
1611   }
1612 
1613   return NULL;
1614 }
1615 
1616 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1617                                                      AllocationContext_t context,
1618                                                      bool* succeeded) {
1619   assert_at_safepoint(true /* should_be_vm_thread */);
1620 
1621   // Attempts to allocate followed by Full GC.
1622   HeapWord* result =
1623     satisfy_failed_allocation_helper(word_size,
1624                                      context,
1625                                      true,  /* do_gc */
1626                                      false, /* clear_all_soft_refs */
1627                                      false, /* expect_null_mutator_alloc_region */
1628                                      succeeded);
1629 
1630   if (result != NULL || !*succeeded) {
1631     return result;
1632   }
1633 
1634   // Attempts to allocate followed by Full GC that will collect all soft references.
1635   result = satisfy_failed_allocation_helper(word_size,
1636                                             context,
1637                                             true, /* do_gc */
1638                                             true, /* clear_all_soft_refs */
1639                                             true, /* expect_null_mutator_alloc_region */
1640                                             succeeded);
1641 
1642   if (result != NULL || !*succeeded) {
1643     return result;
1644   }
1645 
1646   // Attempts to allocate, no GC
1647   result = satisfy_failed_allocation_helper(word_size,
1648                                             context,
1649                                             false, /* do_gc */
1650                                             false, /* clear_all_soft_refs */
1651                                             true,  /* expect_null_mutator_alloc_region */
1652                                             succeeded);
1653 
1654   if (result != NULL) {
1655     assert(*succeeded, "sanity");
1656     return result;
1657   }
1658 
1659   assert(!collector_policy()->should_clear_all_soft_refs(),
1660          "Flag should have been handled and cleared prior to this point");
1661 
1662   // What else?  We might try synchronous finalization later.  If the total
1663   // space available is large enough for the allocation, then a more
1664   // complete compaction phase than we've tried so far might be
1665   // appropriate.
1666   assert(*succeeded, "sanity");
1667   return NULL;
1668 }
1669 
1670 // Attempting to expand the heap sufficiently
1671 // to support an allocation of the given "word_size".  If
1672 // successful, perform the allocation and return the address of the
1673 // allocated block, or else "NULL".
1674 
1675 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1676   assert_at_safepoint(true /* should_be_vm_thread */);
1677 
1678   verify_region_sets_optional();
1679 
1680   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1681   ergo_verbose1(ErgoHeapSizing,
1682                 "attempt heap expansion",
1683                 ergo_format_reason("allocation request failed")
1684                 ergo_format_byte("allocation request"),
1685                 word_size * HeapWordSize);
1686   if (expand(expand_bytes)) {
1687     _hrm.verify_optional();
1688     verify_region_sets_optional();
1689     return attempt_allocation_at_safepoint(word_size,
1690                                            context,
1691                                            false /* expect_null_mutator_alloc_region */);
1692   }
1693   return NULL;
1694 }
1695 
1696 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1697   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1698   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1699                                        HeapRegion::GrainBytes);
1700   ergo_verbose2(ErgoHeapSizing,
1701                 "expand the heap",
1702                 ergo_format_byte("requested expansion amount")
1703                 ergo_format_byte("attempted expansion amount"),
1704                 expand_bytes, aligned_expand_bytes);
1705 
1706   if (is_maximal_no_gc()) {
1707     ergo_verbose0(ErgoHeapSizing,
1708                       "did not expand the heap",
1709                       ergo_format_reason("heap already fully expanded"));
1710     return false;
1711   }
1712 
1713   double expand_heap_start_time_sec = os::elapsedTime();
1714   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1715   assert(regions_to_expand > 0, "Must expand by at least one region");
1716 
1717   uint expanded_by = _hrm.expand_by(regions_to_expand);
1718   if (expand_time_ms != NULL) {
1719     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1720   }
1721 
1722   if (expanded_by > 0) {
1723     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1724     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1725     g1_policy()->record_new_heap_size(num_regions());
1726   } else {
1727     ergo_verbose0(ErgoHeapSizing,
1728                   "did not expand the heap",
1729                   ergo_format_reason("heap expansion operation failed"));
1730     // The expansion of the virtual storage space was unsuccessful.
1731     // Let's see if it was because we ran out of swap.
1732     if (G1ExitOnExpansionFailure &&
1733         _hrm.available() >= regions_to_expand) {
1734       // We had head room...
1735       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1736     }
1737   }
1738   return regions_to_expand > 0;
1739 }
1740 
1741 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1742   size_t aligned_shrink_bytes =
1743     ReservedSpace::page_align_size_down(shrink_bytes);
1744   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1745                                          HeapRegion::GrainBytes);
1746   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1747 
1748   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1749   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1750 
1751   ergo_verbose3(ErgoHeapSizing,
1752                 "shrink the heap",
1753                 ergo_format_byte("requested shrinking amount")
1754                 ergo_format_byte("aligned shrinking amount")
1755                 ergo_format_byte("attempted shrinking amount"),
1756                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1757   if (num_regions_removed > 0) {
1758     g1_policy()->record_new_heap_size(num_regions());
1759   } else {
1760     ergo_verbose0(ErgoHeapSizing,
1761                   "did not shrink the heap",
1762                   ergo_format_reason("heap shrinking operation failed"));
1763   }
1764 }
1765 
1766 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1767   verify_region_sets_optional();
1768 
1769   // We should only reach here at the end of a Full GC which means we
1770   // should not not be holding to any GC alloc regions. The method
1771   // below will make sure of that and do any remaining clean up.
1772   _allocator->abandon_gc_alloc_regions();
1773 
1774   // Instead of tearing down / rebuilding the free lists here, we
1775   // could instead use the remove_all_pending() method on free_list to
1776   // remove only the ones that we need to remove.
1777   tear_down_region_sets(true /* free_list_only */);
1778   shrink_helper(shrink_bytes);
1779   rebuild_region_sets(true /* free_list_only */);
1780 
1781   _hrm.verify_optional();
1782   verify_region_sets_optional();
1783 }
1784 
1785 // Public methods.
1786 
1787 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1788 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1789 #endif // _MSC_VER
1790 
1791 
1792 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1793   CollectedHeap(),
1794   _g1_policy(policy_),
1795   _dirty_card_queue_set(false),
1796   _into_cset_dirty_card_queue_set(false),
1797   _is_alive_closure_cm(this),
1798   _is_alive_closure_stw(this),
1799   _ref_processor_cm(NULL),
1800   _ref_processor_stw(NULL),
1801   _bot_shared(NULL),
1802   _cg1r(NULL),
1803   _g1mm(NULL),
1804   _refine_cte_cl(NULL),
1805   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1806   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1807   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1808   _humongous_reclaim_candidates(),
1809   _has_humongous_reclaim_candidates(false),
1810   _archive_allocator(NULL),
1811   _free_regions_coming(false),
1812   _young_list(new YoungList(this)),
1813   _gc_time_stamp(0),
1814   _summary_bytes_used(0),
1815   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1816   _old_evac_stats(OldPLABSize, PLABWeight),
1817   _expand_heap_after_alloc_failure(true),
1818   _old_marking_cycles_started(0),
1819   _old_marking_cycles_completed(0),
1820   _heap_summary_sent(false),
1821   _in_cset_fast_test(),
1822   _dirty_cards_region_list(NULL),
1823   _worker_cset_start_region(NULL),
1824   _worker_cset_start_region_time_stamp(NULL),
1825   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1826   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1827   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1828   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1829 
1830   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1831                           /* are_GC_task_threads */true,
1832                           /* are_ConcurrentGC_threads */false);
1833   _workers->initialize_workers();
1834 
1835   _allocator = G1Allocator::create_allocator(this);
1836   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1837 
1838   // Override the default _filler_array_max_size so that no humongous filler
1839   // objects are created.
1840   _filler_array_max_size = _humongous_object_threshold_in_words;
1841 
1842   uint n_queues = ParallelGCThreads;
1843   _task_queues = new RefToScanQueueSet(n_queues);
1844 
1845   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1846   assert(n_rem_sets > 0, "Invariant.");
1847 
1848   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1849   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1850   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1851 
1852   for (uint i = 0; i < n_queues; i++) {
1853     RefToScanQueue* q = new RefToScanQueue();
1854     q->initialize();
1855     _task_queues->register_queue(i, q);
1856     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1857   }
1858   clear_cset_start_regions();
1859 
1860   // Initialize the G1EvacuationFailureALot counters and flags.
1861   NOT_PRODUCT(reset_evacuation_should_fail();)
1862 
1863   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1864 }
1865 
1866 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1867                                                                  size_t size,
1868                                                                  size_t translation_factor) {
1869   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1870   // Allocate a new reserved space, preferring to use large pages.
1871   ReservedSpace rs(size, preferred_page_size);
1872   G1RegionToSpaceMapper* result  =
1873     G1RegionToSpaceMapper::create_mapper(rs,
1874                                          size,
1875                                          rs.alignment(),
1876                                          HeapRegion::GrainBytes,
1877                                          translation_factor,
1878                                          mtGC);
1879   if (TracePageSizes) {
1880     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1881                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1882   }
1883   return result;
1884 }
1885 
1886 jint G1CollectedHeap::initialize() {
1887   CollectedHeap::pre_initialize();
1888   os::enable_vtime();
1889 
1890   G1Log::init();
1891 
1892   // Necessary to satisfy locking discipline assertions.
1893 
1894   MutexLocker x(Heap_lock);
1895 
1896   // We have to initialize the printer before committing the heap, as
1897   // it will be used then.
1898   _hr_printer.set_active(G1PrintHeapRegions);
1899 
1900   // While there are no constraints in the GC code that HeapWordSize
1901   // be any particular value, there are multiple other areas in the
1902   // system which believe this to be true (e.g. oop->object_size in some
1903   // cases incorrectly returns the size in wordSize units rather than
1904   // HeapWordSize).
1905   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1906 
1907   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1908   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1909   size_t heap_alignment = collector_policy()->heap_alignment();
1910 
1911   // Ensure that the sizes are properly aligned.
1912   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1913   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1914   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1915 
1916   _refine_cte_cl = new RefineCardTableEntryClosure();
1917 
1918   jint ecode = JNI_OK;
1919   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1920   if (_cg1r == NULL) {
1921     return ecode;
1922   }
1923 
1924   // Reserve the maximum.
1925 
1926   // When compressed oops are enabled, the preferred heap base
1927   // is calculated by subtracting the requested size from the
1928   // 32Gb boundary and using the result as the base address for
1929   // heap reservation. If the requested size is not aligned to
1930   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1931   // into the ReservedHeapSpace constructor) then the actual
1932   // base of the reserved heap may end up differing from the
1933   // address that was requested (i.e. the preferred heap base).
1934   // If this happens then we could end up using a non-optimal
1935   // compressed oops mode.
1936 
1937   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1938                                                  heap_alignment);
1939 
1940   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1941 
1942   // Create the barrier set for the entire reserved region.
1943   G1SATBCardTableLoggingModRefBS* bs
1944     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1945   bs->initialize();
1946   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1947   set_barrier_set(bs);
1948 
1949   // Also create a G1 rem set.
1950   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1951 
1952   // Carve out the G1 part of the heap.
1953 
1954   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1955   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1956   G1RegionToSpaceMapper* heap_storage =
1957     G1RegionToSpaceMapper::create_mapper(g1_rs,
1958                                          g1_rs.size(),
1959                                          page_size,
1960                                          HeapRegion::GrainBytes,
1961                                          1,
1962                                          mtJavaHeap);
1963   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1964                        max_byte_size, page_size,
1965                        heap_rs.base(),
1966                        heap_rs.size());
1967   heap_storage->set_mapping_changed_listener(&_listener);
1968 
1969   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1970   G1RegionToSpaceMapper* bot_storage =
1971     create_aux_memory_mapper("Block offset table",
1972                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1973                              G1BlockOffsetSharedArray::heap_map_factor());
1974 
1975   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1976   G1RegionToSpaceMapper* cardtable_storage =
1977     create_aux_memory_mapper("Card table",
1978                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1979                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1980 
1981   G1RegionToSpaceMapper* card_counts_storage =
1982     create_aux_memory_mapper("Card counts table",
1983                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1984                              G1CardCounts::heap_map_factor());
1985 
1986   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1987   G1RegionToSpaceMapper* prev_bitmap_storage =
1988     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1989   G1RegionToSpaceMapper* next_bitmap_storage =
1990     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1991 
1992   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1993   g1_barrier_set()->initialize(cardtable_storage);
1994    // Do later initialization work for concurrent refinement.
1995   _cg1r->init(card_counts_storage);
1996 
1997   // 6843694 - ensure that the maximum region index can fit
1998   // in the remembered set structures.
1999   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2000   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2001 
2002   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2003   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2004   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2005             "too many cards per region");
2006 
2007   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2008 
2009   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2010 
2011   {
2012     HeapWord* start = _hrm.reserved().start();
2013     HeapWord* end = _hrm.reserved().end();
2014     size_t granularity = HeapRegion::GrainBytes;
2015 
2016     _in_cset_fast_test.initialize(start, end, granularity);
2017     _humongous_reclaim_candidates.initialize(start, end, granularity);
2018   }
2019 
2020   // Create the ConcurrentMark data structure and thread.
2021   // (Must do this late, so that "max_regions" is defined.)
2022   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2023   if (_cm == NULL || !_cm->completed_initialization()) {
2024     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2025     return JNI_ENOMEM;
2026   }
2027   _cmThread = _cm->cmThread();
2028 
2029   // Initialize the from_card cache structure of HeapRegionRemSet.
2030   HeapRegionRemSet::init_heap(max_regions());
2031 
2032   // Now expand into the initial heap size.
2033   if (!expand(init_byte_size)) {
2034     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2035     return JNI_ENOMEM;
2036   }
2037 
2038   // Perform any initialization actions delegated to the policy.
2039   g1_policy()->init();
2040 
2041   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2042                                                SATB_Q_FL_lock,
2043                                                G1SATBProcessCompletedThreshold,
2044                                                Shared_SATB_Q_lock);
2045 
2046   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2047                                                 DirtyCardQ_CBL_mon,
2048                                                 DirtyCardQ_FL_lock,
2049                                                 concurrent_g1_refine()->yellow_zone(),
2050                                                 concurrent_g1_refine()->red_zone(),
2051                                                 Shared_DirtyCardQ_lock);
2052 
2053   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2054                                     DirtyCardQ_CBL_mon,
2055                                     DirtyCardQ_FL_lock,
2056                                     -1, // never trigger processing
2057                                     -1, // no limit on length
2058                                     Shared_DirtyCardQ_lock,
2059                                     &JavaThread::dirty_card_queue_set());
2060 
2061   // Initialize the card queue set used to hold cards containing
2062   // references into the collection set.
2063   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2064                                              DirtyCardQ_CBL_mon,
2065                                              DirtyCardQ_FL_lock,
2066                                              -1, // never trigger processing
2067                                              -1, // no limit on length
2068                                              Shared_DirtyCardQ_lock,
2069                                              &JavaThread::dirty_card_queue_set());
2070 
2071   // Here we allocate the dummy HeapRegion that is required by the
2072   // G1AllocRegion class.
2073   HeapRegion* dummy_region = _hrm.get_dummy_region();
2074 
2075   // We'll re-use the same region whether the alloc region will
2076   // require BOT updates or not and, if it doesn't, then a non-young
2077   // region will complain that it cannot support allocations without
2078   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2079   dummy_region->set_eden();
2080   // Make sure it's full.
2081   dummy_region->set_top(dummy_region->end());
2082   G1AllocRegion::setup(this, dummy_region);
2083 
2084   _allocator->init_mutator_alloc_region();
2085 
2086   // Do create of the monitoring and management support so that
2087   // values in the heap have been properly initialized.
2088   _g1mm = new G1MonitoringSupport(this);
2089 
2090   G1StringDedup::initialize();
2091 
2092   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2093   for (uint i = 0; i < ParallelGCThreads; i++) {
2094     new (&_preserved_objs[i]) OopAndMarkOopStack();
2095   }
2096 
2097   return JNI_OK;
2098 }
2099 
2100 void G1CollectedHeap::stop() {
2101   // Stop all concurrent threads. We do this to make sure these threads
2102   // do not continue to execute and access resources (e.g. gclog_or_tty)
2103   // that are destroyed during shutdown.
2104   _cg1r->stop();
2105   _cmThread->stop();
2106   if (G1StringDedup::is_enabled()) {
2107     G1StringDedup::stop();
2108   }
2109 }
2110 
2111 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2112   return HeapRegion::max_region_size();
2113 }
2114 
2115 void G1CollectedHeap::post_initialize() {
2116   CollectedHeap::post_initialize();
2117   ref_processing_init();
2118 }
2119 
2120 void G1CollectedHeap::ref_processing_init() {
2121   // Reference processing in G1 currently works as follows:
2122   //
2123   // * There are two reference processor instances. One is
2124   //   used to record and process discovered references
2125   //   during concurrent marking; the other is used to
2126   //   record and process references during STW pauses
2127   //   (both full and incremental).
2128   // * Both ref processors need to 'span' the entire heap as
2129   //   the regions in the collection set may be dotted around.
2130   //
2131   // * For the concurrent marking ref processor:
2132   //   * Reference discovery is enabled at initial marking.
2133   //   * Reference discovery is disabled and the discovered
2134   //     references processed etc during remarking.
2135   //   * Reference discovery is MT (see below).
2136   //   * Reference discovery requires a barrier (see below).
2137   //   * Reference processing may or may not be MT
2138   //     (depending on the value of ParallelRefProcEnabled
2139   //     and ParallelGCThreads).
2140   //   * A full GC disables reference discovery by the CM
2141   //     ref processor and abandons any entries on it's
2142   //     discovered lists.
2143   //
2144   // * For the STW processor:
2145   //   * Non MT discovery is enabled at the start of a full GC.
2146   //   * Processing and enqueueing during a full GC is non-MT.
2147   //   * During a full GC, references are processed after marking.
2148   //
2149   //   * Discovery (may or may not be MT) is enabled at the start
2150   //     of an incremental evacuation pause.
2151   //   * References are processed near the end of a STW evacuation pause.
2152   //   * For both types of GC:
2153   //     * Discovery is atomic - i.e. not concurrent.
2154   //     * Reference discovery will not need a barrier.
2155 
2156   MemRegion mr = reserved_region();
2157 
2158   // Concurrent Mark ref processor
2159   _ref_processor_cm =
2160     new ReferenceProcessor(mr,    // span
2161                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2162                                 // mt processing
2163                            ParallelGCThreads,
2164                                 // degree of mt processing
2165                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2166                                 // mt discovery
2167                            MAX2(ParallelGCThreads, ConcGCThreads),
2168                                 // degree of mt discovery
2169                            false,
2170                                 // Reference discovery is not atomic
2171                            &_is_alive_closure_cm);
2172                                 // is alive closure
2173                                 // (for efficiency/performance)
2174 
2175   // STW ref processor
2176   _ref_processor_stw =
2177     new ReferenceProcessor(mr,    // span
2178                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2179                                 // mt processing
2180                            ParallelGCThreads,
2181                                 // degree of mt processing
2182                            (ParallelGCThreads > 1),
2183                                 // mt discovery
2184                            ParallelGCThreads,
2185                                 // degree of mt discovery
2186                            true,
2187                                 // Reference discovery is atomic
2188                            &_is_alive_closure_stw);
2189                                 // is alive closure
2190                                 // (for efficiency/performance)
2191 }
2192 
2193 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2194   return g1_policy();
2195 }
2196 
2197 size_t G1CollectedHeap::capacity() const {
2198   return _hrm.length() * HeapRegion::GrainBytes;
2199 }
2200 
2201 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2202   hr->reset_gc_time_stamp();
2203 }
2204 
2205 #ifndef PRODUCT
2206 
2207 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2208 private:
2209   unsigned _gc_time_stamp;
2210   bool _failures;
2211 
2212 public:
2213   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2214     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2215 
2216   virtual bool doHeapRegion(HeapRegion* hr) {
2217     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2218     if (_gc_time_stamp != region_gc_time_stamp) {
2219       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2220                              "expected %d", HR_FORMAT_PARAMS(hr),
2221                              region_gc_time_stamp, _gc_time_stamp);
2222       _failures = true;
2223     }
2224     return false;
2225   }
2226 
2227   bool failures() { return _failures; }
2228 };
2229 
2230 void G1CollectedHeap::check_gc_time_stamps() {
2231   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2232   heap_region_iterate(&cl);
2233   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2234 }
2235 #endif // PRODUCT
2236 
2237 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2238   _cg1r->hot_card_cache()->drain(cl, worker_i);
2239 }
2240 
2241 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2242   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2243   size_t n_completed_buffers = 0;
2244   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2245     n_completed_buffers++;
2246   }
2247   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2248   dcqs.clear_n_completed_buffers();
2249   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2250 }
2251 
2252 // Computes the sum of the storage used by the various regions.
2253 size_t G1CollectedHeap::used() const {
2254   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2255   if (_archive_allocator != NULL) {
2256     result += _archive_allocator->used();
2257   }
2258   return result;
2259 }
2260 
2261 size_t G1CollectedHeap::used_unlocked() const {
2262   return _summary_bytes_used;
2263 }
2264 
2265 class SumUsedClosure: public HeapRegionClosure {
2266   size_t _used;
2267 public:
2268   SumUsedClosure() : _used(0) {}
2269   bool doHeapRegion(HeapRegion* r) {
2270     _used += r->used();
2271     return false;
2272   }
2273   size_t result() { return _used; }
2274 };
2275 
2276 size_t G1CollectedHeap::recalculate_used() const {
2277   double recalculate_used_start = os::elapsedTime();
2278 
2279   SumUsedClosure blk;
2280   heap_region_iterate(&blk);
2281 
2282   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2283   return blk.result();
2284 }
2285 
2286 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2287   switch (cause) {
2288     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2289     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2290     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2291     case GCCause::_g1_humongous_allocation: return true;
2292     case GCCause::_update_allocation_context_stats_inc: return true;
2293     case GCCause::_wb_conc_mark:            return true;
2294     default:                                return false;
2295   }
2296 }
2297 
2298 #ifndef PRODUCT
2299 void G1CollectedHeap::allocate_dummy_regions() {
2300   // Let's fill up most of the region
2301   size_t word_size = HeapRegion::GrainWords - 1024;
2302   // And as a result the region we'll allocate will be humongous.
2303   guarantee(is_humongous(word_size), "sanity");
2304 
2305   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2306     // Let's use the existing mechanism for the allocation
2307     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2308                                                  AllocationContext::system());
2309     if (dummy_obj != NULL) {
2310       MemRegion mr(dummy_obj, word_size);
2311       CollectedHeap::fill_with_object(mr);
2312     } else {
2313       // If we can't allocate once, we probably cannot allocate
2314       // again. Let's get out of the loop.
2315       break;
2316     }
2317   }
2318 }
2319 #endif // !PRODUCT
2320 
2321 void G1CollectedHeap::increment_old_marking_cycles_started() {
2322   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2323          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2324          "Wrong marking cycle count (started: %d, completed: %d)",
2325          _old_marking_cycles_started, _old_marking_cycles_completed);
2326 
2327   _old_marking_cycles_started++;
2328 }
2329 
2330 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2331   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2332 
2333   // We assume that if concurrent == true, then the caller is a
2334   // concurrent thread that was joined the Suspendible Thread
2335   // Set. If there's ever a cheap way to check this, we should add an
2336   // assert here.
2337 
2338   // Given that this method is called at the end of a Full GC or of a
2339   // concurrent cycle, and those can be nested (i.e., a Full GC can
2340   // interrupt a concurrent cycle), the number of full collections
2341   // completed should be either one (in the case where there was no
2342   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2343   // behind the number of full collections started.
2344 
2345   // This is the case for the inner caller, i.e. a Full GC.
2346   assert(concurrent ||
2347          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2348          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2349          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2350          "is inconsistent with _old_marking_cycles_completed = %u",
2351          _old_marking_cycles_started, _old_marking_cycles_completed);
2352 
2353   // This is the case for the outer caller, i.e. the concurrent cycle.
2354   assert(!concurrent ||
2355          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2356          "for outer caller (concurrent cycle): "
2357          "_old_marking_cycles_started = %u "
2358          "is inconsistent with _old_marking_cycles_completed = %u",
2359          _old_marking_cycles_started, _old_marking_cycles_completed);
2360 
2361   _old_marking_cycles_completed += 1;
2362 
2363   // We need to clear the "in_progress" flag in the CM thread before
2364   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2365   // is set) so that if a waiter requests another System.gc() it doesn't
2366   // incorrectly see that a marking cycle is still in progress.
2367   if (concurrent) {
2368     _cmThread->set_idle();
2369   }
2370 
2371   // This notify_all() will ensure that a thread that called
2372   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2373   // and it's waiting for a full GC to finish will be woken up. It is
2374   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2375   FullGCCount_lock->notify_all();
2376 }
2377 
2378 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2379   GCIdMarkAndRestore conc_gc_id_mark;
2380   collector_state()->set_concurrent_cycle_started(true);
2381   _gc_timer_cm->register_gc_start(start_time);
2382 
2383   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2384   trace_heap_before_gc(_gc_tracer_cm);
2385   _cmThread->set_gc_id(GCId::current());
2386 }
2387 
2388 void G1CollectedHeap::register_concurrent_cycle_end() {
2389   if (collector_state()->concurrent_cycle_started()) {
2390     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2391     if (_cm->has_aborted()) {
2392       _gc_tracer_cm->report_concurrent_mode_failure();
2393     }
2394 
2395     _gc_timer_cm->register_gc_end();
2396     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2397 
2398     // Clear state variables to prepare for the next concurrent cycle.
2399      collector_state()->set_concurrent_cycle_started(false);
2400     _heap_summary_sent = false;
2401   }
2402 }
2403 
2404 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2405   if (collector_state()->concurrent_cycle_started()) {
2406     // This function can be called when:
2407     //  the cleanup pause is run
2408     //  the concurrent cycle is aborted before the cleanup pause.
2409     //  the concurrent cycle is aborted after the cleanup pause,
2410     //   but before the concurrent cycle end has been registered.
2411     // Make sure that we only send the heap information once.
2412     if (!_heap_summary_sent) {
2413       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2414       trace_heap_after_gc(_gc_tracer_cm);
2415       _heap_summary_sent = true;
2416     }
2417   }
2418 }
2419 
2420 void G1CollectedHeap::collect(GCCause::Cause cause) {
2421   assert_heap_not_locked();
2422 
2423   uint gc_count_before;
2424   uint old_marking_count_before;
2425   uint full_gc_count_before;
2426   bool retry_gc;
2427 
2428   do {
2429     retry_gc = false;
2430 
2431     {
2432       MutexLocker ml(Heap_lock);
2433 
2434       // Read the GC count while holding the Heap_lock
2435       gc_count_before = total_collections();
2436       full_gc_count_before = total_full_collections();
2437       old_marking_count_before = _old_marking_cycles_started;
2438     }
2439 
2440     if (should_do_concurrent_full_gc(cause)) {
2441       // Schedule an initial-mark evacuation pause that will start a
2442       // concurrent cycle. We're setting word_size to 0 which means that
2443       // we are not requesting a post-GC allocation.
2444       VM_G1IncCollectionPause op(gc_count_before,
2445                                  0,     /* word_size */
2446                                  true,  /* should_initiate_conc_mark */
2447                                  g1_policy()->max_pause_time_ms(),
2448                                  cause);
2449       op.set_allocation_context(AllocationContext::current());
2450 
2451       VMThread::execute(&op);
2452       if (!op.pause_succeeded()) {
2453         if (old_marking_count_before == _old_marking_cycles_started) {
2454           retry_gc = op.should_retry_gc();
2455         } else {
2456           // A Full GC happened while we were trying to schedule the
2457           // initial-mark GC. No point in starting a new cycle given
2458           // that the whole heap was collected anyway.
2459         }
2460 
2461         if (retry_gc) {
2462           if (GC_locker::is_active_and_needs_gc()) {
2463             GC_locker::stall_until_clear();
2464           }
2465         }
2466       }
2467     } else {
2468       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2469           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2470 
2471         // Schedule a standard evacuation pause. We're setting word_size
2472         // to 0 which means that we are not requesting a post-GC allocation.
2473         VM_G1IncCollectionPause op(gc_count_before,
2474                                    0,     /* word_size */
2475                                    false, /* should_initiate_conc_mark */
2476                                    g1_policy()->max_pause_time_ms(),
2477                                    cause);
2478         VMThread::execute(&op);
2479       } else {
2480         // Schedule a Full GC.
2481         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2482         VMThread::execute(&op);
2483       }
2484     }
2485   } while (retry_gc);
2486 }
2487 
2488 bool G1CollectedHeap::is_in(const void* p) const {
2489   if (_hrm.reserved().contains(p)) {
2490     // Given that we know that p is in the reserved space,
2491     // heap_region_containing() should successfully
2492     // return the containing region.
2493     HeapRegion* hr = heap_region_containing(p);
2494     return hr->is_in(p);
2495   } else {
2496     return false;
2497   }
2498 }
2499 
2500 #ifdef ASSERT
2501 bool G1CollectedHeap::is_in_exact(const void* p) const {
2502   bool contains = reserved_region().contains(p);
2503   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2504   if (contains && available) {
2505     return true;
2506   } else {
2507     return false;
2508   }
2509 }
2510 #endif
2511 
2512 bool G1CollectedHeap::obj_in_cs(oop obj) {
2513   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2514   return r != NULL && r->in_collection_set();
2515 }
2516 
2517 // Iteration functions.
2518 
2519 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2520 
2521 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2522   ExtendedOopClosure* _cl;
2523 public:
2524   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2525   bool doHeapRegion(HeapRegion* r) {
2526     if (!r->is_continues_humongous()) {
2527       r->oop_iterate(_cl);
2528     }
2529     return false;
2530   }
2531 };
2532 
2533 // Iterates an ObjectClosure over all objects within a HeapRegion.
2534 
2535 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2536   ObjectClosure* _cl;
2537 public:
2538   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2539   bool doHeapRegion(HeapRegion* r) {
2540     if (!r->is_continues_humongous()) {
2541       r->object_iterate(_cl);
2542     }
2543     return false;
2544   }
2545 };
2546 
2547 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2548   IterateObjectClosureRegionClosure blk(cl);
2549   heap_region_iterate(&blk);
2550 }
2551 
2552 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2553   _hrm.iterate(cl);
2554 }
2555 
2556 void
2557 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2558                                          uint worker_id,
2559                                          HeapRegionClaimer *hrclaimer,
2560                                          bool concurrent) const {
2561   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2562 }
2563 
2564 // Clear the cached CSet starting regions and (more importantly)
2565 // the time stamps. Called when we reset the GC time stamp.
2566 void G1CollectedHeap::clear_cset_start_regions() {
2567   assert(_worker_cset_start_region != NULL, "sanity");
2568   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2569 
2570   for (uint i = 0; i < ParallelGCThreads; i++) {
2571     _worker_cset_start_region[i] = NULL;
2572     _worker_cset_start_region_time_stamp[i] = 0;
2573   }
2574 }
2575 
2576 // Given the id of a worker, obtain or calculate a suitable
2577 // starting region for iterating over the current collection set.
2578 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2579   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2580 
2581   HeapRegion* result = NULL;
2582   unsigned gc_time_stamp = get_gc_time_stamp();
2583 
2584   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2585     // Cached starting region for current worker was set
2586     // during the current pause - so it's valid.
2587     // Note: the cached starting heap region may be NULL
2588     // (when the collection set is empty).
2589     result = _worker_cset_start_region[worker_i];
2590     assert(result == NULL || result->in_collection_set(), "sanity");
2591     return result;
2592   }
2593 
2594   // The cached entry was not valid so let's calculate
2595   // a suitable starting heap region for this worker.
2596 
2597   // We want the parallel threads to start their collection
2598   // set iteration at different collection set regions to
2599   // avoid contention.
2600   // If we have:
2601   //          n collection set regions
2602   //          p threads
2603   // Then thread t will start at region floor ((t * n) / p)
2604 
2605   result = g1_policy()->collection_set();
2606   uint cs_size = g1_policy()->cset_region_length();
2607   uint active_workers = workers()->active_workers();
2608 
2609   uint end_ind   = (cs_size * worker_i) / active_workers;
2610   uint start_ind = 0;
2611 
2612   if (worker_i > 0 &&
2613       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2614     // Previous workers starting region is valid
2615     // so let's iterate from there
2616     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2617     result = _worker_cset_start_region[worker_i - 1];
2618   }
2619 
2620   for (uint i = start_ind; i < end_ind; i++) {
2621     result = result->next_in_collection_set();
2622   }
2623 
2624   // Note: the calculated starting heap region may be NULL
2625   // (when the collection set is empty).
2626   assert(result == NULL || result->in_collection_set(), "sanity");
2627   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2628          "should be updated only once per pause");
2629   _worker_cset_start_region[worker_i] = result;
2630   OrderAccess::storestore();
2631   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2632   return result;
2633 }
2634 
2635 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2636   HeapRegion* r = g1_policy()->collection_set();
2637   while (r != NULL) {
2638     HeapRegion* next = r->next_in_collection_set();
2639     if (cl->doHeapRegion(r)) {
2640       cl->incomplete();
2641       return;
2642     }
2643     r = next;
2644   }
2645 }
2646 
2647 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2648                                                   HeapRegionClosure *cl) {
2649   if (r == NULL) {
2650     // The CSet is empty so there's nothing to do.
2651     return;
2652   }
2653 
2654   assert(r->in_collection_set(),
2655          "Start region must be a member of the collection set.");
2656   HeapRegion* cur = r;
2657   while (cur != NULL) {
2658     HeapRegion* next = cur->next_in_collection_set();
2659     if (cl->doHeapRegion(cur) && false) {
2660       cl->incomplete();
2661       return;
2662     }
2663     cur = next;
2664   }
2665   cur = g1_policy()->collection_set();
2666   while (cur != r) {
2667     HeapRegion* next = cur->next_in_collection_set();
2668     if (cl->doHeapRegion(cur) && false) {
2669       cl->incomplete();
2670       return;
2671     }
2672     cur = next;
2673   }
2674 }
2675 
2676 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2677   HeapRegion* result = _hrm.next_region_in_heap(from);
2678   while (result != NULL && result->is_pinned()) {
2679     result = _hrm.next_region_in_heap(result);
2680   }
2681   return result;
2682 }
2683 
2684 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2685   HeapRegion* hr = heap_region_containing(addr);
2686   return hr->block_start(addr);
2687 }
2688 
2689 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2690   HeapRegion* hr = heap_region_containing(addr);
2691   return hr->block_size(addr);
2692 }
2693 
2694 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2695   HeapRegion* hr = heap_region_containing(addr);
2696   return hr->block_is_obj(addr);
2697 }
2698 
2699 bool G1CollectedHeap::supports_tlab_allocation() const {
2700   return true;
2701 }
2702 
2703 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2704   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2705 }
2706 
2707 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2708   return young_list()->eden_used_bytes();
2709 }
2710 
2711 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2712 // must be equal to the humongous object limit.
2713 size_t G1CollectedHeap::max_tlab_size() const {
2714   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2715 }
2716 
2717 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2718   AllocationContext_t context = AllocationContext::current();
2719   return _allocator->unsafe_max_tlab_alloc(context);
2720 }
2721 
2722 size_t G1CollectedHeap::max_capacity() const {
2723   return _hrm.reserved().byte_size();
2724 }
2725 
2726 jlong G1CollectedHeap::millis_since_last_gc() {
2727   // assert(false, "NYI");
2728   return 0;
2729 }
2730 
2731 void G1CollectedHeap::prepare_for_verify() {
2732   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2733     ensure_parsability(false);
2734   }
2735   g1_rem_set()->prepare_for_verify();
2736 }
2737 
2738 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2739                                               VerifyOption vo) {
2740   switch (vo) {
2741   case VerifyOption_G1UsePrevMarking:
2742     return hr->obj_allocated_since_prev_marking(obj);
2743   case VerifyOption_G1UseNextMarking:
2744     return hr->obj_allocated_since_next_marking(obj);
2745   case VerifyOption_G1UseMarkWord:
2746     return false;
2747   default:
2748     ShouldNotReachHere();
2749   }
2750   return false; // keep some compilers happy
2751 }
2752 
2753 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2754   switch (vo) {
2755   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2756   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2757   case VerifyOption_G1UseMarkWord:    return NULL;
2758   default:                            ShouldNotReachHere();
2759   }
2760   return NULL; // keep some compilers happy
2761 }
2762 
2763 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2764   switch (vo) {
2765   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2766   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2767   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2768   default:                            ShouldNotReachHere();
2769   }
2770   return false; // keep some compilers happy
2771 }
2772 
2773 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2774   switch (vo) {
2775   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2776   case VerifyOption_G1UseNextMarking: return "NTAMS";
2777   case VerifyOption_G1UseMarkWord:    return "NONE";
2778   default:                            ShouldNotReachHere();
2779   }
2780   return NULL; // keep some compilers happy
2781 }
2782 
2783 class VerifyRootsClosure: public OopClosure {
2784 private:
2785   G1CollectedHeap* _g1h;
2786   VerifyOption     _vo;
2787   bool             _failures;
2788 public:
2789   // _vo == UsePrevMarking -> use "prev" marking information,
2790   // _vo == UseNextMarking -> use "next" marking information,
2791   // _vo == UseMarkWord    -> use mark word from object header.
2792   VerifyRootsClosure(VerifyOption vo) :
2793     _g1h(G1CollectedHeap::heap()),
2794     _vo(vo),
2795     _failures(false) { }
2796 
2797   bool failures() { return _failures; }
2798 
2799   template <class T> void do_oop_nv(T* p) {
2800     T heap_oop = oopDesc::load_heap_oop(p);
2801     if (!oopDesc::is_null(heap_oop)) {
2802       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2803       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2804         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2805                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2806         if (_vo == VerifyOption_G1UseMarkWord) {
2807           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2808         }
2809         obj->print_on(gclog_or_tty);
2810         _failures = true;
2811       }
2812     }
2813   }
2814 
2815   void do_oop(oop* p)       { do_oop_nv(p); }
2816   void do_oop(narrowOop* p) { do_oop_nv(p); }
2817 };
2818 
2819 class G1VerifyCodeRootOopClosure: public OopClosure {
2820   G1CollectedHeap* _g1h;
2821   OopClosure* _root_cl;
2822   nmethod* _nm;
2823   VerifyOption _vo;
2824   bool _failures;
2825 
2826   template <class T> void do_oop_work(T* p) {
2827     // First verify that this root is live
2828     _root_cl->do_oop(p);
2829 
2830     if (!G1VerifyHeapRegionCodeRoots) {
2831       // We're not verifying the code roots attached to heap region.
2832       return;
2833     }
2834 
2835     // Don't check the code roots during marking verification in a full GC
2836     if (_vo == VerifyOption_G1UseMarkWord) {
2837       return;
2838     }
2839 
2840     // Now verify that the current nmethod (which contains p) is
2841     // in the code root list of the heap region containing the
2842     // object referenced by p.
2843 
2844     T heap_oop = oopDesc::load_heap_oop(p);
2845     if (!oopDesc::is_null(heap_oop)) {
2846       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2847 
2848       // Now fetch the region containing the object
2849       HeapRegion* hr = _g1h->heap_region_containing(obj);
2850       HeapRegionRemSet* hrrs = hr->rem_set();
2851       // Verify that the strong code root list for this region
2852       // contains the nmethod
2853       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2854         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2855                                "from nmethod " PTR_FORMAT " not in strong "
2856                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2857                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2858         _failures = true;
2859       }
2860     }
2861   }
2862 
2863 public:
2864   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2865     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2866 
2867   void do_oop(oop* p) { do_oop_work(p); }
2868   void do_oop(narrowOop* p) { do_oop_work(p); }
2869 
2870   void set_nmethod(nmethod* nm) { _nm = nm; }
2871   bool failures() { return _failures; }
2872 };
2873 
2874 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2875   G1VerifyCodeRootOopClosure* _oop_cl;
2876 
2877 public:
2878   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2879     _oop_cl(oop_cl) {}
2880 
2881   void do_code_blob(CodeBlob* cb) {
2882     nmethod* nm = cb->as_nmethod_or_null();
2883     if (nm != NULL) {
2884       _oop_cl->set_nmethod(nm);
2885       nm->oops_do(_oop_cl);
2886     }
2887   }
2888 };
2889 
2890 class YoungRefCounterClosure : public OopClosure {
2891   G1CollectedHeap* _g1h;
2892   int              _count;
2893  public:
2894   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2895   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2896   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2897 
2898   int count() { return _count; }
2899   void reset_count() { _count = 0; };
2900 };
2901 
2902 class VerifyKlassClosure: public KlassClosure {
2903   YoungRefCounterClosure _young_ref_counter_closure;
2904   OopClosure *_oop_closure;
2905  public:
2906   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2907   void do_klass(Klass* k) {
2908     k->oops_do(_oop_closure);
2909 
2910     _young_ref_counter_closure.reset_count();
2911     k->oops_do(&_young_ref_counter_closure);
2912     if (_young_ref_counter_closure.count() > 0) {
2913       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2914     }
2915   }
2916 };
2917 
2918 class VerifyLivenessOopClosure: public OopClosure {
2919   G1CollectedHeap* _g1h;
2920   VerifyOption _vo;
2921 public:
2922   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2923     _g1h(g1h), _vo(vo)
2924   { }
2925   void do_oop(narrowOop *p) { do_oop_work(p); }
2926   void do_oop(      oop *p) { do_oop_work(p); }
2927 
2928   template <class T> void do_oop_work(T *p) {
2929     oop obj = oopDesc::load_decode_heap_oop(p);
2930     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2931               "Dead object referenced by a not dead object");
2932   }
2933 };
2934 
2935 class VerifyObjsInRegionClosure: public ObjectClosure {
2936 private:
2937   G1CollectedHeap* _g1h;
2938   size_t _live_bytes;
2939   HeapRegion *_hr;
2940   VerifyOption _vo;
2941 public:
2942   // _vo == UsePrevMarking -> use "prev" marking information,
2943   // _vo == UseNextMarking -> use "next" marking information,
2944   // _vo == UseMarkWord    -> use mark word from object header.
2945   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2946     : _live_bytes(0), _hr(hr), _vo(vo) {
2947     _g1h = G1CollectedHeap::heap();
2948   }
2949   void do_object(oop o) {
2950     VerifyLivenessOopClosure isLive(_g1h, _vo);
2951     assert(o != NULL, "Huh?");
2952     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2953       // If the object is alive according to the mark word,
2954       // then verify that the marking information agrees.
2955       // Note we can't verify the contra-positive of the
2956       // above: if the object is dead (according to the mark
2957       // word), it may not be marked, or may have been marked
2958       // but has since became dead, or may have been allocated
2959       // since the last marking.
2960       if (_vo == VerifyOption_G1UseMarkWord) {
2961         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2962       }
2963 
2964       o->oop_iterate_no_header(&isLive);
2965       if (!_hr->obj_allocated_since_prev_marking(o)) {
2966         size_t obj_size = o->size();    // Make sure we don't overflow
2967         _live_bytes += (obj_size * HeapWordSize);
2968       }
2969     }
2970   }
2971   size_t live_bytes() { return _live_bytes; }
2972 };
2973 
2974 class VerifyArchiveOopClosure: public OopClosure {
2975 public:
2976   VerifyArchiveOopClosure(HeapRegion *hr) { }
2977   void do_oop(narrowOop *p) { do_oop_work(p); }
2978   void do_oop(      oop *p) { do_oop_work(p); }
2979 
2980   template <class T> void do_oop_work(T *p) {
2981     oop obj = oopDesc::load_decode_heap_oop(p);
2982     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2983               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2984               p2i(p), p2i(obj));
2985   }
2986 };
2987 
2988 class VerifyArchiveRegionClosure: public ObjectClosure {
2989 public:
2990   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2991   // Verify that all object pointers are to archive regions.
2992   void do_object(oop o) {
2993     VerifyArchiveOopClosure checkOop(NULL);
2994     assert(o != NULL, "Should not be here for NULL oops");
2995     o->oop_iterate_no_header(&checkOop);
2996   }
2997 };
2998 
2999 class VerifyRegionClosure: public HeapRegionClosure {
3000 private:
3001   bool             _par;
3002   VerifyOption     _vo;
3003   bool             _failures;
3004 public:
3005   // _vo == UsePrevMarking -> use "prev" marking information,
3006   // _vo == UseNextMarking -> use "next" marking information,
3007   // _vo == UseMarkWord    -> use mark word from object header.
3008   VerifyRegionClosure(bool par, VerifyOption vo)
3009     : _par(par),
3010       _vo(vo),
3011       _failures(false) {}
3012 
3013   bool failures() {
3014     return _failures;
3015   }
3016 
3017   bool doHeapRegion(HeapRegion* r) {
3018     // For archive regions, verify there are no heap pointers to
3019     // non-pinned regions. For all others, verify liveness info.
3020     if (r->is_archive()) {
3021       VerifyArchiveRegionClosure verify_oop_pointers(r);
3022       r->object_iterate(&verify_oop_pointers);
3023       return true;
3024     }
3025     if (!r->is_continues_humongous()) {
3026       bool failures = false;
3027       r->verify(_vo, &failures);
3028       if (failures) {
3029         _failures = true;
3030       } else if (!r->is_starts_humongous()) {
3031         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3032         r->object_iterate(&not_dead_yet_cl);
3033         if (_vo != VerifyOption_G1UseNextMarking) {
3034           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3035             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3036                                    "max_live_bytes " SIZE_FORMAT " "
3037                                    "< calculated " SIZE_FORMAT,
3038                                    p2i(r->bottom()), p2i(r->end()),
3039                                    r->max_live_bytes(),
3040                                  not_dead_yet_cl.live_bytes());
3041             _failures = true;
3042           }
3043         } else {
3044           // When vo == UseNextMarking we cannot currently do a sanity
3045           // check on the live bytes as the calculation has not been
3046           // finalized yet.
3047         }
3048       }
3049     }
3050     return false; // stop the region iteration if we hit a failure
3051   }
3052 };
3053 
3054 // This is the task used for parallel verification of the heap regions
3055 
3056 class G1ParVerifyTask: public AbstractGangTask {
3057 private:
3058   G1CollectedHeap*  _g1h;
3059   VerifyOption      _vo;
3060   bool              _failures;
3061   HeapRegionClaimer _hrclaimer;
3062 
3063 public:
3064   // _vo == UsePrevMarking -> use "prev" marking information,
3065   // _vo == UseNextMarking -> use "next" marking information,
3066   // _vo == UseMarkWord    -> use mark word from object header.
3067   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3068       AbstractGangTask("Parallel verify task"),
3069       _g1h(g1h),
3070       _vo(vo),
3071       _failures(false),
3072       _hrclaimer(g1h->workers()->active_workers()) {}
3073 
3074   bool failures() {
3075     return _failures;
3076   }
3077 
3078   void work(uint worker_id) {
3079     HandleMark hm;
3080     VerifyRegionClosure blk(true, _vo);
3081     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3082     if (blk.failures()) {
3083       _failures = true;
3084     }
3085   }
3086 };
3087 
3088 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3089   if (SafepointSynchronize::is_at_safepoint()) {
3090     assert(Thread::current()->is_VM_thread(),
3091            "Expected to be executed serially by the VM thread at this point");
3092 
3093     if (!silent) { gclog_or_tty->print("Roots "); }
3094     VerifyRootsClosure rootsCl(vo);
3095     VerifyKlassClosure klassCl(this, &rootsCl);
3096     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3097 
3098     // We apply the relevant closures to all the oops in the
3099     // system dictionary, class loader data graph, the string table
3100     // and the nmethods in the code cache.
3101     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3102     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3103 
3104     {
3105       G1RootProcessor root_processor(this, 1);
3106       root_processor.process_all_roots(&rootsCl,
3107                                        &cldCl,
3108                                        &blobsCl);
3109     }
3110 
3111     bool failures = rootsCl.failures() || codeRootsCl.failures();
3112 
3113     if (vo != VerifyOption_G1UseMarkWord) {
3114       // If we're verifying during a full GC then the region sets
3115       // will have been torn down at the start of the GC. Therefore
3116       // verifying the region sets will fail. So we only verify
3117       // the region sets when not in a full GC.
3118       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3119       verify_region_sets();
3120     }
3121 
3122     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3123     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3124 
3125       G1ParVerifyTask task(this, vo);
3126       workers()->run_task(&task);
3127       if (task.failures()) {
3128         failures = true;
3129       }
3130 
3131     } else {
3132       VerifyRegionClosure blk(false, vo);
3133       heap_region_iterate(&blk);
3134       if (blk.failures()) {
3135         failures = true;
3136       }
3137     }
3138 
3139     if (G1StringDedup::is_enabled()) {
3140       if (!silent) gclog_or_tty->print("StrDedup ");
3141       G1StringDedup::verify();
3142     }
3143 
3144     if (failures) {
3145       gclog_or_tty->print_cr("Heap:");
3146       // It helps to have the per-region information in the output to
3147       // help us track down what went wrong. This is why we call
3148       // print_extended_on() instead of print_on().
3149       print_extended_on(gclog_or_tty);
3150       gclog_or_tty->cr();
3151       gclog_or_tty->flush();
3152     }
3153     guarantee(!failures, "there should not have been any failures");
3154   } else {
3155     if (!silent) {
3156       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3157       if (G1StringDedup::is_enabled()) {
3158         gclog_or_tty->print(", StrDedup");
3159       }
3160       gclog_or_tty->print(") ");
3161     }
3162   }
3163 }
3164 
3165 void G1CollectedHeap::verify(bool silent) {
3166   verify(silent, VerifyOption_G1UsePrevMarking);
3167 }
3168 
3169 double G1CollectedHeap::verify(bool guard, const char* msg) {
3170   double verify_time_ms = 0.0;
3171 
3172   if (guard && total_collections() >= VerifyGCStartAt) {
3173     double verify_start = os::elapsedTime();
3174     HandleMark hm;  // Discard invalid handles created during verification
3175     prepare_for_verify();
3176     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3177     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3178   }
3179 
3180   return verify_time_ms;
3181 }
3182 
3183 void G1CollectedHeap::verify_before_gc() {
3184   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3185   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3186 }
3187 
3188 void G1CollectedHeap::verify_after_gc() {
3189   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3190   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3191 }
3192 
3193 class PrintRegionClosure: public HeapRegionClosure {
3194   outputStream* _st;
3195 public:
3196   PrintRegionClosure(outputStream* st) : _st(st) {}
3197   bool doHeapRegion(HeapRegion* r) {
3198     r->print_on(_st);
3199     return false;
3200   }
3201 };
3202 
3203 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3204                                        const HeapRegion* hr,
3205                                        const VerifyOption vo) const {
3206   switch (vo) {
3207   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3208   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3209   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3210   default:                            ShouldNotReachHere();
3211   }
3212   return false; // keep some compilers happy
3213 }
3214 
3215 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3216                                        const VerifyOption vo) const {
3217   switch (vo) {
3218   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3219   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3220   case VerifyOption_G1UseMarkWord: {
3221     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3222     return !obj->is_gc_marked() && !hr->is_archive();
3223   }
3224   default:                            ShouldNotReachHere();
3225   }
3226   return false; // keep some compilers happy
3227 }
3228 
3229 void G1CollectedHeap::print_on(outputStream* st) const {
3230   st->print(" %-20s", "garbage-first heap");
3231   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3232             capacity()/K, used_unlocked()/K);
3233   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3234             p2i(_hrm.reserved().start()),
3235             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3236             p2i(_hrm.reserved().end()));
3237   st->cr();
3238   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3239   uint young_regions = _young_list->length();
3240   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3241             (size_t) young_regions * HeapRegion::GrainBytes / K);
3242   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3243   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3244             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3245   st->cr();
3246   MetaspaceAux::print_on(st);
3247 }
3248 
3249 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3250   print_on(st);
3251 
3252   // Print the per-region information.
3253   st->cr();
3254   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3255                "HS=humongous(starts), HC=humongous(continues), "
3256                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3257                "PTAMS=previous top-at-mark-start, "
3258                "NTAMS=next top-at-mark-start)");
3259   PrintRegionClosure blk(st);
3260   heap_region_iterate(&blk);
3261 }
3262 
3263 void G1CollectedHeap::print_on_error(outputStream* st) const {
3264   this->CollectedHeap::print_on_error(st);
3265 
3266   if (_cm != NULL) {
3267     st->cr();
3268     _cm->print_on_error(st);
3269   }
3270 }
3271 
3272 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3273   workers()->print_worker_threads_on(st);
3274   _cmThread->print_on(st);
3275   st->cr();
3276   _cm->print_worker_threads_on(st);
3277   _cg1r->print_worker_threads_on(st);
3278   if (G1StringDedup::is_enabled()) {
3279     G1StringDedup::print_worker_threads_on(st);
3280   }
3281 }
3282 
3283 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3284   workers()->threads_do(tc);
3285   tc->do_thread(_cmThread);
3286   _cg1r->threads_do(tc);
3287   if (G1StringDedup::is_enabled()) {
3288     G1StringDedup::threads_do(tc);
3289   }
3290 }
3291 
3292 void G1CollectedHeap::print_tracing_info() const {
3293   // We'll overload this to mean "trace GC pause statistics."
3294   if (TraceYoungGenTime || TraceOldGenTime) {
3295     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3296     // to that.
3297     g1_policy()->print_tracing_info();
3298   }
3299   if (G1SummarizeRSetStats) {
3300     g1_rem_set()->print_summary_info();
3301   }
3302   if (G1SummarizeConcMark) {
3303     concurrent_mark()->print_summary_info();
3304   }
3305   g1_policy()->print_yg_surv_rate_info();
3306 }
3307 
3308 #ifndef PRODUCT
3309 // Helpful for debugging RSet issues.
3310 
3311 class PrintRSetsClosure : public HeapRegionClosure {
3312 private:
3313   const char* _msg;
3314   size_t _occupied_sum;
3315 
3316 public:
3317   bool doHeapRegion(HeapRegion* r) {
3318     HeapRegionRemSet* hrrs = r->rem_set();
3319     size_t occupied = hrrs->occupied();
3320     _occupied_sum += occupied;
3321 
3322     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3323                            HR_FORMAT_PARAMS(r));
3324     if (occupied == 0) {
3325       gclog_or_tty->print_cr("  RSet is empty");
3326     } else {
3327       hrrs->print();
3328     }
3329     gclog_or_tty->print_cr("----------");
3330     return false;
3331   }
3332 
3333   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3334     gclog_or_tty->cr();
3335     gclog_or_tty->print_cr("========================================");
3336     gclog_or_tty->print_cr("%s", msg);
3337     gclog_or_tty->cr();
3338   }
3339 
3340   ~PrintRSetsClosure() {
3341     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3342     gclog_or_tty->print_cr("========================================");
3343     gclog_or_tty->cr();
3344   }
3345 };
3346 
3347 void G1CollectedHeap::print_cset_rsets() {
3348   PrintRSetsClosure cl("Printing CSet RSets");
3349   collection_set_iterate(&cl);
3350 }
3351 
3352 void G1CollectedHeap::print_all_rsets() {
3353   PrintRSetsClosure cl("Printing All RSets");;
3354   heap_region_iterate(&cl);
3355 }
3356 #endif // PRODUCT
3357 
3358 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3359   YoungList* young_list = heap()->young_list();
3360 
3361   size_t eden_used_bytes = young_list->eden_used_bytes();
3362   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3363 
3364   size_t eden_capacity_bytes =
3365     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3366 
3367   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3368   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3369 }
3370 
3371 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3372   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3373                        stats->unused(), stats->used(), stats->region_end_waste(),
3374                        stats->regions_filled(), stats->direct_allocated(),
3375                        stats->failure_used(), stats->failure_waste());
3376 }
3377 
3378 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3379   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3380   gc_tracer->report_gc_heap_summary(when, heap_summary);
3381 
3382   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3383   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3384 }
3385 
3386 
3387 G1CollectedHeap* G1CollectedHeap::heap() {
3388   CollectedHeap* heap = Universe::heap();
3389   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3390   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3391   return (G1CollectedHeap*)heap;
3392 }
3393 
3394 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3395   // always_do_update_barrier = false;
3396   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3397   // Fill TLAB's and such
3398   accumulate_statistics_all_tlabs();
3399   ensure_parsability(true);
3400 
3401   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3402       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3403     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3404   }
3405 }
3406 
3407 void G1CollectedHeap::gc_epilogue(bool full) {
3408 
3409   if (G1SummarizeRSetStats &&
3410       (G1SummarizeRSetStatsPeriod > 0) &&
3411       // we are at the end of the GC. Total collections has already been increased.
3412       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3413     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3414   }
3415 
3416   // FIXME: what is this about?
3417   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3418   // is set.
3419 #if defined(COMPILER2) || INCLUDE_JVMCI
3420   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3421 #endif
3422   // always_do_update_barrier = true;
3423 
3424   resize_all_tlabs();
3425   allocation_context_stats().update(full);
3426 
3427   // We have just completed a GC. Update the soft reference
3428   // policy with the new heap occupancy
3429   Universe::update_heap_info_at_gc();
3430 }
3431 
3432 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3433                                                uint gc_count_before,
3434                                                bool* succeeded,
3435                                                GCCause::Cause gc_cause) {
3436   assert_heap_not_locked_and_not_at_safepoint();
3437   g1_policy()->record_stop_world_start();
3438   VM_G1IncCollectionPause op(gc_count_before,
3439                              word_size,
3440                              false, /* should_initiate_conc_mark */
3441                              g1_policy()->max_pause_time_ms(),
3442                              gc_cause);
3443 
3444   op.set_allocation_context(AllocationContext::current());
3445   VMThread::execute(&op);
3446 
3447   HeapWord* result = op.result();
3448   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3449   assert(result == NULL || ret_succeeded,
3450          "the result should be NULL if the VM did not succeed");
3451   *succeeded = ret_succeeded;
3452 
3453   assert_heap_not_locked();
3454   return result;
3455 }
3456 
3457 void
3458 G1CollectedHeap::doConcurrentMark() {
3459   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3460   if (!_cmThread->in_progress()) {
3461     _cmThread->set_started();
3462     CGC_lock->notify();
3463   }
3464 }
3465 
3466 size_t G1CollectedHeap::pending_card_num() {
3467   size_t extra_cards = 0;
3468   JavaThread *curr = Threads::first();
3469   while (curr != NULL) {
3470     DirtyCardQueue& dcq = curr->dirty_card_queue();
3471     extra_cards += dcq.size();
3472     curr = curr->next();
3473   }
3474   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3475   size_t buffer_size = dcqs.buffer_size();
3476   size_t buffer_num = dcqs.completed_buffers_num();
3477 
3478   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3479   // in bytes - not the number of 'entries'. We need to convert
3480   // into a number of cards.
3481   return (buffer_size * buffer_num + extra_cards) / oopSize;
3482 }
3483 
3484 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3485  private:
3486   size_t _total_humongous;
3487   size_t _candidate_humongous;
3488 
3489   DirtyCardQueue _dcq;
3490 
3491   // We don't nominate objects with many remembered set entries, on
3492   // the assumption that such objects are likely still live.
3493   bool is_remset_small(HeapRegion* region) const {
3494     HeapRegionRemSet* const rset = region->rem_set();
3495     return G1EagerReclaimHumongousObjectsWithStaleRefs
3496       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3497       : rset->is_empty();
3498   }
3499 
3500   bool is_typeArray_region(HeapRegion* region) const {
3501     return oop(region->bottom())->is_typeArray();
3502   }
3503 
3504   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3505     assert(region->is_starts_humongous(), "Must start a humongous object");
3506 
3507     // Candidate selection must satisfy the following constraints
3508     // while concurrent marking is in progress:
3509     //
3510     // * In order to maintain SATB invariants, an object must not be
3511     // reclaimed if it was allocated before the start of marking and
3512     // has not had its references scanned.  Such an object must have
3513     // its references (including type metadata) scanned to ensure no
3514     // live objects are missed by the marking process.  Objects
3515     // allocated after the start of concurrent marking don't need to
3516     // be scanned.
3517     //
3518     // * An object must not be reclaimed if it is on the concurrent
3519     // mark stack.  Objects allocated after the start of concurrent
3520     // marking are never pushed on the mark stack.
3521     //
3522     // Nominating only objects allocated after the start of concurrent
3523     // marking is sufficient to meet both constraints.  This may miss
3524     // some objects that satisfy the constraints, but the marking data
3525     // structures don't support efficiently performing the needed
3526     // additional tests or scrubbing of the mark stack.
3527     //
3528     // However, we presently only nominate is_typeArray() objects.
3529     // A humongous object containing references induces remembered
3530     // set entries on other regions.  In order to reclaim such an
3531     // object, those remembered sets would need to be cleaned up.
3532     //
3533     // We also treat is_typeArray() objects specially, allowing them
3534     // to be reclaimed even if allocated before the start of
3535     // concurrent mark.  For this we rely on mark stack insertion to
3536     // exclude is_typeArray() objects, preventing reclaiming an object
3537     // that is in the mark stack.  We also rely on the metadata for
3538     // such objects to be built-in and so ensured to be kept live.
3539     // Frequent allocation and drop of large binary blobs is an
3540     // important use case for eager reclaim, and this special handling
3541     // may reduce needed headroom.
3542 
3543     return is_typeArray_region(region) && is_remset_small(region);
3544   }
3545 
3546  public:
3547   RegisterHumongousWithInCSetFastTestClosure()
3548   : _total_humongous(0),
3549     _candidate_humongous(0),
3550     _dcq(&JavaThread::dirty_card_queue_set()) {
3551   }
3552 
3553   virtual bool doHeapRegion(HeapRegion* r) {
3554     if (!r->is_starts_humongous()) {
3555       return false;
3556     }
3557     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3558 
3559     bool is_candidate = humongous_region_is_candidate(g1h, r);
3560     uint rindex = r->hrm_index();
3561     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3562     if (is_candidate) {
3563       _candidate_humongous++;
3564       g1h->register_humongous_region_with_cset(rindex);
3565       // Is_candidate already filters out humongous object with large remembered sets.
3566       // If we have a humongous object with a few remembered sets, we simply flush these
3567       // remembered set entries into the DCQS. That will result in automatic
3568       // re-evaluation of their remembered set entries during the following evacuation
3569       // phase.
3570       if (!r->rem_set()->is_empty()) {
3571         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3572                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3573         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3574         HeapRegionRemSetIterator hrrs(r->rem_set());
3575         size_t card_index;
3576         while (hrrs.has_next(card_index)) {
3577           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3578           // The remembered set might contain references to already freed
3579           // regions. Filter out such entries to avoid failing card table
3580           // verification.
3581           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3582             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3583               *card_ptr = CardTableModRefBS::dirty_card_val();
3584               _dcq.enqueue(card_ptr);
3585             }
3586           }
3587         }
3588         r->rem_set()->clear_locked();
3589       }
3590       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3591     }
3592     _total_humongous++;
3593 
3594     return false;
3595   }
3596 
3597   size_t total_humongous() const { return _total_humongous; }
3598   size_t candidate_humongous() const { return _candidate_humongous; }
3599 
3600   void flush_rem_set_entries() { _dcq.flush(); }
3601 };
3602 
3603 void G1CollectedHeap::register_humongous_regions_with_cset() {
3604   if (!G1EagerReclaimHumongousObjects) {
3605     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3606     return;
3607   }
3608   double time = os::elapsed_counter();
3609 
3610   // Collect reclaim candidate information and register candidates with cset.
3611   RegisterHumongousWithInCSetFastTestClosure cl;
3612   heap_region_iterate(&cl);
3613 
3614   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3615   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3616                                                                   cl.total_humongous(),
3617                                                                   cl.candidate_humongous());
3618   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3619 
3620   // Finally flush all remembered set entries to re-check into the global DCQS.
3621   cl.flush_rem_set_entries();
3622 }
3623 
3624 #ifdef ASSERT
3625 class VerifyCSetClosure: public HeapRegionClosure {
3626 public:
3627   bool doHeapRegion(HeapRegion* hr) {
3628     // Here we check that the CSet region's RSet is ready for parallel
3629     // iteration. The fields that we'll verify are only manipulated
3630     // when the region is part of a CSet and is collected. Afterwards,
3631     // we reset these fields when we clear the region's RSet (when the
3632     // region is freed) so they are ready when the region is
3633     // re-allocated. The only exception to this is if there's an
3634     // evacuation failure and instead of freeing the region we leave
3635     // it in the heap. In that case, we reset these fields during
3636     // evacuation failure handling.
3637     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3638 
3639     // Here's a good place to add any other checks we'd like to
3640     // perform on CSet regions.
3641     return false;
3642   }
3643 };
3644 #endif // ASSERT
3645 
3646 uint G1CollectedHeap::num_task_queues() const {
3647   return _task_queues->size();
3648 }
3649 
3650 #if TASKQUEUE_STATS
3651 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3652   st->print_raw_cr("GC Task Stats");
3653   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3654   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3655 }
3656 
3657 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3658   print_taskqueue_stats_hdr(st);
3659 
3660   TaskQueueStats totals;
3661   const uint n = num_task_queues();
3662   for (uint i = 0; i < n; ++i) {
3663     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3664     totals += task_queue(i)->stats;
3665   }
3666   st->print_raw("tot "); totals.print(st); st->cr();
3667 
3668   DEBUG_ONLY(totals.verify());
3669 }
3670 
3671 void G1CollectedHeap::reset_taskqueue_stats() {
3672   const uint n = num_task_queues();
3673   for (uint i = 0; i < n; ++i) {
3674     task_queue(i)->stats.reset();
3675   }
3676 }
3677 #endif // TASKQUEUE_STATS
3678 
3679 void G1CollectedHeap::log_gc_header() {
3680   if (!G1Log::fine()) {
3681     return;
3682   }
3683 
3684   gclog_or_tty->gclog_stamp();
3685 
3686   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3687     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3688     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3689 
3690   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3691 }
3692 
3693 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3694   if (!G1Log::fine()) {
3695     return;
3696   }
3697 
3698   if (G1Log::finer()) {
3699     if (evacuation_failed()) {
3700       gclog_or_tty->print(" (to-space exhausted)");
3701     }
3702     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3703     g1_policy()->phase_times()->note_gc_end();
3704     g1_policy()->phase_times()->print(pause_time_sec);
3705     g1_policy()->print_detailed_heap_transition();
3706   } else {
3707     if (evacuation_failed()) {
3708       gclog_or_tty->print("--");
3709     }
3710     g1_policy()->print_heap_transition();
3711     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3712   }
3713   gclog_or_tty->flush();
3714 }
3715 
3716 void G1CollectedHeap::wait_for_root_region_scanning() {
3717   double scan_wait_start = os::elapsedTime();
3718   // We have to wait until the CM threads finish scanning the
3719   // root regions as it's the only way to ensure that all the
3720   // objects on them have been correctly scanned before we start
3721   // moving them during the GC.
3722   bool waited = _cm->root_regions()->wait_until_scan_finished();
3723   double wait_time_ms = 0.0;
3724   if (waited) {
3725     double scan_wait_end = os::elapsedTime();
3726     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3727   }
3728   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3729 }
3730 
3731 bool
3732 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3733   assert_at_safepoint(true /* should_be_vm_thread */);
3734   guarantee(!is_gc_active(), "collection is not reentrant");
3735 
3736   if (GC_locker::check_active_before_gc()) {
3737     return false;
3738   }
3739 
3740   _gc_timer_stw->register_gc_start();
3741 
3742   GCIdMark gc_id_mark;
3743   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3744 
3745   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3746   ResourceMark rm;
3747 
3748   wait_for_root_region_scanning();
3749 
3750   G1Log::update_level();
3751   print_heap_before_gc();
3752   trace_heap_before_gc(_gc_tracer_stw);
3753 
3754   verify_region_sets_optional();
3755   verify_dirty_young_regions();
3756 
3757   // This call will decide whether this pause is an initial-mark
3758   // pause. If it is, during_initial_mark_pause() will return true
3759   // for the duration of this pause.
3760   g1_policy()->decide_on_conc_mark_initiation();
3761 
3762   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3763   assert(!collector_state()->during_initial_mark_pause() ||
3764           collector_state()->gcs_are_young(), "sanity");
3765 
3766   // We also do not allow mixed GCs during marking.
3767   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3768 
3769   // Record whether this pause is an initial mark. When the current
3770   // thread has completed its logging output and it's safe to signal
3771   // the CM thread, the flag's value in the policy has been reset.
3772   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3773 
3774   // Inner scope for scope based logging, timers, and stats collection
3775   {
3776     EvacuationInfo evacuation_info;
3777 
3778     if (collector_state()->during_initial_mark_pause()) {
3779       // We are about to start a marking cycle, so we increment the
3780       // full collection counter.
3781       increment_old_marking_cycles_started();
3782       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3783     }
3784 
3785     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3786 
3787     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3788 
3789     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3790                                                                   workers()->active_workers(),
3791                                                                   Threads::number_of_non_daemon_threads());
3792     workers()->set_active_workers(active_workers);
3793 
3794     double pause_start_sec = os::elapsedTime();
3795     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3796     log_gc_header();
3797 
3798     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3799     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3800 
3801     // If the secondary_free_list is not empty, append it to the
3802     // free_list. No need to wait for the cleanup operation to finish;
3803     // the region allocation code will check the secondary_free_list
3804     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3805     // set, skip this step so that the region allocation code has to
3806     // get entries from the secondary_free_list.
3807     if (!G1StressConcRegionFreeing) {
3808       append_secondary_free_list_if_not_empty_with_lock();
3809     }
3810 
3811     assert(check_young_list_well_formed(), "young list should be well formed");
3812 
3813     // Don't dynamically change the number of GC threads this early.  A value of
3814     // 0 is used to indicate serial work.  When parallel work is done,
3815     // it will be set.
3816 
3817     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3818       IsGCActiveMark x;
3819 
3820       gc_prologue(false);
3821       increment_total_collections(false /* full gc */);
3822       increment_gc_time_stamp();
3823 
3824       verify_before_gc();
3825 
3826       check_bitmaps("GC Start");
3827 
3828 #if defined(COMPILER2) || INCLUDE_JVMCI
3829       DerivedPointerTable::clear();
3830 #endif
3831 
3832       // Please see comment in g1CollectedHeap.hpp and
3833       // G1CollectedHeap::ref_processing_init() to see how
3834       // reference processing currently works in G1.
3835 
3836       // Enable discovery in the STW reference processor
3837       ref_processor_stw()->enable_discovery();
3838 
3839       {
3840         // We want to temporarily turn off discovery by the
3841         // CM ref processor, if necessary, and turn it back on
3842         // on again later if we do. Using a scoped
3843         // NoRefDiscovery object will do this.
3844         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3845 
3846         // Forget the current alloc region (we might even choose it to be part
3847         // of the collection set!).
3848         _allocator->release_mutator_alloc_region();
3849 
3850         // We should call this after we retire the mutator alloc
3851         // region(s) so that all the ALLOC / RETIRE events are generated
3852         // before the start GC event.
3853         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3854 
3855         // This timing is only used by the ergonomics to handle our pause target.
3856         // It is unclear why this should not include the full pause. We will
3857         // investigate this in CR 7178365.
3858         //
3859         // Preserving the old comment here if that helps the investigation:
3860         //
3861         // The elapsed time induced by the start time below deliberately elides
3862         // the possible verification above.
3863         double sample_start_time_sec = os::elapsedTime();
3864 
3865         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3866 
3867         if (collector_state()->during_initial_mark_pause()) {
3868           concurrent_mark()->checkpointRootsInitialPre();
3869         }
3870 
3871         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3872         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3873 
3874         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3875 
3876         register_humongous_regions_with_cset();
3877 
3878         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3879 
3880         _cm->note_start_of_gc();
3881         // We call this after finalize_cset() to
3882         // ensure that the CSet has been finalized.
3883         _cm->verify_no_cset_oops();
3884 
3885         if (_hr_printer.is_active()) {
3886           HeapRegion* hr = g1_policy()->collection_set();
3887           while (hr != NULL) {
3888             _hr_printer.cset(hr);
3889             hr = hr->next_in_collection_set();
3890           }
3891         }
3892 
3893 #ifdef ASSERT
3894         VerifyCSetClosure cl;
3895         collection_set_iterate(&cl);
3896 #endif // ASSERT
3897 
3898         // Initialize the GC alloc regions.
3899         _allocator->init_gc_alloc_regions(evacuation_info);
3900 
3901         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3902         pre_evacuate_collection_set();
3903 
3904         // Actually do the work...
3905         evacuate_collection_set(evacuation_info, &per_thread_states);
3906 
3907         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3908 
3909         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3910         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3911 
3912         eagerly_reclaim_humongous_regions();
3913 
3914         g1_policy()->clear_collection_set();
3915 
3916         // Start a new incremental collection set for the next pause.
3917         g1_policy()->start_incremental_cset_building();
3918 
3919         clear_cset_fast_test();
3920 
3921         _young_list->reset_sampled_info();
3922 
3923         // Don't check the whole heap at this point as the
3924         // GC alloc regions from this pause have been tagged
3925         // as survivors and moved on to the survivor list.
3926         // Survivor regions will fail the !is_young() check.
3927         assert(check_young_list_empty(false /* check_heap */),
3928           "young list should be empty");
3929 
3930         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3931                                              _young_list->first_survivor_region(),
3932                                              _young_list->last_survivor_region());
3933 
3934         _young_list->reset_auxilary_lists();
3935 
3936         if (evacuation_failed()) {
3937           set_used(recalculate_used());
3938           if (_archive_allocator != NULL) {
3939             _archive_allocator->clear_used();
3940           }
3941           for (uint i = 0; i < ParallelGCThreads; i++) {
3942             if (_evacuation_failed_info_array[i].has_failed()) {
3943               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3944             }
3945           }
3946         } else {
3947           // The "used" of the the collection set have already been subtracted
3948           // when they were freed.  Add in the bytes evacuated.
3949           increase_used(g1_policy()->bytes_copied_during_gc());
3950         }
3951 
3952         if (collector_state()->during_initial_mark_pause()) {
3953           // We have to do this before we notify the CM threads that
3954           // they can start working to make sure that all the
3955           // appropriate initialization is done on the CM object.
3956           concurrent_mark()->checkpointRootsInitialPost();
3957           collector_state()->set_mark_in_progress(true);
3958           // Note that we don't actually trigger the CM thread at
3959           // this point. We do that later when we're sure that
3960           // the current thread has completed its logging output.
3961         }
3962 
3963         allocate_dummy_regions();
3964 
3965         _allocator->init_mutator_alloc_region();
3966 
3967         {
3968           size_t expand_bytes = g1_policy()->expansion_amount();
3969           if (expand_bytes > 0) {
3970             size_t bytes_before = capacity();
3971             // No need for an ergo verbose message here,
3972             // expansion_amount() does this when it returns a value > 0.
3973             double expand_ms;
3974             if (!expand(expand_bytes, &expand_ms)) {
3975               // We failed to expand the heap. Cannot do anything about it.
3976             }
3977             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3978           }
3979         }
3980 
3981         // We redo the verification but now wrt to the new CSet which
3982         // has just got initialized after the previous CSet was freed.
3983         _cm->verify_no_cset_oops();
3984         _cm->note_end_of_gc();
3985 
3986         // This timing is only used by the ergonomics to handle our pause target.
3987         // It is unclear why this should not include the full pause. We will
3988         // investigate this in CR 7178365.
3989         double sample_end_time_sec = os::elapsedTime();
3990         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3991         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3992         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3993 
3994         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3995         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3996 
3997         MemoryService::track_memory_usage();
3998 
3999         // In prepare_for_verify() below we'll need to scan the deferred
4000         // update buffers to bring the RSets up-to-date if
4001         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4002         // the update buffers we'll probably need to scan cards on the
4003         // regions we just allocated to (i.e., the GC alloc
4004         // regions). However, during the last GC we called
4005         // set_saved_mark() on all the GC alloc regions, so card
4006         // scanning might skip the [saved_mark_word()...top()] area of
4007         // those regions (i.e., the area we allocated objects into
4008         // during the last GC). But it shouldn't. Given that
4009         // saved_mark_word() is conditional on whether the GC time stamp
4010         // on the region is current or not, by incrementing the GC time
4011         // stamp here we invalidate all the GC time stamps on all the
4012         // regions and saved_mark_word() will simply return top() for
4013         // all the regions. This is a nicer way of ensuring this rather
4014         // than iterating over the regions and fixing them. In fact, the
4015         // GC time stamp increment here also ensures that
4016         // saved_mark_word() will return top() between pauses, i.e.,
4017         // during concurrent refinement. So we don't need the
4018         // is_gc_active() check to decided which top to use when
4019         // scanning cards (see CR 7039627).
4020         increment_gc_time_stamp();
4021 
4022         verify_after_gc();
4023         check_bitmaps("GC End");
4024 
4025         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4026         ref_processor_stw()->verify_no_references_recorded();
4027 
4028         // CM reference discovery will be re-enabled if necessary.
4029       }
4030 
4031       // We should do this after we potentially expand the heap so
4032       // that all the COMMIT events are generated before the end GC
4033       // event, and after we retire the GC alloc regions so that all
4034       // RETIRE events are generated before the end GC event.
4035       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4036 
4037 #ifdef TRACESPINNING
4038       ParallelTaskTerminator::print_termination_counts();
4039 #endif
4040 
4041       gc_epilogue(false);
4042     }
4043 
4044     // Print the remainder of the GC log output.
4045     log_gc_footer(os::elapsedTime() - pause_start_sec);
4046 
4047     // It is not yet to safe to tell the concurrent mark to
4048     // start as we have some optional output below. We don't want the
4049     // output from the concurrent mark thread interfering with this
4050     // logging output either.
4051 
4052     _hrm.verify_optional();
4053     verify_region_sets_optional();
4054 
4055     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4056     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4057 
4058     print_heap_after_gc();
4059     trace_heap_after_gc(_gc_tracer_stw);
4060 
4061     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4062     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4063     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4064     // before any GC notifications are raised.
4065     g1mm()->update_sizes();
4066 
4067     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4068     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4069     _gc_timer_stw->register_gc_end();
4070     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4071   }
4072   // It should now be safe to tell the concurrent mark thread to start
4073   // without its logging output interfering with the logging output
4074   // that came from the pause.
4075 
4076   if (should_start_conc_mark) {
4077     // CAUTION: after the doConcurrentMark() call below,
4078     // the concurrent marking thread(s) could be running
4079     // concurrently with us. Make sure that anything after
4080     // this point does not assume that we are the only GC thread
4081     // running. Note: of course, the actual marking work will
4082     // not start until the safepoint itself is released in
4083     // SuspendibleThreadSet::desynchronize().
4084     doConcurrentMark();
4085   }
4086 
4087   return true;
4088 }
4089 
4090 void G1CollectedHeap::remove_self_forwarding_pointers() {
4091   double remove_self_forwards_start = os::elapsedTime();
4092 
4093   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4094   workers()->run_task(&rsfp_task);
4095 
4096   // Now restore saved marks, if any.
4097   for (uint i = 0; i < ParallelGCThreads; i++) {
4098     OopAndMarkOopStack& cur = _preserved_objs[i];
4099     while (!cur.is_empty()) {
4100       OopAndMarkOop elem = cur.pop();
4101       elem.set_mark();
4102     }
4103     cur.clear(true);
4104   }
4105 
4106   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4107 }
4108 
4109 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
4110   if (!_evacuation_failed) {
4111     _evacuation_failed = true;
4112   }
4113 
4114   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
4115 
4116   // We want to call the "for_promotion_failure" version only in the
4117   // case of a promotion failure.
4118   if (m->must_be_preserved_for_promotion_failure(obj)) {
4119     OopAndMarkOop elem(obj, m);
4120     _preserved_objs[worker_id].push(elem);
4121   }
4122 }
4123 
4124 class G1ParEvacuateFollowersClosure : public VoidClosure {
4125 private:
4126   double _start_term;
4127   double _term_time;
4128   size_t _term_attempts;
4129 
4130   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4131   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4132 protected:
4133   G1CollectedHeap*              _g1h;
4134   G1ParScanThreadState*         _par_scan_state;
4135   RefToScanQueueSet*            _queues;
4136   ParallelTaskTerminator*       _terminator;
4137 
4138   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4139   RefToScanQueueSet*      queues()         { return _queues; }
4140   ParallelTaskTerminator* terminator()     { return _terminator; }
4141 
4142 public:
4143   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4144                                 G1ParScanThreadState* par_scan_state,
4145                                 RefToScanQueueSet* queues,
4146                                 ParallelTaskTerminator* terminator)
4147     : _g1h(g1h), _par_scan_state(par_scan_state),
4148       _queues(queues), _terminator(terminator),
4149       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4150 
4151   void do_void();
4152 
4153   double term_time() const { return _term_time; }
4154   size_t term_attempts() const { return _term_attempts; }
4155 
4156 private:
4157   inline bool offer_termination();
4158 };
4159 
4160 bool G1ParEvacuateFollowersClosure::offer_termination() {
4161   G1ParScanThreadState* const pss = par_scan_state();
4162   start_term_time();
4163   const bool res = terminator()->offer_termination();
4164   end_term_time();
4165   return res;
4166 }
4167 
4168 void G1ParEvacuateFollowersClosure::do_void() {
4169   G1ParScanThreadState* const pss = par_scan_state();
4170   pss->trim_queue();
4171   do {
4172     pss->steal_and_trim_queue(queues());
4173   } while (!offer_termination());
4174 }
4175 
4176 class G1ParTask : public AbstractGangTask {
4177 protected:
4178   G1CollectedHeap*         _g1h;
4179   G1ParScanThreadStateSet* _pss;
4180   RefToScanQueueSet*       _queues;
4181   G1RootProcessor*         _root_processor;
4182   ParallelTaskTerminator   _terminator;
4183   uint                     _n_workers;
4184 
4185 public:
4186   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4187     : AbstractGangTask("G1 collection"),
4188       _g1h(g1h),
4189       _pss(per_thread_states),
4190       _queues(task_queues),
4191       _root_processor(root_processor),
4192       _terminator(n_workers, _queues),
4193       _n_workers(n_workers)
4194   {}
4195 
4196   void work(uint worker_id) {
4197     if (worker_id >= _n_workers) return;  // no work needed this round
4198 
4199     double start_sec = os::elapsedTime();
4200     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4201 
4202     {
4203       ResourceMark rm;
4204       HandleMark   hm;
4205 
4206       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4207 
4208       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4209       pss->set_ref_processor(rp);
4210 
4211       double start_strong_roots_sec = os::elapsedTime();
4212 
4213       _root_processor->evacuate_roots(pss->closures(), worker_id);
4214 
4215       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4216 
4217       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4218       // treating the nmethods visited to act as roots for concurrent marking.
4219       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4220       // objects copied by the current evacuation.
4221       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4222                                                                              pss->closures()->weak_codeblobs(),
4223                                                                              worker_id);
4224 
4225       _pss->add_cards_scanned(worker_id, cards_scanned);
4226 
4227       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4228 
4229       double term_sec = 0.0;
4230       size_t evac_term_attempts = 0;
4231       {
4232         double start = os::elapsedTime();
4233         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4234         evac.do_void();
4235 
4236         evac_term_attempts = evac.term_attempts();
4237         term_sec = evac.term_time();
4238         double elapsed_sec = os::elapsedTime() - start;
4239         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4240         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4241         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4242       }
4243 
4244       assert(pss->queue_is_empty(), "should be empty");
4245 
4246       if (PrintTerminationStats) {
4247         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4248         size_t lab_waste;
4249         size_t lab_undo_waste;
4250         pss->waste(lab_waste, lab_undo_waste);
4251         _g1h->print_termination_stats(gclog_or_tty,
4252                                       worker_id,
4253                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4254                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4255                                       term_sec * 1000.0,                          /* evac term time */
4256                                       evac_term_attempts,                         /* evac term attempts */
4257                                       lab_waste,                                  /* alloc buffer waste */
4258                                       lab_undo_waste                              /* undo waste */
4259                                       );
4260       }
4261 
4262       // Close the inner scope so that the ResourceMark and HandleMark
4263       // destructors are executed here and are included as part of the
4264       // "GC Worker Time".
4265     }
4266     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4267   }
4268 };
4269 
4270 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4271   st->print_raw_cr("GC Termination Stats");
4272   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4273   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4274   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4275 }
4276 
4277 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4278                                               uint worker_id,
4279                                               double elapsed_ms,
4280                                               double strong_roots_ms,
4281                                               double term_ms,
4282                                               size_t term_attempts,
4283                                               size_t alloc_buffer_waste,
4284                                               size_t undo_waste) const {
4285   st->print_cr("%3d %9.2f %9.2f %6.2f "
4286                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4287                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4288                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4289                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4290                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4291                alloc_buffer_waste * HeapWordSize / K,
4292                undo_waste * HeapWordSize / K);
4293 }
4294 
4295 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4296 private:
4297   BoolObjectClosure* _is_alive;
4298   int _initial_string_table_size;
4299   int _initial_symbol_table_size;
4300 
4301   bool  _process_strings;
4302   int _strings_processed;
4303   int _strings_removed;
4304 
4305   bool  _process_symbols;
4306   int _symbols_processed;
4307   int _symbols_removed;
4308 
4309 public:
4310   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4311     AbstractGangTask("String/Symbol Unlinking"),
4312     _is_alive(is_alive),
4313     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4314     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4315 
4316     _initial_string_table_size = StringTable::the_table()->table_size();
4317     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4318     if (process_strings) {
4319       StringTable::clear_parallel_claimed_index();
4320     }
4321     if (process_symbols) {
4322       SymbolTable::clear_parallel_claimed_index();
4323     }
4324   }
4325 
4326   ~G1StringSymbolTableUnlinkTask() {
4327     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4328               "claim value %d after unlink less than initial string table size %d",
4329               StringTable::parallel_claimed_index(), _initial_string_table_size);
4330     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4331               "claim value %d after unlink less than initial symbol table size %d",
4332               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4333 
4334     if (G1TraceStringSymbolTableScrubbing) {
4335       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4336                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4337                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4338                              strings_processed(), strings_removed(),
4339                              symbols_processed(), symbols_removed());
4340     }
4341   }
4342 
4343   void work(uint worker_id) {
4344     int strings_processed = 0;
4345     int strings_removed = 0;
4346     int symbols_processed = 0;
4347     int symbols_removed = 0;
4348     if (_process_strings) {
4349       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4350       Atomic::add(strings_processed, &_strings_processed);
4351       Atomic::add(strings_removed, &_strings_removed);
4352     }
4353     if (_process_symbols) {
4354       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4355       Atomic::add(symbols_processed, &_symbols_processed);
4356       Atomic::add(symbols_removed, &_symbols_removed);
4357     }
4358   }
4359 
4360   size_t strings_processed() const { return (size_t)_strings_processed; }
4361   size_t strings_removed()   const { return (size_t)_strings_removed; }
4362 
4363   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4364   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4365 };
4366 
4367 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4368 private:
4369   static Monitor* _lock;
4370 
4371   BoolObjectClosure* const _is_alive;
4372   const bool               _unloading_occurred;
4373   const uint               _num_workers;
4374 
4375   // Variables used to claim nmethods.
4376   nmethod* _first_nmethod;
4377   volatile nmethod* _claimed_nmethod;
4378 
4379   // The list of nmethods that need to be processed by the second pass.
4380   volatile nmethod* _postponed_list;
4381   volatile uint     _num_entered_barrier;
4382 
4383  public:
4384   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4385       _is_alive(is_alive),
4386       _unloading_occurred(unloading_occurred),
4387       _num_workers(num_workers),
4388       _first_nmethod(NULL),
4389       _claimed_nmethod(NULL),
4390       _postponed_list(NULL),
4391       _num_entered_barrier(0)
4392   {
4393     nmethod::increase_unloading_clock();
4394     // Get first alive nmethod
4395     NMethodIterator iter = NMethodIterator();
4396     if(iter.next_alive()) {
4397       _first_nmethod = iter.method();
4398     }
4399     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4400   }
4401 
4402   ~G1CodeCacheUnloadingTask() {
4403     CodeCache::verify_clean_inline_caches();
4404 
4405     CodeCache::set_needs_cache_clean(false);
4406     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4407 
4408     CodeCache::verify_icholder_relocations();
4409   }
4410 
4411  private:
4412   void add_to_postponed_list(nmethod* nm) {
4413       nmethod* old;
4414       do {
4415         old = (nmethod*)_postponed_list;
4416         nm->set_unloading_next(old);
4417       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4418   }
4419 
4420   void clean_nmethod(nmethod* nm) {
4421     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4422 
4423     if (postponed) {
4424       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4425       add_to_postponed_list(nm);
4426     }
4427 
4428     // Mark that this thread has been cleaned/unloaded.
4429     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4430     nm->set_unloading_clock(nmethod::global_unloading_clock());
4431   }
4432 
4433   void clean_nmethod_postponed(nmethod* nm) {
4434     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4435   }
4436 
4437   static const int MaxClaimNmethods = 16;
4438 
4439   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4440     nmethod* first;
4441     NMethodIterator last;
4442 
4443     do {
4444       *num_claimed_nmethods = 0;
4445 
4446       first = (nmethod*)_claimed_nmethod;
4447       last = NMethodIterator(first);
4448 
4449       if (first != NULL) {
4450 
4451         for (int i = 0; i < MaxClaimNmethods; i++) {
4452           if (!last.next_alive()) {
4453             break;
4454           }
4455           claimed_nmethods[i] = last.method();
4456           (*num_claimed_nmethods)++;
4457         }
4458       }
4459 
4460     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4461   }
4462 
4463   nmethod* claim_postponed_nmethod() {
4464     nmethod* claim;
4465     nmethod* next;
4466 
4467     do {
4468       claim = (nmethod*)_postponed_list;
4469       if (claim == NULL) {
4470         return NULL;
4471       }
4472 
4473       next = claim->unloading_next();
4474 
4475     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4476 
4477     return claim;
4478   }
4479 
4480  public:
4481   // Mark that we're done with the first pass of nmethod cleaning.
4482   void barrier_mark(uint worker_id) {
4483     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4484     _num_entered_barrier++;
4485     if (_num_entered_barrier == _num_workers) {
4486       ml.notify_all();
4487     }
4488   }
4489 
4490   // See if we have to wait for the other workers to
4491   // finish their first-pass nmethod cleaning work.
4492   void barrier_wait(uint worker_id) {
4493     if (_num_entered_barrier < _num_workers) {
4494       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4495       while (_num_entered_barrier < _num_workers) {
4496           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4497       }
4498     }
4499   }
4500 
4501   // Cleaning and unloading of nmethods. Some work has to be postponed
4502   // to the second pass, when we know which nmethods survive.
4503   void work_first_pass(uint worker_id) {
4504     // The first nmethods is claimed by the first worker.
4505     if (worker_id == 0 && _first_nmethod != NULL) {
4506       clean_nmethod(_first_nmethod);
4507       _first_nmethod = NULL;
4508     }
4509 
4510     int num_claimed_nmethods;
4511     nmethod* claimed_nmethods[MaxClaimNmethods];
4512 
4513     while (true) {
4514       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4515 
4516       if (num_claimed_nmethods == 0) {
4517         break;
4518       }
4519 
4520       for (int i = 0; i < num_claimed_nmethods; i++) {
4521         clean_nmethod(claimed_nmethods[i]);
4522       }
4523     }
4524   }
4525 
4526   void work_second_pass(uint worker_id) {
4527     nmethod* nm;
4528     // Take care of postponed nmethods.
4529     while ((nm = claim_postponed_nmethod()) != NULL) {
4530       clean_nmethod_postponed(nm);
4531     }
4532   }
4533 };
4534 
4535 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4536 
4537 class G1KlassCleaningTask : public StackObj {
4538   BoolObjectClosure*                      _is_alive;
4539   volatile jint                           _clean_klass_tree_claimed;
4540   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4541 
4542  public:
4543   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4544       _is_alive(is_alive),
4545       _clean_klass_tree_claimed(0),
4546       _klass_iterator() {
4547   }
4548 
4549  private:
4550   bool claim_clean_klass_tree_task() {
4551     if (_clean_klass_tree_claimed) {
4552       return false;
4553     }
4554 
4555     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4556   }
4557 
4558   InstanceKlass* claim_next_klass() {
4559     Klass* klass;
4560     do {
4561       klass =_klass_iterator.next_klass();
4562     } while (klass != NULL && !klass->is_instance_klass());
4563 
4564     // this can be null so don't call InstanceKlass::cast
4565     return static_cast<InstanceKlass*>(klass);
4566   }
4567 
4568 public:
4569 
4570   void clean_klass(InstanceKlass* ik) {
4571     ik->clean_weak_instanceklass_links(_is_alive);
4572   }
4573 
4574   void work() {
4575     ResourceMark rm;
4576 
4577     // One worker will clean the subklass/sibling klass tree.
4578     if (claim_clean_klass_tree_task()) {
4579       Klass::clean_subklass_tree(_is_alive);
4580     }
4581 
4582     // All workers will help cleaning the classes,
4583     InstanceKlass* klass;
4584     while ((klass = claim_next_klass()) != NULL) {
4585       clean_klass(klass);
4586     }
4587   }
4588 };
4589 
4590 // To minimize the remark pause times, the tasks below are done in parallel.
4591 class G1ParallelCleaningTask : public AbstractGangTask {
4592 private:
4593   G1StringSymbolTableUnlinkTask _string_symbol_task;
4594   G1CodeCacheUnloadingTask      _code_cache_task;
4595   G1KlassCleaningTask           _klass_cleaning_task;
4596 
4597 public:
4598   // The constructor is run in the VMThread.
4599   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4600       AbstractGangTask("Parallel Cleaning"),
4601       _string_symbol_task(is_alive, process_strings, process_symbols),
4602       _code_cache_task(num_workers, is_alive, unloading_occurred),
4603       _klass_cleaning_task(is_alive) {
4604   }
4605 
4606   // The parallel work done by all worker threads.
4607   void work(uint worker_id) {
4608     // Do first pass of code cache cleaning.
4609     _code_cache_task.work_first_pass(worker_id);
4610 
4611     // Let the threads mark that the first pass is done.
4612     _code_cache_task.barrier_mark(worker_id);
4613 
4614     // Clean the Strings and Symbols.
4615     _string_symbol_task.work(worker_id);
4616 
4617     // Wait for all workers to finish the first code cache cleaning pass.
4618     _code_cache_task.barrier_wait(worker_id);
4619 
4620     // Do the second code cache cleaning work, which realize on
4621     // the liveness information gathered during the first pass.
4622     _code_cache_task.work_second_pass(worker_id);
4623 
4624     // Clean all klasses that were not unloaded.
4625     _klass_cleaning_task.work();
4626   }
4627 };
4628 
4629 
4630 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4631                                         bool process_strings,
4632                                         bool process_symbols,
4633                                         bool class_unloading_occurred) {
4634   uint n_workers = workers()->active_workers();
4635 
4636   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4637                                         n_workers, class_unloading_occurred);
4638   workers()->run_task(&g1_unlink_task);
4639 }
4640 
4641 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4642                                                      bool process_strings, bool process_symbols) {
4643   {
4644     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4645     workers()->run_task(&g1_unlink_task);
4646   }
4647 
4648   if (G1StringDedup::is_enabled()) {
4649     G1StringDedup::unlink(is_alive);
4650   }
4651 }
4652 
4653 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4654  private:
4655   DirtyCardQueueSet* _queue;
4656  public:
4657   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4658 
4659   virtual void work(uint worker_id) {
4660     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4661     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4662 
4663     RedirtyLoggedCardTableEntryClosure cl;
4664     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4665 
4666     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4667   }
4668 };
4669 
4670 void G1CollectedHeap::redirty_logged_cards() {
4671   double redirty_logged_cards_start = os::elapsedTime();
4672 
4673   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4674   dirty_card_queue_set().reset_for_par_iteration();
4675   workers()->run_task(&redirty_task);
4676 
4677   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4678   dcq.merge_bufferlists(&dirty_card_queue_set());
4679   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4680 
4681   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4682 }
4683 
4684 // Weak Reference Processing support
4685 
4686 // An always "is_alive" closure that is used to preserve referents.
4687 // If the object is non-null then it's alive.  Used in the preservation
4688 // of referent objects that are pointed to by reference objects
4689 // discovered by the CM ref processor.
4690 class G1AlwaysAliveClosure: public BoolObjectClosure {
4691   G1CollectedHeap* _g1;
4692 public:
4693   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4694   bool do_object_b(oop p) {
4695     if (p != NULL) {
4696       return true;
4697     }
4698     return false;
4699   }
4700 };
4701 
4702 bool G1STWIsAliveClosure::do_object_b(oop p) {
4703   // An object is reachable if it is outside the collection set,
4704   // or is inside and copied.
4705   return !_g1->is_in_cset(p) || p->is_forwarded();
4706 }
4707 
4708 // Non Copying Keep Alive closure
4709 class G1KeepAliveClosure: public OopClosure {
4710   G1CollectedHeap* _g1;
4711 public:
4712   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4713   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4714   void do_oop(oop* p) {
4715     oop obj = *p;
4716     assert(obj != NULL, "the caller should have filtered out NULL values");
4717 
4718     const InCSetState cset_state = _g1->in_cset_state(obj);
4719     if (!cset_state.is_in_cset_or_humongous()) {
4720       return;
4721     }
4722     if (cset_state.is_in_cset()) {
4723       assert( obj->is_forwarded(), "invariant" );
4724       *p = obj->forwardee();
4725     } else {
4726       assert(!obj->is_forwarded(), "invariant" );
4727       assert(cset_state.is_humongous(),
4728              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4729       _g1->set_humongous_is_live(obj);
4730     }
4731   }
4732 };
4733 
4734 // Copying Keep Alive closure - can be called from both
4735 // serial and parallel code as long as different worker
4736 // threads utilize different G1ParScanThreadState instances
4737 // and different queues.
4738 
4739 class G1CopyingKeepAliveClosure: public OopClosure {
4740   G1CollectedHeap*         _g1h;
4741   OopClosure*              _copy_non_heap_obj_cl;
4742   G1ParScanThreadState*    _par_scan_state;
4743 
4744 public:
4745   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4746                             OopClosure* non_heap_obj_cl,
4747                             G1ParScanThreadState* pss):
4748     _g1h(g1h),
4749     _copy_non_heap_obj_cl(non_heap_obj_cl),
4750     _par_scan_state(pss)
4751   {}
4752 
4753   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4754   virtual void do_oop(      oop* p) { do_oop_work(p); }
4755 
4756   template <class T> void do_oop_work(T* p) {
4757     oop obj = oopDesc::load_decode_heap_oop(p);
4758 
4759     if (_g1h->is_in_cset_or_humongous(obj)) {
4760       // If the referent object has been forwarded (either copied
4761       // to a new location or to itself in the event of an
4762       // evacuation failure) then we need to update the reference
4763       // field and, if both reference and referent are in the G1
4764       // heap, update the RSet for the referent.
4765       //
4766       // If the referent has not been forwarded then we have to keep
4767       // it alive by policy. Therefore we have copy the referent.
4768       //
4769       // If the reference field is in the G1 heap then we can push
4770       // on the PSS queue. When the queue is drained (after each
4771       // phase of reference processing) the object and it's followers
4772       // will be copied, the reference field set to point to the
4773       // new location, and the RSet updated. Otherwise we need to
4774       // use the the non-heap or metadata closures directly to copy
4775       // the referent object and update the pointer, while avoiding
4776       // updating the RSet.
4777 
4778       if (_g1h->is_in_g1_reserved(p)) {
4779         _par_scan_state->push_on_queue(p);
4780       } else {
4781         assert(!Metaspace::contains((const void*)p),
4782                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4783         _copy_non_heap_obj_cl->do_oop(p);
4784       }
4785     }
4786   }
4787 };
4788 
4789 // Serial drain queue closure. Called as the 'complete_gc'
4790 // closure for each discovered list in some of the
4791 // reference processing phases.
4792 
4793 class G1STWDrainQueueClosure: public VoidClosure {
4794 protected:
4795   G1CollectedHeap* _g1h;
4796   G1ParScanThreadState* _par_scan_state;
4797 
4798   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4799 
4800 public:
4801   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4802     _g1h(g1h),
4803     _par_scan_state(pss)
4804   { }
4805 
4806   void do_void() {
4807     G1ParScanThreadState* const pss = par_scan_state();
4808     pss->trim_queue();
4809   }
4810 };
4811 
4812 // Parallel Reference Processing closures
4813 
4814 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4815 // processing during G1 evacuation pauses.
4816 
4817 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4818 private:
4819   G1CollectedHeap*          _g1h;
4820   G1ParScanThreadStateSet*  _pss;
4821   RefToScanQueueSet*        _queues;
4822   WorkGang*                 _workers;
4823   uint                      _active_workers;
4824 
4825 public:
4826   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4827                            G1ParScanThreadStateSet* per_thread_states,
4828                            WorkGang* workers,
4829                            RefToScanQueueSet *task_queues,
4830                            uint n_workers) :
4831     _g1h(g1h),
4832     _pss(per_thread_states),
4833     _queues(task_queues),
4834     _workers(workers),
4835     _active_workers(n_workers)
4836   {
4837     assert(n_workers > 0, "shouldn't call this otherwise");
4838   }
4839 
4840   // Executes the given task using concurrent marking worker threads.
4841   virtual void execute(ProcessTask& task);
4842   virtual void execute(EnqueueTask& task);
4843 };
4844 
4845 // Gang task for possibly parallel reference processing
4846 
4847 class G1STWRefProcTaskProxy: public AbstractGangTask {
4848   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4849   ProcessTask&     _proc_task;
4850   G1CollectedHeap* _g1h;
4851   G1ParScanThreadStateSet* _pss;
4852   RefToScanQueueSet* _task_queues;
4853   ParallelTaskTerminator* _terminator;
4854 
4855 public:
4856   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4857                         G1CollectedHeap* g1h,
4858                         G1ParScanThreadStateSet* per_thread_states,
4859                         RefToScanQueueSet *task_queues,
4860                         ParallelTaskTerminator* terminator) :
4861     AbstractGangTask("Process reference objects in parallel"),
4862     _proc_task(proc_task),
4863     _g1h(g1h),
4864     _pss(per_thread_states),
4865     _task_queues(task_queues),
4866     _terminator(terminator)
4867   {}
4868 
4869   virtual void work(uint worker_id) {
4870     // The reference processing task executed by a single worker.
4871     ResourceMark rm;
4872     HandleMark   hm;
4873 
4874     G1STWIsAliveClosure is_alive(_g1h);
4875 
4876     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4877     pss->set_ref_processor(NULL);
4878 
4879     // Keep alive closure.
4880     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4881 
4882     // Complete GC closure
4883     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4884 
4885     // Call the reference processing task's work routine.
4886     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4887 
4888     // Note we cannot assert that the refs array is empty here as not all
4889     // of the processing tasks (specifically phase2 - pp2_work) execute
4890     // the complete_gc closure (which ordinarily would drain the queue) so
4891     // the queue may not be empty.
4892   }
4893 };
4894 
4895 // Driver routine for parallel reference processing.
4896 // Creates an instance of the ref processing gang
4897 // task and has the worker threads execute it.
4898 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4899   assert(_workers != NULL, "Need parallel worker threads.");
4900 
4901   ParallelTaskTerminator terminator(_active_workers, _queues);
4902   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4903 
4904   _workers->run_task(&proc_task_proxy);
4905 }
4906 
4907 // Gang task for parallel reference enqueueing.
4908 
4909 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4910   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4911   EnqueueTask& _enq_task;
4912 
4913 public:
4914   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4915     AbstractGangTask("Enqueue reference objects in parallel"),
4916     _enq_task(enq_task)
4917   { }
4918 
4919   virtual void work(uint worker_id) {
4920     _enq_task.work(worker_id);
4921   }
4922 };
4923 
4924 // Driver routine for parallel reference enqueueing.
4925 // Creates an instance of the ref enqueueing gang
4926 // task and has the worker threads execute it.
4927 
4928 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4929   assert(_workers != NULL, "Need parallel worker threads.");
4930 
4931   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4932 
4933   _workers->run_task(&enq_task_proxy);
4934 }
4935 
4936 // End of weak reference support closures
4937 
4938 // Abstract task used to preserve (i.e. copy) any referent objects
4939 // that are in the collection set and are pointed to by reference
4940 // objects discovered by the CM ref processor.
4941 
4942 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4943 protected:
4944   G1CollectedHeap*         _g1h;
4945   G1ParScanThreadStateSet* _pss;
4946   RefToScanQueueSet*       _queues;
4947   ParallelTaskTerminator   _terminator;
4948   uint                     _n_workers;
4949 
4950 public:
4951   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4952     AbstractGangTask("ParPreserveCMReferents"),
4953     _g1h(g1h),
4954     _pss(per_thread_states),
4955     _queues(task_queues),
4956     _terminator(workers, _queues),
4957     _n_workers(workers)
4958   { }
4959 
4960   void work(uint worker_id) {
4961     ResourceMark rm;
4962     HandleMark   hm;
4963 
4964     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4965     pss->set_ref_processor(NULL);
4966     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4967 
4968     // Is alive closure
4969     G1AlwaysAliveClosure always_alive(_g1h);
4970 
4971     // Copying keep alive closure. Applied to referent objects that need
4972     // to be copied.
4973     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4974 
4975     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4976 
4977     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4978     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4979 
4980     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4981     // So this must be true - but assert just in case someone decides to
4982     // change the worker ids.
4983     assert(worker_id < limit, "sanity");
4984     assert(!rp->discovery_is_atomic(), "check this code");
4985 
4986     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4987     for (uint idx = worker_id; idx < limit; idx += stride) {
4988       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4989 
4990       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4991       while (iter.has_next()) {
4992         // Since discovery is not atomic for the CM ref processor, we
4993         // can see some null referent objects.
4994         iter.load_ptrs(DEBUG_ONLY(true));
4995         oop ref = iter.obj();
4996 
4997         // This will filter nulls.
4998         if (iter.is_referent_alive()) {
4999           iter.make_referent_alive();
5000         }
5001         iter.move_to_next();
5002       }
5003     }
5004 
5005     // Drain the queue - which may cause stealing
5006     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
5007     drain_queue.do_void();
5008     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5009     assert(pss->queue_is_empty(), "should be");
5010   }
5011 };
5012 
5013 // Weak Reference processing during an evacuation pause (part 1).
5014 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5015   double ref_proc_start = os::elapsedTime();
5016 
5017   ReferenceProcessor* rp = _ref_processor_stw;
5018   assert(rp->discovery_enabled(), "should have been enabled");
5019 
5020   // Any reference objects, in the collection set, that were 'discovered'
5021   // by the CM ref processor should have already been copied (either by
5022   // applying the external root copy closure to the discovered lists, or
5023   // by following an RSet entry).
5024   //
5025   // But some of the referents, that are in the collection set, that these
5026   // reference objects point to may not have been copied: the STW ref
5027   // processor would have seen that the reference object had already
5028   // been 'discovered' and would have skipped discovering the reference,
5029   // but would not have treated the reference object as a regular oop.
5030   // As a result the copy closure would not have been applied to the
5031   // referent object.
5032   //
5033   // We need to explicitly copy these referent objects - the references
5034   // will be processed at the end of remarking.
5035   //
5036   // We also need to do this copying before we process the reference
5037   // objects discovered by the STW ref processor in case one of these
5038   // referents points to another object which is also referenced by an
5039   // object discovered by the STW ref processor.
5040 
5041   uint no_of_gc_workers = workers()->active_workers();
5042 
5043   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5044                                                  per_thread_states,
5045                                                  no_of_gc_workers,
5046                                                  _task_queues);
5047 
5048   workers()->run_task(&keep_cm_referents);
5049 
5050   // Closure to test whether a referent is alive.
5051   G1STWIsAliveClosure is_alive(this);
5052 
5053   // Even when parallel reference processing is enabled, the processing
5054   // of JNI refs is serial and performed serially by the current thread
5055   // rather than by a worker. The following PSS will be used for processing
5056   // JNI refs.
5057 
5058   // Use only a single queue for this PSS.
5059   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
5060   pss->set_ref_processor(NULL);
5061   assert(pss->queue_is_empty(), "pre-condition");
5062 
5063   // Keep alive closure.
5064   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
5065 
5066   // Serial Complete GC closure
5067   G1STWDrainQueueClosure drain_queue(this, pss);
5068 
5069   // Setup the soft refs policy...
5070   rp->setup_policy(false);
5071 
5072   ReferenceProcessorStats stats;
5073   if (!rp->processing_is_mt()) {
5074     // Serial reference processing...
5075     stats = rp->process_discovered_references(&is_alive,
5076                                               &keep_alive,
5077                                               &drain_queue,
5078                                               NULL,
5079                                               _gc_timer_stw);
5080   } else {
5081     // Parallel reference processing
5082     assert(rp->num_q() == no_of_gc_workers, "sanity");
5083     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5084 
5085     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
5086     stats = rp->process_discovered_references(&is_alive,
5087                                               &keep_alive,
5088                                               &drain_queue,
5089                                               &par_task_executor,
5090                                               _gc_timer_stw);
5091   }
5092 
5093   _gc_tracer_stw->report_gc_reference_stats(stats);
5094 
5095   // We have completed copying any necessary live referent objects.
5096   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
5097 
5098   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5099   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5100 }
5101 
5102 // Weak Reference processing during an evacuation pause (part 2).
5103 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
5104   double ref_enq_start = os::elapsedTime();
5105 
5106   ReferenceProcessor* rp = _ref_processor_stw;
5107   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5108 
5109   // Now enqueue any remaining on the discovered lists on to
5110   // the pending list.
5111   if (!rp->processing_is_mt()) {
5112     // Serial reference processing...
5113     rp->enqueue_discovered_references();
5114   } else {
5115     // Parallel reference enqueueing
5116 
5117     uint n_workers = workers()->active_workers();
5118 
5119     assert(rp->num_q() == n_workers, "sanity");
5120     assert(n_workers <= rp->max_num_q(), "sanity");
5121 
5122     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
5123     rp->enqueue_discovered_references(&par_task_executor);
5124   }
5125 
5126   rp->verify_no_references_recorded();
5127   assert(!rp->discovery_enabled(), "should have been disabled");
5128 
5129   // FIXME
5130   // CM's reference processing also cleans up the string and symbol tables.
5131   // Should we do that here also? We could, but it is a serial operation
5132   // and could significantly increase the pause time.
5133 
5134   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5135   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5136 }
5137 
5138 void G1CollectedHeap::pre_evacuate_collection_set() {
5139   _expand_heap_after_alloc_failure = true;
5140   _evacuation_failed = false;
5141 
5142   // Disable the hot card cache.
5143   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5144   hot_card_cache->reset_hot_cache_claimed_index();
5145   hot_card_cache->set_use_cache(false);
5146 
5147 }
5148 
5149 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5150   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5151 
5152   // Should G1EvacuationFailureALot be in effect for this GC?
5153   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5154 
5155   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5156   double start_par_time_sec = os::elapsedTime();
5157   double end_par_time_sec;
5158 
5159   {
5160     const uint n_workers = workers()->active_workers();
5161     G1RootProcessor root_processor(this, n_workers);
5162     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5163     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5164     if (collector_state()->during_initial_mark_pause()) {
5165       ClassLoaderDataGraph::clear_claimed_marks();
5166     }
5167 
5168     // The individual threads will set their evac-failure closures.
5169     if (PrintTerminationStats) {
5170       print_termination_stats_hdr(gclog_or_tty);
5171     }
5172 
5173     workers()->run_task(&g1_par_task);
5174     end_par_time_sec = os::elapsedTime();
5175 
5176     // Closing the inner scope will execute the destructor
5177     // for the G1RootProcessor object. We record the current
5178     // elapsed time before closing the scope so that time
5179     // taken for the destructor is NOT included in the
5180     // reported parallel time.
5181   }
5182 
5183   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5184 
5185   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5186   phase_times->record_par_time(par_time_ms);
5187 
5188   double code_root_fixup_time_ms =
5189         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5190   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5191 
5192   // Process any discovered reference objects - we have
5193   // to do this _before_ we retire the GC alloc regions
5194   // as we may have to copy some 'reachable' referent
5195   // objects (and their reachable sub-graphs) that were
5196   // not copied during the pause.
5197   process_discovered_references(per_thread_states);
5198 
5199   if (G1StringDedup::is_enabled()) {
5200     double fixup_start = os::elapsedTime();
5201 
5202     G1STWIsAliveClosure is_alive(this);
5203     G1KeepAliveClosure keep_alive(this);
5204     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5205 
5206     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5207     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5208   }
5209 
5210   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5211 
5212   if (evacuation_failed()) {
5213     remove_self_forwarding_pointers();
5214 
5215     // Reset the G1EvacuationFailureALot counters and flags
5216     // Note: the values are reset only when an actual
5217     // evacuation failure occurs.
5218     NOT_PRODUCT(reset_evacuation_should_fail();)
5219   }
5220 
5221   // Enqueue any remaining references remaining on the STW
5222   // reference processor's discovered lists. We need to do
5223   // this after the card table is cleaned (and verified) as
5224   // the act of enqueueing entries on to the pending list
5225   // will log these updates (and dirty their associated
5226   // cards). We need these updates logged to update any
5227   // RSets.
5228   enqueue_discovered_references(per_thread_states);
5229 }
5230 
5231 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5232   _allocator->release_gc_alloc_regions(evacuation_info);
5233 
5234   per_thread_states->flush();
5235 
5236   record_obj_copy_mem_stats();
5237 
5238   // Reset and re-enable the hot card cache.
5239   // Note the counts for the cards in the regions in the
5240   // collection set are reset when the collection set is freed.
5241   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5242   hot_card_cache->reset_hot_cache();
5243   hot_card_cache->set_use_cache(true);
5244 
5245   purge_code_root_memory();
5246 
5247   redirty_logged_cards();
5248 #if defined(COMPILER2) || INCLUDE_JVMCI
5249   DerivedPointerTable::update_pointers();
5250 #endif
5251 }
5252 
5253 void G1CollectedHeap::record_obj_copy_mem_stats() {
5254   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5255                                                create_g1_evac_summary(&_old_evac_stats));
5256 }
5257 
5258 void G1CollectedHeap::free_region(HeapRegion* hr,
5259                                   FreeRegionList* free_list,
5260                                   bool par,
5261                                   bool locked) {
5262   assert(!hr->is_free(), "the region should not be free");
5263   assert(!hr->is_empty(), "the region should not be empty");
5264   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5265   assert(free_list != NULL, "pre-condition");
5266 
5267   if (G1VerifyBitmaps) {
5268     MemRegion mr(hr->bottom(), hr->end());
5269     concurrent_mark()->clearRangePrevBitmap(mr);
5270   }
5271 
5272   // Clear the card counts for this region.
5273   // Note: we only need to do this if the region is not young
5274   // (since we don't refine cards in young regions).
5275   if (!hr->is_young()) {
5276     _cg1r->hot_card_cache()->reset_card_counts(hr);
5277   }
5278   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5279   free_list->add_ordered(hr);
5280 }
5281 
5282 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5283                                      FreeRegionList* free_list,
5284                                      bool par) {
5285   assert(free_list != NULL, "pre-condition");
5286   hr->clear_humongous();
5287   free_region(hr, free_list, par);
5288 }
5289 
5290 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5291                                        const HeapRegionSetCount& humongous_regions_removed) {
5292   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5293     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5294     _old_set.bulk_remove(old_regions_removed);
5295     _humongous_set.bulk_remove(humongous_regions_removed);
5296   }
5297 
5298 }
5299 
5300 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5301   assert(list != NULL, "list can't be null");
5302   if (!list->is_empty()) {
5303     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5304     _hrm.insert_list_into_free_list(list);
5305   }
5306 }
5307 
5308 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5309   decrease_used(bytes);
5310 }
5311 
5312 class G1ParCleanupCTTask : public AbstractGangTask {
5313   G1SATBCardTableModRefBS* _ct_bs;
5314   G1CollectedHeap* _g1h;
5315   HeapRegion* volatile _su_head;
5316 public:
5317   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5318                      G1CollectedHeap* g1h) :
5319     AbstractGangTask("G1 Par Cleanup CT Task"),
5320     _ct_bs(ct_bs), _g1h(g1h) { }
5321 
5322   void work(uint worker_id) {
5323     HeapRegion* r;
5324     while (r = _g1h->pop_dirty_cards_region()) {
5325       clear_cards(r);
5326     }
5327   }
5328 
5329   void clear_cards(HeapRegion* r) {
5330     // Cards of the survivors should have already been dirtied.
5331     if (!r->is_survivor()) {
5332       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5333     }
5334   }
5335 };
5336 
5337 #ifndef PRODUCT
5338 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5339   G1CollectedHeap* _g1h;
5340   G1SATBCardTableModRefBS* _ct_bs;
5341 public:
5342   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5343     : _g1h(g1h), _ct_bs(ct_bs) { }
5344   virtual bool doHeapRegion(HeapRegion* r) {
5345     if (r->is_survivor()) {
5346       _g1h->verify_dirty_region(r);
5347     } else {
5348       _g1h->verify_not_dirty_region(r);
5349     }
5350     return false;
5351   }
5352 };
5353 
5354 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5355   // All of the region should be clean.
5356   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5357   MemRegion mr(hr->bottom(), hr->end());
5358   ct_bs->verify_not_dirty_region(mr);
5359 }
5360 
5361 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5362   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5363   // dirty allocated blocks as they allocate them. The thread that
5364   // retires each region and replaces it with a new one will do a
5365   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5366   // not dirty that area (one less thing to have to do while holding
5367   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5368   // is dirty.
5369   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5370   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5371   if (hr->is_young()) {
5372     ct_bs->verify_g1_young_region(mr);
5373   } else {
5374     ct_bs->verify_dirty_region(mr);
5375   }
5376 }
5377 
5378 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5379   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5380   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5381     verify_dirty_region(hr);
5382   }
5383 }
5384 
5385 void G1CollectedHeap::verify_dirty_young_regions() {
5386   verify_dirty_young_list(_young_list->first_region());
5387 }
5388 
5389 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5390                                                HeapWord* tams, HeapWord* end) {
5391   guarantee(tams <= end,
5392             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5393   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5394   if (result < end) {
5395     gclog_or_tty->cr();
5396     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5397                            bitmap_name, p2i(result));
5398     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5399                            bitmap_name, p2i(tams), p2i(end));
5400     return false;
5401   }
5402   return true;
5403 }
5404 
5405 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5406   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5407   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5408 
5409   HeapWord* bottom = hr->bottom();
5410   HeapWord* ptams  = hr->prev_top_at_mark_start();
5411   HeapWord* ntams  = hr->next_top_at_mark_start();
5412   HeapWord* end    = hr->end();
5413 
5414   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5415 
5416   bool res_n = true;
5417   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5418   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5419   // if we happen to be in that state.
5420   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5421     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5422   }
5423   if (!res_p || !res_n) {
5424     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5425                            HR_FORMAT_PARAMS(hr));
5426     gclog_or_tty->print_cr("#### Caller: %s", caller);
5427     return false;
5428   }
5429   return true;
5430 }
5431 
5432 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5433   if (!G1VerifyBitmaps) return;
5434 
5435   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5436 }
5437 
5438 class G1VerifyBitmapClosure : public HeapRegionClosure {
5439 private:
5440   const char* _caller;
5441   G1CollectedHeap* _g1h;
5442   bool _failures;
5443 
5444 public:
5445   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5446     _caller(caller), _g1h(g1h), _failures(false) { }
5447 
5448   bool failures() { return _failures; }
5449 
5450   virtual bool doHeapRegion(HeapRegion* hr) {
5451     bool result = _g1h->verify_bitmaps(_caller, hr);
5452     if (!result) {
5453       _failures = true;
5454     }
5455     return false;
5456   }
5457 };
5458 
5459 void G1CollectedHeap::check_bitmaps(const char* caller) {
5460   if (!G1VerifyBitmaps) return;
5461 
5462   G1VerifyBitmapClosure cl(caller, this);
5463   heap_region_iterate(&cl);
5464   guarantee(!cl.failures(), "bitmap verification");
5465 }
5466 
5467 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5468  private:
5469   bool _failures;
5470  public:
5471   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5472 
5473   virtual bool doHeapRegion(HeapRegion* hr) {
5474     uint i = hr->hrm_index();
5475     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5476     if (hr->is_humongous()) {
5477       if (hr->in_collection_set()) {
5478         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5479         _failures = true;
5480         return true;
5481       }
5482       if (cset_state.is_in_cset()) {
5483         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5484         _failures = true;
5485         return true;
5486       }
5487       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5488         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5489         _failures = true;
5490         return true;
5491       }
5492     } else {
5493       if (cset_state.is_humongous()) {
5494         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5495         _failures = true;
5496         return true;
5497       }
5498       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5499         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5500                                hr->in_collection_set(), cset_state.value(), i);
5501         _failures = true;
5502         return true;
5503       }
5504       if (cset_state.is_in_cset()) {
5505         if (hr->is_young() != (cset_state.is_young())) {
5506           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5507                                  hr->is_young(), cset_state.value(), i);
5508           _failures = true;
5509           return true;
5510         }
5511         if (hr->is_old() != (cset_state.is_old())) {
5512           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5513                                  hr->is_old(), cset_state.value(), i);
5514           _failures = true;
5515           return true;
5516         }
5517       }
5518     }
5519     return false;
5520   }
5521 
5522   bool failures() const { return _failures; }
5523 };
5524 
5525 bool G1CollectedHeap::check_cset_fast_test() {
5526   G1CheckCSetFastTableClosure cl;
5527   _hrm.iterate(&cl);
5528   return !cl.failures();
5529 }
5530 #endif // PRODUCT
5531 
5532 void G1CollectedHeap::cleanUpCardTable() {
5533   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5534   double start = os::elapsedTime();
5535 
5536   {
5537     // Iterate over the dirty cards region list.
5538     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5539 
5540     workers()->run_task(&cleanup_task);
5541 #ifndef PRODUCT
5542     if (G1VerifyCTCleanup || VerifyAfterGC) {
5543       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5544       heap_region_iterate(&cleanup_verifier);
5545     }
5546 #endif
5547   }
5548 
5549   double elapsed = os::elapsedTime() - start;
5550   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5551 }
5552 
5553 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5554   size_t pre_used = 0;
5555   FreeRegionList local_free_list("Local List for CSet Freeing");
5556 
5557   double young_time_ms     = 0.0;
5558   double non_young_time_ms = 0.0;
5559 
5560   // Since the collection set is a superset of the the young list,
5561   // all we need to do to clear the young list is clear its
5562   // head and length, and unlink any young regions in the code below
5563   _young_list->clear();
5564 
5565   G1CollectorPolicy* policy = g1_policy();
5566 
5567   double start_sec = os::elapsedTime();
5568   bool non_young = true;
5569 
5570   HeapRegion* cur = cs_head;
5571   int age_bound = -1;
5572   size_t rs_lengths = 0;
5573 
5574   while (cur != NULL) {
5575     assert(!is_on_master_free_list(cur), "sanity");
5576     if (non_young) {
5577       if (cur->is_young()) {
5578         double end_sec = os::elapsedTime();
5579         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5580         non_young_time_ms += elapsed_ms;
5581 
5582         start_sec = os::elapsedTime();
5583         non_young = false;
5584       }
5585     } else {
5586       if (!cur->is_young()) {
5587         double end_sec = os::elapsedTime();
5588         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5589         young_time_ms += elapsed_ms;
5590 
5591         start_sec = os::elapsedTime();
5592         non_young = true;
5593       }
5594     }
5595 
5596     rs_lengths += cur->rem_set()->occupied_locked();
5597 
5598     HeapRegion* next = cur->next_in_collection_set();
5599     assert(cur->in_collection_set(), "bad CS");
5600     cur->set_next_in_collection_set(NULL);
5601     clear_in_cset(cur);
5602 
5603     if (cur->is_young()) {
5604       int index = cur->young_index_in_cset();
5605       assert(index != -1, "invariant");
5606       assert((uint) index < policy->young_cset_region_length(), "invariant");
5607       size_t words_survived = surviving_young_words[index];
5608       cur->record_surv_words_in_group(words_survived);
5609 
5610       // At this point the we have 'popped' cur from the collection set
5611       // (linked via next_in_collection_set()) but it is still in the
5612       // young list (linked via next_young_region()). Clear the
5613       // _next_young_region field.
5614       cur->set_next_young_region(NULL);
5615     } else {
5616       int index = cur->young_index_in_cset();
5617       assert(index == -1, "invariant");
5618     }
5619 
5620     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5621             (!cur->is_young() && cur->young_index_in_cset() == -1),
5622             "invariant" );
5623 
5624     if (!cur->evacuation_failed()) {
5625       MemRegion used_mr = cur->used_region();
5626 
5627       // And the region is empty.
5628       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5629       pre_used += cur->used();
5630       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5631     } else {
5632       cur->uninstall_surv_rate_group();
5633       if (cur->is_young()) {
5634         cur->set_young_index_in_cset(-1);
5635       }
5636       cur->set_evacuation_failed(false);
5637       // The region is now considered to be old.
5638       cur->set_old();
5639       // Do some allocation statistics accounting. Regions that failed evacuation
5640       // are always made old, so there is no need to update anything in the young
5641       // gen statistics, but we need to update old gen statistics.
5642       size_t used_words = cur->marked_bytes() / HeapWordSize;
5643       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5644       _old_set.add(cur);
5645       evacuation_info.increment_collectionset_used_after(cur->used());
5646     }
5647     cur = next;
5648   }
5649 
5650   evacuation_info.set_regions_freed(local_free_list.length());
5651   policy->record_max_rs_lengths(rs_lengths);
5652   policy->cset_regions_freed();
5653 
5654   double end_sec = os::elapsedTime();
5655   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5656 
5657   if (non_young) {
5658     non_young_time_ms += elapsed_ms;
5659   } else {
5660     young_time_ms += elapsed_ms;
5661   }
5662 
5663   prepend_to_freelist(&local_free_list);
5664   decrement_summary_bytes(pre_used);
5665   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5666   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5667 }
5668 
5669 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5670  private:
5671   FreeRegionList* _free_region_list;
5672   HeapRegionSet* _proxy_set;
5673   HeapRegionSetCount _humongous_regions_removed;
5674   size_t _freed_bytes;
5675  public:
5676 
5677   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5678     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5679   }
5680 
5681   virtual bool doHeapRegion(HeapRegion* r) {
5682     if (!r->is_starts_humongous()) {
5683       return false;
5684     }
5685 
5686     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5687 
5688     oop obj = (oop)r->bottom();
5689     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5690 
5691     // The following checks whether the humongous object is live are sufficient.
5692     // The main additional check (in addition to having a reference from the roots
5693     // or the young gen) is whether the humongous object has a remembered set entry.
5694     //
5695     // A humongous object cannot be live if there is no remembered set for it
5696     // because:
5697     // - there can be no references from within humongous starts regions referencing
5698     // the object because we never allocate other objects into them.
5699     // (I.e. there are no intra-region references that may be missed by the
5700     // remembered set)
5701     // - as soon there is a remembered set entry to the humongous starts region
5702     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5703     // until the end of a concurrent mark.
5704     //
5705     // It is not required to check whether the object has been found dead by marking
5706     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5707     // all objects allocated during that time are considered live.
5708     // SATB marking is even more conservative than the remembered set.
5709     // So if at this point in the collection there is no remembered set entry,
5710     // nobody has a reference to it.
5711     // At the start of collection we flush all refinement logs, and remembered sets
5712     // are completely up-to-date wrt to references to the humongous object.
5713     //
5714     // Other implementation considerations:
5715     // - never consider object arrays at this time because they would pose
5716     // considerable effort for cleaning up the the remembered sets. This is
5717     // required because stale remembered sets might reference locations that
5718     // are currently allocated into.
5719     uint region_idx = r->hrm_index();
5720     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5721         !r->rem_set()->is_empty()) {
5722 
5723       if (G1TraceEagerReclaimHumongousObjects) {
5724         gclog_or_tty->print_cr("Live humongous region %u objectsize " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5725                                region_idx,
5726                                (size_t)obj->size() * HeapWordSize,
5727                                p2i(r->bottom()),
5728                                r->rem_set()->occupied(),
5729                                r->rem_set()->strong_code_roots_list_length(),
5730                                next_bitmap->isMarked(r->bottom()),
5731                                g1h->is_humongous_reclaim_candidate(region_idx),
5732                                obj->is_typeArray()
5733                               );
5734       }
5735 
5736       return false;
5737     }
5738 
5739     guarantee(obj->is_typeArray(),
5740               "Only eagerly reclaiming type arrays is supported, but the object "
5741               PTR_FORMAT " is not.", p2i(r->bottom()));
5742 
5743     if (G1TraceEagerReclaimHumongousObjects) {
5744       gclog_or_tty->print_cr("Dead humongous region %u objectsize " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5745                              region_idx,
5746                              (size_t)obj->size() * HeapWordSize,
5747                              p2i(r->bottom()),
5748                              r->rem_set()->occupied(),
5749                              r->rem_set()->strong_code_roots_list_length(),
5750                              next_bitmap->isMarked(r->bottom()),
5751                              g1h->is_humongous_reclaim_candidate(region_idx),
5752                              obj->is_typeArray()
5753                             );
5754     }
5755     // Need to clear mark bit of the humongous object if already set.
5756     if (next_bitmap->isMarked(r->bottom())) {
5757       next_bitmap->clear(r->bottom());
5758     }
5759     do {
5760       _freed_bytes += r->used();
5761       r->set_containing_set(NULL);
5762       _humongous_regions_removed.increment(1u, r->capacity());
5763       g1h->free_humongous_region(r, _free_region_list, false);
5764       if (++region_idx >= g1h->num_regions()) {
5765         break;
5766       }
5767       r = g1h->region_at(region_idx);
5768     } while (r->is_continues_humongous());
5769 
5770     return false;
5771   }
5772 
5773   HeapRegionSetCount& humongous_free_count() {
5774     return _humongous_regions_removed;
5775   }
5776 
5777   size_t bytes_freed() const {
5778     return _freed_bytes;
5779   }
5780 
5781   size_t humongous_reclaimed() const {
5782     return _humongous_regions_removed.length();
5783   }
5784 };
5785 
5786 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5787   assert_at_safepoint(true);
5788 
5789   if (!G1EagerReclaimHumongousObjects ||
5790       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5791     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5792     return;
5793   }
5794 
5795   double start_time = os::elapsedTime();
5796 
5797   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5798 
5799   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5800   heap_region_iterate(&cl);
5801 
5802   HeapRegionSetCount empty_set;
5803   remove_from_old_sets(empty_set, cl.humongous_free_count());
5804 
5805   G1HRPrinter* hrp = hr_printer();
5806   if (hrp->is_active()) {
5807     FreeRegionListIterator iter(&local_cleanup_list);
5808     while (iter.more_available()) {
5809       HeapRegion* hr = iter.get_next();
5810       hrp->cleanup(hr);
5811     }
5812   }
5813 
5814   prepend_to_freelist(&local_cleanup_list);
5815   decrement_summary_bytes(cl.bytes_freed());
5816 
5817   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5818                                                                     cl.humongous_reclaimed());
5819 }
5820 
5821 // This routine is similar to the above but does not record
5822 // any policy statistics or update free lists; we are abandoning
5823 // the current incremental collection set in preparation of a
5824 // full collection. After the full GC we will start to build up
5825 // the incremental collection set again.
5826 // This is only called when we're doing a full collection
5827 // and is immediately followed by the tearing down of the young list.
5828 
5829 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5830   HeapRegion* cur = cs_head;
5831 
5832   while (cur != NULL) {
5833     HeapRegion* next = cur->next_in_collection_set();
5834     assert(cur->in_collection_set(), "bad CS");
5835     cur->set_next_in_collection_set(NULL);
5836     clear_in_cset(cur);
5837     cur->set_young_index_in_cset(-1);
5838     cur = next;
5839   }
5840 }
5841 
5842 void G1CollectedHeap::set_free_regions_coming() {
5843   if (G1ConcRegionFreeingVerbose) {
5844     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5845                            "setting free regions coming");
5846   }
5847 
5848   assert(!free_regions_coming(), "pre-condition");
5849   _free_regions_coming = true;
5850 }
5851 
5852 void G1CollectedHeap::reset_free_regions_coming() {
5853   assert(free_regions_coming(), "pre-condition");
5854 
5855   {
5856     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5857     _free_regions_coming = false;
5858     SecondaryFreeList_lock->notify_all();
5859   }
5860 
5861   if (G1ConcRegionFreeingVerbose) {
5862     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5863                            "reset free regions coming");
5864   }
5865 }
5866 
5867 void G1CollectedHeap::wait_while_free_regions_coming() {
5868   // Most of the time we won't have to wait, so let's do a quick test
5869   // first before we take the lock.
5870   if (!free_regions_coming()) {
5871     return;
5872   }
5873 
5874   if (G1ConcRegionFreeingVerbose) {
5875     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5876                            "waiting for free regions");
5877   }
5878 
5879   {
5880     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5881     while (free_regions_coming()) {
5882       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5883     }
5884   }
5885 
5886   if (G1ConcRegionFreeingVerbose) {
5887     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5888                            "done waiting for free regions");
5889   }
5890 }
5891 
5892 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5893   return _allocator->is_retained_old_region(hr);
5894 }
5895 
5896 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5897   _young_list->push_region(hr);
5898 }
5899 
5900 class NoYoungRegionsClosure: public HeapRegionClosure {
5901 private:
5902   bool _success;
5903 public:
5904   NoYoungRegionsClosure() : _success(true) { }
5905   bool doHeapRegion(HeapRegion* r) {
5906     if (r->is_young()) {
5907       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5908                              p2i(r->bottom()), p2i(r->end()));
5909       _success = false;
5910     }
5911     return false;
5912   }
5913   bool success() { return _success; }
5914 };
5915 
5916 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5917   bool ret = _young_list->check_list_empty(check_sample);
5918 
5919   if (check_heap) {
5920     NoYoungRegionsClosure closure;
5921     heap_region_iterate(&closure);
5922     ret = ret && closure.success();
5923   }
5924 
5925   return ret;
5926 }
5927 
5928 class TearDownRegionSetsClosure : public HeapRegionClosure {
5929 private:
5930   HeapRegionSet *_old_set;
5931 
5932 public:
5933   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5934 
5935   bool doHeapRegion(HeapRegion* r) {
5936     if (r->is_old()) {
5937       _old_set->remove(r);
5938     } else {
5939       // We ignore free regions, we'll empty the free list afterwards.
5940       // We ignore young regions, we'll empty the young list afterwards.
5941       // We ignore humongous regions, we're not tearing down the
5942       // humongous regions set.
5943       assert(r->is_free() || r->is_young() || r->is_humongous(),
5944              "it cannot be another type");
5945     }
5946     return false;
5947   }
5948 
5949   ~TearDownRegionSetsClosure() {
5950     assert(_old_set->is_empty(), "post-condition");
5951   }
5952 };
5953 
5954 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5955   assert_at_safepoint(true /* should_be_vm_thread */);
5956 
5957   if (!free_list_only) {
5958     TearDownRegionSetsClosure cl(&_old_set);
5959     heap_region_iterate(&cl);
5960 
5961     // Note that emptying the _young_list is postponed and instead done as
5962     // the first step when rebuilding the regions sets again. The reason for
5963     // this is that during a full GC string deduplication needs to know if
5964     // a collected region was young or old when the full GC was initiated.
5965   }
5966   _hrm.remove_all_free_regions();
5967 }
5968 
5969 void G1CollectedHeap::increase_used(size_t bytes) {
5970   _summary_bytes_used += bytes;
5971 }
5972 
5973 void G1CollectedHeap::decrease_used(size_t bytes) {
5974   assert(_summary_bytes_used >= bytes,
5975          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5976          _summary_bytes_used, bytes);
5977   _summary_bytes_used -= bytes;
5978 }
5979 
5980 void G1CollectedHeap::set_used(size_t bytes) {
5981   _summary_bytes_used = bytes;
5982 }
5983 
5984 class RebuildRegionSetsClosure : public HeapRegionClosure {
5985 private:
5986   bool            _free_list_only;
5987   HeapRegionSet*   _old_set;
5988   HeapRegionManager*   _hrm;
5989   size_t          _total_used;
5990 
5991 public:
5992   RebuildRegionSetsClosure(bool free_list_only,
5993                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5994     _free_list_only(free_list_only),
5995     _old_set(old_set), _hrm(hrm), _total_used(0) {
5996     assert(_hrm->num_free_regions() == 0, "pre-condition");
5997     if (!free_list_only) {
5998       assert(_old_set->is_empty(), "pre-condition");
5999     }
6000   }
6001 
6002   bool doHeapRegion(HeapRegion* r) {
6003     if (r->is_empty()) {
6004       // Add free regions to the free list
6005       r->set_free();
6006       r->set_allocation_context(AllocationContext::system());
6007       _hrm->insert_into_free_list(r);
6008     } else if (!_free_list_only) {
6009       assert(!r->is_young(), "we should not come across young regions");
6010 
6011       if (r->is_humongous()) {
6012         // We ignore humongous regions. We left the humongous set unchanged.
6013       } else {
6014         // Objects that were compacted would have ended up on regions
6015         // that were previously old or free.  Archive regions (which are
6016         // old) will not have been touched.
6017         assert(r->is_free() || r->is_old(), "invariant");
6018         // We now consider them old, so register as such. Leave
6019         // archive regions set that way, however, while still adding
6020         // them to the old set.
6021         if (!r->is_archive()) {
6022           r->set_old();
6023         }
6024         _old_set->add(r);
6025       }
6026       _total_used += r->used();
6027     }
6028 
6029     return false;
6030   }
6031 
6032   size_t total_used() {
6033     return _total_used;
6034   }
6035 };
6036 
6037 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6038   assert_at_safepoint(true /* should_be_vm_thread */);
6039 
6040   if (!free_list_only) {
6041     _young_list->empty_list();
6042   }
6043 
6044   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6045   heap_region_iterate(&cl);
6046 
6047   if (!free_list_only) {
6048     set_used(cl.total_used());
6049     if (_archive_allocator != NULL) {
6050       _archive_allocator->clear_used();
6051     }
6052   }
6053   assert(used_unlocked() == recalculate_used(),
6054          "inconsistent used_unlocked(), "
6055          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6056          used_unlocked(), recalculate_used());
6057 }
6058 
6059 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6060   _refine_cte_cl->set_concurrent(concurrent);
6061 }
6062 
6063 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6064   HeapRegion* hr = heap_region_containing(p);
6065   return hr->is_in(p);
6066 }
6067 
6068 // Methods for the mutator alloc region
6069 
6070 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6071                                                       bool force) {
6072   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6073   assert(!force || g1_policy()->can_expand_young_list(),
6074          "if force is true we should be able to expand the young list");
6075   bool young_list_full = g1_policy()->is_young_list_full();
6076   if (force || !young_list_full) {
6077     HeapRegion* new_alloc_region = new_region(word_size,
6078                                               false /* is_old */,
6079                                               false /* do_expand */);
6080     if (new_alloc_region != NULL) {
6081       set_region_short_lived_locked(new_alloc_region);
6082       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6083       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6084       return new_alloc_region;
6085     }
6086   }
6087   return NULL;
6088 }
6089 
6090 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6091                                                   size_t allocated_bytes) {
6092   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6093   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6094 
6095   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6096   increase_used(allocated_bytes);
6097   _hr_printer.retire(alloc_region);
6098   // We update the eden sizes here, when the region is retired,
6099   // instead of when it's allocated, since this is the point that its
6100   // used space has been recored in _summary_bytes_used.
6101   g1mm()->update_eden_size();
6102 }
6103 
6104 // Methods for the GC alloc regions
6105 
6106 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6107                                                  uint count,
6108                                                  InCSetState dest) {
6109   assert(FreeList_lock->owned_by_self(), "pre-condition");
6110 
6111   if (count < g1_policy()->max_regions(dest)) {
6112     const bool is_survivor = (dest.is_young());
6113     HeapRegion* new_alloc_region = new_region(word_size,
6114                                               !is_survivor,
6115                                               true /* do_expand */);
6116     if (new_alloc_region != NULL) {
6117       // We really only need to do this for old regions given that we
6118       // should never scan survivors. But it doesn't hurt to do it
6119       // for survivors too.
6120       new_alloc_region->record_timestamp();
6121       if (is_survivor) {
6122         new_alloc_region->set_survivor();
6123         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6124         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6125       } else {
6126         new_alloc_region->set_old();
6127         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6128         check_bitmaps("Old Region Allocation", new_alloc_region);
6129       }
6130       bool during_im = collector_state()->during_initial_mark_pause();
6131       new_alloc_region->note_start_of_copying(during_im);
6132       return new_alloc_region;
6133     }
6134   }
6135   return NULL;
6136 }
6137 
6138 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6139                                              size_t allocated_bytes,
6140                                              InCSetState dest) {
6141   bool during_im = collector_state()->during_initial_mark_pause();
6142   alloc_region->note_end_of_copying(during_im);
6143   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6144   if (dest.is_young()) {
6145     young_list()->add_survivor_region(alloc_region);
6146   } else {
6147     _old_set.add(alloc_region);
6148   }
6149   _hr_printer.retire(alloc_region);
6150 }
6151 
6152 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6153   bool expanded = false;
6154   uint index = _hrm.find_highest_free(&expanded);
6155 
6156   if (index != G1_NO_HRM_INDEX) {
6157     if (expanded) {
6158       ergo_verbose1(ErgoHeapSizing,
6159                     "attempt heap expansion",
6160                     ergo_format_reason("requested address range outside heap bounds")
6161                     ergo_format_byte("region size"),
6162                     HeapRegion::GrainWords * HeapWordSize);
6163     }
6164     _hrm.allocate_free_regions_starting_at(index, 1);
6165     return region_at(index);
6166   }
6167   return NULL;
6168 }
6169 
6170 // Heap region set verification
6171 
6172 class VerifyRegionListsClosure : public HeapRegionClosure {
6173 private:
6174   HeapRegionSet*   _old_set;
6175   HeapRegionSet*   _humongous_set;
6176   HeapRegionManager*   _hrm;
6177 
6178 public:
6179   HeapRegionSetCount _old_count;
6180   HeapRegionSetCount _humongous_count;
6181   HeapRegionSetCount _free_count;
6182 
6183   VerifyRegionListsClosure(HeapRegionSet* old_set,
6184                            HeapRegionSet* humongous_set,
6185                            HeapRegionManager* hrm) :
6186     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6187     _old_count(), _humongous_count(), _free_count(){ }
6188 
6189   bool doHeapRegion(HeapRegion* hr) {
6190     if (hr->is_young()) {
6191       // TODO
6192     } else if (hr->is_humongous()) {
6193       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6194       _humongous_count.increment(1u, hr->capacity());
6195     } else if (hr->is_empty()) {
6196       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6197       _free_count.increment(1u, hr->capacity());
6198     } else if (hr->is_old()) {
6199       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6200       _old_count.increment(1u, hr->capacity());
6201     } else {
6202       // There are no other valid region types. Check for one invalid
6203       // one we can identify: pinned without old or humongous set.
6204       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6205       ShouldNotReachHere();
6206     }
6207     return false;
6208   }
6209 
6210   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6211     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6212     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6213               old_set->total_capacity_bytes(), _old_count.capacity());
6214 
6215     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6216     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6217               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6218 
6219     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6220     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6221               free_list->total_capacity_bytes(), _free_count.capacity());
6222   }
6223 };
6224 
6225 void G1CollectedHeap::verify_region_sets() {
6226   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6227 
6228   // First, check the explicit lists.
6229   _hrm.verify();
6230   {
6231     // Given that a concurrent operation might be adding regions to
6232     // the secondary free list we have to take the lock before
6233     // verifying it.
6234     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6235     _secondary_free_list.verify_list();
6236   }
6237 
6238   // If a concurrent region freeing operation is in progress it will
6239   // be difficult to correctly attributed any free regions we come
6240   // across to the correct free list given that they might belong to
6241   // one of several (free_list, secondary_free_list, any local lists,
6242   // etc.). So, if that's the case we will skip the rest of the
6243   // verification operation. Alternatively, waiting for the concurrent
6244   // operation to complete will have a non-trivial effect on the GC's
6245   // operation (no concurrent operation will last longer than the
6246   // interval between two calls to verification) and it might hide
6247   // any issues that we would like to catch during testing.
6248   if (free_regions_coming()) {
6249     return;
6250   }
6251 
6252   // Make sure we append the secondary_free_list on the free_list so
6253   // that all free regions we will come across can be safely
6254   // attributed to the free_list.
6255   append_secondary_free_list_if_not_empty_with_lock();
6256 
6257   // Finally, make sure that the region accounting in the lists is
6258   // consistent with what we see in the heap.
6259 
6260   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6261   heap_region_iterate(&cl);
6262   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6263 }
6264 
6265 // Optimized nmethod scanning
6266 
6267 class RegisterNMethodOopClosure: public OopClosure {
6268   G1CollectedHeap* _g1h;
6269   nmethod* _nm;
6270 
6271   template <class T> void do_oop_work(T* p) {
6272     T heap_oop = oopDesc::load_heap_oop(p);
6273     if (!oopDesc::is_null(heap_oop)) {
6274       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6275       HeapRegion* hr = _g1h->heap_region_containing(obj);
6276       assert(!hr->is_continues_humongous(),
6277              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6278              " starting at " HR_FORMAT,
6279              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6280 
6281       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6282       hr->add_strong_code_root_locked(_nm);
6283     }
6284   }
6285 
6286 public:
6287   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6288     _g1h(g1h), _nm(nm) {}
6289 
6290   void do_oop(oop* p)       { do_oop_work(p); }
6291   void do_oop(narrowOop* p) { do_oop_work(p); }
6292 };
6293 
6294 class UnregisterNMethodOopClosure: public OopClosure {
6295   G1CollectedHeap* _g1h;
6296   nmethod* _nm;
6297 
6298   template <class T> void do_oop_work(T* p) {
6299     T heap_oop = oopDesc::load_heap_oop(p);
6300     if (!oopDesc::is_null(heap_oop)) {
6301       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6302       HeapRegion* hr = _g1h->heap_region_containing(obj);
6303       assert(!hr->is_continues_humongous(),
6304              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6305              " starting at " HR_FORMAT,
6306              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6307 
6308       hr->remove_strong_code_root(_nm);
6309     }
6310   }
6311 
6312 public:
6313   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6314     _g1h(g1h), _nm(nm) {}
6315 
6316   void do_oop(oop* p)       { do_oop_work(p); }
6317   void do_oop(narrowOop* p) { do_oop_work(p); }
6318 };
6319 
6320 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6321   CollectedHeap::register_nmethod(nm);
6322 
6323   guarantee(nm != NULL, "sanity");
6324   RegisterNMethodOopClosure reg_cl(this, nm);
6325   nm->oops_do(&reg_cl);
6326 }
6327 
6328 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6329   CollectedHeap::unregister_nmethod(nm);
6330 
6331   guarantee(nm != NULL, "sanity");
6332   UnregisterNMethodOopClosure reg_cl(this, nm);
6333   nm->oops_do(&reg_cl, true);
6334 }
6335 
6336 void G1CollectedHeap::purge_code_root_memory() {
6337   double purge_start = os::elapsedTime();
6338   G1CodeRootSet::purge();
6339   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6340   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6341 }
6342 
6343 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6344   G1CollectedHeap* _g1h;
6345 
6346 public:
6347   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6348     _g1h(g1h) {}
6349 
6350   void do_code_blob(CodeBlob* cb) {
6351     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6352     if (nm == NULL) {
6353       return;
6354     }
6355 
6356     if (ScavengeRootsInCode) {
6357       _g1h->register_nmethod(nm);
6358     }
6359   }
6360 };
6361 
6362 void G1CollectedHeap::rebuild_strong_code_roots() {
6363   RebuildStrongCodeRootClosure blob_cl(this);
6364   CodeCache::blobs_do(&blob_cl);
6365 }