1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP
  27 
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/heapRegion.hpp"
  31 #include "gc/shared/space.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.inline.hpp"
  34 
  35 inline HeapWord* G1OffsetTableContigSpace::allocate_impl(size_t min_word_size,
  36                                                          size_t desired_word_size,
  37                                                          size_t* actual_size) {
  38   HeapWord* obj = top();
  39   size_t available = pointer_delta(end(), obj);
  40   size_t want_to_allocate = MIN2(available, desired_word_size);
  41   if (want_to_allocate >= min_word_size) {
  42     HeapWord* new_top = obj + want_to_allocate;
  43     set_top(new_top);
  44     assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
  45     *actual_size = want_to_allocate;
  46     return obj;
  47   } else {
  48     return NULL;
  49   }
  50 }
  51 
  52 inline HeapWord* G1OffsetTableContigSpace::par_allocate_impl(size_t min_word_size,
  53                                                              size_t desired_word_size,
  54                                                              size_t* actual_size) {
  55   do {
  56     HeapWord* obj = top();
  57     size_t available = pointer_delta(end(), obj);
  58     size_t want_to_allocate = MIN2(available, desired_word_size);
  59     if (want_to_allocate >= min_word_size) {
  60       HeapWord* new_top = obj + want_to_allocate;
  61       HeapWord* result = (HeapWord*)Atomic::cmpxchg_ptr(new_top, top_addr(), obj);
  62       // result can be one of two:
  63       //  the old top value: the exchange succeeded
  64       //  otherwise: the new value of the top is returned.
  65       if (result == obj) {
  66         assert(is_aligned(obj) && is_aligned(new_top), "checking alignment");
  67         *actual_size = want_to_allocate;
  68         return obj;
  69       }
  70     } else {
  71       return NULL;
  72     }
  73   } while (true);
  74 }
  75 
  76 inline HeapWord* G1OffsetTableContigSpace::allocate(size_t min_word_size,
  77                                                     size_t desired_word_size,
  78                                                     size_t* actual_size) {
  79   HeapWord* res = allocate_impl(min_word_size, desired_word_size, actual_size);
  80   if (res != NULL) {
  81     _offsets.alloc_block(res, *actual_size);
  82   }
  83   return res;
  84 }
  85 
  86 inline HeapWord* G1OffsetTableContigSpace::allocate(size_t word_size) {
  87   size_t temp;
  88   return allocate(word_size, word_size, &temp);
  89 }
  90 
  91 inline HeapWord* G1OffsetTableContigSpace::par_allocate(size_t word_size) {
  92   size_t temp;
  93   return par_allocate(word_size, word_size, &temp);
  94 }
  95 
  96 // Because of the requirement of keeping "_offsets" up to date with the
  97 // allocations, we sequentialize these with a lock.  Therefore, best if
  98 // this is used for larger LAB allocations only.
  99 inline HeapWord* G1OffsetTableContigSpace::par_allocate(size_t min_word_size,
 100                                                         size_t desired_word_size,
 101                                                         size_t* actual_size) {
 102   MutexLocker x(&_par_alloc_lock);
 103   return allocate(min_word_size, desired_word_size, actual_size);
 104 }
 105 
 106 inline HeapWord* G1OffsetTableContigSpace::block_start(const void* p) {
 107   return _offsets.block_start(p);
 108 }
 109 
 110 inline HeapWord*
 111 G1OffsetTableContigSpace::block_start_const(const void* p) const {
 112   return _offsets.block_start_const(p);
 113 }
 114 
 115 inline bool
 116 HeapRegion::block_is_obj(const HeapWord* p) const {
 117   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 118 
 119   if (!this->is_in(p)) {
 120     HeapRegion* hr = g1h->heap_region_containing(p);
 121 #ifdef ASSERT
 122     assert(hr->is_humongous(), "This case can only happen for humongous regions");
 123     oop obj = oop(hr->humongous_start_region()->bottom());
 124     assert((HeapWord*)obj <= p, "p must be in humongous object");
 125     assert(p <= (HeapWord*)obj + obj->size(), "p must be in humongous object");
 126 #endif
 127     return hr->block_is_obj(p);
 128   }
 129   if (ClassUnloadingWithConcurrentMark) {
 130     return !g1h->is_obj_dead(oop(p), this);
 131   }
 132   return p < top();
 133 }
 134 
 135 inline size_t
 136 HeapRegion::block_size(const HeapWord *addr) const {
 137   if (addr == top()) {
 138     return pointer_delta(end(), addr);
 139   }
 140 
 141   if (block_is_obj(addr)) {
 142     return oop(addr)->size();
 143   }
 144 
 145   assert(ClassUnloadingWithConcurrentMark,
 146          "All blocks should be objects if G1 Class Unloading isn't used. "
 147          "HR: [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ") "
 148          "addr: " PTR_FORMAT,
 149          p2i(bottom()), p2i(top()), p2i(end()), p2i(addr));
 150 
 151   // Old regions' dead objects may have dead classes
 152   // We need to find the next live object in some other
 153   // manner than getting the oop size
 154   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 155   HeapWord* next = g1h->concurrent_mark()->prevMarkBitMap()->
 156       getNextMarkedWordAddress(addr, prev_top_at_mark_start());
 157 
 158   assert(next > addr, "must get the next live object");
 159   return pointer_delta(next, addr);
 160 }
 161 
 162 inline HeapWord* HeapRegion::par_allocate_no_bot_updates(size_t min_word_size,
 163                                                          size_t desired_word_size,
 164                                                          size_t* actual_word_size) {
 165   assert(is_young(), "we can only skip BOT updates on young regions");
 166   return par_allocate_impl(min_word_size, desired_word_size, actual_word_size);
 167 }
 168 
 169 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t word_size) {
 170   size_t temp;
 171   return allocate_no_bot_updates(word_size, word_size, &temp);
 172 }
 173 
 174 inline HeapWord* HeapRegion::allocate_no_bot_updates(size_t min_word_size,
 175                                                      size_t desired_word_size,
 176                                                      size_t* actual_word_size) {
 177   assert(is_young(), "we can only skip BOT updates on young regions");
 178   return allocate_impl(min_word_size, desired_word_size, actual_word_size);
 179 }
 180 
 181 inline void HeapRegion::note_start_of_marking() {
 182   _next_marked_bytes = 0;
 183   _next_top_at_mark_start = top();
 184 }
 185 
 186 inline void HeapRegion::note_end_of_marking() {
 187   _prev_top_at_mark_start = _next_top_at_mark_start;
 188   _prev_marked_bytes = _next_marked_bytes;
 189   _next_marked_bytes = 0;
 190 }
 191 
 192 inline void HeapRegion::note_start_of_copying(bool during_initial_mark) {
 193   if (is_survivor()) {
 194     // This is how we always allocate survivors.
 195     assert(_next_top_at_mark_start == bottom(), "invariant");
 196   } else {
 197     if (during_initial_mark) {
 198       // During initial-mark we'll explicitly mark any objects on old
 199       // regions that are pointed to by roots. Given that explicit
 200       // marks only make sense under NTAMS it'd be nice if we could
 201       // check that condition if we wanted to. Given that we don't
 202       // know where the top of this region will end up, we simply set
 203       // NTAMS to the end of the region so all marks will be below
 204       // NTAMS. We'll set it to the actual top when we retire this region.
 205       _next_top_at_mark_start = end();
 206     } else {
 207       // We could have re-used this old region as to-space over a
 208       // couple of GCs since the start of the concurrent marking
 209       // cycle. This means that [bottom,NTAMS) will contain objects
 210       // copied up to and including initial-mark and [NTAMS, top)
 211       // will contain objects copied during the concurrent marking cycle.
 212       assert(top() >= _next_top_at_mark_start, "invariant");
 213     }
 214   }
 215 }
 216 
 217 inline void HeapRegion::note_end_of_copying(bool during_initial_mark) {
 218   if (is_survivor()) {
 219     // This is how we always allocate survivors.
 220     assert(_next_top_at_mark_start == bottom(), "invariant");
 221   } else {
 222     if (during_initial_mark) {
 223       // See the comment for note_start_of_copying() for the details
 224       // on this.
 225       assert(_next_top_at_mark_start == end(), "pre-condition");
 226       _next_top_at_mark_start = top();
 227     } else {
 228       // See the comment for note_start_of_copying() for the details
 229       // on this.
 230       assert(top() >= _next_top_at_mark_start, "invariant");
 231     }
 232   }
 233 }
 234 
 235 inline bool HeapRegion::in_collection_set() const {
 236   return G1CollectedHeap::heap()->is_in_cset(this);
 237 }
 238 
 239 inline HeapRegion* HeapRegion::next_in_collection_set() const {
 240   assert(in_collection_set(), "should only invoke on member of CS.");
 241   assert(_next_in_special_set == NULL ||
 242          _next_in_special_set->in_collection_set(),
 243          "Malformed CS.");
 244   return _next_in_special_set;
 245 }
 246 
 247 void HeapRegion::set_next_in_collection_set(HeapRegion* r) {
 248   assert(in_collection_set(), "should only invoke on member of CS.");
 249   assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 250   _next_in_special_set = r;
 251 }
 252 
 253 #endif // SHARE_VM_GC_G1_HEAPREGION_INLINE_HPP