1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_G1_HEAPREGION_HPP
  27 
  28 #include "gc/g1/g1AllocationContext.hpp"
  29 #include "gc/g1/g1BlockOffsetTable.hpp"
  30 #include "gc/g1/heapRegionType.hpp"
  31 #include "gc/g1/survRateGroup.hpp"
  32 #include "gc/shared/ageTable.hpp"
  33 #include "gc/shared/spaceDecorator.hpp"
  34 #include "utilities/macros.hpp"
  35 
  36 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  37 // can be collected independently.
  38 
  39 // NOTE: Although a HeapRegion is a Space, its
  40 // Space::initDirtyCardClosure method must not be called.
  41 // The problem is that the existence of this method breaks
  42 // the independence of barrier sets from remembered sets.
  43 // The solution is to remove this method from the definition
  44 // of a Space.
  45 
  46 // Each heap region is self contained. top() and end() can never
  47 // be set beyond the end of the region. For humongous objects,
  48 // the first region is a StartsHumongous region. If the humongous
  49 // object is larger than a heap region, the following regions will
  50 // be of type ContinuesHumongous. In this case the top() and end()
  51 // of the StartHumongous region will point to the end of that region.
  52 // The same will be true for all ContinuesHumongous regions except
  53 // the last, which will have its' top() at the objects' top.
  54 
  55 class G1CollectedHeap;
  56 class HeapRegionRemSet;
  57 class HeapRegionRemSetIterator;
  58 class HeapRegion;
  59 class HeapRegionSetBase;
  60 class nmethod;
  61 
  62 #define HR_FORMAT "%u:(%s)[" PTR_FORMAT "," PTR_FORMAT "," PTR_FORMAT "]"
  63 #define HR_FORMAT_PARAMS(_hr_) \
  64                 (_hr_)->hrm_index(), \
  65                 (_hr_)->get_short_type_str(), \
  66                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  67 
  68 // sentinel value for hrm_index
  69 #define G1_NO_HRM_INDEX ((uint) -1)
  70 
  71 // A dirty card to oop closure for heap regions. It
  72 // knows how to get the G1 heap and how to use the bitmap
  73 // in the concurrent marker used by G1 to filter remembered
  74 // sets.
  75 
  76 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  77 private:
  78   HeapRegion* _hr;
  79   G1ParPushHeapRSClosure* _rs_scan;
  80   G1CollectedHeap* _g1;
  81 
  82   // Walk the given memory region from bottom to (actual) top
  83   // looking for objects and applying the oop closure (_cl) to
  84   // them. The base implementation of this treats the area as
  85   // blocks, where a block may or may not be an object. Sub-
  86   // classes should override this to provide more accurate
  87   // or possibly more efficient walking.
  88   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  89 
  90 public:
  91   HeapRegionDCTOC(G1CollectedHeap* g1,
  92                   HeapRegion* hr,
  93                   G1ParPushHeapRSClosure* cl,
  94                   CardTableModRefBS::PrecisionStyle precision);
  95 };
  96 
  97 // The complicating factor is that BlockOffsetTable diverged
  98 // significantly, and we need functionality that is only in the G1 version.
  99 // So I copied that code, which led to an alternate G1 version of
 100 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 101 // be reconciled, then G1OffsetTableContigSpace could go away.
 102 
 103 // The idea behind time stamps is the following. We want to keep track of
 104 // the highest address where it's safe to scan objects for each region.
 105 // This is only relevant for current GC alloc regions so we keep a time stamp
 106 // per region to determine if the region has been allocated during the current
 107 // GC or not. If the time stamp is current we report a scan_top value which
 108 // was saved at the end of the previous GC for retained alloc regions and which is
 109 // equal to the bottom for all other regions.
 110 // There is a race between card scanners and allocating gc workers where we must ensure
 111 // that card scanners do not read the memory allocated by the gc workers.
 112 // In order to enforce that, we must not return a value of _top which is more recent than the
 113 // time stamp. This is due to the fact that a region may become a gc alloc region at
 114 // some point after we've read the timestamp value as being < the current time stamp.
 115 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
 116 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
 117 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 118 class G1OffsetTableContigSpace: public CompactibleSpace {
 119   friend class VMStructs;
 120   HeapWord* volatile _top;
 121   HeapWord* volatile _scan_top;
 122  protected:
 123   G1BlockOffsetArrayContigSpace _offsets;
 124   Mutex _par_alloc_lock;
 125   volatile unsigned _gc_time_stamp;
 126   // When we need to retire an allocation region, while other threads
 127   // are also concurrently trying to allocate into it, we typically
 128   // allocate a dummy object at the end of the region to ensure that
 129   // no more allocations can take place in it. However, sometimes we
 130   // want to know where the end of the last "real" object we allocated
 131   // into the region was and this is what this keeps track.
 132   HeapWord* _pre_dummy_top;
 133 
 134  public:
 135   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 136                            MemRegion mr);
 137 
 138   void set_top(HeapWord* value) { _top = value; }
 139   HeapWord* top() const { return _top; }
 140 
 141  protected:
 142   // Reset the G1OffsetTableContigSpace.
 143   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 144 
 145   HeapWord* volatile* top_addr() { return &_top; }
 146   // Try to allocate at least min_word_size and up to desired_size from this Space.
 147   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 148   // space allocated.
 149   // This version assumes that all allocation requests to this Space are properly
 150   // synchronized.
 151   inline HeapWord* allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 152   // Try to allocate at least min_word_size and up to desired_size from this Space.
 153   // Returns NULL if not possible, otherwise sets actual_word_size to the amount of
 154   // space allocated.
 155   // This version synchronizes with other calls to par_allocate_impl().
 156   inline HeapWord* par_allocate_impl(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 157 
 158  public:
 159   void reset_after_compaction() { set_top(compaction_top()); }
 160 
 161   size_t used() const { return byte_size(bottom(), top()); }
 162   size_t free() const { return byte_size(top(), end()); }
 163   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 164 
 165   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 166 
 167   void object_iterate(ObjectClosure* blk);
 168   void safe_object_iterate(ObjectClosure* blk);
 169 
 170   void set_bottom(HeapWord* value);
 171   void set_end(HeapWord* value);
 172 
 173   void mangle_unused_area() PRODUCT_RETURN;
 174   void mangle_unused_area_complete() PRODUCT_RETURN;
 175 
 176   HeapWord* scan_top() const;
 177   void record_timestamp();
 178   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 179   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 180   void record_retained_region();
 181 
 182   // See the comment above in the declaration of _pre_dummy_top for an
 183   // explanation of what it is.
 184   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 185     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 186     _pre_dummy_top = pre_dummy_top;
 187   }
 188   HeapWord* pre_dummy_top() {
 189     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 190   }
 191   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 192 
 193   virtual void clear(bool mangle_space);
 194 
 195   HeapWord* block_start(const void* p);
 196   HeapWord* block_start_const(const void* p) const;
 197 
 198   // Allocation (return NULL if full).  Assumes the caller has established
 199   // mutually exclusive access to the space.
 200   HeapWord* allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 201   // Allocation (return NULL if full).  Enforces mutual exclusion internally.
 202   HeapWord* par_allocate(size_t min_word_size, size_t desired_word_size, size_t* actual_word_size);
 203 
 204   virtual HeapWord* allocate(size_t word_size);
 205   virtual HeapWord* par_allocate(size_t word_size);
 206 
 207   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 208 
 209   // MarkSweep support phase3
 210   virtual HeapWord* initialize_threshold();
 211   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 212 
 213   virtual void print() const;
 214 
 215   void reset_bot() {
 216     _offsets.reset_bot();
 217   }
 218 
 219   void print_bot_on(outputStream* out) {
 220     _offsets.print_on(out);
 221   }
 222 };
 223 
 224 class HeapRegion: public G1OffsetTableContigSpace {
 225   friend class VMStructs;
 226   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 227   template <typename SpaceType>
 228   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 229  private:
 230 
 231   // The remembered set for this region.
 232   // (Might want to make this "inline" later, to avoid some alloc failure
 233   // issues.)
 234   HeapRegionRemSet* _rem_set;
 235 
 236   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 237 
 238   // Auxiliary functions for scan_and_forward support.
 239   // See comments for CompactibleSpace for more information.
 240   inline HeapWord* scan_limit() const {
 241     return top();
 242   }
 243 
 244   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 245     return true; // Always true, since scan_limit is top
 246   }
 247 
 248   inline size_t scanned_block_size(const HeapWord* addr) const {
 249     return HeapRegion::block_size(addr); // Avoid virtual call
 250   }
 251 
 252  protected:
 253   // The index of this region in the heap region sequence.
 254   uint  _hrm_index;
 255 
 256   AllocationContext_t _allocation_context;
 257 
 258   HeapRegionType _type;
 259 
 260   // For a humongous region, region in which it starts.
 261   HeapRegion* _humongous_start_region;
 262 
 263   // True iff an attempt to evacuate an object in the region failed.
 264   bool _evacuation_failed;
 265 
 266   // A heap region may be a member one of a number of special subsets, each
 267   // represented as linked lists through the field below.  Currently, there
 268   // is only one set:
 269   //   The collection set.
 270   HeapRegion* _next_in_special_set;
 271 
 272   // next region in the young "generation" region set
 273   HeapRegion* _next_young_region;
 274 
 275   // Next region whose cards need cleaning
 276   HeapRegion* _next_dirty_cards_region;
 277 
 278   // Fields used by the HeapRegionSetBase class and subclasses.
 279   HeapRegion* _next;
 280   HeapRegion* _prev;
 281 #ifdef ASSERT
 282   HeapRegionSetBase* _containing_set;
 283 #endif // ASSERT
 284 
 285   // We use concurrent marking to determine the amount of live data
 286   // in each heap region.
 287   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 288   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 289 
 290   // The calculated GC efficiency of the region.
 291   double _gc_efficiency;
 292 
 293   int  _young_index_in_cset;
 294   SurvRateGroup* _surv_rate_group;
 295   int  _age_index;
 296 
 297   // The start of the unmarked area. The unmarked area extends from this
 298   // word until the top and/or end of the region, and is the part
 299   // of the region for which no marking was done, i.e. objects may
 300   // have been allocated in this part since the last mark phase.
 301   // "prev" is the top at the start of the last completed marking.
 302   // "next" is the top at the start of the in-progress marking (if any.)
 303   HeapWord* _prev_top_at_mark_start;
 304   HeapWord* _next_top_at_mark_start;
 305   // If a collection pause is in progress, this is the top at the start
 306   // of that pause.
 307 
 308   void init_top_at_mark_start() {
 309     assert(_prev_marked_bytes == 0 &&
 310            _next_marked_bytes == 0,
 311            "Must be called after zero_marked_bytes.");
 312     HeapWord* bot = bottom();
 313     _prev_top_at_mark_start = bot;
 314     _next_top_at_mark_start = bot;
 315   }
 316 
 317   // Cached attributes used in the collection set policy information
 318 
 319   // The RSet length that was added to the total value
 320   // for the collection set.
 321   size_t _recorded_rs_length;
 322 
 323   // The predicted elapsed time that was added to total value
 324   // for the collection set.
 325   double _predicted_elapsed_time_ms;
 326 
 327   // The predicted number of bytes to copy that was added to
 328   // the total value for the collection set.
 329   size_t _predicted_bytes_to_copy;
 330 
 331  public:
 332   HeapRegion(uint hrm_index,
 333              G1BlockOffsetSharedArray* sharedOffsetArray,
 334              MemRegion mr);
 335 
 336   // Initializing the HeapRegion not only resets the data structure, but also
 337   // resets the BOT for that heap region.
 338   // The default values for clear_space means that we will do the clearing if
 339   // there's clearing to be done ourselves. We also always mangle the space.
 340   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 341 
 342   static int    LogOfHRGrainBytes;
 343   static int    LogOfHRGrainWords;
 344 
 345   static size_t GrainBytes;
 346   static size_t GrainWords;
 347   static size_t CardsPerRegion;
 348 
 349   static size_t align_up_to_region_byte_size(size_t sz) {
 350     return (sz + (size_t) GrainBytes - 1) &
 351                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 352   }
 353 
 354   static size_t max_region_size();
 355   static size_t min_region_size_in_words();
 356 
 357   // It sets up the heap region size (GrainBytes / GrainWords), as
 358   // well as other related fields that are based on the heap region
 359   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 360   // CardsPerRegion). All those fields are considered constant
 361   // throughout the JVM's execution, therefore they should only be set
 362   // up once during initialization time.
 363   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 364 
 365   // All allocated blocks are occupied by objects in a HeapRegion
 366   bool block_is_obj(const HeapWord* p) const;
 367 
 368   // Returns the object size for all valid block starts
 369   // and the amount of unallocated words if called on top()
 370   size_t block_size(const HeapWord* p) const;
 371 
 372   // Override for scan_and_forward support.
 373   void prepare_for_compaction(CompactPoint* cp);
 374 
 375   inline HeapWord* par_allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* word_size);
 376   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 377   inline HeapWord* allocate_no_bot_updates(size_t min_word_size, size_t desired_word_size, size_t* actual_size);
 378 
 379   // If this region is a member of a HeapRegionManager, the index in that
 380   // sequence, otherwise -1.
 381   uint hrm_index() const { return _hrm_index; }
 382 
 383   // The number of bytes marked live in the region in the last marking phase.
 384   size_t marked_bytes()    { return _prev_marked_bytes; }
 385   size_t live_bytes() {
 386     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 387   }
 388 
 389   // The number of bytes counted in the next marking.
 390   size_t next_marked_bytes() { return _next_marked_bytes; }
 391   // The number of bytes live wrt the next marking.
 392   size_t next_live_bytes() {
 393     return
 394       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 395   }
 396 
 397   // A lower bound on the amount of garbage bytes in the region.
 398   size_t garbage_bytes() {
 399     size_t used_at_mark_start_bytes =
 400       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 401     return used_at_mark_start_bytes - marked_bytes();
 402   }
 403 
 404   // Return the amount of bytes we'll reclaim if we collect this
 405   // region. This includes not only the known garbage bytes in the
 406   // region but also any unallocated space in it, i.e., [top, end),
 407   // since it will also be reclaimed if we collect the region.
 408   size_t reclaimable_bytes() {
 409     size_t known_live_bytes = live_bytes();
 410     assert(known_live_bytes <= capacity(), "sanity");
 411     return capacity() - known_live_bytes;
 412   }
 413 
 414   // An upper bound on the number of live bytes in the region.
 415   size_t max_live_bytes() { return used() - garbage_bytes(); }
 416 
 417   void add_to_marked_bytes(size_t incr_bytes) {
 418     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 419   }
 420 
 421   void zero_marked_bytes()      {
 422     _prev_marked_bytes = _next_marked_bytes = 0;
 423   }
 424 
 425   const char* get_type_str() const { return _type.get_str(); }
 426   const char* get_short_type_str() const { return _type.get_short_str(); }
 427 
 428   bool is_free() const { return _type.is_free(); }
 429 
 430   bool is_young()    const { return _type.is_young();    }
 431   bool is_eden()     const { return _type.is_eden();     }
 432   bool is_survivor() const { return _type.is_survivor(); }
 433 
 434   bool is_humongous() const { return _type.is_humongous(); }
 435   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
 436   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
 437 
 438   bool is_old() const { return _type.is_old(); }
 439 
 440   // A pinned region contains objects which are not moved by garbage collections.
 441   // Humongous regions and archive regions are pinned.
 442   bool is_pinned() const { return _type.is_pinned(); }
 443 
 444   // An archive region is a pinned region, also tagged as old, which
 445   // should not be marked during mark/sweep. This allows the address
 446   // space to be shared by JVM instances.
 447   bool is_archive() const { return _type.is_archive(); }
 448 
 449   // For a humongous region, region in which it starts.
 450   HeapRegion* humongous_start_region() const {
 451     return _humongous_start_region;
 452   }
 453 
 454   // Makes the current region be a "starts humongous" region, i.e.,
 455   // the first region in a series of one or more contiguous regions
 456   // that will contain a single "humongous" object.
 457   //
 458   // obj_top : points to the end of the humongous object that's being
 459   // allocated.
 460   void set_starts_humongous(HeapWord* obj_top);
 461 
 462   // Makes the current region be a "continues humongous'
 463   // region. first_hr is the "start humongous" region of the series
 464   // which this region will be part of.
 465   void set_continues_humongous(HeapRegion* first_hr);
 466 
 467   // Unsets the humongous-related fields on the region.
 468   void clear_humongous();
 469 
 470   // If the region has a remembered set, return a pointer to it.
 471   HeapRegionRemSet* rem_set() const {
 472     return _rem_set;
 473   }
 474 
 475   inline bool in_collection_set() const;
 476 
 477   inline HeapRegion* next_in_collection_set() const;
 478   inline void set_next_in_collection_set(HeapRegion* r);
 479 
 480   void set_allocation_context(AllocationContext_t context) {
 481     _allocation_context = context;
 482   }
 483 
 484   AllocationContext_t  allocation_context() const {
 485     return _allocation_context;
 486   }
 487 
 488   // Methods used by the HeapRegionSetBase class and subclasses.
 489 
 490   // Getter and setter for the next and prev fields used to link regions into
 491   // linked lists.
 492   HeapRegion* next()              { return _next; }
 493   HeapRegion* prev()              { return _prev; }
 494 
 495   void set_next(HeapRegion* next) { _next = next; }
 496   void set_prev(HeapRegion* prev) { _prev = prev; }
 497 
 498   // Every region added to a set is tagged with a reference to that
 499   // set. This is used for doing consistency checking to make sure that
 500   // the contents of a set are as they should be and it's only
 501   // available in non-product builds.
 502 #ifdef ASSERT
 503   void set_containing_set(HeapRegionSetBase* containing_set) {
 504     assert((containing_set == NULL && _containing_set != NULL) ||
 505            (containing_set != NULL && _containing_set == NULL),
 506            "containing_set: " PTR_FORMAT " "
 507            "_containing_set: " PTR_FORMAT,
 508            p2i(containing_set), p2i(_containing_set));
 509 
 510     _containing_set = containing_set;
 511   }
 512 
 513   HeapRegionSetBase* containing_set() { return _containing_set; }
 514 #else // ASSERT
 515   void set_containing_set(HeapRegionSetBase* containing_set) { }
 516 
 517   // containing_set() is only used in asserts so there's no reason
 518   // to provide a dummy version of it.
 519 #endif // ASSERT
 520 
 521   HeapRegion* get_next_young_region() { return _next_young_region; }
 522   void set_next_young_region(HeapRegion* hr) {
 523     _next_young_region = hr;
 524   }
 525 
 526   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 527   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 528   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 529   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 530 
 531   // Reset HR stuff to default values.
 532   void hr_clear(bool par, bool clear_space, bool locked = false);
 533   void par_clear();
 534 
 535   // Get the start of the unmarked area in this region.
 536   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 537   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 538 
 539   // Note the start or end of marking. This tells the heap region
 540   // that the collector is about to start or has finished (concurrently)
 541   // marking the heap.
 542 
 543   // Notify the region that concurrent marking is starting. Initialize
 544   // all fields related to the next marking info.
 545   inline void note_start_of_marking();
 546 
 547   // Notify the region that concurrent marking has finished. Copy the
 548   // (now finalized) next marking info fields into the prev marking
 549   // info fields.
 550   inline void note_end_of_marking();
 551 
 552   // Notify the region that it will be used as to-space during a GC
 553   // and we are about to start copying objects into it.
 554   inline void note_start_of_copying(bool during_initial_mark);
 555 
 556   // Notify the region that it ceases being to-space during a GC and
 557   // we will not copy objects into it any more.
 558   inline void note_end_of_copying(bool during_initial_mark);
 559 
 560   // Notify the region that we are about to start processing
 561   // self-forwarded objects during evac failure handling.
 562   void note_self_forwarding_removal_start(bool during_initial_mark,
 563                                           bool during_conc_mark);
 564 
 565   // Notify the region that we have finished processing self-forwarded
 566   // objects during evac failure handling.
 567   void note_self_forwarding_removal_end(bool during_initial_mark,
 568                                         bool during_conc_mark,
 569                                         size_t marked_bytes);
 570 
 571   // Returns "false" iff no object in the region was allocated when the
 572   // last mark phase ended.
 573   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 574 
 575   void reset_during_compaction() {
 576     assert(is_humongous(),
 577            "should only be called for humongous regions");
 578 
 579     zero_marked_bytes();
 580     init_top_at_mark_start();
 581   }
 582 
 583   void calc_gc_efficiency(void);
 584   double gc_efficiency() { return _gc_efficiency;}
 585 
 586   int  young_index_in_cset() const { return _young_index_in_cset; }
 587   void set_young_index_in_cset(int index) {
 588     assert( (index == -1) || is_young(), "pre-condition" );
 589     _young_index_in_cset = index;
 590   }
 591 
 592   int age_in_surv_rate_group() {
 593     assert( _surv_rate_group != NULL, "pre-condition" );
 594     assert( _age_index > -1, "pre-condition" );
 595     return _surv_rate_group->age_in_group(_age_index);
 596   }
 597 
 598   void record_surv_words_in_group(size_t words_survived) {
 599     assert( _surv_rate_group != NULL, "pre-condition" );
 600     assert( _age_index > -1, "pre-condition" );
 601     int age_in_group = age_in_surv_rate_group();
 602     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 603   }
 604 
 605   int age_in_surv_rate_group_cond() {
 606     if (_surv_rate_group != NULL)
 607       return age_in_surv_rate_group();
 608     else
 609       return -1;
 610   }
 611 
 612   SurvRateGroup* surv_rate_group() {
 613     return _surv_rate_group;
 614   }
 615 
 616   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 617     assert( surv_rate_group != NULL, "pre-condition" );
 618     assert( _surv_rate_group == NULL, "pre-condition" );
 619     assert( is_young(), "pre-condition" );
 620 
 621     _surv_rate_group = surv_rate_group;
 622     _age_index = surv_rate_group->next_age_index();
 623   }
 624 
 625   void uninstall_surv_rate_group() {
 626     if (_surv_rate_group != NULL) {
 627       assert( _age_index > -1, "pre-condition" );
 628       assert( is_young(), "pre-condition" );
 629 
 630       _surv_rate_group = NULL;
 631       _age_index = -1;
 632     } else {
 633       assert( _age_index == -1, "pre-condition" );
 634     }
 635   }
 636 
 637   void set_free() { _type.set_free(); }
 638 
 639   void set_eden()        { _type.set_eden();        }
 640   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
 641   void set_survivor()    { _type.set_survivor();    }
 642 
 643   void set_old() { _type.set_old(); }
 644 
 645   void set_archive() { _type.set_archive(); }
 646 
 647   // Determine if an object has been allocated since the last
 648   // mark performed by the collector. This returns true iff the object
 649   // is within the unmarked area of the region.
 650   bool obj_allocated_since_prev_marking(oop obj) const {
 651     return (HeapWord *) obj >= prev_top_at_mark_start();
 652   }
 653   bool obj_allocated_since_next_marking(oop obj) const {
 654     return (HeapWord *) obj >= next_top_at_mark_start();
 655   }
 656 
 657   // Returns the "evacuation_failed" property of the region.
 658   bool evacuation_failed() { return _evacuation_failed; }
 659 
 660   // Sets the "evacuation_failed" property of the region.
 661   void set_evacuation_failed(bool b) {
 662     _evacuation_failed = b;
 663 
 664     if (b) {
 665       _next_marked_bytes = 0;
 666     }
 667   }
 668 
 669   // Requires that "mr" be entirely within the region.
 670   // Apply "cl->do_object" to all objects that intersect with "mr".
 671   // If the iteration encounters an unparseable portion of the region,
 672   // or if "cl->abort()" is true after a closure application,
 673   // terminate the iteration and return the address of the start of the
 674   // subregion that isn't done.  (The two can be distinguished by querying
 675   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 676   // completed.
 677   HeapWord*
 678   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 679 
 680   // filter_young: if true and the region is a young region then we
 681   // skip the iteration.
 682   // card_ptr: if not NULL, and we decide that the card is not young
 683   // and we iterate over it, we'll clean the card before we start the
 684   // iteration.
 685   HeapWord*
 686   oops_on_card_seq_iterate_careful(MemRegion mr,
 687                                    FilterOutOfRegionClosure* cl,
 688                                    bool filter_young,
 689                                    jbyte* card_ptr);
 690 
 691   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 692   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 693   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 694 
 695   void set_recorded_rs_length(size_t rs_length) {
 696     _recorded_rs_length = rs_length;
 697   }
 698 
 699   void set_predicted_elapsed_time_ms(double ms) {
 700     _predicted_elapsed_time_ms = ms;
 701   }
 702 
 703   void set_predicted_bytes_to_copy(size_t bytes) {
 704     _predicted_bytes_to_copy = bytes;
 705   }
 706 
 707   virtual CompactibleSpace* next_compaction_space() const;
 708 
 709   virtual void reset_after_compaction();
 710 
 711   // Routines for managing a list of code roots (attached to the
 712   // this region's RSet) that point into this heap region.
 713   void add_strong_code_root(nmethod* nm);
 714   void add_strong_code_root_locked(nmethod* nm);
 715   void remove_strong_code_root(nmethod* nm);
 716 
 717   // Applies blk->do_code_blob() to each of the entries in
 718   // the strong code roots list for this region
 719   void strong_code_roots_do(CodeBlobClosure* blk) const;
 720 
 721   // Verify that the entries on the strong code root list for this
 722   // region are live and include at least one pointer into this region.
 723   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 724 
 725   void print() const;
 726   void print_on(outputStream* st) const;
 727 
 728   // vo == UsePrevMarking  -> use "prev" marking information,
 729   // vo == UseNextMarking -> use "next" marking information
 730   // vo == UseMarkWord    -> use the mark word in the object header
 731   //
 732   // NOTE: Only the "prev" marking information is guaranteed to be
 733   // consistent most of the time, so most calls to this should use
 734   // vo == UsePrevMarking.
 735   // Currently, there is only one case where this is called with
 736   // vo == UseNextMarking, which is to verify the "next" marking
 737   // information at the end of remark.
 738   // Currently there is only one place where this is called with
 739   // vo == UseMarkWord, which is to verify the marking during a
 740   // full GC.
 741   void verify(VerifyOption vo, bool *failures) const;
 742 
 743   // Override; it uses the "prev" marking information
 744   virtual void verify() const;
 745 };
 746 
 747 // HeapRegionClosure is used for iterating over regions.
 748 // Terminates the iteration when the "doHeapRegion" method returns "true".
 749 class HeapRegionClosure : public StackObj {
 750   friend class HeapRegionManager;
 751   friend class G1CollectedHeap;
 752 
 753   bool _complete;
 754   void incomplete() { _complete = false; }
 755 
 756  public:
 757   HeapRegionClosure(): _complete(true) {}
 758 
 759   // Typically called on each region until it returns true.
 760   virtual bool doHeapRegion(HeapRegion* r) = 0;
 761 
 762   // True after iteration if the closure was applied to all heap regions
 763   // and returned "false" in all cases.
 764   bool complete() { return _complete; }
 765 };
 766 
 767 #endif // SHARE_VM_GC_G1_HEAPREGION_HPP